前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[防止除数为零异常的Lua编程实践]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Lua
Lua与网络连接异常处理:ClosedNetworkConnectionError详解 1. 引言 在Lua编程的世界里,我们经常需要与各种网络服务进行交互。然而,在捣鼓开发的过程中,网络这家伙可不太靠谱,时不时就闹个小脾气,给我们来个“网络连接已关闭”的幺蛾子,这就是那个烦人的Closed Network Connection Error啦。今天,咱们要一起钻个牛角尖,把这个主题掰扯清楚。咱不光说理论,还会举些实实在在的例子,甚至动手敲代码,让大家伙儿都能掌握在Lua里头如何帅气地对付这类网络异常情况,整得既高效又体面。 2. ClosedNetworkConnectionError简述 “ClosedNetworkConnectionError”是一个常见的网络错误类型,它表示尝试读取或写入一个已经关闭或者断开的网络连接。这种错误呢,常常会在一些长连接、Websocket聊天或者TCP/IP网络通信的过程中冒出来。比如啊,当服务器或者客户端哪边突然决定“拜拜了您嘞”,主动切断了连接,而另一边还傻傻地在那儿继续传数据,这时候,这类错误就华丽丽地登场啦。 3. Lua中的网络连接及错误处理机制 Lua本身并不直接提供网络编程接口,但可以通过诸如LuaSocket库等第三方库来实现。下面,让我们通过一段LuaSocket的示例代码来看看如何在实际操作中创建并管理网络连接,并处理可能发生的ClosedNetworkConnectionError: lua -- 导入LuaSocket库 local socket = require("socket") -- 创建一个TCP客户端连接 local client = socket.tcp() client:settimeout(5) -- 设置超时时间以防止无限等待 -- 尝试连接到服务器 local ok, err = client:connect("localhost", 8080) if not ok then print("连接失败:", err) return end -- 发送数据 local message = "Hello from Lua!" local sent, err = client:send(message) if not sent and err == "closed" then print("网络连接已关闭,无法发送数据!") -- 处理ClosedNetworkConnectionError client:close() -- 关闭失效的连接 return end -- 接收数据(假设服务器会回应) while true do local data, err = client:receive() if err == "closed" then print("服务器关闭了连接。") -- 处理ClosedNetworkConnectionError break elseif not data then print("接收数据时发生错误:", err) break else print("收到服务器响应:", data) end end -- 最后,记得关闭连接 client:close() 在上述代码中,我们注意到在client:send()和client:receive()方法调用后,都会检查返回的错误信息是否为"closed",如果是,则表明网络连接已经被关闭,此时我们会打印出相应的提示信息,并采取相应措施(如关闭连接)。 4. 理解与探讨 在实际项目开发中,应对ClosedNetworkConnectionError的策略往往更加复杂多样。比如,我们能给程序装个“回马枪”功能,一旦发现连接断了,它就自动尝试再连上;甚至还能让它变得更聪明些,比如说在网络抽风的时候先把要发的数据存起来,等网络恢复了,再把这些数据顺顺当当地发送出去。 这就涉及到开发者对网络通信原理的理解深度以及业务需求的细致把控,同时也要求我们具备良好的异常处理习惯和鲁棒性编程思维。记住了啊,真正厉害的程序员,可不只是会写能跑起来的代码那么简单。他们更明白,在编程的世界里,就像生活一样,总会有些意想不到的状况和稀奇古怪的异常情况冒出来,而他们就有那个本事,把这些麻烦事儿处理得既漂亮又从容,这才是高手风范! 总的来说,面对Lua编程中的ClosedNetworkConnectionError,我们需要保持敏锐的洞察力,合理运用Lua及其扩展库的功能特性,结合具体应用场景,灵活制定和实施有效的错误处理策略,才能确保我们的应用程序在网络世界中稳定、可靠地运行。
2023-11-24 17:48:02
132
月影清风
Lua
Lua语言中的表达式计算错误:除数为零、无效索引及其他常见问题详解 1. 引言 --- Lua,这个轻量级、高效且灵活的脚本语言,在游戏开发、嵌入式系统等领域中广受欢迎。然而,在编程实战中,我们免不了会碰到一些让人挠头的常见表达式计算问题,比如除数尴尬地变成了零,或者莽撞地去访问一个不存在的索引,这些小插曲常常让我们措手不及。这些看似微小的问题,却可能导致程序运行出错甚至崩溃。本文将深入探讨这些问题,并通过实例代码来帮助你理解和避免它们。 2. 除数为零错误 --- 在Lua中,当你尝试进行一个除法运算,而除数是零时,会触发一个运行时错误。例如: lua -- 尝试除以零的例子 local result = 10 / 0 print(result) 执行这段代码后,Lua会抛出一个错误信息:"attempt to perform arithmetic on a nil value (divide by zero)"。这意味着Lua无法处理除以零的操作,因为它在数学上没有定义。为了避免出现这种囧境,咱们在做除法之前通常得先瞅一眼,看看那个除数是不是零。 3. 无效索引错误 --- Lua中的表(table)是一种非常重要的数据结构,它支持动态索引和关联数组特性。然而,当我们试图访问一个不存在的索引时,就会引发“无效索引”错误: lua -- 无效索引例子 local myTable = {} print(myTable[5]) -- 此处会报错,因为myTable并没有索引为5的元素 Lua会返回错误提示:" attempt to index a nil value"。为了预防这类错误,我们可以使用if语句或者pairs函数预先判断索引是否存在: lua local myTable = {} if myTable[5] then print(myTable[5]) else print("Index not found.") end 4. 其他常见表达式错误 --- 除了上述两种情况外,Lua还可能在其他类型的表达式计算中出现错误。例如,对未初始化的变量进行操作: lua -- 未初始化变量的例子 local uninitializedVar print(uninitializedVar + 1) -- 这将导致"nil value"错误 解决这个问题的方法是在使用变量之前确保其已被初始化: lua local initializedVar = 0 print(initializedVar + 1) -- 现在这段代码将会正常执行,输出1 5. 结论与思考 --- 在Lua编程过程中,理解并妥善处理表达式计算错误是我们编写健壮代码的关键步骤。通过不断实践和探索,我们可以学会如何预见和规避这些陷阱。记得时刻打起精神,像给我们的代码穿上逻辑盔甲、装备上条件语句武器一样,让咱们的Lua程序就算遇到突发状况也能稳如老狗,表现出超强的适应力和稳定性。说真的,编程可不只是敲代码实现功能那么简单,它更像是一个解决难题、迎接挑战的大冒险,这个过程中充满了咱们人类智慧的灵光乍现和饱含情感的深度思考,可带劲儿了! 以上示例只是冰山一角,实际编程中可能会有更多的潜在问题等待我们去发现和解决。因此,让我们一起深入Lua的世界,不断提升自己的编程技艺吧!
