前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[数据科学中的缺失值处理方法]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
在Python数据预处理的实际应用中,其重要性日益凸显。近期,一项基于医疗健康大数据的研究项目就充分展示了数据预处理的必要性和有效性。研究团队利用Python中的Pandas库对海量病历数据进行了深度清洗和转换工作,有效地处理了缺失值、重复记录以及异常值等问题,并运用StandardScaler进行特征缩放,以解决不同指标间尺度差异大的问题。此外,通过独热编码技术将分类变量转化为数值型特征,使得机器学习模型能够更好地理解和处理这些信息。 更进一步地,Google AI团队在2023年初发布了一篇关于“大规模数据分析中的高效特征降维实践”的论文,文中详细阐述了如何借助Python生态中的scikit-learn库实现PCA和LDA等特征降维方法,并对比了不同方法在实际项目中的效果和效率。这一研究成果对于提升AI预测模型性能,尤其是在高维数据场景下的表现具有重大意义。 同时,随着人工智能与办公自动化领域的深度融合,Python在智能文案写作、美化PPT等方面的应用也越来越广泛。例如,结合OpenAI的GPT-4模型,已有开发者成功构建出适用于职场汇报的智能办公工具,可以自动生成结构清晰、内容丰富的报告文本,并能自动完成PPT美化,极大地提高了工作效率。 综上所述,无论是学术研究还是职场实战,Python在数据预处理方面的强大功能正持续推动着各行各业的数据驱动创新与发展。与时俱进地掌握并熟练运用Python进行数据预处理,已经成为现代数据科学工作者必备的核心技能之一。
2024-02-09 12:42:15
704
转载
转载文章
在对UCI肿瘤数据集进行逻辑回归分析后,进一步的延伸阅读可聚焦于以下几个方面: 1. 最新医学研究进展:近期,《Nature Medicine》发表的一项研究表明,通过深度学习算法结合基因组学和转录组学数据,科学家们能够更精准预测癌症类型及预后。这不仅展示了大数据与AI技术在肿瘤诊断领域的潜力,也为未来改进和优化基于逻辑回归等传统机器学习方法提供新的启示。 2. 医疗数据分析的伦理考量:随着人工智能在医疗数据分析中的广泛应用,数据隐私保护和患者权益问题愈发凸显。《Science》最近的一篇报道探讨了如何在确保数据安全性和匿名性的同时,最大化利用医疗数据提升疾病预测准确率,这对于理解并合理应用包括UCI肿瘤数据集在内的公开资源具有现实指导意义。 3. 特征工程的重要性:针对肿瘤数据集的特征处理,一篇由《Machine Learning in Medicine》发布的论文详述了特征选择、缺失值填充、标准化等各种预处理技术对模型性能的影响,并强调了深入理解医学背景知识对于有效特征工程设计的关键作用。 4. 逻辑回归模型的局限与改进:尽管逻辑回归在许多分类任务中表现良好,但面对高维、非线性或多重共线性的医学数据时可能存在局限。《Journal of Machine Learning Research》上有一篇文章介绍了集成学习、神经网络以及梯度提升机等更复杂模型如何克服这些问题,提高肿瘤预测的准确性和泛化能力。 综上所述,围绕肿瘤数据集的分析与建模,读者可以关注最新的科研成果以了解前沿动态,同时思考数据伦理、特征工程的具体实践以及模型优化的可能性,不断拓宽视野,深化对机器学习在肿瘤研究领域应用的理解。
2023-08-10 11:21:12
361
转载
转载文章
...)的简介、安装、使用方法之详细攻略 目录 autosklearn/Auto-Sklearn的简介 autosklearn/Auto-Sklearn(基于scikit-learn库的自动化的机器学习工具)的概述 autosklearn/Auto-Sklearn的安装 系统安装要求¶ autosklearn/Auto-Sklearn的使用方法 1、基础案例 autosklearn/Auto-Sklearn的简介 autosklearn/Auto-Sklearn(基于scikit-learn库的自动化的机器学习工具)的概述 简介 Auto-Sklearn,在2015年由德国图宾根大学的研究人员提出的,最初的版本于2016年发布。