前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[DataFrame直接内存加载机制]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Tomcat
...,特别是那些深藏在类加载器里的小秘密,让人心痒难耐呢! 二、问题背景与现象 当你启动Tomcat,看到类似这样的错误日志: SEVERE: Exception sending context initialized event to listener instance of class org.springframework.web.context.ContextLoaderListener java.lang.NullPointerException: null at org.apache.catalina.loader.WebappClassLoaderBase.findClassInternal(WebappClassLoaderBase.java:2378) ... 这通常意味着在Spring Boot或者Spring MVC的上下文中,某个类加载器未能正确加载或初始化所需的类,导致了空指针异常。 三、类加载器原理简述 类加载器是Java运行时环境中负责加载类的机制。对于Tomcat,WebappClassLoader是最主要的类加载器,它负责从Web应用的类路径中加载类。如果类加载器找不到所需类,就可能导致空指针异常。 四、问题定位与排查 1. 检查类路径(Classpath) 确保你的类路径包含了所有需要的JAR文件,特别是Spring框架和相关依赖。比如说,你在pom.xml里列出了Spring Boot的依赖,那这些小宝贝JAR文件就得乖乖地加入咱们项目的“家庭相册”(类路径)! xml org.springframework.boot spring-boot-starter-web 2. 检查类加载顺序 Spring Boot会使用两个类加载器,一个是Parent First ClassLoader,另一个是Application ClassLoader。确认它们是否按预期工作,避免相互覆盖或冲突。 3. 查看源码分析 深入阅读Tomcat的WebappClassLoader源码,了解其加载过程,看看是否在某个阶段出了问题。你知道吗,"findClassInternal"这个小家伙就像是个游戏中的开关,要是你忘记给它输入班级名称,小心,空指针这个调皮鬼就可能跑出来捣蛋了! 五、实例分析 假设我们在一个Spring Boot项目中,尝试访问一个不存在的Controller: java @Controller public class NonExistentController { @GetMapping("/test") public String test() { return "Hello, World!"; } } 启动Tomcat后,由于NonExistentController未被正确加载,ContextLoaderListener会抛出空指针异常。这时,我们需要检查WebappClassLoader是否能够正确找到并加载这个类。 六、解决方案与优化 1. 修复代码错误 在上述例子中,只需将NonExistentController加入到项目中,或者确保类名拼写正确。 2. 配置元数据 在Spring Boot中,可以使用@ComponentScan注解来指定要扫描的包,确保所有控制器都被正确加载。 java @SpringBootApplication @ComponentScan("com.example.demo.controllers") // 替换为你的实际包名 public class Application { public static void main(String[] args) { SpringApplication.run(Application.class, args); } } 3. 使用代理模式 如果类加载器问题由第三方库引起,考虑使用代理模式(如Spring AOP)来替换有问题的部分,避免直接依赖于类加载器。 七、结论 解决Tomcat启动时的空指针异常涉及对类加载机制的深入理解。咱们得像侦探一样,一点一滴地排查那些藏在代码深处的类路径和加载顺序,找出那个捣蛋的源头,然后对症下药,修复它!你知道吗,面对这种难题,关键是要有点儿耐性和眼尖,因为答案常常藏在那些你可能轻易忽略的小角落里,就像寻宝一样,得仔仔细细地挖掘。
2024-04-09 11:00:45
267
心灵驿站
Cassandra
...Batch操作及批量加载机制后,我们发现高效的数据管理技术对于现代大数据应用场景至关重要。近期,Apache Cassandra社区发布了4.0版本的重大更新,其中对批量处理性能和一致性保证方面做出了进一步优化。 在一篇由DataStax发布的博客文章中(发布时间:2022年5月),详细介绍了Cassandra 4.0如何通过改进内存管理和并发控制策略来提升批量插入性能,即使在大规模数据导入时也能保持更稳定的系统响应速度。同时,新版本增强了轻量级事务(LWT)功能,为用户提供了一种更为精细的事务控制手段,从而在一定程度上弥补了传统Batch操作在严格一致性要求下的不足。 此外,为了满足实时数据分析和流式数据处理的需求,Cassandra与Kafka等消息队列系统的集成方案也日益成熟。例如,开源项目"Cassandra Kafka Connect"使得用户能够直接将Kafka中的数据流无缝批量加载到Cassandra集群,实现数据的实时写入和分析查询。 综上所述,随着Cassandra数据库技术的不断迭代和完善,其在批处理和批量加载方面的实践已更加丰富多元。关注并跟进这些最新发展动态和技术趋势,有助于我们在实际业务场景中更好地利用Cassandra进行大规模、高性能的数据管理与处理。同时,深入研究相关案例和最佳实践,可以为我们提供更具针对性和时效性的解决方案。
2024-02-14 11:00:42
505
冬日暖阳
转载文章
...表、队列等 Java内存模型:常问的JVM分代模型,以及JDK1.8后的区别,最后还问了JVM相关的调优参数 分布式锁的实现比较技术 一面题目 自我介绍 擅长哪方面的技术? java有哪些锁中类?(乐观锁&悲观锁、可重入锁&Synchronize等)。 比较重要的数据结构,如链表,队列,栈的基本原理及大致实现 J.U.C下的常见类的使用。Threadpool的深入考察;blockingQueue的使用 Java内存分代模型,GC算法,JVM常见的启动参数;CMS算法的过程。 Volatile关键字有什么用(包括底层原理) 线程池的调优策略 Spring cloud的服务注册与发现是怎么设计的? 分布式系统的全局id如何实现 分布式锁的方案,redis和zookeeper那个好,如果是集群部署,高并发情况下那个性能更好。 1.2 Java中间件二面 技术二面考察范围: 问了项目相关的技术实现细节 数据库相关:索引、索引底层实现、mysql相关的行锁、表锁等 redis相关:架构设计、数据一致性问题 容器:容器的设计原理等技术 二面题目: 参与的项目,选一个,技术难度在哪里? Collections.sort底层排序方式 负载均衡的原理设计模式与重构,谈谈你对重构的理解 谈谈redis相关的集群有哪些成熟方案? 再谈谈一致hash算法(redis)? 数据库索引,B+树的特性和建树过程 Mysql相关的行锁,表锁;乐观锁,悲观锁 谈谈多线程和并发工具的使用 谈谈redis的架构和组件 Redis的数据一致性问题(分布式多节点环境&单机环境) Docker容器 1.3 Java中间件三面 技术三面考察范围: 主要谈到了高并发的实现方案 以及中间件:redis、rocketmq、kafka等的架构设计思路 最后问了平时怎么提升技术的技术 三面题目 高并发情况下,系统是如何支撑大量的请求的? 接着上面的问题,延伸到了中间件,kafka、redis、rocketmq、mycat等设计思路和适用场景等 最近上过哪些技术网站;最近再看那些书。 工作和生活中遇见最大的挑战,怎么去克服? 未来有怎样的打算 1.4 Java中间件四面 最后,你懂的,主要就是HR走流程了,主要问了未来的职业规划。 02 头条Java后台3面 2.1 头条一面 讲讲jvm运行时数据库区 讲讲你知道的垃圾回收算法 jvm内存模型jmm 内存泄漏与内存溢出的区别 select、epool 的区别?底层的数据结构是什么? mysql数据库默认存储引擎,有什么优点 优化数据库的方法,从sql到缓存到cpu到操作系统,知道多少说多少 什么情景下做分表,什么情景下做分库 linkedList与arrayList区别 适用场景 array list是如何扩容的 volatile 关键字的作用?Java 内存模型? java lock的实现,公平锁、非公平锁 悲观锁和乐观锁,应用中的案例,mysql当中怎么实现,java中的实现 2.2 头条二面 Java 内存分配策略? 多个线程同时请求内存,如何分配? Redis 底层用到了哪些数据结构? 使用 Redis 的 set 来做过什么? Redis 使用过程中遇到什么问题? 搭建过 Redis 集群吗? 如何分析“慢查询”日志进行 SQL/索引 优化? MySQL 索引结构解释一下?(B+ 树) MySQL Hash 索引适用情况?举下例子? 2.3 头条三面 如何保证数据库与redis缓存一致的Redis 的并发竞争问题是什么? 如何解决这个问题? 了解 Redis 事务的 CAS 方案吗? 如何保证 Redis 高并发、高可用? Redis 的主从复制原理,以及Redis 的哨兵原理? 如果让你写一个消息队列,该如何进行架构设计啊?说一下你的思路。 MySQL数据库主从同步怎么实现? 秒杀模块怎么设计的,如何压测,抗压手段 03 今日头条Java后台研发三面 3.1 一面 concurrent包下面用过哪些? countdownlatch功能实现 synchronized和lock区别,重入锁thread和runnable的区别 AtomicInteger实现原理(CAS自旋) java并发sleep与wait、notify与notifyAll的区别 如何实现高效的同步链表 java都有哪些加锁方式(synchronized、ReentrantLock、共享锁、读写锁等) 设计模式(工厂模式、单例模式(几种情况)、适配器模式、装饰者模式) maven依赖树,maven的依赖传递,循环依赖 3.2 二面 synchronized和reentrantLock的区别,synchronized用在代码快、方法、静态方法时锁的都是什么? 介绍spring的IOC和AOP,分别如何实现(classloader、动态代理)JVM的内存布局以及垃圾回收原理及过程 讲一下,讲一下CMS垃圾收集器垃圾回收的流程,以及CMS的缺点 redis如何处理分布式服务器并发造成的不一致OSGi的机制spring中bean加载机制,bean生成的具体步骤,ioc注入的方式spring何时创建- applicationContextlistener是监听哪个事件? 介绍ConcurrentHashMap原理,用的是哪种锁,segment有没可能增大? 解释mysql索引、b树,为啥不用平衡二叉树、红黑树 Zookeeper如何同步配置 3.3 三面 Java线程池ThreadPoolEcecutor参数,基本参数,使用场景 MySQL的ACID讲一下,延伸到隔离级别 dubbo的实现原理,说说RPC的要点 GC停顿原因,如何降低停顿? JVM如何调优、参数怎么调? 如何用工具分析jvm状态(visualVM看堆中对象的分配,对象间的引用、是否有内存泄漏,jstack看线程状态、是否死锁等等) 描述一致性hash算法 分布式雪崩场景如何避免? 再谈谈消息队列 04 抖音Java 三面 4.1 一面: hashmap,怎么扩容,怎么处理数据冲突? 怎么高效率的实现数据迁移? Linux的共享内存如何实现,大概说了一下。 socket网络编程,说一下TCP的三次握手和四次挥手同步IO和异步IO的区别? Java GC机制?GC Roots有哪些? 红黑树讲一下,五个特性,插入删除操作,时间复杂度? 快排的时间复杂度,最坏情况呢,最好情况呢,堆排序的时间复杂度呢,建堆的复杂度是多少 4.2 二面: 自我介绍,主要讲讲做了什么和擅长什么 设计模式了解哪些? AtomicInteger怎么实现原子修改的? ConcurrentHashMap 在Java7和Java8中的区别? 为什么Java8并发效率更好?什么情况下用HashMap,什么情况用ConcurrentHashMap? redis数据结构? redis数据淘汰机制? 4.3 三面(约五十分钟): mysql实现事务的原理(MVCC) MySQL数据主从同步是如何实现的? MySQL索引的实现,innodb的索引,b+树索引是怎么实现的,为什么用b+树做索引节点,一个节点存了多少数据,怎么规定大小,与磁盘页对应。 如果Redis有1亿个key,使用keys命令是否会影响线上服务? Redis的持久化方式,aod和rdb,具体怎么实现,追加日志和备份文件,底层实现原理的话知道么? 遇到最大困难是什么?怎么克服? 未来的规划是什么? 你想问我什么? 05 百度三面 5.1 百度一面 自我介绍 Java中的多态 为什么要同时重写hashcode和equals Hashmap的原理 Hashmap如何变线程安全,每种方式的优缺点 垃圾回收机制 Jvm的参数你知道的说一下 设计模式了解的说一下啊 手撕一个单例模式 手撕算法:反转单链表 手撕算法:实现类似微博子结构的数据结构,输入一系列父子关系,输出一个类似微博评论的父子结构图 手写java多线程 手写java的soeket编程,服务端和客户端 手撕算法: 爬楼梯,写出状态转移方程 智力题:时针分针什么时候重合 5.2 百度二面(现场) 自我介绍 项目介绍 服务器如何负载均衡,有哪些算法,哪个比较好,一致性哈希原理,怎么避免DDOS攻击请求打到少数机器。 TCP连接中的三次握手和四次挥手,四次挥手的最后一个ack的作用是什么,为什么要time wait,为什么是2msl。 数据库的备份和恢复怎么实现的,主从复制怎么做的,什么时候会出现数据不一致,如何解决。 Linux查看cpu占用率高的进程 手撕算法:给定一个数字三角形,找到从顶部到底部的最小路径和。