前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[自动文本摘要集成]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Apache Lucene
...ne中实现全文检索的文本自动摘要? 1. 引言 探索全文检索与文本摘要的魅力 嘿,朋友们!今天咱们聊聊一个既有趣又实用的话题——在Apache Lucene中实现全文检索中的文本自动摘要。嘿,如果你是Lucene的新手,或者是对文本处理和信息检索超级好奇的小伙伴,那你可来对地方了!这篇文章就是专门给你准备的,让你轻松上手,玩转这些酷炫的技术!全文检索技术让我们能够高效地从海量数据中挖掘出有用的信息,而文本自动摘要则帮助我们快速把握文档的核心内容,两者结合,简直不要太酷! 2. Apache Lucene简介 走进全文检索的世界 首先,我们得了解一下Apache Lucene。这货是个用Java写的开源全文搜索神器,索引能力超强,搜东西快得飞起!Lucene的核心功能包括创建索引、存储索引以及执行复杂的查询等。简单来说,Lucene就是你进行全文检索时的超级助手。 代码示例: java // 创建索引目录 Directory directory = FSDirectory.open(Paths.get("/path/to/index")); // 创建索引写入器 IndexWriterConfig config = new IndexWriterConfig(new StandardAnalyzer()); IndexWriter indexWriter = new IndexWriter(directory, config); // 添加文档到索引 Document doc = new Document(); doc.add(new TextField("content", "这是文档的内容", Field.Store.YES)); indexWriter.addDocument(doc); indexWriter.close(); 这段代码展示了如何利用Lucene创建索引并添加文档的基本步骤。这里用了TextField来存文档内容,这样一来,搜索起来就灵活多了,想找啥就找啥。 3. 全文检索中的文本自动摘要 为什么我们需要它? 文本自动摘要是指通过算法自动生成文档摘要的过程。这不仅有助于提高阅读效率,还能有效节省时间。想象一下,如果你能在搜索引擎里输入关键词后,直接看到每篇文章的重点内容,那该有多爽啊!在Lucene里实现这个功能,就意味着我们能让信息的处理和展示变得更聪明、更贴心。 思考过程: 当我们处理大量文本时,手动编写摘要显然是不现实的。因此,开发一种自动化的方法就显得尤为重要了。这不仅仅是技术上的挑战,更是提升用户体验的关键所在。 4. 实现文本自动摘要 策略与技巧 实现文本自动摘要主要涉及两个方面:选择合适的摘要生成算法,以及如何将这些算法集成到Lucene中。 摘要生成算法: - TF-IDF:一种统计方法,用来评估一个词在一个文档或语料库中的重要程度。 - TextRank:基于PageRank算法的思想,用于提取文本中的关键句子。 代码示例(使用TextRank): java import com.huaban.analysis.jieba.JiebaSegmenter; import com.huaban.analysis.jieba.SegToken; public class TextRankSummary { private static final int MAX_SENTENCE = 5; // 最大句子数 public static String generateSummary(String text) { JiebaSegmenter segmenter = new JiebaSegmenter(); List segResult = segmenter.process(text, JiebaSegmenter.SegMode.INDEX); // 这里简化处理,实际应用中需要构建图结构并计算TextRank值 return "这是生成的摘要,简化处理..."; // 真实实现需根据具体算法调整 } } 注意:上述代码仅作为示例,实际应用中需要完整实现TextRank算法逻辑,并将其与Lucene的搜索结果结合。 5. 集成到Lucene 让摘要成为搜索的一部分 为了让摘要功能更加实用,我们需要将其整合到现有的搜索流程中。这就意味着每当用户搜东西的时候,除了给出相关的资料,还得给他们一个简单易懂的内容概要,这样他们才能更快知道这些资料是不是自己想要的。 代码示例: java public class LuceneSearchWithSummary { public static void main(String[] args) throws IOException { Directory directory = FSDirectory.open(Paths.get("/path/to/index")); IndexReader reader = DirectoryReader.open(directory); IndexSearcher searcher = new IndexSearcher(reader); QueryParser parser = new QueryParser("content", new StandardAnalyzer()); Query query = parser.parse("搜索关键词"); TopDocs topDocs = searcher.search(query, 10); for (ScoreDoc scoreDoc : topDocs.scoreDocs) { Document doc = searcher.doc(scoreDoc.doc); System.out.println("文档标题:" + doc.get("title")); System.out.println("文档内容摘要:" + TextRankSummary.generateSummary(doc.get("content"))); } reader.close(); directory.close(); } } 这段代码展示了如何在搜索结果中加入文本摘要的功能。每次搜索时,都会调用TextRankSummary.generateSummary()方法生成文档摘要,并显示给用户。 6. 结论 展望未来,无限可能 通过本文的学习,相信你已经掌握了在Lucene中实现全文检索文本自动摘要的基本思路和技术。当然,这只是开始,随着技术的发展,我们还有更多的可能性去探索。无论是优化算法性能,还是提升用户体验,都值得我们不断努力。让我们一起迎接这个充满机遇的时代吧! --- 希望这篇文章对你有所帮助,如果有任何问题或想了解更多细节,请随时联系我!