auto-sklearn基于scikit-learn库进行开发,支持多种机器学习任务,包括分类、回归、时间序列等。 核心技术点 Auto-Sklearn使用了贝叶斯优化的方法进行超参数优化,可以在较短的时间内找到最优的超参数组合,从而得到更好的模型性能。 功能 Auto-Sklearn是一款基于Python的自动机器学习工具,可以自动进行机器学习的各个步骤,包括特征选择、特征预处理、算法选择和超参数优化等。 自动特征选择与工程:可以自动选择最优特征子集,并进行归一化、缺失值处理等特征工程。 自动模型选择:可以自动选择最优的机器学习算法来解决问题,支持的算法包括SVM、KNN、随机森林等。 自动超参数优化:可以自动搜索机器学习模型的最优超参数,获得最高性能的模型配置。 特点 auto-sklearn的优势在于它的易用性和灵活性。用户只需要提供数据集和一些基本的配置,就可以自动进行模型构建和优化。 auto-sklearn可以自动选择和配置算法和超参数,从而让用户省去了手动调参的过程。 auto-sklearn还支持并行化处理,可以在多个CPU或GPU上运行,进一步加速模型训练和优化。 优缺点 自动化:auto-sklearn能够自动化地完成机器学习的各个环节,从而让用户省去手动调参和特征工程等繁琐的工作。 灵活性:auto-sklearn提供了多种配置选项,用户可以根据自己的需求进行自定义配置。 性能好:auto-sklearn使用贝叶斯优化技术进行超参数优化,能够在短时间内找到最优的超参数组合,从而得到更好的模型性能。 处理大数据集时较慢:auto-sklearn的处理速度受限于计算资源,处理大数据集时需要较长时间。 可解释性较差:由于auto-sklearn是自动化的,生成的模型可解释性较差。 应用案例 Kaggle竞赛:auto-sklearn在多个Kaggle竞赛中表现出色,包括房价预测、分类、回归等多个任务。 自动化机器学习平台:auto-sklearn可以作为自动化机器学习平台的核心组件,帮助用户快速构建和部署机器学习模型。 数据科学教育:auto-sklearn可以作为教学工具,帮助学生快速入门机器学习,并加深对机器学习原理的理解。 autosklearn/Auto-Sklearn的安装 pip install auto-sklearnpip install -i https://pypi.tuna.tsinghua.edu.cn/simple auto-sklearnconda install -c conda-forge auto-sklearn 系统安装要求¶ auto-sklearn 具有以下系统要求: Linux 操作系统(例如 Ubuntu)(在此处获取 Linux) Python (>=3.7)(在此处获取 Python), C++ 编译器(支持 C++11)(在此处获取 GCC)。 如果您尝试在没有提供 pyrfr 包的 wheel 文件的系统上安装 Auto-sklearn(请参阅此处了解可用的 wheels),您还需要: SWIG(在此处获取 SWIG)。 有关缺少 Microsoft Windows 和 macOS 支持的说明,请查看Windows/macOS 兼容性部分。 注意:auto-sklearn 当前不支持 Windows系统,因为auto-sklearn严重依赖 Python 模块resource。是 Python 的Unix 特定服务resource 的一部分 ,在 Windows 机器上不可用。因此,无法 在 Windows 机器上运行auto-sklearn 。 autosklearn/Auto-Sklearn的使用方法 1、基础案例 import sklearn.datasetsimport autosklearn.classification 加载Titanic数据集X, y = sklearn.datasets.load_breast_cancer(return_X_y=True) 使用Auto-Sklearn训练模型model = autosklearn.classification.AutoSklearnClassifier()model.fit(X, y) 输出模型评估结果print(model.sprint_statistics()) 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_41185868/article/details/83758383。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-13 13:27:17