每一步可以移动到下面一行的相邻数字上。 然后继续在这个问题上扩展 求出最短那条的路径 递归求出所有的路径 设计模式讲一下熟悉的 会不会滥用设计模式 多线程条件变量为什么要在while体里 你遇到什么挫折,怎么应对和处理 5.3 百度三面(现场) 自我介绍 项目介绍 Redis的特点 Redis的持久化怎么做,aof和rdb,有什么区别,有什么优缺点。 Redis使用哨兵部署会有什么问题,我说需要扩容的话还是得集群部署。 说一下JVM内存模型把,有哪些区,分别干什么的 说一下gc算法,分代回收说下 MySQL的引擎讲一下,有什么区别,使用场景呢 分布式事务了解么 反爬虫的机制,有哪些方式 06 蚂蚁中间件团队面试题 6.1 蚂蚁中间件一面: 自我介绍 JVM垃圾回收算法和垃圾回收器有哪些,最新的JDK采用什么算法。 新生代和老年代的回收机制。 讲一下ArrayList和linkedlist的区别,ArrayList与HashMap的扩容方式。 Concurrenthashmap1.8后的改动。 Java中的多线程,以及线程池的增长策略和拒绝策略了解么。 Tomcat的类加载器了解么 Spring的ioc和aop,Springmvc的基本架构,请求流程。 HTTP协议与Tcp有什么区别,http1.0和2.0的区别。 Java的网络编程,讲讲NIO的实现方式,与BIO的区别,以及介绍常用的NIO框架。 索引什么时候会失效变成全表扫描 介绍下分布式的paxos和raft算法 6.2 蚂蚁中间件二面 你在项目中怎么用到并发的。 消息队列的使用场景,谈谈Kafka。 你说了解分布式服务,那么你怎么理解分布式服务。 Dubbo和Spring Clound的区别,以及使用场景。 讲一下docker的实现原理,以及与JVM的区别。 MongoDB、Redis和Memcached的应用场景,各自优势 MongoDB有事务吗 Redis说一下sorted set底层原理 讲讲Netty为什么并发高,相关的核心组件有哪些 6.3 蚂蚁中间件三面 完整的画一个分布式集群部署图,从负载均衡到后端数据库集群。 分布式锁的方案,Redis和Zookeeper哪个好,如果是集群部署,高并发情况下哪个性能更好。 分布式系统的全局id如何实现。 数据库万级变成亿级,你如何来解决。 常见的服务器雪崩是由什么引起的,如何来防范。 异地容灾怎么实现 常用的高并发技术解决方案有哪些,以及对应的解决步骤。 07 京东4面(Java研发) 7.1 一面(基础面:约1小时) 自我介绍,主要讲讲做了什么和擅长什么 springmvc和spring-boot区别 @Autowired的实现原理 Bean的默认作用范围是什么?其他的作用范围? 索引是什么概念有什么作用?MySQL里主要有哪些索引结构?哈希索引和B+树索引比较? Java线程池的原理?线程池有哪些?线程池工厂有哪些线程池类型,及其线程池参数是什么? hashmap原理,处理哈希冲突用的哪种方法? 还知道什么处理哈希冲突的方法? Java GC机制?GC Roots有哪些? Java怎么进行垃圾回收的?什么对象会进老年代?垃圾回收算法有哪些?为什么新生代使用复制算法? HashMap的时间复杂度?HashMap中Hash冲突是怎么解决的?链表的上一级结构是什么?Java8中的HashMap有什么变化?红黑树需要比较大小才能进行插入,是依据什么进行比较的?其他Hash冲突解决方式? hash和B+树的区别?分别应用于什么场景?哪个比较好? 项目里有个数据安全的,aes和md5的区别?详细点 7.2 二面(问数据库较多) 自我介绍 为什么MyISAM查询性能好? 事务特性(acid) 隔离级别 SQL慢查询的常见优化步骤? 说下乐观锁,悲观锁(select for update),并写出sql实现 TCP协议的三次握手和四次挥手过程? 用到过哪些rpc框架 数据库连接池怎么实现 Java web过滤器的生命周期 7.3 三面(综合面;约一个小时) 自我介绍。 ConcurrentHashMap 在Java7和Java8中的区别?为什么Java8并发效率更好?什么情况下用HashMap,什么情况用ConcurrentHashMap? 加锁有什么机制? ThreadLocal?应用场景? 数据库水平切分,垂直切分的设计思路和切分顺序 Redis如何解决key冲突 soa和微服务的区别? 单机系统演变为分布式系统,会涉及到哪些技术的调整?请从前面负载到后端详细描述。 设计一个秒杀系统? 7.4 四面(HR面) 你自己最大优势和劣势是什么 平时遇见过什么样的挑战,怎么去克服的 工作中遇见了技术解决不了的问题,你的应对思路? 你的兴趣爱好? 未来的职业规划是什么? 08 美团java高级开发3面 8.1 美团一面 自我介绍 项目介绍 Redis介绍 了解redis源码么 了解redis集群么 Hashmap的原理,增删的情况后端数据结构如何位移 hashmap容量为什么是2的幂次 hashset的源码 object类你知道的方法 hashcode和equals 你重写过hashcode和equals么,要注意什么 假设现在一个学生类,有学号和姓名,我现在hashcode方法重写的时候,只将学号参与计算,会出现什么情况? 往set里面put一个学生对象,然后将这个学生对象的学号改了,再put进去,可以放进set么?并讲出为什么 Redis的持久化?有哪些方式,原理是什么? 讲一下稳定的排序算法和不稳定的排序算法 讲一下快速排序的思想 8.2 美团二面 自我介绍 讲一下数据的acid 什么是一致性 什么是隔离性 Mysql的隔离级别 每个隔离级别是如何解决 Mysql要加上nextkey锁,语句该怎么写 Java的内存模型,垃圾回收 线程池的参数 每个参数解释一遍 然后面试官设置了每个参数,给了是个线程,让描述出完整的线程池执行的流程 Nio和IO有什么区别 Nio和aio的区别 Spring的aop怎么实现 Spring的aop有哪些实现方式 动态代理的实现方式和区别 Linux了解么 怎么查看系统负载 Cpu load的参数如果为4,描述一下现在系统处于什么情况 Linux,查找磁盘上最大的文件的命令 Linux,如何查看系统日志文件 手撕算法:leeetcode原题 22,Generate Parentheses,给定 n 对括号,请- 写一个函数以将其生成新的括号组合,并返回所有组合结果。 8.3 美团三面(现场) 三面没怎么问技术,问了很多技术管理方面的问题 自我介绍 项目介绍 怎么管理项目成员 当意见不一致时,如何沟通并说服开发成员,并举个例子 怎么保证项目的进度 数据库的索引原理 非聚簇索引和聚簇索引 索引的使用注意事项 联合索引 从底层解释最左匹配原则 Mysql对联合索引有优化么?会自动调整顺序么?哪个版本开始优化? Redis的应用 Redis的持久化的方式和原理 技术选型,一个新技术和一个稳定的旧技术,你会怎么选择,选择的考虑有哪些 说你印象最深的美团点评技术团队的三篇博客 最近在学什么新技术 你是怎么去接触一门新技术的 会看哪些书 怎么选择要看的书 最后 由于篇幅限制,小编在此截出几张知识讲解的图解,有需要的程序猿(媛)可以点赞后戳这里免费领取全部资料获取哦 子 怎么保证项目的进度 数据库的索引原理 非聚簇索引和聚簇索引 索引的使用注意事项 联合索引 从底层解释最左匹配原则 Mysql对联合索引有优化么?会自动调整顺序么?哪个版本开始优化? Redis的应用 Redis的持久化的方式和原理 技术选型,一个新技术和一个稳定的旧技术,你会怎么选择,选择的考虑有哪些 说你印象最深的美团点评技术团队的三篇博客 最近在学什么新技术 你是怎么去接触一门新技术的 会看哪些书 怎么选择要看的书 最后 由于篇幅限制,小编在此截出几张知识讲解的图解,有需要的程序猿(媛)可以点赞后戳这里免费领取全部资料获取哦 [外链图片转存中…(img-SFREePIJ-1624074891834)] [外链图片转存中…(img-5kF3pkiC-1624074891834)] [外链图片转存中…(img-HDVXfOMR-1624074891835)] [外链图片转存中…(img-RyaAC5jy-1624074891836)] [外链图片转存中…(img-iV32C5Ok-1624074891837)] 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_57285325/article/details/118051767。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-13 23:43:59
85
转载
转载文章
...这家公司没有笔试题,直接一个搞Android的哥们进来,简单介绍了一下 ,就聊起来了。首先 J哥 简单介绍了一下 在上一家公司 担任什么角色,平时开发流程 之类的,然后J哥 就说大概在公司开发了有5款APP,自己私下接过一款私活,然后自己没事也做了两款应用,然后J哥 把应用展示给他看,他看了连连称赞不错啊。。。(lalala,其实都是J哥网上巴拉的项目啦。) (然后大体给他介绍了 项目基本框架,是 v4包里的 SlidingPaneLayout 嵌套了实现了轮询效果 自定义的viewpager 。然后 具体界面是用的瀑布流,项目的关键就是 对 图片的处理,因为有N张 图片,但是并没有卡顿,所以就说了 自己用 了开源的imagedownloader 和 volley 以及自己定义的 lrucache 缓存 bitmap 对象,这里大家一定要把图片的三级缓存 自己了解清楚,基本面试会问到。) 其实 当面试问你如何避免oom,内存泄露导致的原因,以及如何处理大图片等等,其实都是 如何优化内存。 可以按照我自己总结的回答,你可以说,这个问题 ,跟 oom以及 内存泄露,其实是一样的,关键 就是 如何 优化内存,避免不必要的 内存泄露, 而 内存泄露 的原因 ,我总结了 4点, 1. 匿名内部类,和非静态内部类, 举个栗子:我们用handler 进行线程间 假如 我们在activity中这样定义 handler : [java] view plain copy print ? Handler mHandler = new Handler() { @Override public void handleMessage(Message msg) { mImageView.setImageBitmap(mBitmap); } } 然后,我们用 右键 选中工程 运行 lint工具 , android tools---run lint ,就会提示我们这样一个warning: In Android, Handler classes should be static or leaks might occur.。 就是 ,推荐我们 把handler 定义成static,具体 看这里解释的很详细:http://www.linuxidc.com/Linux/2013-12/94065.htm 类似的还有 匿名子线程。 2.还是 拿网上的 栗子来说, [java] view plain copy print ? Vector v = new Vector( 10 ); for ( int i = 1 ;i < 100 ; i ++ ){ Object o = new Object(); v.add(o); o = null ; } 即便是 我们把 o 对象 置为 null,但是 vector 集合中还有有o的引用,所以 集合 没有被清空,这一部分内存 还是不能被释放,这就导致了内存泄露。 3, 当我们操作数据库的时候,我们在执行完 相应的crud 方法后,我们没有关闭 cursor .close()或者 db.close(),也同样会占用内存、因为只有关闭连接后,才会被GC 回收。 4.继续举个栗子 [java] view plain copy print ? Set<Person> set = new HashSet<Person>(); Person p1 = new Person("唐僧","pwd1",25); Person p2 = new Person("孙悟空","pwd2",26); Person p3 = new Person("猪八戒","pwd3",27); set.add(p1); set.add(p2); set.add(p3); System.out.println("总共有:"+set.size()+" 个元素!"); //结果:总共有:3 个元素! p3.setAge(2); //修改p3的年龄,此时p3元素对应的hashcode值发生改变 set.remove(p3); //此时remove不掉,造成内存泄漏 set.add(p3); //重新添加,居然添加成功 System.out.println("总共有:"+set.size()+" 个元素!"); //结果:总共有:4 个元素! J哥 亲自 实践了下,发现问题了,这个网上的栗子 是错的。实际上是可以remove掉得、真是个悲伤地故事。这个栗子是不正确的。。网上好有一片这样的文章,都是这个栗子。。 这里 看下其他网站上的总结吧 :强烈推荐http://developer.51cto.com/art/201111/302465.htm。很详细。 OK。还有最后一点,就是关于图片的,bitmap对象的及时释放,这里 就不细说了,等在图片三级缓存一起去总结。 此时 感觉 对面的android 小哥 已经被我吸引了。好像很认真的在听我讲课一样。 然后, 他问我问题。我大体总结了一下。 面试官01问:有没有自定义过view。 J哥回答:这个很常见,我自己定义过很多,比如 下拉刷新,上拉加载更多数据的listview,类似github 上面的pulltorefreshlistview。 还有图片轮询播放的viewpager,也是 继承viewpager,然后自己开启一个线程,去控制 切换的。还比如,跑马灯效果的textview ,scrollview与 listview 相互嵌套 导致 listview 高度计算不正确,我也是 自定义listview,复写了 onmeaure方法,然后解决冲突的。在比如 一些开源的 可以放大缩小的图片,我也是做过,主要是对onmeasure 方法,onlayout方法,ondraw 方法的复写。以及复写一下 view 自己的 touch事件等等,奥 对了,我们公司当时有需求 做一个 锁屏软件,侧滑解锁的,我也是自己定义的,然后展示给他看了一下,当时 那篇文章在这里。