2024-11-13 16:23:47
86
夜色朦胧
转载文章
...子最精确地切开,适合文本分析; 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义; 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。 paddle模式,利用PaddlePaddle深度学习框架,训练序列标注(双向GRU)网络模型实现分词。同时支持词性标注。paddle模式使用需安装paddlepaddle-tiny,pip install paddlepaddle-tiny==1.6.1。目前paddle模式支持jieba v0.40及以上版本。jieba v0.40以下版本,请升级jieba,pip install jieba --upgrade 。PaddlePaddle官网 支持繁体分词 支持自定义词典 MIT 授权协议 安装说明 代码对 Python 2/3 均兼容 全自动安装:easy_install jieba 或者 pip install jieba / pip3 install jieba 半自动安装:先下载 http://pypi.python.org/pypi/jieba/ ,解压后运行 python setup.py install 手动安装:将 jieba 目录放置于当前目录或者 site-packages 目录 通过 import jieba 来引用 如果需要使用paddle模式下的分词和词性标注功能,请先安装paddlepaddle-tiny,pip install paddlepaddle-tiny==1.6.1。 算法 基于前缀词典实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图 (DAG) 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合 对于未登录词,采用了基于汉字成词能力的 HMM 模型,使用了 Viterbi 算法 主要功能 分词 jieba.cut 方法接受四个输入参数: 需要分词的字符串;cut_all 参数用来控制是否采用全模式;HMM 参数用来控制是否使用 HMM 模型;use_paddle 参数用来控制是否使用paddle模式下的分词模式,paddle模式采用延迟加载方式,通过enable_paddle接口安装paddlepaddle-tiny,并且import相关代码; jieba.cut_for_search 方法接受两个参数:需要分词的字符串;是否使用 HMM 模型。该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细 待分词的字符串可以是 unicode 或 UTF-8 字符串、GBK 字符串。注意:不建议直接输入 GBK 字符串,可能无法预料地错误解码成 UTF-8 jieba.cut 以及 jieba.cut_for_search 返回的结构都是一个可迭代的 generator,可以使用 for 循环来获得分词后得到的每一个词语(unicode),或者用 jieba.lcut 以及 jieba.lcut_for_search 直接返回 list jieba.Tokenizer(dictionary=DEFAULT_DICT) 新建自定义分词器,可用于同时使用不同词典。jieba.dt 为默认分词器,所有全局分词相关函数都是该分词器的映射。 代码示例 encoding=utf-8import jiebajieba.enable_paddle() 启动paddle模式。 0.40版之后开始支持,早期版本不支持strs=["我来到北京清华大学","乒乓球拍卖完了","中国科学技术大学"]for str in strs:seg_list = jieba.cut(str,use_paddle=True) 使用paddle模式print("Paddle Mode: " + '/'.join(list(seg_list)))seg_list = jieba.cut("我来到北京清华大学", cut_all=True)print("Full Mode: " + "/ ".join(seg_list)) 全模式seg_list = jieba.cut("我来到北京清华大学", cut_all=False)print("Default Mode: " + "/ ".join(seg_list)) 精确模式seg_list = jieba.cut("他来到了网易杭研大厦") 默认是精确模式print(", ".join(seg_list))seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") 搜索引擎模式print(", ".join(seg_list)) 输出: 【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学【精确模式】: 我/ 来到/ 北京/ 清华大学【新词识别】:他, 来到, 了, 网易, 杭研, 大厦 (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了)【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造 添加自定义词典 载入词典 开发者可以指定自己自定义的词典,以便包含 jieba 词库里没有的词。虽然 jieba 有新词识别能力,但是自行添加新词可以保证更高的正确率 用法: jieba.load_userdict(file_name) file_name 为文件类对象或自定义词典的路径 词典格式和 dict.txt 一样,一个词占一行;每一行分三部分:词语、词频(可省略)、词性(可省略),用空格隔开,顺序不可颠倒。file_name 若为路径或二进制方式打开的文件,则文件必须为 UTF-8 编码。 词频省略时使用自动计算的能保证分出该词的词频。 例如: 创新办 3 i云计算 5凱特琳 nz台中 更改分词器(默认为 jieba.dt)的 tmp_dir 和 cache_file 属性,可分别指定缓存文件所在的文件夹及其文件名,用于受限的文件系统。 范例: 自定义词典:https://github.com/fxsjy/jieba/blob/master/test/userdict.txt 用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_userdict.py 之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 / 加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 / 调整词典 使用 add_word(word, freq=None, tag=None) 和 del_word(word) 可在程序中动态修改词典。 使用 suggest_freq(segment, tune=True) 可调节单个词语的词频,使其能(或不能)被分出来。 注意:自动计算的词频在使用 HMM 新词发现功能时可能无效。 代码示例: >>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))如果/放到/post/中将/出错/。>>> jieba.suggest_freq(('中', '将'), True)494>>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))如果/放到/post/中/将/出错/。>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))「/台/中/」/正确/应该/不会/被/切开>>> jieba.suggest_freq('台中', True)69>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))「/台中/」/正确/应该/不会/被/切开 “通过用户自定义词典来增强歧义纠错能力” — https://github.com/fxsjy/jieba/issues/14 关键词提取 基于 TF-IDF 算法的关键词抽取 import jieba.analyse jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=()) sentence 为待提取的文本 topK 为返回几个 TF/IDF 权重最大的关键词,默认值为 20 withWeight 为是否一并返回关键词权重值,默认值为 False allowPOS 仅包括指定词性的词,默认值为空,即不筛选 jieba.analyse.TFIDF(idf_path=None) 新建 TFIDF 实例,idf_path 为 IDF 频率文件 代码示例 (关键词提取) https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py 关键词提取所使用逆向文件频率(IDF)文本语料库可以切换成自定义语料库的路径 用法: jieba.analyse.set_idf_path(file_name) file_name为自定义语料库的路径 自定义语料库示例:https://github.com/fxsjy/jieba/blob/master/extra_dict/idf.txt.big 用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_idfpath.py 关键词提取所使用停止词(Stop Words)文本语料库可以切换成自定义语料库的路径 用法: jieba.analyse.set_stop_words(file_name) file_name为自定义语料库的路径 自定义语料库示例:https://github.com/fxsjy/jieba/blob/master/extra_dict/stop_words.txt 用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_stop_words.py 关键词一并返回关键词权重值示例 用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_with_weight.py 基于 TextRank 算法的关键词抽取 jieba.analyse.textrank(sentence, topK=20, withWeight=False, allowPOS=(‘ns’, ‘n’, ‘vn’, ‘v’)) 直接使用,接口相同,注意默认过滤词性。 