114
转载
转载文章
...Python已经成为数据科学和机器学习领域的主流语言之一。随着Python 3.10版本的发布以及scikit-learn等库的不断更新优化,Python机器学习生态系统的功能和性能得到了显著提升。近期,Microsoft发布了其开源项目“ML.NET”,该框架支持.NET开发者利用C或F进行机器学习开发,这一举措证明了多语言环境下对机器学习能力的需求日益增强。 此外,《Python Machine Learning》一书的作者Sebastian Raschka于今年年初发表了关于最新机器学习趋势的文章,其中详细解读了自动化特征工程、深度学习集成以及强化学习在解决实际问题中的新进展。他强调,尽管Python在数据预处理和模型训练上的便捷性无可比拟,但理解底层原理并熟悉多种工具和技术同样至关重要。 与此同时,Kaggle平台举办的各类数据科学竞赛持续激发全球开发者使用Python进行机器学习实践的热情。例如,在最近结束的一项医疗预测挑战赛中,冠军团队就成功运用Python构建了基于深度学习和传统统计方法相结合的混合模型,展示了Python在复杂预测任务中的强大应用潜力。 对于希望进一步深化Python机器学习技能的开发者来说,可以关注一些优质的在线课程与社区资源,如Coursera上吴恩达教授的专项课程,或是定期查阅PyData、NumFOCUS等组织发布的最新研究成果和技术动态。通过不断跟进行业前沿知识,并结合实战案例进行演练,将有助于开发者更好地从单纯编程角色向机器学习从业人员转型。
2023-07-11 10:04:06
92
转载
Kibana
...要组成部分,主要用于数据分析和可视化。然而,我们可能会遇到一些情况,如数据显示不准确或错误。本文将探讨这些问题的原因,并提供相应的解决方案。 二、原因分析 1. 数据源问题 如果你的数据源有问题,那么你得到的结果也会出现问题。比如说,假如你数据源里的字段名和你在Kibana里设定的字段名对不上,或者数据源中的数据类型跟你在Kibana中配置的数据类型没能成功配对,那么你就很可能看到一些错误的结果出现。 2. Kibana配置问题 你的Kibana配置也可能导致结果出错。比如说,如果你没把时间字段整对,或者挑数据源的时候选岔了道,那么你得到的结果可能就得出岔子啦。 3. 数据质量问题 如果你的数据质量差,那么你得到的结果也会出现问题。比如,假如你的数据里头出现了一些空缺或者捣乱的异常值,那么你最后算出来的结果可能就跟真实情况对不上号啦。 三、解决策略 1. 检查数据源 首先,你需要检查你的数据源。千万要保证所有的字段名称都和你在Kibana里设定的对得上,同样地,每种数据类型也要跟你在Kibana中设置的严格匹配,一个都不能出错!如果有任何不一致的地方,你需要进行相应的修改。 2. 调整Kibana配置 其次,你需要调整你的Kibana配置。确保你已经正确地设置了时间字段,确保你已经选择了正确的数据源。如果有任何错误的地方,你需要进行相应的修正。 3. 提高数据质量 最后,你需要提高你的数据质量。嘿,你知道吗?如果在你的数据里头发现了空缺或者捣乱的异常值,你就得好好处理一下了。这一步可不能跳过,目的就是让你最后得出的结果能够真实反映出实际情况,一点儿都不带“水分”! 四、实例解析 以下是一些在实际操作中可能出现的问题以及相应的解决方法: 1. 问题 数据显示不准确 解决方案:检查数据源,千万要保证所有的字段名称都和你在Kibana里设定的对得上,同样地,每种数据类型也要跟你在Kibana中设置的严格匹配,一个都不能出错! 