传送门http://blog.csdn.net/u011733020/article/details/41863861。 面试官01问:listview的优化、 J哥回答:(PS:这种问题,基本上 都快被问烂了,但是没办法 还是要回答。)listview作为最常见的 用来显示数据的view ,一般 从四个方面 去优化。 1 ,复用convertview, 不然假如有1000条数据,那么我们滑动,就会 产生1000个convertview ,这对内存是很大的浪费,所以 我们一定要复用。 2. 减少 findviewbyid 的次数, 因为 每次 去 执行 findviewbyid 也是要消耗资源的,我们要尽可能的减少,通常 我们定义一个viewholder,去管理 这些id ,然后通过tag 去直接拿到 id。 3, 分页加载,延迟加载 预加载。 这个在我们以前项目,有一个榜单,数据量很大,一次请求过来的数据量很大,这样有两个问题,一个是请求网络 时间可能会很长,另一个展示数据 上面 体验对不是很好,所以 我们做了 第一次加载 20条,然后每次请求 再去 加载10条新数据。 4.就是 对 listview 中一些 类似头像, 图片的 优化。这里 类似 三级缓存,推荐大家看一下 开源 的universal-image-loader 的源码。或者 这篇文章http://www.jb51.net/article/38162.htm,J哥有时间 专门写一篇过于 图片缓存的。 面试官01问: 看你简历上面 做过 社交,通信这块是怎么做的。 J哥回答:我看 咱们公司 也用到了 聊天,咱们公司是 自己做的 还是 用的第三方的类似 环信的。结果被J哥猜中,他说 是集成的环信(但是 有丢包现象,所以打算自己做通信)。 OK,J哥说 ,我们 项目中聊天 是基于xmpp协议的做的,在没有android以前 ,java有个开源的 smack ,android 上 现在有一个asmack ,其实 就是移植到android 中来了, 服务端是基于 openfire的 ,我们就是做的 openfire+asmack 的 聊天,这个原理主要 就是 绑定 ip 拿到 connection 然后 connect ,然后进行通信,我说,这个 跟http请求 其实原理上一样,都是 绑定ip,然后 设置一些property,然后通过类似流进行通信的, asmack,其实底层 就是xml通信的。 面试官01问: touch 事件的传递机制,还特意画了,一个 就是 button LinearLayout 嵌套 。 J哥回答:就是这个, 这也难不倒我。因为J哥觉得 这个问题肯定会问到 所以 早有准备,这里 我就大体说下结论,详细原理 给你传送门。 我回答,这个很简单,只要你继承一下 button 和 linearlayout 复写一下 三个方法 dispatchtouchEvent onInterceptTouchEvent 和onTouchEvent .就能很清楚的明白 传递的过程,我给你总的说下结论的,点击这个button,一般是 外面的父控件 先响应这个down 事件,然后 往子类里面传递,让子类 在往子类的下一级子类去传递,让最终的孩子去决定是不要要消费掉这个点击事件,如果消费掉,那么父类将不会响应,如果子类不消费,那么会退回到次级子类,然后看是否要消费,这样,一句话 就是父传子, 子决定要不要,不要 然后传回去。 这里有很详细 很详细的介绍, 包裹事件的分发。所以我就不罗嗦,http://blog.csdn.net/yanbober/article/details/45887547?ref=myread 面试官01问: 项目中图片的优化。 J哥回答:我给他展示的项目 其中有一款app 是有很多图片 ,但是 很流畅,也没有oom。关于图片 优化,一般我们采用三级缓存,1 。内存加载 2.本地加载 3 网络加载。 首先 我们看 内存中有没有,有直接拿来用,这里 我项目里是这样做的,我先获取一下 分配给我们应用的可用内存是多少,然后 拿1/4 或者 1/8做一个 lrucache. 把我们的bitmap对象添加进去。有些比较常用的图片,我会保存到本地,避免每次重复联网下载。结合 开源的 afinal universalimageloader 以及 13年谷歌官方推荐的volley(号称是 asynchttpclient 和universalimageloader)的结合、 所以 在我的项目中基本没有遇到过图片导致的oom 问题,对于单张的 大图片,我也会利用bitmapFactory,进行计算大小,然后 计算手机分辨率,进行定量的 压缩 处理。 面试官问: GC的回收 J哥回答:我说。GC 回收 应该不只是按照一种方式,应该有多种不同的算法,我看过谷歌 官网介绍的一点,有这样一块区域,他分为 latest(最近) middle(中等)permanent(永久的),这样三块子区域。里面分别存放,刚刚被创建的,以及 时间 靠后的,很久的,对象,不断地新对象 往latest里面添加,当达到相应对象区域的阀值的时候,就会触发GC,GC 进行回收的时候,对于latest 中回收的速度是最快的,而permanent 相对是最久的,而时间 也跟 每块区域中对象的个数有关系, 还有一种算法,是根据最近被引用的时间,或者 被引用的次数 去进行 GC的、、这里随便扯就是了。GC 回收并不是立即执行的。是不定时的。GC回收的时候 会阻塞线程,所以代码中要避免创建不必要的对象,例如for循环中 创建大量对象 就会容易引起GC。 当我们也可以主动 在方法中执行system.gc() 去手动释放一些资源。 面试官01问: 怎么避免 viewpager 预加载 fragment的、 J哥回答:这个问题 我也碰到过,我们都知道,viewpager 它本身会预加载 左右两个 和当前一个对象、而 我们viewpager setOffscreenPageLimit(0) 不生效因为看源码知道,这个方法默认最少也要加载一个。所以 这个fragment 还没有被当前页面显示出来,已经夹在好了,有可能数据不是最新的,我是在 setuservisibilityhint() 这个方法中跟参数 动态去判断 要不要刷新的。 问了一圈,这个哥们大概没什么问的了,然后 就让我等一下,说让他们技术总监过来 。 我就等。。。 然后等了几分钟,进来一小姑娘,坐下,看了我简历,我以为是人事,来跟我谈人生理想。结果,没说几句话,让我讲一下我的项目。我qu,惊呆我了。我问,你也是做android的,我去,是这样的、、把J哥吓到, 然后问了J哥几个问题。 Android 小姑娘问: 看你项目中的listview 中item类型 是统一的,而加入 item 差别挺大的 你怎么复用。 J哥回答:J哥装作很牛的样子说,我暂时想到两种方法,1.给这个对象 加一个type 然后 根据 type 去复用,或者 把这几种类型 一起加载,然后控制显示隐藏。然后 我反问小姑娘,假如 我这里 有一百条数据,这一百条是无序的,包含了 10种 item类型,你有没有什么好方法 去处理这个问题, 小姑娘说,你不是定义了类型吗,我们就是 通过type 去判断的。 Android 小姑娘问: onAttch onDetach还是onAttachedToWindow,onDetachedFromWindow J哥回答:其实 那个小姑娘忘记这两个方法了。我说什么方法,她说onAttachIntent() 和 onDetachIntent(). 反正 J哥是没听说过, 我只见过 onAttach ,但是 这个方法 我也没用过。我就问她,这两个方法是做什么的,小姑娘跟我说 是 把子view绑定到界面上的,那么的话 应该是onAttachedToWindow,onDetachedFromWindow方法了,小姑娘说: 在这个方法 可以计算子 view的高度宽度,在 oncreate 里面不能计算,其实虽然刚开始 在oncreate里面是不能计算,但是还是有方法计算的,(本人觉得面试 问你 API 是 最2的了,忍不住吐槽下,我遇到过,Camera 拍照,问我获取 一个图片,还是 视频的 方法,我去百度 一下,随便就知道,真是不懂 为什么会问方法。随便一个程序员 都会百度。。) 跟小姑娘聊得其他问题 不太记得了,感觉这个女程序员啊。。就问方法 给我的印象不太好,不管方法用没用到,我觉得面试 直接问你方法 好2 好2... 然后技术总监 有进来跟我聊了,后技术总监 有进来跟我聊了、技术总监 年龄30出头吧,到是没有问我什么技术问题, 总监: 问我 做没做过通信这块,能不能做这一块。 J哥回答:,我说做过,通信有几种协议的,我们用的 是xmpp协议的 ,服务器 是 基于apache的 openfire 搭建的,客户端 是用的asmack。还有一些 其他协议的 ,比如我知道有些项目中用的 soap协议的,还有ip 协议的。PS:反正就是扯 我说 通信 客户端这一块 我没问题,但是 服务端 我 从工作以来 一直偏向 android 移动端开发,后台这一块,如果数据量大了,还要考虑并发之类的,我是做不了,让我做个tomcat搭建的demo 我可能可以。 其他也是随便聊了下,然后 就说,让人事来跟我谈理想了。 总监: 问我 什么时候能上班 J哥回答:我说 这个看公司需求啦。 其他也是随便聊了下,然后 就说,让人事来跟我谈理想了。 这里 感觉应该没问题了。差不多能拿下了。 人事1:一进来,就问东问西。问加班看法啊,他们公司技术 一般都八九点走啊。说七点基本没有走的啊、、、 J哥回答:我说,一般遇到项目加功能 ,版本升级,等等 这些加班都没什么,只要不是一直在加班。。。。这里每个人自己看法就好了、、 反正人事 是一直跟我强调这个,她不停强调 我就暗暗下决心,薪资 我是不会要低了。 人事1:看你还年轻啊,还能拼一拼啊、、、、 J哥回答:我说现在 这几年对我人生规划也算比较重要的时期,也是过一年少一年了,其实她的意思 还是侧面强调加班。。。。日了UZI了。 中间一堆废话,然后我问了她 公司一般上下班时间啊。。之类的有没有技术交流啊,之类的。。。 最后到关键问题上啦,最关心的,薪资问题。 人事1:期望薪资 J哥回答:我说16K左右吧。她问 你以前公司多少 握手 15K。她说她们公司 是 14薪。反正 我还是说16K。她说 那好,你等下,然后就出去了。 不知道 跟什么人 讨论了许久,然后又来一个 可能是人事吧。又进来,问了一遍,也问了薪资。。哥还是说16K 。 。。估计是她们公司想要我,但是又觉得有点超出她们薪资期望吧,当场被没有给什么offer。然后就有点婉拒的说,两天给我答复,心里很气愤,饿着肚子 面试到三点,竟然婉拒、、、 反正我是很生气,我说,好,然后我就走。结果,没过一个小时,人事又打电话来,非要约我 见一下她们CEO。这是什么鬼,难道她们CEO要给我煲汤 了?我说可以,然后时间定在后天了,,反正心灵鸡汤对我是没用了、 OK ,这家面试 先写到这里,下面下午还有一家,等下在写。准备睡觉。今天面试回来,累的就睡着了,晚上十点多才醒过来,想了想还是 把今天面试的过程总结一下。 ------------------------------待续------------------------- 第二弹http://blog.csdn.net/u011733020/article/details/46058273 本篇文章为转载内容。原文链接:https://blog.csdn.net/haluoluo211/article/details/51010955。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-19 17:42:52
336
转载
转载文章
...ddle模式采用延迟加载方式,通过enable_paddle接口安装paddlepaddle-tiny,并且import相关代码; jieba.cut_for_search 方法接受两个参数:需要分词的字符串;是否使用 HMM 模型。该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细 待分词的字符串可以是 unicode 或 UTF-8 字符串、GBK 字符串。注意:不建议直接输入 GBK 字符串,可能无法预料地错误解码成 UTF-8 jieba.cut 以及 jieba.cut_for_search 返回的结构都是一个可迭代的 generator,可以使用 for 循环来获得分词后得到的每一个词语(unicode),或者用 jieba.lcut 以及 jieba.lcut_for_search 直接返回 list jieba.Tokenizer(dictionary=DEFAULT_DICT) 新建自定义分词器,可用于同时使用不同词典。jieba.dt 为默认分词器,所有全局分词相关函数都是该分词器的映射。 代码示例 encoding=utf-8import jiebajieba.enable_paddle() 启动paddle模式。 0.40版之后开始支持,早期版本不支持strs=["我来到北京清华大学","乒乓球拍卖完了","中国科学技术大学"]for str in strs:seg_list = jieba.cut(str,use_paddle=True) 使用paddle模式print("Paddle Mode: " + '/'.join(list(seg_list)))seg_list = jieba.cut("我来到北京清华大学", cut_all=True)print("Full Mode: " + "/ ".join(seg_list)) 全模式seg_list = jieba.cut("我来到北京清华大学", cut_all=False)print("Default Mode: " + "/ ".join(seg_list)) 精确模式seg_list = jieba.cut("他来到了网易杭研大厦") 默认是精确模式print(", ".join(seg_list))seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") 搜索引擎模式print(", ".join(seg_list)) 输出: 【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学【精确模式】: 我/ 来到/ 北京/ 清华大学【新词识别】:他, 来到, 了, 网易, 杭研, 大厦 (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了)【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造 添加自定义词典 载入词典 开发者可以指定自己自定义的词典,以便包含 jieba 词库里没有的词。