2024-03-16 11:37:16
276
秋水共长天一色
.net
...数据库系统与面向对象编程语言之间建立桥梁。在.NET开发中提及的EF Core就是一个ORM框架实例,它允许开发者以操作对象的方式来操作数据库,将数据库表映射为类,SQL查询转换为 LINQ 表达式或方法调用,从而极大地简化数据访问层的开发工作,并提高代码可读性和复用性。 参数化SQL , 参数化SQL是在执行SQL语句时,将变量或用户输入的数据作为参数传递给SQL命令的方式。这样可以有效防止SQL注入攻击,并确保SQL语句的正确编译和执行。例如,在文章中的SqlHelper类中,通过SqlCommand.Parameters.AddRange(parameters)方法来绑定参数,确保插入、更新或删除数据时SQL语句的安全性和准确性。 主键约束 , 主键约束是关系型数据库中的一种完整性约束,用于唯一标识数据库表中的每一条记录。在创建表结构时,通常会指定一个或多个字段为主键,这些字段的值必须在全表范围内保持唯一。当尝试插入已存在主键值的数据时,数据库会根据主键约束抛出异常,以保证数据的一致性和完整性。在文中提到的问题二中,如果尝试插入已存在的主键值,就会触发主键冲突异常。
2023-04-19 11:32:32
549
梦幻星空_
c#
...于数据库连接的管理和异常处理。就像你刚才看到的这个InsertData方法,假如咱们在连续捣鼓它好几回的过程中,忘记给连接“关个门”,就可能会把连接池里的资源统统耗光光。为了解决这个问题,我们可以优化InsertData方法,确保每次操作后都正确关闭连接。 3.3 数据格式与类型匹配问题 当插入的数据与表结构不匹配时,比如试图将字符串插入整数字段,将会抛出异常。在使用InsertData方法之前,千万记得给用户输入做个靠谱的检查哈,或者在设置SQL参数时,确保咱们把正确的数据类型给它指定好。 4. 结论与思考 在封装和使用SqlHelper类进行数据插入的过程中,我们需要关注SQL注入安全、数据库连接管理及数据类型的匹配等关键点。通过不断实践和改进,我们可以打造一个既高效又安全的数据库操作工具类。当遇到问题时,咱们不能只满足于找到一个解法就完事了,更关键的是要深入挖掘这个问题背后的来龙去脉。这样一来,在将来编写和维护代码的时候,咱就能更加得心应手,让编程这件事儿充满更多的人情味儿和主观能动性,就像是给代码注入了生命力一样。
2023-08-29 23:20:47
508
月影清风_
转载文章
...置 expire, 防止 del 发生异常的时候锁不会被释放,业务处理完了以后再 del,这三个动作我们就希望它们作为一组命令执行。 Redis 的事务有两个特点: 1、按进入队列的顺序执行。 2、不会受到其他客户端的请求的影响。 Redis 的事务涉及到四个命令:multi(开启事务),exec(执行事务),discard (取消事务),watch(监视) 2.2 事务的用法 案例场景:tom 和 mic 各有 1000 元,tom 需要向 mic 转账 100 元。tom 的账户余额减少 100 元,mic 的账户余额增加 100 元。 通过 multi 的命令开启事务。事务不能嵌套,多个 multi 命令效果一样。 multi 执行后,客户端可以继续向服务器发送任意多条命令,这些命令不会立即被执行,而是被放到一个队列中,当 exec 命令被调用时,所有队列中的命令才会被执行。 通过 exec 的命令执行事务。如果没有执行 exec,所有的命令都不会被执行。如果中途不想执行事务了,怎么办? 可以调用 discard 可以清空事务队列,放弃执行。 2.3 watch命令 在 Redis 中还提供了一个 watch 命令。 它可以为 Redis 事务提供 CAS 乐观锁行为(Check and Set / Compare and Swap),也就是多个线程更新变量的时候,会跟原值做比较,只有它没有被其他线程修改的情况下,才更新成新的值。 我们可以用 watch 监视一个或者多个 key,如果开启事务之后,至少有一个被监视 key 键在 exec 执行之前被修改了,那么整个事务都会被取消(key 提前过期除外)。可以用 unwatch 取消。 2.4 事务可能遇到的问题 我们把事务执行遇到的问题分成两种,一种是在执行 exec 之前发生错误,一种是在执行 exec 之后发生错误。 2.4.1 在执行 exec 之前发生错误 比如:入队的命令存在语法错误,包括参数数量,参数名等等(编译器错误)。 在这种情况下事务会被拒绝执行,也就是队列中所有的命令都不会得到执行。 2.4.2 在执行 exec 之后发生错误 比如,类型错误,比如对 String 使用了 Hash 的命令,这是一种运行时错误。 最后我们发现 set k1 1 的命令是成功的,也就是在这种发生了运行时异常的情况下, 只有错误的命令没有被执行,但是其他命令没有受到影响。 这个显然不符合我们对原子性的定义,也就是我们没办法用 Redis 的这种事务机制来实现原子性,保证数据的一致。 3、Lua脚本 Lua/ˈluə/是一种轻量级脚本语言,它是用 C 语言编写的,跟数据的存储过程有点类似。 使用 Lua 脚本来执行 Redis 命令的好处: 1、一次发送多个命令,减少网络开销。 2、Redis 会将整个脚本作为一个整体执行,不会被其他请求打断,保持原子性。 3、对于复杂的组合命令,我们可以放在文件中,可以实现程序之间的命令集复用。 3.1 在Redis中调用Lua脚本 使用 eval /ɪ’væl/ 方法,语法格式: redis> eval lua-script key-num [key1 key2 key3 ....] [value1 value2 value3 ....] eval代表执行Lua语言的命令。 lua-script代表Lua语言脚本内容。 key-num表示参数中有多少个key,需要注意的是Redis中key是从1开始的,如果没有key的参数,那么写0。 [key1key2key3…]是key作为参数传递给Lua语言,也可以不填,但是需要和key-num的个数对应起来。 [value1 value2 value3 …]这些参数传递给 Lua 语言,它们是可填可不填的。 示例,返回一个字符串,0 个参数: redis> eval "return 'Hello World'" 0 3.2 在Lua脚本中调用Redis命令 使用 redis.call(command, key [param1, param2…])进行操作。语法格式: redis> eval "redis.call('set',KEYS[1],ARGV[1])" 1 lua-key lua-value command是命令,包括set、get、del等。 key是被操作的键。 param1,param2…代表给key的参数。 注意跟 Java 不一样,定义只有形参,调用只有实参。 Lua 是在调用时用 key 表示形参,argv 表示参数值(实参)。 3.2.1 设置键值对 在 Redis 中调用 Lua 脚本执行 Redis 命令 redis> eval "return redis.call('set',KEYS[1],ARGV[1])" 1 gupao 2673 redis> get gupao 以上命令等价于 set gupao 2673。 在 redis-cli 中直接写 Lua 脚本不够方便,也不能实现编辑和复用,通常我们会把脚本放在文件里面,然后执行这个文件。 3.2.2 在 Redis 中调用 Lua 脚本文件中的命令,操作 Redis 创建 Lua 脚本文件: cd /usr/local/soft/redis5.0.5/src vim gupao.lua Lua 脚本内容,先设置,再取值: cd /usr/local/soft/redis5.0.5/src redis-cli --eval gupao.lua 0 得到返回值: root@localhost src] redis-cli --eval gupao.lua 0 "lua666" 3.2.3 案例:对 IP 进行限流 需求:在 X 秒内只能访问 Y 次。 设计思路:用 key 记录 IP,用 value 记录访问次数。 拿到 IP 以后,对 IP+1。如果是第一次访问,对 key 设置过期时间(参数 1)。否则判断次数,超过限定的次数(参数 2),返回 0。如果没有超过次数则返回 1。超过时间, key 过期之后,可以再次访问。 KEY[1]是 IP, ARGV[1]是过期时间 X,ARGV[2]是限制访问的次数 Y。 -- ip_limit.lua-- IP 限流,对某个 IP 频率进行限制 ,6 秒钟访问 10 次 local num=redis.call('incr',KEYS[1])if tonumber(num)==1 thenredis.call('expire',KEYS[1],ARGV[1])return 1elseif tonumber(num)>tonumber(ARGV[2]) thenreturn 0 elsereturn 1 end 6 秒钟内限制访问 10 次,调用测试(连续调用 10 次): ./redis-cli --eval "ip_limit.lua" app:ip:limit:192.168.8.111 , 6 10 app:ip:limit:192.168.8.111 是 key 值 ,后面是参数值,中间要加上一个空格和一个逗号,再加上一个空格 。 即:./redis-cli –eval [lua 脚本] [key…]空格,空格[args…] 多个参数之间用一个空格分割 。 代码:LuaTest.java 3.2.4 缓存 Lua 脚本 为什么要缓存 在脚本比较长的情况下,如果每次调用脚本都需要把整个脚本传给 Redis 服务端, 会产生比较大的网络开销。