代码示例: javascript // 假设我们有一个名为"events"的数据源,其中有一个名为"time"的时间字段 var events = [ { time: "2021-01-01T00:00:00Z", value: 1 }, { time: "2021-01-02T00:00:00Z", value: 2 }, { time: "2021-01-03T00:00:00Z", value: 3 } ]; // 在Kibana中,我们需要将"time"字段设置为时间类型,将"value"字段设置为数值类型 KbnWidget.extend({ defaults: { type: 'chart', title: 'Events Over Time' }, init: function(params) { this.valueField = params.value_field || 'value'; this.timeField = params.time_field || 'time'; }, render: function() { return {renderChart(this.data)} ; }, data: function() { var events = this.state.events; return [{ key: 'data', values: events.map(function(event) { return [new Date(event[this.timeField]), event[this.valueField]]; }, this) }]; } }); 2. 问题 数据显示错误 解决方案:检查Kibana配置,确保你已经正确地设置了时间字段,确
2023-06-30 08:50:55
317
半夏微凉-t
Superset
一、引言 在数据科学的世界里,我们的主要目标是理解和解释数据。为了更好地做到这一点,我们通常需要将数据转化为可视化的形式。这就是为什么Superset——一个开源的数据探索平台,对我们来说如此重要。然而,有的时候我们在捣鼓可视化图表的时候,难免会遇到一些头疼的问题,比如数据列没对上号的情况。本文将深入探讨这个问题,并提供解决办法。 二、什么是数据列映射? 在 Superset 中,数据列映射是指将数据库中的原始字段映射到我们想要在可视化中使用的字段。这也就是说,你可以挑选你想要展示的那些列,并且还可以自由选择怎么呈现这些列的数据,比如,可以是统计个数、算平均数、找出最大值等等,随你心意来定制。所以,假如数据列的对应关系搞错了,那我们做出来的图表啊,就可能会带出些错误的信息,或者干脆没法准确表达我们的观点啦。 三、数据列映射异常的原因 在实际操作中,我们会发现数据列映射异常的情况比我们想象的要常见。最常见的原因,就是我们在捣鼓查询的时候,不小心选错了要分析的字段,或者没把我们想要汇总的方式给整明白、搞清楚。另外,要是我们的数据集里头混进了些缺失的数据或者不按常理出牌的异常值,那很可能会影响到咱们把数据列对应映射的结果。 举个例子,假设我们有一个销售数据表,其中包含销售额和产品类型两列数据。如果咱只挑了销售额这一项来做图表,那这张图就只能展示销售额上下波动的走势,却没法告诉我们不同产品类型的销售额具体是个啥情况。这就意味着我们的数据列映射存在问题。 四、如何处理数据列映射异常? 处理数据列映射异常的方法有很多。首先,咱们得瞧一瞧,是不是选对了查询的列,还有啊,聚合的方式给整准确了没。接着呢,咱们得保证咱的数据集是个实实在在的“完璧之身”,里头甭管是丢三落四的空缺值还是调皮捣蛋的异常值,一个都不能有哈。最后一步,咱们得根据自身的需求,来量身定制可视化设计,确保它能准确无误地传递出咱们想要表达的信息内容。 下面是一些具体的步骤: 步骤一:检查查询 我们首先需要检查我们的查询。在Superset里头,想看我们正在捣鼓的查询超级简单,就跟你平时点开视频网站的小播放键一样,你只需要轻轻一点查询编辑器右下角那个醒目的“预览”按钮,一切就尽在眼前啦!瞧瞧这个预览窗口,这里展示了咱们正在使用的所有列,还附带了我们对这些列的处理手法,也就是聚合方式,一目了然! 例如,如果我们只想看到某一类产品的销售额,我们应该选择"product_type"和"sales_amount"这两列,并设置聚合方式为"SUM(sales_amount)"。 步骤二:处理缺失值和异常值 如果我们发现我们的数据集中存在缺失值或者异常值,我们需要先处理这些问题。在 Python 中,我们可以使用 Pandas 库来处理这些问题。例如,我们可以使用 dropna() 方法来删除含有缺失值的行,或者使用 fillna() 方法来填充缺失值。对于异常值,我们可以使用箱线图来识别并处理。 步骤三:设计可视化 最后,我们需要根据我们的需求来设计我们的可视化。