jieba.analyse.TextRank() 新建自定义 TextRank 实例 算法论文: TextRank: Bringing Order into Texts 基本思想: 将待抽取关键词的文本进行分词 以固定窗口大小(默认为5,通过span属性调整),词之间的共现关系,构建图 计算图中节点的PageRank,注意是无向带权图 使用示例: 见 test/demo.py 词性标注 jieba.posseg.POSTokenizer(tokenizer=None) 新建自定义分词器,tokenizer 参数可指定内部使用的 jieba.Tokenizer 分词器。jieba.posseg.dt 为默认词性标注分词器。 标注句子分词后每个词的词性,采用和 ictclas 兼容的标记法。 除了jieba默认分词模式,提供paddle模式下的词性标注功能。paddle模式采用延迟加载方式,通过enable_paddle()安装paddlepaddle-tiny,并且import相关代码; 用法示例 >>> import jieba>>> import jieba.posseg as pseg>>> words = pseg.cut("我爱北京天安门") jieba默认模式>>> jieba.enable_paddle() 启动paddle模式。 0.40版之后开始支持,早期版本不支持>>> words = pseg.cut("我爱北京天安门",use_paddle=True) paddle模式>>> for word, flag in words:... print('%s %s' % (word, flag))...我 r爱 v北京 ns天安门 ns paddle模式词性标注对应表如下: paddle模式词性和专名类别标签集合如下表,其中词性标签 24 个(小写字母),专名类别标签 4 个(大写字母)。 标签 含义 标签 含义 标签 含义 标签 含义 n 普通名词 f 方位名词 s 处所名词 t 时间 nr 人名 ns 地名 nt 机构名 nw 作品名 nz 其他专名 v 普通动词 vd 动副词 vn 名动词 a 形容词 ad 副形词 an 名形词 d 副词 m 数量词 q 量词 r 代词 p 介词 c 连词 u 助词 xc 其他虚词 w 标点符号 PER 人名 LOC 地名 ORG 机构名 TIME 时间 并行分词 原理:将目标文本按行分隔后,把各行文本分配到多个 Python 进程并行分词,然后归并结果,从而获得分词速度的可观提升 基于 python 自带的 multiprocessing 模块,目前暂不支持 Windows 用法: jieba.enable_parallel(4) 开启并行分词模式,参数为并行进程数 jieba.disable_parallel() 关闭并行分词模式 例子:https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py 实验结果:在 4 核 3.4GHz Linux 机器上,对金庸全集进行精确分词,获得了 1MB/s 的速度,是单进程版的 3.3 倍。 注意:并行分词仅支持默认分词器 jieba.dt 和 jieba.posseg.dt。 Tokenize:返回词语在原文的起止位置 注意,输入参数只接受 unicode 默认模式 result = jieba.tokenize(u'永和服装饰品有限公司')for tk in result:print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])) word 永和 start: 0 end:2word 服装 start: 2 end:4word 饰品 start: 4 end:6word 有限公司 start: 6 end:10 搜索模式 result = jieba.tokenize(u'永和服装饰品有限公司', mode='search')for tk in result:print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])) word 永和 start: 0 end:2word 服装 start: 2 end:4word 饰品 start: 4 end:6word 有限 start: 6 end:8word 公司 start: 8 end:10word 有限公司 start: 6 end:10 ChineseAnalyzer for Whoosh 搜索引擎 引用: from jieba.analyse import ChineseAnalyzer 用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py 命令行分词 使用示例:python -m jieba news.txt > cut_result.txt 命令行选项(翻译): 使用: python -m jieba [options] filename结巴命令行界面。固定参数:filename 输入文件可选参数:-h, --help 显示此帮助信息并退出-d [DELIM], --delimiter [DELIM]使用 DELIM 分隔词语,而不是用默认的' / '。若不指定 DELIM,则使用一个空格分隔。-p [DELIM], --pos [DELIM]启用词性标注;如果指定 DELIM,词语和词性之间用它分隔,否则用 _ 分隔-D DICT, --dict DICT 使用 DICT 代替默认词典-u USER_DICT, --user-dict USER_DICT使用 USER_DICT 作为附加词典,与默认词典或自定义词典配合使用-a, --cut-all 全模式分词(不支持词性标注)-n, --no-hmm 不使用隐含马尔可夫模型-q, --quiet 不输出载入信息到 STDERR-V, --version 显示版本信息并退出如果没有指定文件名,则使用标准输入。 --help 选项输出: $> python -m jieba --helpJieba command line interface.positional arguments:filename input fileoptional arguments:-h, --help show this help message and exit-d [DELIM], --delimiter [DELIM]use DELIM instead of ' / ' for word delimiter; or aspace if it is used without DELIM-p [DELIM], --pos [DELIM]enable POS tagging; if DELIM is specified, use DELIMinstead of '_' for POS delimiter-D DICT, --dict DICT use DICT as dictionary-u USER_DICT, --user-dict USER_DICTuse USER_DICT together with the default dictionary orDICT (if specified)-a, --cut-all full pattern cutting (ignored with POS tagging)-n, --no-hmm don't use the Hidden Markov Model-q, --quiet don't print loading messages to stderr-V, --version show program's version number and exitIf no filename specified, use STDIN instead. 延迟加载机制 jieba 采用延迟加载,import jieba 和 jieba.Tokenizer() 不会立即触发词典的加载,一旦有必要才开始加载词典构建前缀字典。如果你想手工初始 jieba,也可以手动初始化。 