为了解决这个问题,Redis 提供了 EVALSHA 命令,允许开发者通过脚本内容的 SHA1 摘要来执行脚本。 如何缓存 Redis 在执行 script load 命令时会计算脚本的 SHA1 摘要并记录在脚本缓存中,执行 EVALSHA 命令时 Redis 会根据提供的摘要从脚本缓存中查找对应的脚本内容,如果找到了则执行脚本,否则会返回错误:“NOSCRIPT No matching script. Please use EVAL.” 127.0.0.1:6379> script load "return 'Hello World'" "470877a599ac74fbfda41caa908de682c5fc7d4b"127.0.0.1:6379> evalsha "470877a599ac74fbfda41caa908de682c5fc7d4b" 0 "Hello World" 3.2.5 自乘案例 Redis 有 incrby 这样的自增命令,但是没有自乘,比如乘以 3,乘以 5。我们可以写一个自乘的运算,让它乘以后面的参数: local curVal = redis.call("get", KEYS[1]) if curVal == false thencurVal = 0 elsecurVal = tonumber(curVal)endcurVal = curVal tonumber(ARGV[1]) redis.call("set", KEYS[1], curVal) return curVal 把这个脚本变成单行,语句之间使用分号隔开 local curVal = redis.call("get", KEYS[1]); if curVal == false then curVal = 0 else curVal = tonumber(curVal) end; curVal = curVal tonumber(ARGV[1]); redis.call("set", KEYS[1], curVal); return curVal script load ‘命令’ 127.0.0.1:6379> script load 'local curVal = redis.call("get", KEYS[1]); if curVal == false then curVal = 0 else curVal = tonumber(curVal) end; curVal = curVal tonumber(ARGV[1]); redis.call("set", KEYS[1], curVal); return curVal' "be4f93d8a5379e5e5b768a74e77c8a4eb0434441" 调用: 127.0.0.1:6379> set num 2OK127.0.0.1:6379> evalsha be4f93d8a5379e5e5b768a74e77c8a4eb0434441 1 num 6 (integer) 12 3.2.6 脚本超时 Redis 的指令执行本身是单线程的,这个线程还要执行客户端的 Lua 脚本,如果 Lua 脚本执行超时或者陷入了死循环,是不是没有办法为客户端提供服务了呢? eval 'while(true) do end' 0 为了防止某个脚本执行时间过长导致 Redis 无法提供服务,Redis 提供了 lua-time-limit 参数限制脚本的最长运行时间,默认为 5 秒钟。 lua-time-limit 5000(redis.conf 配置文件中) 当脚本运行时间超过这一限制后,Redis 将开始接受其他命令但不会执行(以确保脚本的原子性,因为此时脚本并没有被终止),而是会返回“BUSY”错误。 Redis 提供了一个 script kill 的命令来中止脚本的执行。新开一个客户端: script kill 如果当前执行的 Lua 脚本对 Redis 的数据进行了修改(SET、DEL 等),那么通过 script kill 命令是不能终止脚本运行的。 127.0.0.1:6379> eval "redis.call('set','gupao','666') while true do end" 0 因为要保证脚本运行的原子性,如果脚本执行了一部分终止,那就违背了脚本原子性的要求。最终要保证脚本要么都执行,要么都不执行。 127.0.0.1:6379> script kill(error) UNKILLABLE Sorry the script already executed write commands against the dataset. You can either wait the scripttermination or kill the server in a hard way using the SHUTDOWN NOSAVE command. 遇到这种情况,只能通过 shutdown nosave 命令来强行终止 redis。 shutdown nosave 和 shutdown 的区别在于 shutdown nosave 不会进行持久化操作,意味着发生在上一次快照后的数据库修改都会丢失。 4、Redis 为什么这么快? 4.1 Redis到底有多快? 根据官方的数据,Redis 的 QPS 可以达到 10 万左右(每秒请求数)。 4.2 Redis为什么这么快? 总结:1)纯内存结构、2)单线程、3)多路复用 4.2.1 内存 KV 结构的内存数据库,时间复杂度 O(1)。 第二个,要实现这么高的并发性能,是不是要创建非常多的线程? 恰恰相反,Redis 是单线程的。 4.2.2 单线程 单线程有什么好处呢? 1、没有创建线程、销毁线程带来的消耗 2、避免了上线文切换导致的 CPU 消耗 3、避免了线程之间带来的竞争问题,例如加锁释放锁死锁等等 4.2.3 异步非阻塞 异步非阻塞 I/O,多路复用处理并发连接。 4.3 Redis为什么是单线程的? 不是白白浪费了 CPU 的资源吗? 因为单线程已经够用了,CPU 不是 redis 的瓶颈。Redis 的瓶颈最有可能是机器内存或者网络带宽。既然单线程容易实现,而且 CPU 不会成为瓶颈,那就顺理成章地采用单线程的方案了。 4.4 单线程为什么这么快? 因为 Redis 是基于内存的操作,我们先从内存开始说起。 4.4.1 虚拟存储器(虚拟内存 Vitual Memory) 名词解释:主存:内存;辅存:磁盘(硬盘) 计算机主存(内存)可看作一个由 M 个连续的字节大小的单元组成的数组,每个字节有一个唯一的地址,这个地址叫做物理地址(PA)。早期的计算机中,如果 CPU 需要内存,使用物理寻址,直接访问主存储器。 这种方式有几个弊端: 1、在多用户多任务操作系统中,所有的进程共享主存,如果每个进程都独占一块物理地址空间,主存很快就会被用完。我们希望在不同的时刻,不同的进程可以共用同一块物理地址空间。 2、如果所有进程都是直接访问物理内存,那么一个进程就可以修改其他进程的内存数据,导致物理地址空间被破坏,程序运行就会出现异常。 为了解决这些问题,我们就想了一个办法,在 CPU 和主存之间增加一个中间层。CPU 不再使用物理地址访问,而是访问一个虚拟地址,由这个中间层把地址转换成物理地址,最终获得数据。这个中间层就叫做虚拟存储器(Virtual Memory)。 具体的操作如下所示: 在每一个进程开始创建的时候,都会分配一段虚拟地址,然后通过虚拟地址和物理地址的映射来获取真实数据,这样进程就不会直接接触到物理地址,甚至不知道自己调用的哪块物理地址的数据。 目前,大多数操作系统都使用了虚拟内存,如 Windows 系统的虚拟内存、Linux 系统的交换空间等等。Windows 的虚拟内存(pagefile.sys)是磁盘空间的一部分。 在 32 位的系统上,虚拟地址空间大小是 2^32bit=4G。在 64 位系统上,最大虚拟地址空间大小是多少? 是不是 2^64bit=10241014TB=1024PB=16EB?实际上没有用到 64 位,因为用不到这么大的空间,而且会造成很大的系统开销。Linux 一般用低 48 位来表示虚拟地址空间,也就是 2^48bit=256T。 cat /proc/cpuinfo address sizes : 40 bits physical, 48 bits virtual 实际的物理内存可能远远小于虚拟内存的大小。 总结:引入虚拟内存,可以提供更大的地址空间,并且地址空间是连续的,使得程序编写、链接更加简单。并且可以对物理内存进行隔离,不同的进程操作互不影响。还可以通过把同一块物理内存映射到不同的虚拟地址空间实现内存共享。 4.4.2 用户空间和内核空间 为了避免用户进程直接操作内核,保证内核安全,操作系统将虚拟内存划分为两部分,一部分是内核空间(Kernel-space)/ˈkɜːnl /,一部分是用户空间(User-space)。 内核是操作系统的核心,独立于普通的应用程序,可以访问受保护的内存空间,也有访问底层硬件设备的权限。 内核空间中存放的是内核代码和数据,而进程的用户空间中存放的是用户程序的代码和数据。不管是内核空间还是用户空间,它们都处于虚拟空间中,都是对物理地址的映射。 在 Linux 系统中, 内核进程和用户进程所占的虚拟内存比例是 1:3。 当进程运行在内核空间时就处于内核态,而进程运行在用户空间时则处于用户态。 进程在内核空间以执行任意命令,调用系统的一切资源;在用户空间只能执行简单的运算,不能直接调用系统资源,必须通过系统接口(又称 system call),才能向内核发出指令。 top 命令: us 代表 CPU 消耗在 User space 的时间百分比; sy 代表 CPU 消耗在 Kernel space 的时间百分比。 