在 Superset 中,我们可以很容易地改变我们可视化的类型、颜色、标签等属性。同时呢,咱们也得留心一下咱的标题和图例这些小细节,确保它们能明明白白地把我们的意思传达出去,让人一看就懂。 例如,如果我们想比较两种产品的销售额,我们应该选择柱状图作为我们的可视化类型,并给每种产品分配不同的颜色。同时,我们也应该在标题和图例中明确指出我们正在比较的是哪两种产品。 五、结论 总的来说,处理数据列映射异常是一项非常重要的任务。瞧,如果我们认真检查咱们的查询,把那些躲猫猫的缺失值和捣乱的异常值都妥妥地处理好,再巧妙地设计我们的可视化图表,那就能确保咱们的数据列映射绝对精准无误。这样一来,生成的可视化效果自然就棒棒哒,既有效又直观!希望这篇文章能帮助你解决你在 Superset 中遇到的问题。
2023-09-13 11:26:54
100
清风徐来-t
Apache Pig
随着大数据时代的到来,数据处理成为了各行业不可或缺的一环。Apache Pig作为Hadoop生态系统中的重要组成部分,以其简洁的脚本语言和强大的数据处理能力,为数据工程师和分析师提供了高效、灵活的工具。然而,面对不断增长的数据量和复杂性,如何优化Apache Pig的性能、提升其可扩展性和增强用户体验,成为了当前研究和实践的重点。 一、性能优化 在大数据处理场景中,性能优化是提升系统效率的关键。Apache Pig的性能瓶颈主要体现在数据加载、内存管理和并行计算等方面。为了优化性能,可以采取以下策略: 1. 数据预处理:在加载数据之前进行预处理,如去除重复记录、缺失值填充或数据标准化,可以减少后续处理的负担。 2. 内存管理优化:合理设置内存缓冲区大小,避免频繁的磁盘I/O操作,提高数据加载速度。 3. 并行计算优化:利用分布式计算框架的并行处理能力,合理划分任务,减少单点瓶颈。 二、可扩展性提升 随着数据规模的不断扩大,如何保证Apache Pig系统在增加数据量时仍能保持良好的性能和稳定性,是其面临的另一大挑战。提升可扩展性的方法包括: 1. 动态资源分配:通过自动调整集群资源(如CPU、内存和存储),确保在数据量增加时能够及时响应,提高系统的适应性。 2. 水平扩展:增加节点数量,分散计算和存储压力,利用分布式架构的优势,实现负载均衡。 3. 算法优化:采用更高效的算法和数据结构,减少计算复杂度,提高处理效率。 三、用户体验增强 提升用户体验,使得Apache Pig更加易于学习和使用,对于吸引更多的开发者和分析师至关重要。这可以通过以下几个方面实现: 1. 可视化工具:开发图形化界面或增强现有工具的可视化功能,使非专业用户也能轻松理解和操作Apache Pig脚本。 2. 文档和教程:提供详尽的文档和易于理解的教程,帮助新用户快速上手,同时更新最佳实践和案例研究,促进社区交流。 3. 社区建设和支持:建立活跃的开发者社区,提供技术支持和问题解答服务,促进资源共享和经验交流。 四、结语 Apache Pig作为大数据处理领域的重要工具,其性能优化、可扩展性和用户体验的提升,是推动其在实际应用中发挥更大价值的关键。通过上述策略的实施,不仅能够提高Apache Pig的效率和可靠性,还能吸引更多开发者和分析师加入,共同推动大数据技术的发展和应用。随着技术的不断进步和创新,Apache Pig有望在未来的数据处理领域扮演更加重要的角色。
2024-09-30 16:03:59
95
繁华落尽
Mongo
在MongoDB数据库的实际应用中,字段类型不匹配的问题尤为常见,且可能引发数据处理错误及性能瓶颈。近期,随着NoSQL数据库的广泛应用以及数据来源的多元化,正确处理和转换数据类型显得更为关键。例如,在进行实时数据分析或大数据集成时,未经验证的数据类型可能会导致分析结果偏差,甚至触发程序异常。 在最新版本的MongoDB 5.0中,引入了更严格模式(Strict Mode)以帮助开发者更好地管理数据类型,确保插入文档的数据类型与集合schema定义一致。通过启用严格模式,MongoDB会在写入操作阶段就对字段类型进行校验,从而避免后续查询、分析过程中因类型不匹配带来的问题。 此外,对于从API、CSV文件或其他非结构化数据源导入数据至MongoDB的情况,推荐使用如Pandas库(Python)或JSON.parse()方法(JavaScript)等工具预先进行数据清洗和类型转换,确保数据格式合规。同时,结合Schema设计的最佳实践,如运用BSON数据类型和$convert aggregation operator,可以在很大程度上降低因字段类型不匹配引发的风险,提升数据操作效率和准确性。 因此,深入理解和掌握如何有效预防及解决MongoDB中的字段类型不匹配问题,是现代数据工程师与开发人员必备技能之一,有助于构建稳定可靠的数据平台,为业务决策提供精准支撑。