import jiebajieba.initialize() 手动初始化(可选) 在 0.28 之前的版本是不能指定主词典的路径的,有了延迟加载机制后,你可以改变主词典的路径: jieba.set_dictionary('data/dict.txt.big') 例子: https://github.com/fxsjy/jieba/blob/master/test/test_change_dictpath.py 其他词典 占用内存较小的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small 支持繁体分词更好的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big 下载你所需要的词典,然后覆盖 jieba/dict.txt 即可;或者用 jieba.set_dictionary('data/dict.txt.big') 其他语言实现 结巴分词 Java 版本 作者:piaolingxue 地址:https://github.com/huaban/jieba-analysis 结巴分词 C++ 版本 作者:yanyiwu 地址:https://github.com/yanyiwu/cppjieba 结巴分词 Rust 版本 作者:messense, MnO2 地址:https://github.com/messense/jieba-rs 结巴分词 Node.js 版本 作者:yanyiwu 地址:https://github.com/yanyiwu/nodejieba 结巴分词 Erlang 版本 作者:falood 地址:https://github.com/falood/exjieba 结巴分词 R 版本 作者:qinwf 地址:https://github.com/qinwf/jiebaR 结巴分词 iOS 版本 作者:yanyiwu 地址:https://github.com/yanyiwu/iosjieba 结巴分词 PHP 版本 作者:fukuball 地址:https://github.com/fukuball/jieba-php 结巴分词 .NET(C) 版本 作者:anderscui 地址:https://github.com/anderscui/jieba.NET/ 结巴分词 Go 版本 作者: wangbin 地址: https://github.com/wangbin/jiebago 作者: yanyiwu 地址: https://github.com/yanyiwu/gojieba 结巴分词Android版本 作者 Dongliang.W 地址:https://github.com/452896915/jieba-android 友情链接 https://github.com/baidu/lac 百度中文词法分析(分词+词性+专名)系统 https://github.com/baidu/AnyQ 百度FAQ自动问答系统 https://github.com/baidu/Senta 百度情感识别系统 系统集成 Solr: https://github.com/sing1ee/jieba-solr 分词速度 1.5 MB / Second in Full Mode 400 KB / Second in Default Mode 测试环境: Intel® Core™ i7-2600 CPU @ 3.4GHz;《围城》.txt 常见问题 1. 模型的数据是如何生成的? 详见: https://github.com/fxsjy/jieba/issues/7 2. “台中”总是被切成“台 中”?(以及类似情况) P(台中) < P(台)×P(中),“台中”词频不够导致其成词概率较低 解决方法:强制调高词频 jieba.add_word('台中') 或者 jieba.suggest_freq('台中', True) 3. “今天天气 不错”应该被切成“今天 天气 不错”?(以及类似情况) 解决方法:强制调低词频 jieba.suggest_freq(('今天', '天气'), True) 或者直接删除该词 jieba.del_word('今天天气') 4. 切出了词典中没有的词语,效果不理想? 解决方法:关闭新词发现 jieba.cut('丰田太省了', HMM=False) jieba.cut('我们中出了一个叛徒', HMM=False) 更多问题请点击:https://github.com/fxsjy/jieba/issues?sort=updated&state=closed 修订历史 https://github.com/fxsjy/jieba/blob/master/Changelog jieba “Jieba” (Chinese for “to stutter”) Chinese text segmentation: built to be the best Python Chinese word segmentation module. Features Support three types of segmentation mode: Accurate Mode attempts to cut the sentence into the most accurate segmentations, which is suitable for text analysis. Full Mode gets all the possible words from the sentence. Fast but not accurate. Search Engine Mode, based on the Accurate Mode, attempts to cut long words into several short words, which can raise the recall rate. Suitable for search engines. Supports Traditional Chinese Supports customized dictionaries MIT License Online demo http://jiebademo.ap01.aws.af.cm/ (Powered by Appfog) Usage Fully automatic installation: easy_install jieba or pip install jieba Semi-automatic installation: Download http://pypi.python.org/pypi/jieba/ , run python setup.py install after extracting. Manual installation: place the jieba directory in the current directory or python site-packages directory. import jieba. Algorithm Based on a prefix dictionary structure to achieve efficient word graph scanning. Build a directed acyclic graph (DAG) for all possible word combinations. Use dynamic programming to find the most probable combination based on the word frequency. For unknown words, a HMM-based model is used with the Viterbi algorithm. Main Functions Cut The jieba.cut function accepts three input parameters: the first parameter is the string to be cut; the second parameter is cut_all, controlling the cut mode; the third parameter is to control whether to use the Hidden Markov Model. jieba.cut_for_search accepts two parameter: the string to be cut; whether to use the Hidden Markov Model. This will cut the sentence into short words suitable for search engines. The input string can be an unicode/str object, or a str/bytes object which is encoded in UTF-8 or GBK. Note that using GBK encoding is not recommended because it may be unexpectly decoded as UTF-8. jieba.cut and jieba.cut_for_search returns an generator, from which you can use a for loop to get the segmentation result (in unicode). jieba.lcut and jieba.lcut_for_search returns a list. jieba.Tokenizer(dictionary=DEFAULT_DICT) creates a new customized Tokenizer, which enables you to use different dictionaries at the same time. jieba.dt is the default Tokenizer, to which almost all global functions are mapped. Code example: segmentation encoding=utf-8import jiebaseg_list = jieba.cut("我来到北京清华大学", cut_all=True)print("Full Mode: " + "/ ".join(seg_list)) 全模式seg_list = jieba.cut("我来到北京清华大学", cut_all=False)print("Default