虽然 jieba 有新词识别能力,但是自行添加新词可以保证更高的正确率 用法: jieba.load_userdict(file_name) file_name 为文件类对象或自定义词典的路径 词典格式和 dict.txt 一样,一个词占一行;每一行分三部分:词语、词频(可省略)、词性(可省略),用空格隔开,顺序不可颠倒。file_name 若为路径或二进制方式打开的文件,则文件必须为 UTF-8 编码。 词频省略时使用自动计算的能保证分出该词的词频。 例如: 创新办 3 i云计算 5凱特琳 nz台中 更改分词器(默认为 jieba.dt)的 tmp_dir 和 cache_file 属性,可分别指定缓存文件所在的文件夹及其文件名,用于受限的文件系统。 范例: 自定义词典:https://github.com/fxsjy/jieba/blob/master/test/userdict.txt 用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_userdict.py 之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 / 加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 / 调整词典 使用 add_word(word, freq=None, tag=None) 和 del_word(word) 可在程序中动态修改词典。 使用 suggest_freq(segment, tune=True) 可调节单个词语的词频,使其能(或不能)被分出来。 注意:自动计算的词频在使用 HMM 新词发现功能时可能无效。 代码示例: >>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))如果/放到/post/中将/出错/。>>> jieba.suggest_freq(('中', '将'), True)494>>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))如果/放到/post/中/将/出错/。>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))「/台/中/」/正确/应该/不会/被/切开>>> jieba.suggest_freq('台中', True)69>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))「/台中/」/正确/应该/不会/被/切开 “通过用户自定义词典来增强歧义纠错能力” — https://github.com/fxsjy/jieba/issues/14 关键词提取 基于 TF-IDF 算法的关键词抽取 import jieba.analyse jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=()) sentence 为待提取的文本 topK 为返回几个 TF/IDF 权重最大的关键词,默认值为 20 withWeight 为是否一并返回关键词权重值,默认值为 False allowPOS 仅包括指定词性的词,默认值为空,即不筛选 jieba.analyse.TFIDF(idf_path=None) 新建 TFIDF 实例,idf_path 为 IDF 频率文件 代码示例 (关键词提取) https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py 关键词提取所使用逆向文件频率(IDF)文本语料库可以切换成自定义语料库的路径 用法: jieba.analyse.set_idf_path(file_name) file_name为自定义语料库的路径 自定义语料库示例:https://github.com/fxsjy/jieba/blob/master/extra_dict/idf.txt.big 用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_idfpath.py 关键词提取所使用停止词(Stop Words)文本语料库可以切换成自定义语料库的路径 用法: jieba.analyse.set_stop_words(file_name) file_name为自定义语料库的路径 自定义语料库示例:https://github.com/fxsjy/jieba/blob/master/extra_dict/stop_words.txt 用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_stop_words.py 关键词一并返回关键词权重值示例 用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_with_weight.py 基于 TextRank 算法的关键词抽取 jieba.analyse.textrank(sentence, topK=20, withWeight=False, allowPOS=(‘ns’, ‘n’, ‘vn’, ‘v’)) 直接使用,接口相同,注意默认过滤词性。 jieba.analyse.TextRank() 新建自定义 TextRank 实例 算法论文: TextRank: Bringing Order into Texts 基本思想: 将待抽取关键词的文本进行分词 以固定窗口大小(默认为5,通过span属性调整),词之间的共现关系,构建图 计算图中节点的PageRank,注意是无向带权图 使用示例: 见 test/demo.py 词性标注 jieba.posseg.POSTokenizer(tokenizer=None) 新建自定义分词器,tokenizer 参数可指定内部使用的 jieba.Tokenizer 分词器。jieba.posseg.dt 为默认词性标注分词器。 标注句子分词后每个词的词性,采用和 ictclas 兼容的标记法。 除了jieba默认分词模式,提供paddle模式下的词性标注功能。paddle模式采用延迟加载方式,通过enable_paddle()安装paddlepaddle-tiny,并且import相关代码; 用法示例 >>> import jieba>>> import jieba.posseg as pseg>>> words = pseg.cut("我爱北京天安门") jieba默认模式>>> jieba.enable_paddle() 启动paddle模式。 0.40版之后开始支持,早期版本不支持>>> words = pseg.cut("我爱北京天安门",use_paddle=True) paddle模式>>> for word, flag in words:... print('%s %s' % (word, flag))...我 r爱 v北京 ns天安门 ns paddle模式词性标注对应表如下: paddle模式词性和专名类别标签集合如下表,其中词性标签 24 个(小写字母),专名类别标签 4 个(大写字母)。 标签 含义 标签 含义 标签 含义 标签 含义 n 普通名词 f 方位名词 s 处所名词 t 时间 nr 人名 ns 地名 nt 机构名 nw 作品名 nz 其他专名 v 普通动词 vd 动副词 vn 名动词 a 形容词 ad 副形词 an 名形词 d 副词 m 数量词 q 量词 r 代词 p 介词 c 连词 u 助词 xc 其他虚词 w 标点符号 PER 人名 LOC 地名 ORG 机构名 TIME 时间 并行分词 原理:将目标文本按行分隔后,把各行文本分配到多个 Python 进程并行分词,然后归并结果,从而获得分词速度的可观提升 基于 python 自带的 multiprocessing 模块,目前暂不支持 Windows 用法: jieba.enable_parallel(4) 开启并行分词模式,参数为并行进程数 jieba.disable_parallel() 关闭并行分词模式 例子:https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py 实验结果:在 4 核 3.4GHz Linux 机器上,对金庸全集进行精确分词,获得了 1MB/s 的速度,是单进程版的 3.3 倍。 注意:并行分词仅支持默认分词器 jieba.dt 和 jieba.posseg.dt。 Tokenize:返回词语在原文的起止位置 注意,输入参数只接受 unicode 默认模式 result = jieba.tokenize(u'永和服装饰品有限公司')for tk in result:print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])) word 永和 start: 0 end:2word 服装 start: 2 end:4word 饰品 start: 4 end:6word 有限公司 start: 6 end:10 搜索模式 result = jieba.tokenize(u'永和服装饰品有限公司', mode='search')for tk in result:print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])) word 永和 start: 0 end:2word 服装 start: 2 end:4word 饰品 start: 4 end:6word 有限 start: 6 end:8word 公司 start: 8 end:10word 有限公司 start: 6 end:10 ChineseAnalyzer for Whoosh 搜索引擎 引用: from jieba.analyse import ChineseAnalyzer 用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py 命令行分词 使用示例:python -m jieba news.txt > cut_result.txt 命令行选项(翻译): 使用: python -m jieba [options] filename结巴命令行界面。固定参数:filename 输入文件可选参数:-h, --help 显示此帮助信息并退出-d [DELIM], --delimiter [DELIM]使用 DELIM 分隔词语,而不是用默认的' / '。若不指定 DELIM,则使用一个空格分隔。-p [DELIM], --pos [DELIM]启用词性标注;如果指定 DELIM,词语和词性之间用它分隔,否则用 _ 分隔-D DICT, --dict DICT 使用 DICT 代替默认词典-u USER_DICT, --user-dict USER_DICT使用 USER_DICT 作为附加词典,与默认词典或自定义词典配合使用-a, --cut-all 全模式分词(不支持词性标注)-n, --no-hmm 不使用隐含马尔可夫模型-q, --quiet 不输出载入信息到 STDERR-V, --version 显示版本信息并退出如果没有指定文件名,则使用标准输入。 --help 选项输出: $> python -m jieba --helpJieba command line interface.positional arguments:filename input fileoptional arguments:-h, --help show this help message and exit-d [DELIM], --delimiter [DELIM]use DELIM instead of ' / ' for word delimiter; or aspace if it is used without DELIM-p [DELIM], --pos [DELIM]enable POS tagging; if DELIM is specified, use DELIMinstead of '_' for POS delimiter-D DICT, --dict DICT use DICT as dictionary-u USER_DICT, --user-dict USER_DICTuse USER_DICT together with the default dictionary orDICT (if specified)-a, --cut-all full pattern cutting (ignored with POS tagging)-n, --no-hmm don't use the Hidden Markov Model-q, --quiet don't print loading messages to stderr-V, --version show program's version number and exitIf no filename specified, use STDIN instead. 延迟加载机制 jieba 采用延迟加载,import jieba 和 jieba.Tokenizer() 不会立即触发词典的加载,一旦有必要才开始加载词典构建前缀字典。如果你想手工初始 jieba,也可以手动初始化。 