2023-12-16 08:42:04
184
幽谷听泉-t
Mahout
...征条件独立假设的分类方法,在Mahout中被用于大规模文本分类。尽管其“朴素”假设在实际数据中可能并不完全成立,但朴素贝叶斯分类器仍因其简单高效、易于实现和训练速度快等特点,在许多应用场景中表现出良好的性能。在文本分类任务中,朴素贝叶斯算法会根据训练集计算每个类别下各特征的概率分布,并在预测阶段依据这些概率对新的文本进行分类。 数据预处理 , 在机器学习和数据分析过程中,数据预处理是指对原始数据进行一系列清洗、转化、规范化等操作,使其满足特定模型训练或分析的要求。在Mahout中,数据预处理包括但不限于去除无关噪声数据、填充缺失值、数据标准化、特征编码以及提取有用的结构化信息等步骤。例如文中提到使用JDOM工具对原始XML数据进行解析和处理,就是数据预处理的一个实例,旨在将非结构化的文本数据转化为可供机器学习算法使用的格式。
2023-03-23 19:56:32
108
青春印记-t
转载文章
...化图像标题过长的换行处理方法后,我们可以进一步关注R语言及其生态系统的最新发展动态与应用实例。近期,《Nature Methods》期刊发布了一项关于R语言在生物医学研究领域影响力的调查报告(2023年),结果显示R语言已成为科研人员进行数据分析和可视化的首选工具之一,其在复杂统计模型构建、高维数据可视化等方面的优势尤为突出。 同时,R社区也持续推出功能强大的扩展包以满足不断变化的需求。例如,ggtext包的出现让R语言图形的文本排版更加灵活,支持Markdown语法及CSS样式,用户可以轻松实现标题的自动换行、斜体、粗体等效果,显著提升了可视化图像的呈现质量。 此外,随着大数据和人工智能的发展,R语言结合TensorFlow、Keras等深度学习框架的能力日益增强。诸如kerasR、reticulate等包使得R用户能够在熟悉的环境中搭建和训练神经网络模型,将机器学习和统计分析紧密结合,拓宽了R语言在实际问题解决中的应用场景。 总而言之,R语言凭借其强大的统计功能和丰富的可视化库,在科研和工业界保持着旺盛的生命力。对于热衷于利用R语言进行数据科学探索的用户而言,紧跟社区发展动态,掌握最新的包和工具,不仅有助于提升工作效率,也能在数据分析与可视化表达上取得更为出色的效果。
2023-12-27 23:03:39
107
转载
Impala
...密 01 引言 在大数据分析的世界里,Impala以其高性能、实时查询的特性赢得了广泛的认可。Impala查询优化器,这玩意儿可是整个系统的关键部件之一,你就想象它是个隐形的、贼机灵还特勤快的小助手,悄无声息地在背后帮咱们把SQL查询给大卸八块,仔仔细细捯饬一遍,目的就是为了让查询跑得更快,资源利用更充分,妥妥的“幕后功臣”一枚。本文将带大家深入探索Impala查询优化器的工作原理,通过实例代码揭示其中的秘密。 02 Impala查询优化器概览 Impala查询优化器的主要任务是将我们提交的SQL语句转化为高效执行计划。它就像个精打细算的小能手,会先摸底各种可能的执行方案,挨个评估、对比,最后选出那个花钱最少(或者说预计跑得最快的)的最优路径来实施。这个过程犹如一位精密的导航员,在海量数据的大海中为我们的查询找到最优航线。 03 查询优化器工作流程 1. 解析与验证阶段 当我们提交一条SQL查询时,优化器首先对其进行词法和语法解析,确保SQL语句结构正确。例如: sql -- 示例SQL查询 SELECT FROM employees WHERE department = 'IT' ORDER BY salary DESC; 2. 逻辑优化阶段 解析后的SQL被转化为逻辑执行计划,如关系代数表达式。在此阶段,优化器会进行子查询展开、常量折叠等逻辑优化操作。 3. 物理优化阶段 进一步地,优化器会生成多种可能的物理执行计划,并计算每种计划的执行代价(如I/O代价、CPU代价)。比如,拿刚才那个查询来说吧,我们可能会琢磨两种不同的处理方法。