Mode: " + "/ ".join(seg_list)) 默认模式seg_list = jieba.cut("他来到了网易杭研大厦")print(", ".join(seg_list))seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") 搜索引擎模式print(", ".join(seg_list)) Output: [Full Mode]: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学[Accurate Mode]: 我/ 来到/ 北京/ 清华大学[Unknown Words Recognize] 他, 来到, 了, 网易, 杭研, 大厦 (In this case, "杭研" is not in the dictionary, but is identified by the Viterbi algorithm)[Search Engine Mode]: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造 Add a custom dictionary Load dictionary Developers can specify their own custom dictionary to be included in the jieba default dictionary. Jieba is able to identify new words, but you can add your own new words can ensure a higher accuracy. Usage: jieba.load_userdict(file_name) file_name is a file-like object or the path of the custom dictionary The dictionary format is the same as that of dict.txt: one word per line; each line is divided into three parts separated by a space: word, word frequency, POS tag. If file_name is a path or a file opened in binary mode, the dictionary must be UTF-8 encoded. The word frequency and POS tag can be omitted respectively. The word frequency will be filled with a suitable value if omitted. For example: 创新办 3 i云计算 5凱特琳 nz台中 Change a Tokenizer’s tmp_dir and cache_file to specify the path of the cache file, for using on a restricted file system. Example: 云计算 5李小福 2创新办 3[Before]: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /[After]: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 / Modify dictionary Use add_word(word, freq=None, tag=None) and del_word(word) to modify the dictionary dynamically in programs. Use suggest_freq(segment, tune=True) to adjust the frequency of a single word so that it can (or cannot) be segmented. Note that HMM may affect the final result. Example: >>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))如果/放到/post/中将/出错/。>>> jieba.suggest_freq(('中', '将'), True)494>>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))如果/放到/post/中/将/出错/。>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))「/台/中/」/正确/应该/不会/被/切开>>> jieba.suggest_freq('台中', True)69>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))「/台中/」/正确/应该/不会/被/切开 Keyword Extraction import jieba.analyse jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=()) sentence: the text to be extracted topK: return how many keywords with the highest TF/IDF weights. The default value is 20 withWeight: whether return TF/IDF weights with the keywords. The default value is False allowPOS: filter words with which POSs are included. Empty for no filtering. jieba.analyse.TFIDF(idf_path=None) creates a new TFIDF instance, idf_path specifies IDF file path. Example (keyword extraction) https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py Developers can specify their own custom IDF corpus in jieba keyword extraction Usage: jieba.analyse.set_idf_path(file_name) file_name is the path for the custom corpus Custom Corpus Sample:https://github.com/fxsjy/jieba/blob/master/extra_dict/idf.txt.big Sample Code:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_idfpath.py Developers can specify their own custom stop words corpus in jieba keyword extraction Usage: jieba.analyse.set_stop_words(file_name) file_name is the path for the custom corpus Custom Corpus Sample:https://github.com/fxsjy/jieba/blob/master/extra_dict/stop_words.txt Sample Code:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_stop_words.py There’s also a TextRank implementation available. Use: jieba.analyse.textrank(sentence, topK=20, withWeight=False, allowPOS=('ns', 'n', 'vn', 'v')) Note that it filters POS by default. jieba.analyse.TextRank() creates a new TextRank instance. Part of Speech Tagging jieba.posseg.POSTokenizer(tokenizer=None) creates a new customized Tokenizer. tokenizer specifies the jieba.Tokenizer to internally use. jieba.posseg.dt is the default POSTokenizer. Tags the POS of each word after segmentation, using labels compatible with ictclas. Example: >>> import jieba.posseg as pseg>>> words = pseg.cut("我爱北京天安门")>>> for w in words:... print('%s %s' % (w.word, w.flag))...