import jiebajieba.initialize() 手动初始化(可选) 在 0.28 之前的版本是不能指定主词典的路径的,有了延迟加载机制后,你可以改变主词典的路径: jieba.set_dictionary('data/dict.txt.big') 例子: https://github.com/fxsjy/jieba/blob/master/test/test_change_dictpath.py 其他词典 占用内存较小的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small 支持繁体分词更好的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big 下载你所需要的词典,然后覆盖 jieba/dict.txt 即可;或者用 jieba.set_dictionary('data/dict.txt.big') 其他语言实现 结巴分词 Java 版本 作者:piaolingxue 地址:https://github.com/huaban/jieba-analysis 结巴分词 C++ 版本 作者:yanyiwu 地址:https://github.com/yanyiwu/cppjieba 结巴分词 Rust 版本 作者:messense, MnO2 地址:https://github.com/messense/jieba-rs 结巴分词 Node.js 版本 作者:yanyiwu 地址:https://github.com/yanyiwu/nodejieba 结巴分词 Erlang 版本 作者:falood 地址:https://github.com/falood/exjieba 结巴分词 R 版本 作者:qinwf 地址:https://github.com/qinwf/jiebaR 结巴分词 iOS 版本 作者:yanyiwu 地址:https://github.com/yanyiwu/iosjieba 结巴分词 PHP 版本 作者:fukuball 地址:https://github.com/fukuball/jieba-php 结巴分词 .NET(C) 版本 作者:anderscui 地址:https://github.com/anderscui/jieba.NET/ 结巴分词 Go 版本 作者: wangbin 地址: https://github.com/wangbin/jiebago 作者: yanyiwu 地址: https://github.com/yanyiwu/gojieba 结巴分词Android版本 作者 Dongliang.W 地址:https://github.com/452896915/jieba-android 友情链接 https://github.com/baidu/lac 百度中文词法分析(分词+词性+专名)系统 https://github.com/baidu/AnyQ 百度FAQ自动问答系统 https://github.com/baidu/Senta 百度情感识别系统 系统集成 Solr: https://github.com/sing1ee/jieba-solr 分词速度 1.5 MB / Second in Full Mode 400 KB / Second in Default Mode 测试环境: Intel® Core™ i7-2600 CPU @ 3.4GHz;《围城》.txt 常见问题 1. 模型的数据是如何生成的? 详见: https://github.com/fxsjy/jieba/issues/7 2. “台中”总是被切成“台 中”?(以及类似情况) P(台中) < P(台)×P(中),“台中”词频不够导致其成词概率较低 解决方法:强制调高词频 jieba.add_word('台中') 或者 jieba.suggest_freq('台中', True) 3. “今天天气 不错”应该被切成“今天 天气 不错”?(以及类似情况) 解决方法:强制调低词频 jieba.suggest_freq(('今天', '天气'), True) 或者直接删除该词 jieba.del_word('今天天气') 4. 切出了词典中没有的词语,效果不理想? 解决方法:关闭新词发现 jieba.cut('丰田太省了', HMM=False) jieba.cut('我们中出了一个叛徒', HMM=False) 更多问题请点击:https://github.com/fxsjy/jieba/issues?sort=updated&state=closed 修订历史 https://github.com/fxsjy/jieba/blob/master/Changelog jieba “Jieba” (Chinese for “to stutter”) Chinese text segmentation: built to be the best Python Chinese word segmentation module. Features Support three types of segmentation mode: Accurate Mode attempts to cut the sentence into the most accurate segmentations, which is suitable for text analysis. Full Mode gets all the possible words from the sentence. Fast but not accurate. Search Engine Mode, based on the Accurate Mode, attempts to cut long words into several short words, which can raise the recall rate. Suitable for search engines. Supports Traditional Chinese Supports customized dictionaries MIT License Online demo http://jiebademo.ap01.aws.af.cm/ (Powered by Appfog) Usage Fully automatic installation: easy_install jieba or pip install jieba Semi-automatic installation: Download http://pypi.python.org/pypi/jieba/ , run python setup.py install after extracting. Manual installation: place the jieba directory in the current directory or python site-packages directory. import jieba. Algorithm Based on a prefix dictionary structure to achieve efficient word graph scanning. Build a directed acyclic graph (DAG) for all possible word combinations. Use dynamic programming to find the most probable combination based on the word frequency. For unknown words, a HMM-based model is used with the Viterbi algorithm. Main Functions Cut The jieba.cut function accepts three input parameters: the first parameter is the string to be cut; the second parameter is cut_all, controlling the cut mode; the third parameter is to control whether to use the Hidden Markov Model. jieba.cut_for_search accepts two parameter: the string to be cut; whether to use the Hidden Markov Model. This will cut the sentence into short words suitable for search engines. The input string can be an unicode/str object, or a str/bytes object which is encoded in UTF-8 or GBK. Note that using GBK encoding is not recommended because it may be unexpectly decoded as UTF-8. jieba.cut and jieba.cut_for_search returns an generator, from which you can use a for loop to get the segmentation result (in unicode). jieba.lcut and jieba.lcut_for_search returns a list. jieba.Tokenizer(dictionary=DEFAULT_DICT) creates a new customized Tokenizer, which enables you to use different dictionaries at the same time. jieba.dt is the default Tokenizer, to which almost all global functions are mapped. Code example: segmentation encoding=utf-8import jiebaseg_list = jieba.cut("我来到北京清华大学", cut_all=True)print("Full Mode: " + "/ ".join(seg_list)) 全模式seg_list = jieba.cut("我来到北京清华大学", cut_all=False)print("Default Mode: " + "/ ".join(seg_list)) 默认模式seg_list = jieba.cut("他来到了网易杭研大厦")print(", ".join(seg_list))seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") 搜索引擎模式print(", ".join(seg_list)) Output: [Full Mode]: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学[Accurate Mode]: 我/ 来到/ 北京/ 清华大学[Unknown Words Recognize] 他, 来到, 了, 网易, 杭研, 大厦 (In this case, "杭研" is not in the dictionary, but is identified by the Viterbi algorithm)[Search Engine Mode]: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造 Add a custom dictionary Load dictionary Developers can specify their own custom dictionary to be included in the jieba default dictionary. Jieba is able to identify new words, but you can add your own new words can ensure a higher accuracy. Usage: jieba.load_userdict(file_name) file_name is a file-like object or the path of the custom dictionary The dictionary format is the same as that of dict.txt: one word per line; each line is divided into three parts separated by a space: word, word frequency, POS tag. If file_name is a path or a file opened in binary mode, the dictionary must be UTF-8 encoded. The word frequency and POS tag can be omitted respectively. The word frequency will be filled with a suitable value if omitted. For example: 创新办 3 i云计算 5凱特琳 nz台中 Change a Tokenizer’s tmp_dir and cache_file to specify the path of the cache file, for using on a restricted file system. Example: 云计算 5李小福 2创新办 3[Before]: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /[After]: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 / Modify dictionary Use add_word(word, freq=None, tag=None) and del_word(word) to modify the dictionary dynamically in programs. Use suggest_freq(segment, tune=True) to adjust the frequency of a single word so that it can (or cannot) be segmented. Note that HMM may affect the final result. Example: >>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))如果/放到/post/中将/出错/。>>> jieba.suggest_freq(('中', '将'), True)494>>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))如果/放到/post/中/将/出错/。