4.4.3 进程切换(上下文切换) 多任务操作系统是怎么实现运行远大于 CPU 数量的任务个数的? 当然,这些任务实际上并不是真的在同时运行,而是因为系统通过时间片分片算法,在很短的时间内,将 CPU 轮流分配给它们,造成多任务同时运行的错觉。 为了控制进程的执行,内核必须有能力挂起正在 CPU 上运行的进程,并恢复以前挂起的某个进程的执行。这种行为被称为进程切换。 什么叫上下文? 在每个任务运行前,CPU 都需要知道任务从哪里加载、又从哪里开始运行,也就是说,需要系统事先帮它设置好 CPU 寄存器和程序计数器(ProgramCounter),这个叫做 CPU 的上下文。 而这些保存下来的上下文,会存储在系统内核中,并在任务重新调度执行时再次加载进来。这样就能保证任务原来的状态不受影响,让任务看起来还是连续运行。 在切换上下文的时候,需要完成一系列的工作,这是一个很消耗资源的操作。 4.4.4 进程的阻塞 正在运行的进程由于提出系统服务请求(如 I/O 操作),但因为某种原因未得到操作系统的立即响应,该进程只能把自己变成阻塞状态,等待相应的事件出现后才被唤醒。 进程在阻塞状态不占用 CPU 资源。 4.4.5 文件描述符 FD Linux 系统将所有设备都当作文件来处理,而 Linux 用文件描述符来标识每个文件对象。 文件描述符(File Descriptor)是内核为了高效管理已被打开的文件所创建的索引,用于指向被打开的文件,所有执行 I/O 操作的系统调用都通过文件描述符;文件描述符是一个简单的非负整数,用以表明每个被进程打开的文件。 Linux 系统里面有三个标准文件描述符。 0:标准输入(键盘); 1:标准输出(显示器); 2:标准错误输出(显示器)。 4.4.6 传统 I/O 数据拷贝 以读操作为例: 当应用程序执行 read 系统调用读取文件描述符(FD)的时候,如果这块数据已经存在于用户进程的页内存中,就直接从内存中读取数据。如果数据不存在,则先将数据从磁盘加载数据到内核缓冲区中,再从内核缓冲区拷贝到用户进程的页内存中。(两次拷贝,两次 user 和 kernel 的上下文切换)。 I/O 的阻塞到底阻塞在哪里? 4.4.7 Blocking I/O 当使用 read 或 write 对某个文件描述符进行过读写时,如果当前 FD 不可读,系统就不会对其他的操作做出响应。从设备复制数据到内核缓冲区是阻塞的,从内核缓冲区拷贝到用户空间,也是阻塞的,直到 copy complete,内核返回结果,用户进程才解除 block 的状态。 为了解决阻塞的问题,我们有几个思路。 1、在服务端创建多个线程或者使用线程池,但是在高并发的情况下需要的线程会很多,系统无法承受,而且创建和释放线程都需要消耗资源。 2、由请求方定期轮询,在数据准备完毕后再从内核缓存缓冲区复制数据到用户空间 (非阻塞式 I/O),这种方式会存在一定的延迟。 能不能用一个线程处理多个客户端请求? 4.4.8 I/O 多路复用(I/O Multiplexing) I/O 指的是网络 I/O。 多路指的是多个 TCP 连接(Socket 或 Channel)。 复用指的是复用一个或多个线程。它的基本原理就是不再由应用程序自己监视连接,而是由内核替应用程序监视文件描述符。 客户端在操作的时候,会产生具有不同事件类型的 socket。在服务端,I/O 多路复用程序(I/O Multiplexing Module)会把消息放入队列中,然后通过文件事件分派器(File event Dispatcher),转发到不同的事件处理器中。 多路复用有很多的实现,以 select 为例,当用户进程调用了多路复用器,进程会被阻塞。内核会监视多路复用器负责的所有 socket,当任何一个 socket 的数据准备好了,多路复用器就会返回。这时候用户进程再调用 read 操作,把数据从内核缓冲区拷贝到用户空间。 所以,I/O 多路复用的特点是通过一种机制一个进程能同时等待多个文件描述符,而这些文件描述符(套接字描述符)其中的任意一个进入读就绪(readable)状态,select() 函数就可以返回。 Redis 的多路复用, 提供了 select, epoll, evport, kqueue 几种选择,在编译的时 候来选择一种。 evport 是 Solaris 系统内核提供支持的; epoll 是 LINUX 系统内核提供支持的; kqueue 是 Mac 系统提供支持的; select 是 POSIX 提供的,一般的操作系统都有支撑(保底方案); 源码 ae_epoll.c、ae_select.c、ae_kqueue.c、ae_evport.c 5、内存回收 Reids 所有的数据都是存储在内存中的,在某些情况下需要对占用的内存空间进行回 收。内存回收主要分为两类,一类是 key 过期,一类是内存使用达到上限(max_memory) 触发内存淘汰。 5.1 过期策略 要实现 key 过期,我们有几种思路。 5.1.1 定时过期(主动淘汰) 每个设置过期时间的 key 都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的 CPU 资源去处理过期的 数据,从而影响缓存的响应时间和吞吐量。 5.1.2 惰性过期(被动淘汰) 只有当访问一个 key 时,才会判断该 key 是否已过期,过期则清除。该策略可以最大化地节省 CPU 资源,却对内存非常不友好。极端情况可能出现大量的过期 key 没有再次被访问,从而不会被清除,占用大量内存。 例如 String,在 getCommand 里面会调用 expireIfNeeded server.c expireIfNeeded(redisDb db, robj key) 第二种情况,每次写入 key 时,发现内存不够,调用 activeExpireCycle 释放一部分内存。 expire.c activeExpireCycle(int type) 5.1.3 定期过期 源码:server.h typedef struct redisDb { dict dict; / 所有的键值对 /dict expires; / 设置了过期时间的键值对 /dict blocking_keys; dict ready_keys; dict watched_keys; int id;long long avg_ttl;list defrag_later; } redisDb; 每隔一定的时间,会扫描一定数量的数据库的 expires 字典中一定数量的 key,并清除其中已过期的 key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得 CPU 和内存资源达到最优的平衡效果。 Redis 中同时使用了惰性过期和定期过期两种过期策略。 5.2 淘汰策略 Redis 的内存淘汰策略,是指当内存使用达到最大内存极限时,需要使用淘汰算法来决定清理掉哪些数据,以保证新数据的存入。 5.2.1 最大内存设置 redis.conf 参数配置: maxmemory <bytes> 如果不设置 maxmemory 或者设置为 0,64 位系统不限制内存,32 位系统最多使用 3GB 内存。 动态修改: redis> config set maxmemory 2GB 到达最大内存以后怎么办? 5.2.2 淘汰策略 https://redis.io/topics/lru-cache redis.conf maxmemory-policy noeviction 先从算法来看: LRU,Least Recently Used:最近最少使用。判断最近被使用的时间,目前最远的数据优先被淘汰。 LFU,Least Frequently Used,最不常用,4.0 版本新增。 random,随机删除。 如果没有符合前提条件的 key 被淘汰,那么 volatile-lru、volatile-random、 volatile-ttl 相当于 noeviction(不做内存回收)。 动态修改淘汰策略: redis> config set maxmemory-policy volatile-lru 建议使用 volatile-lru,在保证正常服务的情况下,优先删除最近最少使用的 key。 5.2.3 LRU 淘汰原理 问题:如果基于传统 LRU 算法实现 Redis LRU 会有什么问题? 需要额外的数据结构存储,消耗内存。 Redis LRU 对传统的 LRU 算法进行了改良,通过随机采样来调整算法的精度。如果淘汰策略是 LRU,则根据配置的采样值 maxmemory_samples(默认是 5 个), 随机从数据库中选择 m 个 key, 淘汰其中热度最低的 key 对应的缓存数据。所以采样参数m配置的数值越大, 就越能精确的查找到待淘汰的缓存数据,但是也消耗更多的CPU计算,执行效率降低。 问题:如何找出热度最低的数据? Redis 中所有对象结构都有一个 lru 字段, 且使用了 unsigned 的低 24 位,这个字段用来记录对象的热度。对象被创建时会记录 lru 值。在被访问的时候也会更新 lru 的值。 但是不是获取系统当前的时间戳,而是设置为全局变量 server.lruclock 的值。 源码:server.h typedef struct redisObject {unsigned type:4;unsigned encoding:4;unsigned lru:LRU_BITS;int refcount;void ptr; } robj; server.lruclock 的值怎么来的? Redis 中有个定时处理的函数 serverCron,默认每 100 毫秒调用函数 updateCachedTime 更新一次全局变量的 server.lruclock 的值,它记录的是当前 unix 时间戳。 