我 r爱 v北京 ns天安门 ns Parallel Processing Principle: Split target text by line, assign the lines into multiple Python processes, and then merge the results, which is considerably faster. Based on the multiprocessing module of Python. Usage: jieba.enable_parallel(4) Enable parallel processing. The parameter is the number of processes. jieba.disable_parallel() Disable parallel processing. Example: https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py Result: On a four-core 3.4GHz Linux machine, do accurate word segmentation on Complete Works of Jin Yong, and the speed reaches 1MB/s, which is 3.3 times faster than the single-process version. Note that parallel processing supports only default tokenizers, jieba.dt and jieba.posseg.dt. Tokenize: return words with position The input must be unicode Default mode result = jieba.tokenize(u'永和服装饰品有限公司')for tk in result:print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])) word 永和 start: 0 end:2word 服装 start: 2 end:4word 饰品 start: 4 end:6word 有限公司 start: 6 end:10 Search mode result = jieba.tokenize(u'永和服装饰品有限公司',mode='search')for tk in result:print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])) word 永和 start: 0 end:2word 服装 start: 2 end:4word 饰品 start: 4 end:6word 有限 start: 6 end:8word 公司 start: 8 end:10word 有限公司 start: 6 end:10 ChineseAnalyzer for Whoosh from jieba.analyse import ChineseAnalyzer Example: https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py Command Line Interface $> python -m jieba --helpJieba command line interface.positional arguments:filename input fileoptional arguments:-h, --help show this help message and exit-d [DELIM], --delimiter [DELIM]use DELIM instead of ' / ' for word delimiter; or aspace if it is used without DELIM-p [DELIM], --pos [DELIM]enable POS tagging; if DELIM is specified, use DELIMinstead of '_' for POS delimiter-D DICT, --dict DICT use DICT as dictionary-u USER_DICT, --user-dict USER_DICTuse USER_DICT together with the default dictionary orDICT (if specified)-a, --cut-all full pattern cutting (ignored with POS tagging)-n, --no-hmm don't use the Hidden Markov Model-q, --quiet don't print loading messages to stderr-V, --version show program's version number and exitIf no filename specified, use STDIN instead. Initialization By default, Jieba don’t build the prefix dictionary unless it’s necessary. This takes 1-3 seconds, after which it is not initialized again. If you want to initialize Jieba manually, you can call: import jiebajieba.initialize() (optional) You can also specify the dictionary (not supported before version 0.28) : jieba.set_dictionary('data/dict.txt.big') Using Other Dictionaries It is possible to use your own dictionary with Jieba, and there are also two dictionaries ready for download: A smaller dictionary for a smaller memory footprint: https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small There is also a bigger dictionary that has better support for traditional Chinese (繁體): https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big By default, an in-between dictionary is used, called dict.txt and included in the distribution. In either case, download the file you want, and then call jieba.set_dictionary('data/dict.txt.big') or just replace the existing dict.txt. Segmentation speed 1.5 MB / Second in Full Mode 400 KB / Second in Default Mode Test Env: Intel® Core™ i7-2600 CPU @ 3.4GHz;《围城》.txt 本篇文章为转载内容。原文链接:https://blog.csdn.net/yegeli/article/details/107246661。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-02 10:38:37
500
转载
JQuery插件下载
...这款滚动新闻插件支持自动向上或向下滚动两种模式切换,满足不同用户场景的需求,如新闻摘要、公告滚动播出等。不仅如此,它还具备集成图片显示的功能,使得滚动内容更加丰富多元,既可承载纯文本消息,也能结合图片进行图文并茂的信息传播。其界面设计紧跟时代潮流,风格自然且时尚,能够无缝融入各类现代网页设计之中。开发者只需简单引入相关jQuery和Bootstrap文件,并进行适当配置,即可轻松打造出专业级的滚动新闻列表功能,极大地提升了网站内容更新的动态性和可视性,为用户提供了一个高效直观的信息获取通道。 点我下载 文件大小:232.52 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-04-12 21:03:43
341
本站
JQuery插件下载
...b应用程序和网站中的文本输入区域提供了一种便捷的表情符号集成方案。通过简单的配置与调用,开发者能够在任何HTML输入框或文本区域内轻松实现类似聊天软件中丰富多样的表情符号选择功能。使用者只需点击输入框旁边自动生成的表情面板,即可从海量表情库中可视化选取并插入表情符号到当前光标位置,大大丰富了文本交流的表现力。EmojiPicker插件不仅易于安装和定制,还兼容多种浏览器环境,确保跨平台的一致性和用户体验。总的来说,这款插件作为一款高效实用的工具,有效地简化了在网页端实现复杂表情输入机制的过程,让网站和应用能够紧跟社交潮流,提升用户的互动参与度和情感表达能力。 点我下载 文件大小:3.22 MB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-01-06 13:47:51
67
本站
JQuery插件下载