>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))「/台/中/」/正确/应该/不会/被/切开>>> jieba.suggest_freq('台中', True)69>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))「/台中/」/正确/应该/不会/被/切开 Keyword Extraction import jieba.analyse jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=()) sentence: the text to be extracted topK: return how many keywords with the highest TF/IDF weights. The default value is 20 withWeight: whether return TF/IDF weights with the keywords. The default value is False allowPOS: filter words with which POSs are included. Empty for no filtering. jieba.analyse.TFIDF(idf_path=None) creates a new TFIDF instance, idf_path specifies IDF file path. Example (keyword extraction) https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py Developers can specify their own custom IDF corpus in jieba keyword extraction Usage: jieba.analyse.set_idf_path(file_name) file_name is the path for the custom corpus Custom Corpus Sample:https://github.com/fxsjy/jieba/blob/master/extra_dict/idf.txt.big Sample Code:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_idfpath.py Developers can specify their own custom stop words corpus in jieba keyword extraction Usage: jieba.analyse.set_stop_words(file_name) file_name is the path for the custom corpus Custom Corpus Sample:https://github.com/fxsjy/jieba/blob/master/extra_dict/stop_words.txt Sample Code:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_stop_words.py There’s also a TextRank implementation available. Use: jieba.analyse.textrank(sentence, topK=20, withWeight=False, allowPOS=('ns', 'n', 'vn', 'v')) Note that it filters POS by default. jieba.analyse.TextRank() creates a new TextRank instance. Part of Speech Tagging jieba.posseg.POSTokenizer(tokenizer=None) creates a new customized Tokenizer. tokenizer specifies the jieba.Tokenizer to internally use. jieba.posseg.dt is the default POSTokenizer. Tags the POS of each word after segmentation, using labels compatible with ictclas. Example: >>> import jieba.posseg as pseg>>> words = pseg.cut("我爱北京天安门")>>> for w in words:... print('%s %s' % (w.word, w.flag))...我 r爱 v北京 ns天安门 ns Parallel Processing Principle: Split target text by line, assign the lines into multiple Python processes, and then merge the results, which is considerably faster. Based on the multiprocessing module of Python. Usage: jieba.enable_parallel(4) Enable parallel processing. The parameter is the number of processes. jieba.disable_parallel() Disable parallel processing. Example: https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py Result: On a four-core 3.4GHz Linux machine, do accurate word segmentation on Complete Works of Jin Yong, and the speed reaches 1MB/s, which is 3.3 times faster than the single-process version. Note that parallel processing supports only default tokenizers, jieba.dt and jieba.posseg.dt. Tokenize: return words with position The input must be unicode Default mode result = jieba.tokenize(u'永和服装饰品有限公司')for tk in result:print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])) word 永和 start: 0 end:2word 服装 start: 2 end:4word 饰品 start: 4 end:6word 有限公司 start: 6 end:10 Search mode result = jieba.tokenize(u'永和服装饰品有限公司',mode='search')for tk in result:print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])) word 永和 start: 0 end:2word 服装 start: 2 end:4word 饰品 start: 4 end:6word 有限 start: 6 end:8word 公司 start: 8 end:10word 有限公司 start: 6 end:10 ChineseAnalyzer for Whoosh from jieba.analyse import ChineseAnalyzer Example: https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py Command Line Interface $> python -m jieba --helpJieba command line interface.positional arguments:filename input fileoptional arguments:-h, --help show this help message and exit-d [DELIM], --delimiter [DELIM]use DELIM instead of ' / ' for word delimiter; or aspace if it is used without DELIM-p [DELIM], --pos [DELIM]enable POS tagging; if DELIM is specified, use DELIMinstead of '_' for POS delimiter-D DICT, --dict DICT use DICT as dictionary-u USER_DICT, --user-dict USER_DICTuse USER_DICT together with the default dictionary orDICT (if specified)-a, --cut-all full pattern cutting (ignored with POS tagging)-n, --no-hmm don't use the Hidden Markov Model-q, --quiet don't print loading messages to stderr-V, --version show program's version number and exitIf no filename specified, use STDIN instead. Initialization By default, Jieba don’t build the prefix dictionary unless it’s necessary. This takes 1-3 seconds, after which it is not initialized again. If you want to initialize Jieba manually, you can call: import jiebajieba.initialize() (optional) You can also specify the dictionary (not supported before version 0.28) : jieba.set_dictionary('data/dict.txt.big') Using Other Dictionaries It is possible to use your own dictionary with Jieba, and there are also two dictionaries ready for download: A smaller dictionary for a smaller memory footprint: https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small There is also a bigger dictionary that has better support for traditional Chinese (繁體): https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big By default, an in-between dictionary is used, called dict.txt and included in the distribution. In either case, download the file you want, and then call jieba.set_dictionary('data/dict.txt.big') or just replace the existing dict.txt. Segmentation speed 1.5 MB / Second in Full Mode 400 KB / Second in Default Mode Test Env: Intel® Core™ i7-2600 CPU @ 3.4GHz;《围城》.txt 本篇文章为转载内容。原文链接:https://blog.csdn.net/yegeli/article/details/107246661。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-02 10:38:37
500
转载
VUE
...端独立的应用中,预先加载数据是一项非常关键的工作。在Vue应用中,常常要求使用Vue-Router以及Vuex进行信息管理,在页面跳转时,也要求延迟加载和加工数据。为了改良用户感受,每个路由组件都应该在展现之前加载好所需数据并存入Vuex中。这个过程叫做预先加载。 在Vue中完成数据预先加载的方法非常简单,我们只要求在路由设置文件中进行设定即可。例如: import Home from './views/Home.vue' export default [ { path: '/', name: 'home', component: Home, meta: { preload: true } }, // ... ] 在这个例子中,我们在路由配置对象里增加了一个meta特性,然后设置preload为true。这个特性通知Vue-Router这个路由要求预先加载。接下来,我们可以运用Vue-Router提供的beforeEnter钩子来完成数据预先加载。例如: import store from './store' router.beforeEach((to, from, next) =>{ if (to.meta.preload) { store.dispatch('loadData', to.name).then(() =>{ next() }) } else { next() } }) 在这个例子中,我们在Vue-Router的beforeEach钩子中判断即将进入的路由是否要求预先加载。如果要求,我们就调用Vuex的Action函数loadData,这个函数会延迟加载并加工数据。当数据加载完成后,我们再调用next()函数,进入新路由。如果不要求预先加载,我们直接调用next()函数跳过数据加工流程。 总之,Vue中的预先加载功能非常强大,不仅可以改良用户感受,还可以减轻服务器的负担。我们只要求在路由设置文件中进行简单的设定,然后运用Vue-Router的路由钩子函数来完成数据预先加载即可。