源码:server.c void updateCachedTime(void) { time_t unixtime = time(NULL); atomicSet(server.unixtime,unixtime); server.mstime = mstime();struct tm tm; localtime_r(&server.unixtime,&tm);server.daylight_active = tm.tm_isdst; } 问题:为什么不获取精确的时间而是放在全局变量中?不会有延迟的问题吗? 这样函数 lookupKey 中更新数据的 lru 热度值时,就不用每次调用系统函数 time,可以提高执行效率。 OK,当对象里面已经有了 LRU 字段的值,就可以评估对象的热度了。 函数 estimateObjectIdleTime 评估指定对象的 lru 热度,思想就是对象的 lru 值和全局的 server.lruclock 的差值越大(越久没有得到更新),该对象热度越低。 源码 evict.c / Given an object returns the min number of milliseconds the object was never requested, using an approximated LRU algorithm. /unsigned long long estimateObjectIdleTime(robj o) {unsigned long long lruclock = LRU_CLOCK(); if (lruclock >= o->lru) {return (lruclock - o->lru) LRU_CLOCK_RESOLUTION; } else {return (lruclock + (LRU_CLOCK_MAX - o->lru)) LRU_CLOCK_RESOLUTION;} } server.lruclock 只有 24 位,按秒为单位来表示才能存储 194 天。当超过 24bit 能表 示的最大时间的时候,它会从头开始计算。 server.h define LRU_CLOCK_MAX ((1<<LRU_BITS)-1) / Max value of obj->lru / 在这种情况下,可能会出现对象的 lru 大于 server.lruclock 的情况,如果这种情况 出现那么就两个相加而不是相减来求最久的 key。 为什么不用常规的哈希表+双向链表的方式实现?需要额外的数据结构,消耗资源。而 Redis LRU 算法在 sample 为 10 的情况下,已经能接近传统 LRU 算法了。 问题:除了消耗资源之外,传统 LRU 还有什么问题? 如图,假设 A 在 10 秒内被访问了 5 次,而 B 在 10 秒内被访问了 3 次。因为 B 最后一次被访问的时间比 A 要晚,在同等的情况下,A 反而先被回收。 问题:要实现基于访问频率的淘汰机制,怎么做? 5.2.4 LFU server.h typedef struct redisObject {unsigned type:4;unsigned encoding:4;unsigned lru:LRU_BITS;int refcount;void ptr; } robj; 当这 24 bits 用作 LFU 时,其被分为两部分: 高 16 位用来记录访问时间(单位为分钟,ldt,last decrement time) 低 8 位用来记录访问频率,简称 counter(logc,logistic counter) counter 是用基于概率的对数计数器实现的,8 位可以表示百万次的访问频率。 对象被读写的时候,lfu 的值会被更新。 db.c——lookupKey void updateLFU(robj val) {unsigned long counter = LFUDecrAndReturn(val); counter = LFULogIncr(counter);val->lru = (LFUGetTimeInMinutes()<<8) | counter;} 增长的速率由,lfu-log-factor 越大,counter 增长的越慢 redis.conf 配置文件。 lfu-log-factor 10 如果计数器只会递增不会递减,也不能体现对象的热度。没有被访问的时候,计数器怎么递减呢? 减少的值由衰减因子 lfu-decay-time(分钟)来控制,如果值是 1 的话,N 分钟没有访问就要减少 N。 redis.conf 配置文件 lfu-decay-time 1 6、持久化机制 https://redis.io/topics/persistence Redis 速度快,很大一部分原因是因为它所有的数据都存储在内存中。如果断电或者宕机,都会导致内存中的数据丢失。为了实现重启后数据不丢失,Redis 提供了两种持久化的方案,一种是 RDB 快照(Redis DataBase),一种是 AOF(Append Only File)。 6.1 RDB RDB 是 Redis 默认的持久化方案。当满足一定条件的时候,会把当前内存中的数据写入磁盘,生成一个快照文件 dump.rdb。Redis 重启会通过加载 dump.rdb 文件恢复数据。 什么时候写入 rdb 文件? 6.1.1 RDB 触发 1、自动触发 a)配置规则触发。 redis.conf, SNAPSHOTTING,其中定义了触发把数据保存到磁盘的触发频率。 如果不需要 RDB 方案,注释 save 或者配置成空字符串""。 save 900 1 900 秒内至少有一个 key 被修改(包括添加) save 300 10 400 秒内至少有 10 个 key 被修改save 60 10000 60 秒内至少有 10000 个 key 被修改 注意上面的配置是不冲突的,只要满足任意一个都会触发。 RDB 文件位置和目录: 文件路径,dir ./ 文件名称dbfilename dump.rdb 是否是LZF压缩rdb文件 rdbcompression yes 开启数据校验 rdbchecksum yes 问题:为什么停止 Redis 服务的时候没有 save,重启数据还在? RDB 还有两种触发方式: b)shutdown 触发,保证服务器正常关闭。 c)flushall,RDB 文件是空的,没什么意义(删掉 dump.rdb 演示一下)。 2、手动触发 如果我们需要重启服务或者迁移数据,这个时候就需要手动触 RDB 快照保存。Redis 提供了两条命令: a)save save 在生成快照的时候会阻塞当前 Redis 服务器, Redis 不能处理其他命令。如果内存中的数据比较多,会造成 Redis 长时间的阻塞。生产环境不建议使用这个命令。 为了解决这个问题,Redis 提供了第二种方式。 执行 bgsave 时,Redis 会在后台异步进行快照操作,快照同时还可以响应客户端请求。 具体操作是 Redis 进程执行 fork 操作创建子进程(copy-on-write),RDB 持久化过程由子进程负责,完成后自动结束。它不会记录 fork 之后后续的命令。阻塞只发生在 fork 阶段,一般时间很短。 用 lastsave 命令可以查看最近一次成功生成快照的时间。 6.1.2 RDB 数据的恢复(演示) 1、shutdown 持久化添加键值 添加键值 redis> set k1 1 redis> set k2 2 redis> set k3 3 redis> set k4 4 redis> set k5 5 停服务器,触发 save redis> shutdown 备份 dump.rdb 文件 cp dump.rdb dump.rdb.bak 启动服务器 /usr/local/soft/redis-5.0.5/src/redis-server /usr/local/soft/redis-5.0.5/redis.conf 啥都没有: redis> keys 3、通过备份文件恢复数据停服务器 redis> shutdown 重命名备份文件 mv dump.rdb.bak dump.rdb 启动服务器 /usr/local/soft/redis-5.0.5/src/redis-server /usr/local/soft/redis-5.0.5/redis.conf 查看数据 redis> keys 6.1.3 RDB 文件的优势和劣势 一、优势 1.RDB 是一个非常紧凑(compact)的文件,它保存了 redis 在某个时间点上的数据集。这种文件非常适合用于进行备份和灾难恢复。 2.生成 RDB 文件的时候,redis 主进程会 fork()一个子进程来处理所有保存工作,主进程不需要进行任何磁盘 IO 操作。 3.RDB 在恢复大数据集时的速度比 AOF 的恢复速度要快。 二、劣势 1、RDB 方式数据没办法做到实时持久化/秒级持久化。因为 bgsave 每次运行都要执行 fork 操作创建子进程,频繁执行成本过高。 2、在一定间隔时间做一次备份,所以如果 redis 意外 down 掉的话,就会丢失最后一次快照之后的所有修改(数据有丢失)。 如果数据相对来说比较重要,希望将损失降到最小,则可以使用 AOF 方式进行持久化。 6.2 AOF Append Only File AOF:Redis 默认不开启。AOF 采用日志的形式来记录每个写操作,并追加到文件中。开启后,执行更改 Redis 数据的命令时,就会把命令写入到 AOF 文件中。 Redis 重启时会根据日志文件的内容把写指令从前到后执行一次以完成数据的恢复工作。 