...智能化地截取并隐藏原文本的一部分,仅显示摘要信息,并提供一个可点击的按钮(如“展开全文”或“收起全文”)以触发内容的切换。在功能特性上,此插件允许开发者根据实际需求自定义截取点以及内容展开与隐藏时的动画效果,如淡入淡出、滑动等,使页面过渡更加流畅自然。通过简单易用的API调用,开发者可以轻松集成到项目中,不仅提升了网页内容呈现的灵活性,还有效节省了页面空间,提高页面整体布局的整洁度和美观性。此外,这款插件兼容多种浏览器,确保了跨平台的良好用户体验。 点我下载 文件大小:75.52 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-01-15 18:41:35
44
本站
JQuery插件下载
...界面的交互体验。通过集成Bootstrap的设计规范,该插件能够无缝融入基于Bootstrap构建的项目中,保持界面风格的一致性。同时,它还支持与FontAwesome字体图标的结合使用,使得菜单项可以包含直观且美观的图标,提升菜单的表现力与可用性。BootstrapContextMenu插件提供了灵活的触发机制,无论是文本、图片、按钮还是其他自定义区域,只需简单配置,即可实现在这些元素上右键点击时展示相应的菜单选项。此外,菜单的位置计算精准,可自动适应屏幕尺寸与元素位置,确保在任何环境下都能给用户提供舒适的操作环境。总之,BootstrapContextMenu是一个强大而实用的工具,简化了开发过程中的上下文菜单实现步骤,并能帮助开发者快速打造出专业且响应式的Web应用界面。 点我下载 文件大小:351.42 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-01-24 14:47:30
90
本站
JQuery插件下载
...动态效果的处理。通过集成这款插件,开发者可以快速地在浏览器中模拟出如同真实打字机一般逐字显示的动画效果。不仅限于简单的逐字输出,Autotyperjs还支持与CSS3动画的深度结合,从而创造出丰富多样的视觉体验,比如控制台样式的消息打印、自动补全文本以及各种自定义的打字动作等。用户只需简单配置和调用该插件,即可让页面上的文字内容以生动逼真的打字形式呈现,无论是用于故事叙述、教程演示还是互动式的web应用,都能显著提升用户体验和界面表现力。此外,由于其灵活易用的特性,autotyperjs适用于多种浏览器环境,并且能够轻松适应不同项目的需求,从静态文本到交互式场景均可轻松驾驭,是网页前端开发人员构建独特打字动画特效的理想工具。 点我下载 文件大小:16.00 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-03-17 12:41:02
55
本站
JQuery插件下载
...丰富的jQuery富文本编辑器插件,特别适合在Web应用中实现直观高效的所见即所得(WYSIWYG)文本编辑体验。该插件设计简洁、优雅,旨在让用户在浏览器环境下轻松处理富文本内容。通过集成Notebook.js到网页项目中,开发者可以快速构建出具备高级文本编辑能力的组件,如字体样式调整、文本颜色变化、添加链接、插入图片等功能。其亮点在于用户直接选择网页中的文本时,会自动弹出相应的编辑选项菜单,用户只需点击相应选项,即可实时看到文本效果的变化,大大提升了内容创作和编辑的便捷性与效率。此插件易于安装和配置,只需将FontAwesomeCSS、jQuery库以及Notebook.js自身脚本引入到页面头部,然后简单调用API就能在指定DOM元素上创建一个功能齐全的富文本编辑器。这一特性使得Notebook.js成为许多web开发人员青睐的选择,尤其适用于博客系统、内容管理系统及各类需要用户输入格式化文本的场景。 点我下载 文件大小:45.92 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-03-26 13:54:27
101
本站
JQuery插件下载
...示形式,适用于图片、文本或富媒体内容的呈现。通过集成流行的owl.carousel.js,实现平滑、响应式的轮播效果,增强了用户体验,让页面在不同屏幕尺寸下都能够保持良好的视觉连续性。开发者利用简洁高效的CSS代码构造出一致且美观的卡片样式,确保每张卡片无论内容多少,都能以统一的设计语言呈现,使整体布局显得既专业又大方。此插件不仅简化了网页设计师和前端开发者的实现过程,更赋予了网页设计更强的表现力和互动性,是构建现代化网站、提升品牌形象的理想选择。无论是电子商务产品列表、博客文章摘要还是新闻聚合界面,都能借助这款插件营造出令人耳目一新的浏览体验。 点我下载 文件大小:237.78 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-03-06 11:59:01
78
本站
JQuery插件下载
...果,适用于包含图片、文本甚至富媒体元素在内的动态布局。通过集成jquery-fsscroll,网页设计师和开发者可以轻松创建出具有专业水准且视觉冲击力强的全屏滑动导航,使用户在浏览时获得流畅且沉浸式的体验。不仅支持自动播放功能,还确保了对不同屏幕尺寸的良好响应,使得内容能够在任何设备上都能完美呈现全屏效果。此插件易于配置和自定义,允许开发者根据项目需求调整轮播速度、动画过渡效果以及触摸滑动等交互行为,同时保持代码结构清晰易维护。总而言之,jquery-fsscroll以其强大的功能和灵活的应用性,极大地简化了全屏轮播图制作流程,广泛服务于现代网站和应用程序中提升用户体验的需求。 点我下载 文件大小:45.51 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-10-15 08:19:14
88
本站
JQuery插件下载
...框架依赖,使得其易于集成到各种项目中,尤其适合追求代码简洁和性能优化的开发者。notyf.js的核心设计理念在于简化通知系统的配置和使用流程。通过少量的API调用,用户可以轻松创建、显示和自定义各种风格的通知,包括文本、链接、图标以及背景颜色等元素。其响应式设计确保了通知在不同设备和屏幕尺寸下的良好显示效果,适应现代多屏时代的浏览需求。除了基础的功能外,notyf.js还支持多种高级特性,如自动关闭时间设定、滚动到通知位置、点击通知关闭、批量操作等多个实用功能。这些特性使得开发者能够根据具体应用场景灵活定制通知行为,提升用户体验。总的来说,notyf.js是一款功能强大、易于集成、高度可定制的纯JavaScript消息通知插件,适用于各类Web应用,无论是网站、单页应用还是移动Web页面,都能提供美观、响应迅速的通知体验。通过其简洁的API和丰富的功能选项,开发人员能够快速实现高效、美观的通知系统,增强用户与网站或应用之间的互动。 点我下载 文件大小:14.58 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-10-02 10:59:35
50
本站
JQuery插件下载
...钮功能的解决方案。它集成了loading指示器效果,能够在用户点击提交按钮后,以13种不同的动画方式展示加载状态,显著改善用户体验。通过引入ladda-themeless.min.css、spin.min.js和ladda.min.js文件,开发者可以轻松地将普通的HTML按钮转变为具有动态加载反馈功能的组件。在实际应用中,只需给按钮元素添加特定的CSS类“ladda-button”,并在其中嵌套一个带有“ladda-label”类的标签用于显示按钮文本。当按钮被点击并触发异步操作时,loading指示器会自动启动,并替换或覆盖原有的按钮内容,从而传达出数据正在处理中的信息。这一特性有助于减少用户的等待焦虑感,同时确保界面交互的一致性和流畅性。此外,由于其高度可定制化的设计,开发者可以根据项目需求和品牌风格自由选择loading动画样式,实现与整体页面视觉效果的完美融合。 点我下载 文件大小:34.51 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-09-25 22:01:29
134
本站
JQuery插件下载
...对象传递参数,如加载文本、显示时间(可选的自动隐藏),使得开发者能够灵活调整其行为。4.回调函数:支持回调机制,当loading显示和隐藏时,可以执行特定的函数,便于处理异步操作完成后的需求,比如更新DOM或清除多余元素。5.跨页面应用:由于是基于jQuery的,它能够方便地与页面其他部分无缝集成,无需额外的复杂设置。6.性能优化:设计精简,旨在对性能影响最小,即使在繁忙的页面上也能提供流畅的用户体验。通过集成这款插件,开发人员可以简化页面加载过程的呈现,提高用户对网站响应速度的感知,从而提升整体网站质量。 点我下载 文件大小:53.41 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-10-18 08:54:07
80
本站
JQuery插件下载
...是一款功能强大且易于集成的jQuery插件,专为需要在网页上实现标签管理功能的开发者设计。此插件充分利用了Bootstrap框架的优雅风格,确保了与Bootstrap版本3的完美兼容性,同时提供了高度定制化和交互性的标签组件。该插件的核心功能包括:-动态标签生成:用户可在输入框中直接输入文本,自动转换为可点击的标签,方便用户管理和组织信息。-标签内容编辑:用户能够修改已创建的标签内容,提供了一种灵活的方式来调整和优化分类或主题。-与Bootstrap无缝融合:通过精心设计的CSS类和响应式布局支持,插件能够与Bootstrap元素自然融合,确保网站的整体视觉一致性。-自定义样式与配置:允许开发者根据项目需求调整插件外观和行为,包括标签数量限制、提示样式、点击效果等。-集成与扩展性:与其他Bootstrap组件和JavaScript库协同工作,支持更复杂的应用场景,如与数据表单、文件上传插件等的联动。此插件不仅简化了标签管理的开发过程,还提升了用户体验,使得网站或应用能够更加高效地展示和处理用户生成的内容。通过集成这款插件,开发者可以轻松构建出美观、功能丰富的标签系统,满足各种应用场景的需求。 点我下载 文件大小:62.48 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-08-05 21:11:01