2023-05-23 11:47:24
251
程序媛
HessianRPC
...聊天,完全不需要额外加载什么库或者工具,就像咱们平时用微信、QQ那样直接沟通交流一样。Hessian使用了二进制编码,并且支持跨平台和跨语言。 二、HessianRPC的应用场景 HessianRPC主要用于需要在不同的系统之间传输数据的场景,例如分布式系统的消息传递、服务调用等。你知道吗,HessianRPC这家伙可厉害了,它采用的是二进制编码这种方式进行传输,这就意味着它的速度嗖嗖的,超级快!就像是数据界的“闪电侠”一样,咻一下就完成任务了。 三、HessianRPC的序列化与反序列化 在使用HessianRPC时,我们需要对对象进行序列化和反序列化操作。序列化,说白了就是把Java对象这个大块头,变成一条可以轻松传输和存储的二进制流。想象一下,就像把一个复杂的乐高模型拆解打包成一个个小零件,方便搬运。而反序列化呢,恰恰相反,就是把这些“二进制流小零件”重新组装还原回原来的Java对象,就像你又用这些零件恢复成了那个完整的乐高模型一样。 四、序列化过程中可能出现的ClassNotFoundException 在使用HessianRPC进行序列化操作时,可能会出现ClassNotFoundException。这是因为我们在序列化对象时,没有包含该对象的所有类信息。当我们尝试从序列化后的二进制流中创建这些对象时,就会抛出ClassNotFoundException。 五、如何处理序列化过程中出现的ClassNotFoundException? 对于这个问题,我们可以采取以下几种策略: 1. 使用完整包路径 在序列化对象时,我们应该使用完整的包路径。这样可以确保所有的类信息都被包含在内,从而避免ClassNotFoundException。 2. 将相关类添加到应用服务器的类加载器中 如果不能修改被序列化的对象的源码,那么我们可以考虑将相关的类添加到应用服务器的类加载器中。这样也可以确保所有的类信息都被包含在内。 3. 在客户端和服务器端都提供相同的类定义 在客户端和服务器端都提供相同的类定义,也是防止ClassNotFoundException的一种方法。 六、代码示例 下面是一些使用HessianRPC的例子,包括一个使用完整包路径的例子,一个将相关类添加到应用服务器的类加载器中的例子,以及一个在客户端和服务器端都提供相同类定义的例子。 七、总结 总的来说,HessianRPC是一种非常实用的远程通信工具。在使用这东西的时候,咱们得留心一个叫ClassNotFoundException的小插曲,它可能会在序列化的过程中冒出来。咱得提前想好对策,妥善处理这个问题。只有这样,我们才能更好地利用HessianRPC,提高我们的开发效率。
2023-04-06 14:52:47
479
半夏微凉-t
Apache Pig
...he Spark通过DataFrame API提供了灵活且高效的分区操作,并结合其强大的内存计算能力,在处理大规模数据时可以显著提升性能。Spark中通过partitionBy方法进行数据分桶,用户可以根据业务需求定制分区列和数量,实现数据在集群内的均衡分布和快速访问。 同时,Hive作为基于Hadoop的数据仓库工具,其表设计阶段就允许用户指定分区列和桶列,进一步细化数据组织结构,便于执行SQL查询时能快速定位所需数据块,减少I/O开销。近期发布的Hive 3.x版本更是增强了动态分区裁剪功能,使得数据分区的利用更为高效。 值得注意的是,尽管数据分区和分桶能够有效提高数据处理性能,但在实际应用中仍需谨慎考虑数据倾斜问题和存储成本。因此,在设计数据分区策略时应结合业务场景,合理选择分区键和桶的数量,确保性能优化的同时兼顾系统的稳定性和资源利用率。 此外,随着云原生时代的到来,诸如AWS Glue、Azure Data Factory等云服务也集成了类似的数据分区和管理功能,这些服务不仅能简化大数据处理流程,还为用户提供了自动化的数据优化方案,进一步推动了大数据处理技术的发展与进步。
2023-06-07 10:29:46
431
雪域高原-t
转载文章
...描述应该是如何动态的加载资源(分为Object资源和Class资源) 可以看一下这一些大佬的归纳:UE4静态/动态加载资源方式 - 知乎 (zhihu.com) [UE4]C++实现动态加载的问题:LoadClass()和LoadObject() 及 静态加载问题:ConstructorHelpers::FClassFinder()和FObjectFinder() - Bill Yuan - 博客园 (cnblogs.com) 简而言之,资源按照一定的规律和卡片的id进行关联,然后在代码中通过LoadObject()传入资源的路径来完成动态的加载。 卡片衍生出来的蓝图通过LoadClass(). 因此之前的修改1、动态加载材质信息,路径Path是字符串,可以很方便的变更,同样的蓝图类以一定的规则组织之后也可以通过路径来很方便的设置 接下来要考虑的内容是事件的传递、类间的消息传递,以及技能逻辑的运用 在做接下来的功能设计的时候,需要去了解游戏王卡牌游戏这个游戏的相关逻辑,关于卡片逻辑编写可以看B站这位大佬的视频游戏王Lua脚本编写教程·改二_哔哩哔哩_bilibili 关于技能的发动: 1、GAS中取对象的技能设计,使用targetData Actor来表征选选择对象的信息。 另一种实现方式是设定一个定时器,当技能开始的时候⏲,如果超时没有获取到对象,那么就当作对局失败或者技能发动失败处理。我偏向于后者的实现。 2、关于效果的类型,我们可以看到ygopro和DL的分类大体相似,如果用GAS设计技能的话也可以从简单的技能类型设计起来 3、卡片的表示 沿用ygopro的卡片类型的定义,在游戏中用Pawn做为基类。初始化的时候传入基本的信息,一开始将cards.db读入内存,用map存储,后续信息的查找都查询该map 效果卡片,仍然可以用lua实现逻辑,具体的后续再看看怎么实现比较合适。 4、设计简单的演示方案,仍然是从最简单的初代规则和初代卡牌考虑 a:summon a monster 利用动态资源加载的方式,先完成了一个简单的召唤逻辑。 先实现最基本的功能。后面再考虑详细的state信息 接下来实现三种基本的技能方式,然后看看技能资源该如何组织比较好 b:进行攻击 c:装备卡发动 d:生命值回复效果 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_33232568/article/details/117932910。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-07 13:59:47
149
转载
Superset
...rset启动时并没有加载你修改的配置文件。 - (2)环境变量未更新:如果Superset是通过环境变量引用配置文件,那么更改环境变量的值后可能未被系统识别。 - (3)配置未生效:某些配置项在服务启动后不能动态改变,需要完全重启服务才能生效。 - (4)缓存问题:Superset存在部分配置缓存,未及时清除导致新配置未生效。 4. 解决方案与操作步骤 (1) 确认配置文件路径及加载情况 确保Superset启动命令正确指向你修改的配置文件。例如,如果你在终端执行如下命令启动Superset: bash export PYTHONPATH=/path/to/your/superset/ venv/bin/python superset run -p 8088 --with-threads --reload --debugger 请确认这里的PYTHONPATH设置是否正确。若Superset通过环境变量读取配置,也需检查相应环境变量的设置。 (2) 清理并完全重启服务 在完成配置文件修改后,不仅要停止当前运行的Superset服务,还要确保所有相关的子进程也被清理干净。例如,在Unix-like系统中,可以使用pkill -f superset命令终止所有相关进程,然后重新启动服务。 (3) 检查和处理配置缓存 对于某些特定的配置,Superset可能会在内存中缓存它们。嘿,遇到这种情况的时候,你可以试试清理一下Superset的缓存,或者重启一下相关的服务部件,就像是数据库连接池那些家伙,让它们重新焕发活力。 (4) 验证配置加载 在Superset日志中查找有关配置加载的信息,确认新配置是否成功加载。例如: bash INFO:root:Loaded your LOCAL configuration at [/path/to/your/superset/superset_config.py] 5. 思考与探讨 当我们遇到类似“配置修改后未生效”的问题时,作为开发者,我们需要遵循一定的排查逻辑:首先确认配置文件的加载路径和内容;其次,理解配置生效机制,包括是否支持热加载,是否存在缓存等问题;最后,通过查看日志等方式验证配置的实际应用情况。 在这个过程中,不仅锻炼了我们的问题定位能力,同时也加深了对Superset工作原理的理解。而面对这种看似让人挠头的问题,只要我们沉住气,像侦探破案那样一步步抽丝剥茧,就一定能找到问题的核心秘密,最后妥妥地把事情搞定,实现我们想要的结果。 6. 结语 调试和优化Superset配置是一个持续的过程,每个环节都充满了挑战与乐趣。记住了啊,每当你遇到困惑或者开始一场探索之旅,其实都是在朝着更牛、更个性化的数据分析道路迈出关键的一大步呢!希望本文能帮你顺利解决Superset配置修改后重启服务未生效的问题,助你在数据海洋中畅游无阻。
2024-01-24 16:27:57
240
冬日暖阳
MyBatis
...使得Java对象可以直接与数据库表进行交互,简化了数据操作和持久化的过程。通过使用ORM,开发者可以更专注于业务逻辑的实现,而不必过多关注底层SQL查询的具体实现细节。 动态代理 , 在Java等编程语言中,动态代理是一种机制,能够在运行时创建并处理一个类的实例,这个实例能够实现代理模式,即为原始对象提供额外的功能或控制。在MyBatis的延迟加载场景下,动态代理被用来生成目标对象(如User对象)的代理实例,当调用其关联属性(如orders)时,由代理实例执行实际的数据库查询操作,从而实现按需加载数据。 N+1问题 , 在数据库访问优化领域,“N+1问题”是指一种常见的性能瓶颈现象。在处理一对多或多对多关联查询时,若不采用适当的查询策略,每次遍历一个主对象列表(“N”次查询)时,对于列表中的每一个对象都会发起一次附加的数据库查询(“+1”次查询),这样就会导致总共执行N+1次查询操作。在数据量较大时,这会导致严重的性能下降和资源浪费。例如,在文章中提及的场景里,如果不对懒加载进行合理优化,可能会在获取多个用户及其所有订单信息时产生N+1问题。
2023-07-28 22:08:31
122
夜色朦胧_
Ruby
...赖管理,还引入了动态加载机制,使开发者能够在运行时根据需求加载不同模块,从而大幅提升了应用性能和灵活性。 与此同时,国内某知名电商平台也宣布将在其核心业务系统中全面推广模块化架构。该平台的技术负责人表示:“过去几年,我们在单一代码库模式下遇到了不少瓶颈,比如团队协作效率低下、新功能上线周期过长等问题。通过引入模块化设计,我们成功将整个系统拆分为多个独立服务单元,每个单元专注于单一职责,不仅降低了维护成本,还显著提高了系统的响应速度。”这一举措引发了业界广泛关注,多家企业纷纷效仿,试图从模块化设计中获益。 此外,近期发布的《2023年全球软件开发趋势报告》中提到,随着云计算和微服务架构的普及,越来越多的企业选择采用模块化的方式来构建分布式系统。报告指出,相比传统单体架构,模块化设计能够更好地适应快速变化的市场需求,同时降低因代码耦合带来的风险。然而,专家也提醒道,虽然模块化带来了诸多好处,但在实施过程中仍需注意避免过度拆分导致的额外复杂性。因此,合理规划模块边界、制定清晰的接口规范显得尤为重要。 总的来说,无论是开源项目还是商业实践,模块化设计正逐渐成为推动软件行业发展的重要力量。对于每一位开发者而言,掌握这一技能无疑将成为未来职业发展的加分项。
2025-03-23 16:13:26
35
繁华落尽
Beego
...o 框架对配置文件的加载和读取过程,当配置文件格式不正确时,会导致程序无法正常启动。Beego 提供了 LoadAppConfig 和 AppConfig 等工具,方便开发者管理和操作配置文件。 配置文件 , 配置文件是一种存储应用程序运行所需参数的文件,通常采用特定的格式(如 ini、json 或 yaml)。文中提到的配置文件是 Beego 框架使用的 ini 格式,包含键值对的形式定义各种配置项。例如,appname 和 port 分别定义了应用名称和监听端口号。配置文件的正确性和完整性直接影响程序的运行状态,因此需要严格检查其格式和内容。Beego 提供了专门的方法来加载和解析配置文件,确保程序能够顺利读取必要的参数。 日志记录 , 日志记录是指将程序运行过程中的重要信息(如错误、警告或调试信息)保存到文件或输出到控制台的过程。文中提到的日志记录主要用于监控配置文件加载是否成功。通过使用 Beego 提供的日志模块,开发者可以设置日志的格式和级别,例如记录日期、时间和错误发生的具体位置。当配置文件加载失败时,日志会输出详细的错误信息,帮助开发者快速定位问题。这种机制对于复杂系统的维护和故障排查至关重要,能够显著提高开发效率。
2025-04-13 15:33:12
24
桃李春风一杯酒
转载文章