6.2.1 AOF 配置 配置文件 redis.conf 开关appendonly no 文件名appendfilename "appendonly.aof" AOF 文件的内容(vim 查看): 问题:数据都是实时持久化到磁盘吗? 由于操作系统的缓存机制,AOF 数据并没有真正地写入硬盘,而是进入了系统的硬盘缓存。什么时候把缓冲区的内容写入到 AOF 文件? 问题:文件越来越大,怎么办? 由于 AOF 持久化是 Redis 不断将写命令记录到 AOF 文件中,随着 Redis 不断的进行,AOF 的文件会越来越大,文件越大,占用服务器内存越大以及 AOF 恢复要求时间越长。 例如 set xxx 666,执行 1000 次,结果都是 xxx=666。 为了解决这个问题,Redis 新增了重写机制,当 AOF 文件的大小超过所设定的阈值时,Redis 就会启动 AOF 文件的内容压缩,只保留可以恢复数据的最小指令集。 可以使用命令 bgrewriteaof 来重写。 AOF 文件重写并不是对原文件进行重新整理,而是直接读取服务器现有的键值对,然后用一条命令去代替之前记录这个键值对的多条命令,生成一个新的文件后去替换原来的 AOF 文件。 重写触发机制 auto-aof-rewrite-percentage 100 auto-aof-rewrite-min-size 64mb 问题:重写过程中,AOF 文件被更改了怎么办? 另外有两个与 AOF 相关的参数: 6.2.2 AOF 数据恢复 重启 Redis 之后就会进行 AOF 文件的恢复。 6.2.3 AOF 优势与劣势 优点: 1、AOF 持久化的方法提供了多种的同步频率,即使使用默认的同步频率每秒同步一次,Redis 最多也就丢失 1 秒的数据而已。 缺点: 1、对于具有相同数据的的 Redis,AOF 文件通常会比 RDB 文件体积更大(RDB 存的是数据快照)。 2、虽然 AOF 提供了多种同步的频率,默认情况下,每秒同步一次的频率也具有较高的性能。在高并发的情况下,RDB 比 AOF 具好更好的性能保证。 6.3 两种方案比较 那么对于 AOF 和 RDB 两种持久化方式,我们应该如何选择呢? 如果可以忍受一小段时间内数据的丢失,毫无疑问使用 RDB 是最好的,定时生成 RDB 快照(snapshot)非常便于进行数据库备份, 并且 RDB 恢复数据集的速度也要比 AOF 恢复的速度要快。 否则就使用 AOF 重写。但是一般情况下建议不要单独使用某一种持久化机制,而是应该两种一起用,在这种情况下,当 redis 重启的时候会优先载入 AOF 文件来恢复原始的数据,因为在通常情况下 AOF 文件保存的数据集要比 RDB 文件保存的数据集要完整。 本篇文章为转载内容。原文链接:https://blog.csdn.net/zhoutaochun/article/details/120075092。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-03-18 12:25:04
541
转载
MySQL
...查询操作等,一旦发现异常,立即告警,从而有效防止恶意查看或篡改数据的行为。 另外,在日常运维中,管理员应遵循最小权限原则,为每个MySQL用户分配仅满足其工作需求的最低权限,并定期更新密码策略,包括强制密码复杂度、设置定期更换密码等措施。同时,利用SSL/TLS加密技术保护MySQL客户端与服务器之间的通信,也是防止中间人攻击、保障密码传输安全的重要手段。 对于忘记MySQL密码的情况,除了上述提到的通过命令行工具以具有足够权限的用户重置密码外,还可以借助第三方MySQL管理工具,如phpMyAdmin、Navicat等,它们通常提供了更为直观的操作界面来处理这类问题,大大降低了数据库管理的门槛。 综上所述,MySQL账号和密码的管理不仅涉及到查询和重置这些基本操作,更涵盖了数据库访问控制、密码加密存储、安全审计等多个层面,需要结合最新的安全技术和最佳实践,以实现对MySQL数据库的有效安全管理。
2024-01-21 10:37:36
52
算法侠
AngularJS
...前端开发中的表单处理实践。随着Angular框架的不断迭代更新,Angular(即Angular 2+)对表单处理提供了更为强大且灵活的支持。例如,Angular采用了响应式表单和模板驱动表单两种模式,允许开发者根据项目需求选择最适合的方案。 近期,Angular团队发布了Angular 13版本,其中对表单控件和验证机制进行了优化升级,新增了对可访问性规范的严格遵循以及更细致的错误提示,从而帮助开发者更好地处理表单提交行为异常,提高用户体验。同时,Angular Material库也同步更新了一系列UI组件,为表单设计与交互提供了丰富的、符合Material Design规范的选择。 此外,在实际项目中,如何结合最新的前端安全策略来防止XSS攻击和CSRF攻击也是表单提交时不可忽视的一环。开发者应确保在表单数据提交前后进行有效的验证与清理,并合理利用Angular提供的依赖注入和HTTP服务模块来进行安全的数据交互。 综上所述,掌握Angular(包括AngularJS及后续版本)中表单处理的最佳实践,不仅能够有效避免类似ngsubmit异常这样的问题,更能助力开发者构建出高效稳定、安全易用的现代Web应用。
2023-11-13 22:15:25
463
寂静森林-t
Java
在Java编程实践中,父类与子类间的转换是面向对象设计的重要组成部分。本文介绍了向上转型和向下转型的基本概念及操作方式,但类型转换的深度应用远不止于此。近期,在开发Spring框架5.x版本的应用程序时,开发者们更关注如何安全且高效地运用类型转换来实现灵活的设计模式。 例如,在处理依赖注入(Dependency Injection)时,开发者可能需要将容器管理的父类Bean实例转换为具体的子类实例。Spring框架通过AOP代理和类型检查机制,提供了一种更为智能和安全的转换方式。同时,Java 8及更高版本引入了Optional类以增强类型安全,开发者可以通过Optional提供的map方法进行安全的向下转型,从而避免ClassCastException异常。 深入探究,类型转换还涉及Java运行时的类型信息获取、泛型擦除等复杂问题。在处理集合类如List中存储Cat对象并进行向下转型时,可以借助Java反射API或TypeReference类解决泛型类型擦除带来的不便。 此外,《Effective Java》一书中的Item 53:优先使用继承而非类型参数化来实现“is-a”关系,强调了正确理解并使用类型转换对于设计稳定、易于维护的代码库至关重要。这也提醒我们在实际编程中,不仅要掌握类型转换的技巧,更要遵循面向对象设计原则,合理利用继承与多态特性,确保代码的可读性和扩展性。 总的来说,理解并熟练运用Java中的类型转换不仅是实现功能的基础,也是优化性能、提高代码质量的关键所在。随着技术的发展,诸如Project Valhalla等新特性的引入将进一步丰富Java类型系统,使得类型转换在未来的Java编程中有更多可能性和挑战等待我们去探索。
2023-12-31 10:17:23
337
编程狂人
Java
在深入理解Java异常机制的基础上,进一步探讨现代编程实践中如何有效利用和优化这一特性显得尤为重要。近期,随着Java 17的发布,其对异常处理机制也进行了一些改进和增强,例如引入了 sealed接口和类来更精确地控制异常的扩展性,有助于开发者更好地管理和捕获特定类型的异常。 在实际开发中,遵循“Fail Fast”原则是提升系统稳定性和可维护性的重要手段。通过合理的异常设计与抛出策略,能快速定位问题并阻止错误传播。例如,在Spring框架的最新版本中,对Controller层的异常处理进行了优化,允许开发者自定义全局异常处理器,以统一的方式处理各类业务异常,从而提供更为友好的用户体验。 此外,对于资源管理相关的异常,如IOException或SQLException,Java提倡使用try-with-resources语句自动关闭资源,这不仅能简化代码,还能确保在发生异常时资源一定能得到正确释放,避免了潜在的内存泄漏问题。 从软件工程的角度来看,学术界和工业界都在持续研究如何提高异常处理的效率和准确性。例如,有研究者提出了基于机器学习预测异常行为的方法,使得程序能够在运行时提前预判并预防可能出现的错误,极大地提升了系统的稳健性和响应速度。 因此,对Java异常机制的理解不应仅停留在语法层面,更要结合最新的技术发展、最佳实践以及前沿理论研究成果,不断优化和完善我们的异常处理逻辑,使程序具备更强的健壮性和可靠性。
2023-08-12 22:57:07
316
编程狂人
Java
在深入理解Java异常处理机制后,我们可以进一步关注该领域的一些最新动态和最佳实践。近期,随着Java 17的发布,其对异常处理也带来了一些改进。例如,JEP 408(Records)引入了新的记录类,它们能自动生成equals()、hashCode()等方法,同时也增强了对异常处理的支持,确保在构造期间发生异常时能正确清理资源。 另外,对于大型项目而言,遵循“Fail Fast”原则以及合理使用受检异常与运行时异常是提升代码健壮性和可维护性的重要手段。业界专家提倡尽量减少catch-all(捕获所有异常)的做法,转而精确捕获并针对性地处理特定类型的异常,以提高问题定位效率。 此外,在微服务架构下,异常处理的边界通常扩展到服务间通信层面,如Spring框架中的全局异常处理器可以统一处理来自各个服务接口的异常,并通过HTTP状态码和错误信息为前端或调用方提供清晰的反馈。 同时,Java社区也在探讨如何优化try-with-resources语句在多资源管理场景下的应用,以及如何利用异常链(Exception Chaining)来保留原始异常上下文,以便于排查深层次的程序错误。 综上所述,Java异常处理是一个持续演进和深化实践的主题,开发人员需紧跟技术发展步伐,结合具体业务场景灵活运用异常处理机制,从而构建出更加稳定、可靠的系统。