116
本站
JQuery插件下载
...态的文字滚动效果,使文本从屏幕的右侧平滑地向左侧移动,仿佛是在屏幕上奔跑的灯光。这种连续不断的滚动效果能够有效地抓住访问者的眼球,提升网站的互动性和吸引力。更值得一提的是,这款插件还具备智能化的交互设计。当用户将鼠标悬停在文字上时,跑马灯会自动暂停,给用户提供足够的时间去阅读或关注特定的信息。这样的设计既保证了用户体验,又不会因为文字过快的滚动而让用户感到困扰。无论是用于展示产品信息、公告通知还是任何需要引起注意的内容,这款jQuery插件都能轻松胜任。它的简单易用和强大的功能性使其成为网页设计师和开发者不可或缺的工具之一。此外,由于其基于jQuery开发,兼容性好,可以无缝集成到现有的项目中,大大提升了开发效率。总之,“简单的文字跑马灯特效”插件以其简洁的设计、流畅的动画效果以及人性化的交互体验,为网页增添了一抹亮色,是提升网站吸引力和用户参与度的理想选择。 点我下载 文件大小:40.68 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2025-02-18 20:30:47
64
本站
JQuery插件下载
...n就能派上用场。通过集成到你的网页项目中,这款插件会在每个指定的输入框旁边添加一个小巧美观的“清除”按钮,通常表现为一个小圆叉图标。当你在输入框内键入文字后,这个小圆叉按钮就会自动显现出来。只需轻轻一点,所有文本将被立即清除,恢复到初始状态,让用户体验更加流畅便捷。此功能特别适用于长表单或复杂的用户界面设计,能够显著提升用户的交互体验。pureClearButton不仅简化了用户操作流程,同时也为开发者节省了大量的时间和精力。你无需编写额外的JavaScript代码来处理清除逻辑,只需简单地调用插件并配置相关选项即可。此外,该插件还支持多种自定义设置,如改变按钮样式、调整位置等,使得它可以轻松融入各种风格的网页设计之中。总之,pureClearButton是一个功能强大且易于使用的工具,无论你是希望优化现有网站的功能,还是在新项目中提升用户体验,它都是一个理想的选择。 点我下载 文件大小:41.89 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-12-10 11:07:44
72
本站
JQuery插件下载
...式设计调整,就能快速集成至现有的网站或应用中。hslider.js内置的自动调整机制简化了开发流程,节省了大量时间和资源。此外,它的界面简洁,易于理解,即便是初次接触jQuery的开发者也能迅速上手,轻松实现高质量的幻灯片展示效果。hslider.js不仅支持基本的幻灯片切换功能,还提供了平滑的过渡动画效果,增强了用户体验。无论是用于产品演示、新闻摘要还是创意展示,都能通过其丰富的视觉效果提升内容的吸引力。总之,hslider.js凭借其强大的响应能力、直观的使用方式以及出色的视觉表现,成为构建动态、互动性强的网页内容的理想选择。 点我下载 文件大小:1.71 MB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-08-09 11:18:17
30
本站
JQuery插件下载
...的颜色会根据当前进度自动调整,从起点到终点颜色渐变,既美观又直观地展示了加载过程中的进度状态。此外,插件还提供了详细的进度文本标签,确保用户能够清晰地了解当前的加载百分比,进一步提升了用户体验。使用这款插件,开发者可以轻松地将这种高级的加载效果集成到自己的项目中,无论是网站还是应用,都能显著提升产品的整体质感和用户的满意度。它支持自定义配置,包括但不限于颜色方案、动画速度、文字样式等,满足不同场景下的个性化需求。无论是用于展示数据加载进度,还是作为页面过渡动画的一部分,这款插件都能完美胜任,帮助你的项目脱颖而出。 点我下载 文件大小:46.92 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-10-18 20:42:03
71
本站
JQuery插件下载
...轻松地在网站或应用中集成一个高度可定制且功能丰富的下拉列表选择器。首先,Combo-Select支持键盘操作,这意味着用户可以通过上下键导航列表项,使用Enter键选择项目,或者使用Tab和Esc键进行快速切换和退出。这种键盘驱动的设计特别适合移动设备和平板电脑,因为它们通常依赖于触摸屏输入,而键盘操作则提供了更高效的交互方式。其次,插件还内置了搜索功能,允许用户在列表中快速查找特定选项。当用户开始输入文本时,Combo-Select会实时更新显示结果,帮助用户快速定位所需的选项。这不仅提高了搜索效率,也极大地提升了用户的满意度。此外,Combo-Select在移动数据和平板电脑环境下自动退化为原生的select元素,确保在所有设备上的兼容性和可用性。这种设计考虑到了不同设备和浏览器的差异,使得插件能够在广泛的环境中提供一致的用户体验。综上所述,jQuery插件Combo-Select通过其强大的键盘控制、内置搜索功能以及对不同设备的适应性,为开发者提供了一个高效、灵活且易于集成的解决方案。它不仅提升了网页交互的流畅度,也增强了用户在选择和搜索选项时的便利性,是构建现代、响应式Web应用的理想选择。 点我下载 文件大小:50.32 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-09-20 11:12:17
51
本站
JQuery插件下载
...日益猖獗的恶意攻击与自动化脚本,传统的验证码方式已经难以有效阻挡这些威胁。因此,引入如滑动解锁这样的交互式验证方法成为了一种更为有效的防御手段。该插件通过模拟真实的人类操作行为,要求用户在指定区域内滑动滑块至特定位置,以此来证明用户并非自动化程序或恶意攻击者。这一过程不仅增加了攻击成本,还大大提升了用户体验,因为用户无需面对复杂的图形或文本输入验证,只需通过简单的滑动操作即可完成验证流程。unlock.js的实现原理基于HTML5的Canvas元素,利用JavaScript和jQuery库来构建动态的滑动解锁界面。开发者只需将插件引入项目中,并通过简单的API调用配置验证区域和滑块参数,即可轻松地将其集成到任何需要进行安全验证的登录或注册页面上。此外,unlock.js还提供了高度的自定义能力,允许开发者根据自己的需求调整界面风格、验证难度以及错误提示信息,从而更好地适应不同的应用场景和设计风格。这使得该插件不仅适用于各类网站,还能在移动应用和跨平台项目中发挥重要作用。总之,unlock.js是一款功能强大且易于集成的jQuery插件,它通过引入滑动解锁验证机制,有效提升了网站的安全性,同时保持了良好的用户体验。对于那些希望在保护用户账户安全的同时,避免干扰用户操作的开发者来说,unlock.js无疑是一个值得考虑的选择。 点我下载 文件大小:44.60 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-08-25 21:20:25
25
本站
Docker
...kerfile是用于自动化创建Docker镜像的一种文本文件,其中包含了若干条用于配置镜像环境及安装软件等操作的指令集合。在文章中,Dockerfile用于指导从基础镜像scratch开始,添加hello二进制文件,并设置启动命令,从而生成一个定制化的Docker镜像。 Docker镜像 , Docker镜像是Docker容器的基础,是一个只读模板,包含运行某个应用所需的所有内容,包括代码、运行时、库、环境变量和配置文件等。在本文的场景下,通过编写并执行Dockerfile中的指令,创建了一个包含hello应用程序及其依赖项的Docker镜像,随后可以基于此镜像启动Docker容器来运行该应用。 Docker容器 , Docker容器是从Docker镜像创建的运行实例,它可以被视为一个轻量级的、独立运行的一组进程,与主机系统和其他容器隔离。在文中提到,使用docker run命令启动了一个名为hello-app的Docker容器,这个容器就是基于之前构建好的hello镜像运行的,能够在其中执行预设的命令(即运行hello二进制文件)。
2023-02-25 10:58:36
491
数据库专家
HTML
...助ESLint等工具自动检测并修复不符合团队约定的HTML代码格式问题。 此外,随着Web Components和LitElement等现代技术的发展,团队在构建组件化网页时,对HTML代码的模块化管理提出了更高要求。开发者们可以通过这些技术封装自定义元素,以实现HTML代码的复用性和解耦性,进一步优化团队协作流程。 在实际操作层面,诸如WebStorm、VS Code等现代IDE也提供了强大的HTML代码格式化和版本控制集成功能,使得团队成员在遵循统一编程规范的同时,也能轻松实现代码版本的同步与协同开发。 综上所述,无论是紧跟最新的技术动态,还是深入研究和应用现有的最佳实践,都旨在提升团队协作环境下HTML代码的编写质量与工作效率,从而更好地满足快速迭代的现代网页设计需求。
2024-01-31 16:09:57
392
逻辑鬼才
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
Ctrl + R
- 在Bash shell中进行反向搜索历史命令。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"