一种呢,是先按照部门给它筛选一遍,然后再来个排序;另一种嘛,就是先不管三七二十一,先排个序再说,完了再进行过滤操作。 4. 计划选择阶段 根据各种物理执行计划的代价估算,优化器会选择出代价最低的那个计划。最终,Impala将按照选定的最优执行计划来执行查询。 04 实战示例:观察查询计划 让我们实际动手,通过EXPLAIN命令观察Impala如何优化查询: sql -- 使用EXPLAIN命令查看查询计划 EXPLAIN SELECT FROM employees WHERE department = 'IT' ORDER BY salary DESC; 运行此命令后,Impala会返回详细的执行计划,其中包括了各个阶段的操作符、输入输出以及预估的行数和代价。从这些信息中,我们可以窥见查询优化器背后的“智慧”。 05 探讨与思考 理解查询优化器的工作机制,有助于我们在编写SQL查询时更好地利用Impala的性能优势,比如合理设计索引、避免全表扫描等。同时呢,咱们也得明白这么个道理,虽然现在这查询优化器已经聪明到飞起,但在某些特定的情况下,它可能也会犯迷糊,没法选出最优解。这时候啊,就得我们这些懂业务、又摸透数据库原理的人出手了,瞅准时机,亲自上阵给它来个手工优化,让事情变得美滋滋的。 总结来说,Impala查询优化器是我们在大数据海洋中探寻宝藏的重要工具,只有深入了解并熟练运用,才能让我们的数据探索之旅更加高效顺畅。让我们一起携手揭开查询优化器的秘密,共同探索这片充满无限可能的数据世界吧!
2023-10-09 10:28:04
408
晚秋落叶
Hadoop
...们每天都在产生大量的数据。对于企业来说,这些数据的价值往往远超过它们的成本。所以呢,现在对企业来说,一个大大的挑战就是怎么能把这些数据玩儿出花来,挖出真正有料的信息宝藏。 二、什么是Hadoop? Hadoop是一个开源的大数据处理框架,由Apache基金会维护。它能够处理大规模的数据,并且可以运行在廉价的硬件上。Hadoop的核心是由两个主要组件组成的:HDFS(Hadoop Distributed File System)和MapReduce。 三、如何使用Hadoop进行数据分析和挖掘? 1. 使用Hadoop进行数据清洗 数据清洗是指去除数据中的错误、重复或者不必要的信息,使数据变得更加规范化。Hadoop这哥们儿,可是帮了我们大忙了,它手头上有一些贼好用的工具,像是Hive、Pig这些家伙,专门用来对付那些乱七八糟的数据清洗工作,让我们省了不少力气。 以下是一段使用Hive进行数据清洗的示例代码: sql CREATE TABLE cleaned_data AS SELECT FROM raw_data WHERE column_name = 'value'; 2. 使用Hadoop进行数据预处理 数据预处理是指将原始数据转换成适合机器学习模型训练的数据。你知道吗?Hadoop这个家伙可贴心了,它给我们准备了一整套实用工具,专门用来帮咱们把数据“打扮”得漂漂亮亮的。就比如Spark MLlib和Mahout这些小助手,它们可是预处理数据的一把好手! 以下是一段使用Spark MLlib进行数据预处理的示例代码: python from pyspark.ml.feature import VectorAssembler 创建向量器 vectorizer = VectorAssembler(inputCols=["col1", "col2"], outputCol="features") 对数据进行向量化 dataset = vectorizer.transform(data) 3. 使用Hadoop进行数据分析 数据分析是指通过统计学的方法对数据进行分析,从而得到有用的信息。Hadoop这个家伙可厉害了,它配备了一套数据分析的好帮手,比如说Hive和Pig这两个小工具。有了它们,咱们就能更轻松地对数据进行挖掘和分析啦! 以下是一段使用Hive进行数据分析的示例代码: sql SELECT COUNT() FROM data WHERE column_name = 'value'; 4. 使用Hadoop进行数据挖掘 数据挖掘是指从大量数据中发现未知的模式和关系。Hadoop这个家伙,可帮了我们大忙啦,它带来了一些超实用的工具,比如Mahout和Weka这些小能手,专门帮助咱们进行数据挖掘的工作。