2024-01-13 22:39:29
335
键盘勇士
ElasticSearch
... scripting编程实践 在ElasticSearch中,我们可以通过脚本语言进行各种复杂的操作。这就是我要详细介绍的Painless scripting。 四、Painless scripting的基本概念 Painless是ElasticSearch的一种新的脚本语言,它被设计成一种易学易用的语言,可以方便地与ElasticSearch的数据模型集成。 五、Painless scripting的优势 1. 简单易学 Painless script语言的设计目标就是使用户能够快速上手,并且其语法也尽可能接近Java。 2. 高性能 Painless script语言是在JVM上运行的,因此它的性能非常优秀。 3. 安全性 ElasticSearch对Painless script语言进行了严格的安全检查,防止恶意攻击。 六、Painless scripting的应用场景 1. 数据过滤 我们可以使用Painless脚本来过滤出我们需要的数据。 2. 数据转换 如果我们需要对数据进行一些特殊的处理,例如计算某个字段的平均值或者总和,也可以使用Painless脚本来实现。 3. 数据聚合 Painless脚本可以帮助我们对大量的数据进行聚合操作,例如计算某段时间内的日均访问量。 七、Painless scripting的基本语法 1. 变量定义 在Painless脚本中,我们可以使用var关键字来定义变量。 2. 控制结构 Painless脚本支持if/else、for等控制结构。 3. 函数调用 我们可以直接调用ElasticSearch中的函数,例如avg()、sum()等。 4. 异常处理 在Painless脚本中,我们可以使用try/catch来捕获并处理异常。 八、Painless scripting的示例代码 java GET my-index/_search { "script_fields": { "average_price": { "script": { "source": """ Double total = doc['price'].value(); int count = doc['count'].value(); return total / count; """, "lang": "painless" } } } } 在这段代码中,我们使用了Painless脚本来计算文档中价格的平均值。 九、结论 总的来说,Painless scripting是一种强大而灵活的工具,它可以让我们在ElasticSearch中实现许多复杂的功能。学习并熟练掌握Painless scripting这项技能后,我真心相信咱们的工作效率绝对会蹭蹭往上涨,效果显著到让你惊讶。
2023-02-04 22:33:34
479
风轻云淡-t
MySQL
...系数据库的标准计算机编程语言,包括数据查询、数据插入、更新和删除以及数据库结构管理等功能。在MySQL环境中,用户可以使用SQL语句创建、修改或删除数据库及其中的表结构,同时也可以对数据进行复杂的检索、排序、统计与聚合操作。 mysqldump命令 , mysqldump是MySQL提供的一种用于备份数据库的重要工具,它可以将MySQL数据库中的所有数据和表结构生成为一个可移植的SQL脚本文件。通过执行mysqldump命令,用户能够完整地备份整个数据库或者部分特定的数据库表,便于在数据丢失或需要恢复时快速还原到某个时间点的状态,确保数据的安全性和完整性。例如,在MySQL中,用户可以通过命令行运行mysqldump命令,指定要备份的数据库名和其他相关参数来完成备份任务。
2023-02-05 14:43:17
74
程序媛
MySQL
...全性的考虑,如何有效防止SQL注入、实施权限管理以及加密敏感数据也是MySQL使用者需要关注的重点。MySQL自带的多层访问控制机制及密码加密策略可确保数据安全性,同时,业界还推荐遵循OWASP SQL注入防护指南来编写安全的SQL查询语句。 总之,在实际工作中,熟练掌握MySQL并结合最新的技术趋势与最佳实践,将有助于构建更为稳定、高效且安全的系统数据存储解决方案。
2023-01-17 16:44:32
123
程序媛
Flink
...xception”的异常,其中一种典型错误提示就是:“Missing type information for generic type parameter”。这种异常主要源于Flink对Java泛型类型的识别和处理机制。这篇文章呢,咱们要来个深度挖掘,把这个异常现象背后的小秘密给揪出来,还会配上些实实在在的代码例子,一起唠唠怎么才能真正地防止和搞定这个问题。 二、理解TypeInformationException(≈250字) 在Flink的世界里,TypeInformation扮演着至关重要的角色。它包含了数据类型的所有必要信息,如类型是否可null、是否基本类型、是否有字段以及字段的类型等。对于使用了泛型的数据类型,Flink需要获取到具体的类型参数信息以便正确处理。当Flink无法自动推断出泛型的具体类型时,就会抛出"Missing type information for generic type parameter"的异常。 三、案例分析(≈300字 + 代码示例 ≈ 150字) 假设我们在Flink作业中定义了一个泛型类Event,并尝试将其作为DataStream的元素类型: java public class Event { private T payload; // ... getters and setters } DataStream> stream = env.addSource(new FlinkSource>()); 运行上述代码时,Flink就无法确定T的具体类型,从而引发"TypeInformationException"。因为?通配符表示任何类型,Flink无法从Event推导出确切的TypeInformation。 为了解决这个问题,我们需要显式地提供TypeInformation: java TypeInformation> stringTypeInfo = TypeInformation.of(new TypeHint>() {}); DataStream> stream = env.addSource(new FlinkSource<>(stringTypeInfo)); 四、深入解决方案(≈250字 + 代码示例 ≈ 150字) 另一种更为通用的方法是使用TypeInformation.of()或TypeExtractor.createTypeInfo()方法,结合TypeHint或自定义的TypeInformation子类来明确指定泛型参数的类型: java // 使用TypeHint方式 TypeInformation> integerTypeInfo = TypeInformation.of(new TypeHint>() {}); DataStream> integerStream = env.addSource(new FlinkSource<>(integerTypeInfo)); // 或者使用TypeExtractor方式 TypeInformation> doubleTypeInfo = TypeExtractor.getForClass(Event.class) .forGenericTypes(Double.class); DataStream> doubleStream = env.addSource(new FlinkSource<>(doubleTypeInfo)); 五、思考与总结(≈200字) 面对“Missing type information for generic type parameter”这类异常,我们需要理解其背后的原理:Flink为了确保数据处理的正确性和效率,必须清楚每种数据类型的细节。所以,说到泛型这事儿,开发者们最好积极拥抱Flink的类型系统,明确地提供各类类型信息,别藏着掖着~此外,在设计数据模型时,尽可能避免过度复杂的泛型结构也能降低此类问题的发生概率。记住了啊,编程不只是敲出能跑起来的代码那么简单,更重要的是要深入理解并完全掌握系统的底层运作机制。这样一来,无论遇到什么难题挑战,都能像庖丁解牛那样游刃有余地应对处理。
2023-05-11 12:38:53
556
断桥残雪
.net
...理解了.NET框架中异常处理机制的基础之上,近期的.NET开发领域出现了更多值得关注的进展。随着.NET 5.0及后续版本的发布,微软进一步强化了异常处理的相关功能,提供了更为精细和高效的控制手段。例如,新增了finally子句的异步等效AsyncDisposable模式,使得在处理异步操作时的资源清理更为简洁有序。 同时,对于Web服务开发中的异常管理,Microsoft倡导采用全局异常处理器(Global Exception Handling)设计模式,结合中间件(Middleware)进行集中化、统一化的异常捕获与处理,极大地提升了代码的可维护性和错误响应的一致性。此外,通过集成应用洞察(Application Insights),开发者可以实时监控并分析生产环境中发生的各类异常情况,从而实现快速定位问题、优化系统性能的目标。 值得注意的是,在实际项目开发中,遵循“防御性编程”原则,尽量避免异常的发生同样重要。为此,.NET社区提出了许多最佳实践,如预先检查输入参数的有效性、使用null条件运算符(?.)减少空引用异常等。这些策略结合.NET的异常处理机制,共同构建起一套坚固的应用程序安全防护网,确保了应用程序的稳定运行和用户体验的提升。