...shMap原理和扩容机制 常用并发包下的类 Redis持久化方式,为什么这么快? 自己平时如何提升的,看书或者网站? 二面 Jvm类加载机制,分别每一步做了什么工作? Jvm内存模型,垃圾回收机制,如何确定被清除的对象? 了解哪些垃圾回收器和区别? 多线程相关,线程池的参数列表和拒绝策略 Jvm如何分析出哪个对象上锁? Mysql索引类型和区别,事务的隔离级别和事务原理 Spring scope 和设计模式 Sql优化 三面 fullgc的时候会导致接口的响应速度特别慢,该如何排查和解决? 项目内存或者CPU占用率过高如何排查? ConcurrentHashmap原理 数据库分库分表 MQ相关,为什么kafka这么快,什么是零拷贝? 小算法题 http和https协议区别,具体原理 四面(Leader) 手画自己项目的架构图,并且针对架构和中间件提问 印象最深的一本技术书籍是什么? 五面(HR) 没什么过多的问题,主要就是聊了一下自己今后的职业规划,告知了薪资组成体系等等。 插播一条福利!!!最近整理了一套1000道面试题的文档(详细内容见文首推荐文章),以及大厂面试真题,和最近看的几本书。 需要刷题和跳槽的朋友,这些可以免费赠送给大家,帮忙转发文章,宣传一下,后台私信【面试】免费领取! 小天:好像问了两次看书的情况诶?现在面试还问这个? 程序员H:是啊,幸亏之前为了弄懂JVM还看了两本书,不然真不知道说啥了! 小天:看来,我也要找几本书去看了,感情没看过两本书都不敢跳槽了! 程序员H:对了,还有简历,告诉你一个捷径 简历尽量写好一些,项目经验突出: 1、自己的知识广度和深度 2、自身的优势 3、项目的复杂性和难度以及指标 4、自己对于项目做的贡献或者优化 程序员H:唉~这还不能走可怎么办呀!你说,我把主管打一顿,是不是马上就可以走了? 小天:... 查看全文 http://www.taodudu.cc/news/show-3387369.html 相关文章: 阿里菜鸟面经 Java后端开发 社招三年 已拿offer 阿里 菜鸟网络(一面) 2021年阿里菜鸟网络春招实习岗面试分享,简历+面试+面经全套资料! 阿里菜鸟国际Java研发面经(三面+总结):JVM+架构+MySQL+Redis等 2021年3月29日 阿里菜鸟实习面试(一面)(含部分总结) mongodb 子文档排序_猫鼬101:基础知识,子文档和人口简介 特征工程 计算方法Gauss-Jordan消去法求线性方程组的解 使用(VAE)生成建模,理解可变自动编码器背后的数学原理 视觉SLAM入门 -- 学习笔记 - Part2 带你入门nodejs第一天——node基础语法及使用 python3数据结构_Python3-数据结构 debezium-connect-oracle使用 相关数值分析多种算法代码 android iphone treeview,Android之IphoneTreeView带组指示器的ExpandableListView效果 nginx rewrite功能使用 3-3 OneHot编码 JavaWeb:shiro入门小案例 MySQL的定义、操作、控制、查询语言的用法 MongoDB入门学习(三):MongoDB的增删查改 赋值、浅复制和深复制解析 以及get/set应用 他是吴恩达导师,被马云聘为「达摩院」首座 Jordan 标准型定理 列主元的Gauss-Jordan消元法-python实现 Jordan 块的几何 若尔当型(The Jordan form) 第七章 其他神经网络类型 解决迁移系统后无法配置启用WindowsRE环境的问题 宝塔面板迁移系统盘/www到数据盘/home 使用vmware vconverter从物理机迁移系统到虚拟机P2V 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_62695120/article/details/124510157。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-08 20:01:49
68
转载
JQuery插件下载
...y响应式网站图片无限加载瀑布流布局插件,专为实现动态、高效且适应不同屏幕尺寸的图片展示而设计。该插件利用先进的瀑布流(Masonry)布局算法,确保在页面滚动时能够自适应地排列图片,形成视觉上错落有致且充分利用空间的效果。其特色在于支持无限滚动加载,当用户浏览至页面底部时,会自动无缝加载更多图片内容,大大提升了用户体验与交互性。此外,此插件充分考虑了现代网页性能优化的需求,采用jQuery.Lazyload技术来延迟加载非可视区域内的图片,即只有当图片进入浏览器视窗范围内时才进行加载,显著提高了页面的整体加载速度和滚动流畅度,尤其适合含有大量图片资源的网站或应用。总之,这款插件凭借其响应式的设计理念、独特的瀑布流布局以及高效的图片懒加载机制,为各类网站特别是图片分享、电商产品展示等场景提供了绝佳的解决方案,不仅增强了网页美观性,更兼顾了实用性与访问速度,是网页开发者构建高品质网站的得力工具之一。 点我下载 文件大小:559.12 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-11-06 10:59:29
323
本站
JQuery插件下载
...rid.js支持动态加载功能。当用户滚动页面时,插件可以通过回调函数自动加载更多图片,极大地提升了用户体验,同时也减轻了初始加载时的资源压力。这种懒加载机制使得网站加载速度更快,特别适合图片数量众多的网站使用。无论你是想构建一个摄影集、画廊展示还是产品目录,grid.js都是你的理想选择。它的易用性和高度可定制性让你可以根据项目需求轻松调整布局样式,满足不同场景下的设计要求。此外,插件还提供了丰富的配置选项,允许开发者深入定制图片大小、间距、动画效果等细节,从而打造独一无二的视觉体验。总之,grid.js以其出色的响应式设计和动态加载能力,成为了现代网页设计中不可或缺的工具之一。无论是追求简洁美观的设计师,还是注重性能优化的开发者,都将从这款插件中受益匪浅。 点我下载 文件大小:181.44 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-12-20 11:01:56
25
本站
JQuery
...Script事件处理机制的更多细节与最佳实践。近期,随着Web开发技术的发展,特别是浏览器原生API能力的增强,开发者们在处理DOM事件时拥有了更多选择。例如,除了jQuery外,现代前端框架如React、Vue等提倡使用合成事件系统,它提供了跨浏览器兼容性以及对虚拟DOM的高效支持。 此外,对于动态生成的DOM元素,推荐采用事件委托的方式绑定事件,而非直接为每个元素单独绑定。JavaScript的addEventListener方法能够更好地支持这一需求,只需将事件处理器添加到父元素上,利用事件冒泡机制捕获子元素触发的事件。例如,在处理大型列表渲染场景时,事件委托可以显著提高性能和内存利用率。 另外,值得注意的是,由于异步加载内容或SPA(单页应用)的流行,确保所有代码按预期顺序执行显得尤为重要。一种策略是利用生命周期钩子函数(如React的componentDidMount),以确保在组件渲染完成后再进行事件绑定。 在实际项目中,还需要关注无障碍访问性问题,比如确保按钮元素具有明确的role属性,并正确设置tabindex以便键盘操作,从而提升网站对残障用户的友好度。 综上所述,无论是jQuery还是其他现代前端技术栈,在处理按钮点击事件这类常见的交互逻辑时,开发者都应关注代码质量、性能优化及用户体验等多个维度,结合最新的开发理念和技术趋势,持续改进和完善代码实现。
2023-03-10 18:35:11
148
码农
转载文章
...引避免回表操作、使用内存表或临时表存储中间结果以提升效率、结合缓存机制减少数据库访问压力等。 同时,现代Web应用中的无限滚动加载(Infinite Scroll)模式也对分页查询提出了新的挑战。为了实现无缝的数据加载体验,一些前沿的技术方案采用了“分段查询”配合前端动态渲染的方式,替代传统的静态分页,有效减轻了数据库的压力,并提升了用户体验。 综上所述,MySQL的LIMIT关键字是实现分页查询的基础工具,但面对大规模数据处理和复杂的用户交互场景,我们需要不断跟进最新的数据库优化技术和设计理念,才能确保系统的稳定性和响应速度。而随着数据库技术的持续演进,诸如OFFSET关键字的替代方案以及云原生环境下的分布式数据库分页策略等前沿话题,都值得我们关注并深入研究。
2023-10-29 14:04:02
647
转载
转载文章
...以实现数据的双向绑定机制。框架通过getter和setter来监听对象属性的变化,并实时更新视图,这一设计极大地提高了前端开发效率与代码可维护性。 另外,随着ECMAScript规范的不断演进,Reflect API作为对Object操作的补充,提供了更加强大且一致的方法来处理属性,包括访问器属性。利用Reflect.defineProperty()、Reflect.get()、Reflect.set()等方法,开发者能够更加灵活地操控对象属性,这不仅增强了代码的简洁性和一致性,也为未来的异步编程模型提供了更多可能。 此外,TypeScript作为一种强类型的语言,也对访问器属性提供了良好的支持。开发者可以为访问器属性定义明确的类型签名,使得编译器能在编译阶段就进行类型检查,从而有效预防运行时错误,提升代码质量。 近期,JavaScript社区的一些讨论热点也聚焦于如何更好地运用数据属性和访问器属性优化性能、改善内存管理以及实现更复杂的业务逻辑。例如,通过自定义访问器属性实现自动化的资源懒加载、状态管理等功能,成为许多库和框架设计的新趋势。 总之,理解并掌握数据属性和访问器属性是每一位JavaScript开发者必备的基础知识,而关注其在前沿技术领域及最新实践案例中的应用,则有助于我们不断提升技术水平,适应快速发展的前端开发环境。
2023-06-09 18:12:44
116
转载
Tomcat
...1)优化代码:这是最直接的方式,通过修改代码来提高性能。例如,我们可以考虑使用更高效的算法,减少不必要的计算等。 2)增加硬件资源:如果代码本身没有问题,但是由于硬件资源不足导致性能瓶颈,那么我们可以通过增加硬件资源(如CPU、内存等)来解决问题。 3)调整系统参数:Tomcat有一些配置参数,如maxThreads、minSpareThreads等,这些参数的设置可能会影响Tomcat的性能。我们可以通过调整这些参数来改善性能。 6. 总结 在实际应用中,我们经常会遇到性能瓶颈的问题。这个问题初看可能会觉得有点棘手,但实际上呢,只要我们肚子里有足够的墨水,再加上丰富的实战经验,就完全有能力把它给妥妥地搞定。记住啊,性能瓶颈这玩意儿可不是什么无解的难题,它更像是一个等待我们去挖掘、去攻克的小挑战。只要咱发现了,就一定有办法解决掉它。同时,我们也应该意识到,良好的编程习惯和清晰的设计思想是预防性能瓶颈的重要手段。
2023-07-31 10:08:12
342
山涧溪流-t
Tomcat
...一种管理数据库连接的机制,它允许应用程序复用已建立的数据库连接,从而提高性能。数据源连接泄漏是指由于程序设计错误或资源管理不当,导致从数据源获取的数据库连接在使用完毕后未能正确关闭并归还给数据源,使得这些未关闭的连接持续占用系统资源,无法被其他请求重用,进而引发系统资源耗尽、性能下降甚至服务崩溃的问题。 Tomcat , Apache Tomcat是一个开源免费的Servlet和JSP容器,它是实现Java EE(现称Jakarta EE)Web应用程序服务器功能的一个轻量级解决方案。在本文语境中,Tomcat是承载Java Web应用运行的服务端环境,其内部配置的数据源用于与数据库进行交互。 JVisualVM , JVisualVM是Oracle公司提供的一个Java开发工具,集成了多个监视、故障排查和分析工具,可用于监控Java应用程序的运行状态,包括CPU、内存、线程、类加载等详细信息。在本文中,开发者可以利用JVisualVM实时监测Tomcat应用服务器的内存消耗情况,以便发现和解决由数据源连接泄漏导致的资源浪费问题。
2023-06-08 17:13:33
243
落叶归根-t
AngularJS
...压力也就减轻了,网页加载的速度自然就像火箭升空一样噌噌噌地提高了。 html { {item} } Next Page 2. 缓存数据 如果我们知道某个数据不会经常改变,我们可以将其缓存在浏览器中,以便下次访问时直接从缓存中读取,而不需要重新计算。 javascript var cachedData = {}; $http.get('data.json').then(function(response) { cachedData = response.data; }); $scope.items = cachedData; 3. 使用虚拟滚动 对于长列表,我们可以使用虚拟滚动来减少浏览器的负担。虚拟滚动是指只显示可见区域的数据,而不是全部数据。这种方法可以大大减少浏览器的负担,提高网页的加载速度。 css .scrollable { overflow-y: scroll; } .scrollable::-webkit-scrollbar { width: 8px; } .scrollable::-webkit-scrollbar-track { background-color: f1f1f1; } .scrollable::-webkit-scrollbar-thumb { background-color: 888; } .scrollable::-webkit-scrollbar-thumb:hover { background-color: 555; } 通过以上几种方法,我们可以有效地解决“ng-repeat”中的性能瓶颈问题,提高网页的加载速度和用户体验。同时,咱们也得留心优化代码这块儿,别让那些不必要的计算和内存消耗拖慢了网页速度,这样一来,咱就能更上一层楼,把网页性能提上去啦! 总的来说, AngularJS 是一个非常强大的前端框架,它可以让我们轻松地创建出动态、交互式的网页应用程序。不过在实际用起来的时候,咱们也得留心优化代码这件事儿,别让性能瓶颈这类问题冒出来绊住咱们的脚。这样一来,才能更好地提升用户体验,让大家用得更顺溜、更舒心。希望通过这篇文章,能对你有所帮助!
2023-03-17 22:29:55
397
醉卧沙场-t
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
unzip archive.zip
- 解压ZIP格式的压缩文件。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"