2023-03-10 23:09:25
492
夜色朦胧-t
.net
...演进的今天,对集合类异常处理的理解与实践愈发重要。近期微软发布的.NET 5.0及更高版本中,引入了更多增强字典操作安全性的新特性,例如Dictionary类新增了索引器重载,允许开发者在获取键不存在时提供一个默认值,而不再抛出KeyNotFoundException异常。这一改进体现了.NET框架对开发体验和代码健壮性的人性化考量。 此外,在并发编程场景下,《深入理解C多线程:ConcurrentDictionary实战》一文中,作者深度剖析了如何利用.NET中的ConcurrentDictionary高效应对多线程环境下的KeyNotFoundException问题,不仅强调了GetOrAdd方法的优势,还探讨了其内在锁机制以及相较于普通Dictionary在高并发环境下的性能优势。 同时,随着函数式编程范式的流行,越来越多的开发者开始关注无异常编程理念。在.NET Core社区中,有开发者提倡使用Maybe Monad或Option类型来替代传统的异常处理方式,以更简洁、安全的方式表达并处理字典查找失败的情况。这为.NET程序员提供了另一种思考和解决KeyNotFoundException的新视角,也反映了.NET生态系统对现代编程实践的积极接纳和响应。 因此,深入理解并有效处理.NET中的KeyNotFoundException只是提升代码质量的第一步,结合最新的框架特性与编程思想,将有助于我们构建更加稳定、高效的软件产品。
2023-04-04 20:01:34
522
心灵驿站
Java
在Java编程实践中,深入理解和掌握equals和==的区别至关重要。最近,随着Java 16的发布,对equals方法以及对象相等性判断的标准有了更为明确的规范。根据《Java Language Specification》(JLS),重写equals方法时应遵循一系列契约,包括自反性、对称性、传递性和一致性原则,并且如果两个对象相等(即equals返回true),那么它们必须具有相同的哈希码以确保在散列结构如HashSet或HashMap中正常工作。 此外,针对引用类型与基本数据类型的比较差异,业界也展开了一系列讨论。有开发者在处理复杂数据结构或集合类时,由于混淆了equals与==的使用场景,导致出现逻辑错误甚至引发系统bug。因此,在实际项目开发中,提倡使用Objects.equals()静态方法进行非空安全的对象内容比较,它能更好地防止NullPointerException异常。 同时,对于String池的概念理解,也是正确运用equals和==的关键。Java虚拟机会对字符串常量进行优化,将相同的字符串字面量指向同一个内存区域,这使得在特定情况下,即使使用==也能正确判断两个字符串内容是否相等。然而,这一特性并不适用于所有对象类型,因此在进行对象比较时务必谨慎对待equals和==的选择与使用。
2023-08-26 12:21:44
298
月影清风_t
PostgreSQL
...妥善处理数据类型转换异常至关重要。近期,PostgreSQL官方发布了新的版本更新,进一步增强了对复杂数据类型转换的支持,并优化了错误提示机制,使得用户在遇到InvalidColumnTypeCastError这类问题时能够更快定位和修复。例如,新版本的to_char()和to_numeric()函数在进行数据类型转换时,提供了更灵活且严谨的参数校验,有助于减少因误操作导致的数据类型不匹配错误。 此外,在实际应用中,为避免InvalidColumnTypeCastError等类似问题的发生,开发者不仅需要熟悉数据库系统提供的转换工具与方法,还要强化对业务逻辑的理解,确保数据模型设计合理。近期,一篇发表在《ACM Transactions on Database Systems》的研究文章深入探讨了数据类型转换中的潜在陷阱与最佳实践,通过对大量实例分析,作者强调了在设计阶段充分考虑数据完整性和一致性的重要性,并提倡在编程实践中采用防御性编程策略以应对未知的数据类型转换异常。 与此同时,随着大数据和云计算技术的发展,跨平台、多环境下的数据迁移与同步也日益频繁,这也对数据类型的兼容性及转换机制提出了更高要求。因此,无论是数据库管理员还是软件开发者,都需要紧跟技术潮流,不断学习和完善自身的数据库知识体系,从而有效预防和解决由数据类型转换引发的各种问题。
2023-08-30 08:38:59
296
草原牧歌-t
c#
在实际的编程实践中,C错误处理和调试技巧不仅限于上述常见的错误类型。随着.NET Core和C 9.0等新版本的发布,微软为开发者提供了更多强大的错误处理工具和机制,如Nullable Reference Types特性能够帮助开发者在编译阶段就识别出可能的空引用异常,极大地增强了代码健壮性。 近期,微软发布了.NET 6.0,引入了全局使用、默认启用的 nullable 约束功能,使得开发人员在设计API时能更清晰地表达参数和返回值是否允许为null,从而降低运行时因空引用引发的错误。同时,.NET 6.0中的Source Generators技术也能自动检测并生成代码以防止特定类型的错误发生。 此外,现代C编程中提倡采用异步编程模型(async/await),这可以有效避免同步操作带来的资源阻塞问题,减少潜在的运行时错误。然而,在异步编程中也可能出现Async void方法未捕获异常等问题,因此深入理解和合理应用异步编程原则至关重要。 综上所述,了解并掌握最新的语言特性和框架工具对于解决C编程中的错误具有现实意义和时效价值,同时也提醒广大开发者要持续学习和跟进技术发展趋势,以便在日常开发中更好地预防和应对各类错误,提升软件质量与稳定性。
2023-11-12 22:43:56
549
林中小径_t
PHP
...。 此外,数据库最佳实践也建议采用预编译语句( Prepared Statements)以提高查询效率并确保数据安全性。通过预编译,不仅可以有效防止SQL注入攻击,还能利用数据库缓存查询计划,从而加快后续同样结构查询的速度。 另外,针对数据库权限管理,应遵循最小权限原则,即为应用程序分配仅够完成其功能所需的最低限度数据库权限,以此降低因权限过高导致的数据泄露或破坏的风险。 总之,在实际项目开发中,除了掌握解决SQLQueryException的基本方法,还需紧跟技术发展动态,运用最新的安全策略和技术手段优化数据库操作,才能使项目在保证稳定性的前提下,实现更高的安全性与性能表现。
2023-05-04 22:50:29
88
月影清风-t
Shell
...命令如何在Shell编程中实现信号捕获与处理后,我们可以进一步探索这一机制在现代系统管理、自动化运维以及程序异常处理中的实际应用。近期,随着DevOps和容器化技术的普及,对进程间通信和错误恢复机制的需求日益增强,trap命令的重要性更加凸显。 例如,在Kubernetes集群环境中,Pod内的容器可能需要优雅地处理SIGTERM信号以确保在被删除或重新调度时能完成必要的清理工作,如关闭数据库连接、保存临时数据等。通过设置适当的trap命令,可以极大地提升系统的稳定性和可靠性。 另外,Linux内核社区最近发布的版本中,针对信号处理机制也进行了优化和完善,例如改进了信号队列的处理效率,使得在高并发场景下,通过trap命令设置的复杂信号响应逻辑能够更高效地执行。 此外,对于Shell脚本开发者而言,学习和借鉴业界成熟的开源项目,如Apache Hadoop、Docker等,是如何巧妙运用trap命令进行错误恢复和资源管理的,不失为一种深度学习和实践的方式。 总之,《精通Unix/Linux Shell编程》、《Advanced Linux Programming》等经典书籍以及各大技术博客和论坛上的最新实践分享,都是深入研究和掌握trap命令及其应用场景的理想延伸阅读资料,帮助读者将理论知识转化为解决实际问题的能力。
2024-02-06 11:30:03
131
断桥残雪
Struts2
...是一个Java运行时异常,表示在试图访问或操作一个null对象的成员方法或属性时抛出。在本文上下文中,当Struts2 Action类中的execute方法执行过程中尝试调用未初始化或已赋值为null的对象(如userService)的方法时,就会触发此类异常。 依赖注入(Dependency Injection,DI) , 一种编程范式,通过框架或其他外部系统动态地将依赖对象传递给需要使用它们的组件(在本文中是Action类),而不是由组件自行创建这些依赖对象。这样可以降低组件间的耦合度,提高代码的可测试性和可维护性。例如,在Struts2中,我们可以通过配置文件(struts.xml)将UserService实例注入到UserAction类中。 防御性编程(Defensive Programming) , 一种编程实践,它强调在编写代码时考虑到可能发生的错误情况,并采取预防措施来避免程序因意外输入或状态而失败。在本文提到的场景中,防御性编程表现为对可能为null的对象(如userService)进行判空处理,只有在对象非null的情况下才执行后续逻辑,从而防止NullPointerException的发生,提高程序的健壮性。
2023-06-26 11:07:11
69
青春印记
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
tac file.txt
- 类似于cat但反向输出文件内容。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"