就像是在海量数据里淘金的神器,让复杂的数据挖掘任务变得轻松又简单! 以下是一段使用Mahout进行数据挖掘的示例代码: java from org.apache.mahout.cf.taste.impl.model.file.FileDataModel import FileDataModel from org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood import NearestNUserNeighborhood from org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender import GenericUserBasedRecommender from org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity import PearsonCorrelationSimilarity from org.apache.mahout.cf.taste.impl.util.FastIDSet import FastIDSet 加载数据 model = FileDataModel.load(new File("data.dat")) 设置邻居数量 neighborhoodSize = 10 创建相似度测量 similarity = new PearsonCorrelationSimilarity(model) 创建邻居模型 neighborhood = new NearestNUserNeighborhood(neighborhoodSize, similarity, model.getUserIDs()) 创建推荐器 recommender = new GenericUserBasedRecommender(model, neighborhood, similarity) 获取推荐列表 long time = System.currentTimeMillis() for (String userID : model.getUserIDs()) { List recommendations = recommender.recommend(userID, 10); for (RecommendedItem recommendation : recommendations) { System.out.println(recommendation); } } System.out.println(System.currentTimeMillis() - time); 四、结论 综上所述,Hadoop是一个强大的大
2023-03-31 21:13:12
469
海阔天空-t
Mahout
...out在推荐系统中的数据模型构建失败探索 一、引言 你是否曾经经历过这样的情况?你的推荐系统在生产环境中突然崩溃,只因为用户对商品进行了一些看似微不足道的操作?如果你的答案是肯定的,那么你可能已经意识到了推荐系统的脆弱性,以及它们对于数据质量的依赖。 在本篇文章中,我们将深入研究推荐系统中最常见的问题之一——数据模型构建失败,并尝试利用Mahout这个强大的开源库来解决这个问题。 二、数据模型构建失败的原因 数据模型构建失败的原因有很多,例如: - 数据质量问题:这可能是由于原始数据集中的错误、缺失值或者噪声引起的。 - 模型选择问题:不同的推荐算法适用于不同类型的数据集,如果选择了不适合的模型,可能会导致模型训练失败。 - 参数调整问题:推荐系统的性能很大程度上取决于模型的参数设置,不恰当的参数设置可能导致模型过拟合或欠拟合。 三、Mahout在数据模型构建失败时的应对策略 3.1 数据清洗与预处理 在我们开始构建推荐模型之前,我们需要对原始数据进行一些基本的清理和预处理操作。这些操作包括去除重复记录、填充缺失值、处理异常值等。下面是一个简单的例子,展示了如何使用Mahout进行数据清洗: java // 创建一个MapReduce任务来读取数据 Job job = new Job(); job.setJarByClass(Mahout.class); job.setMapperClass(CSVInputFormat.class); job.setReducerClass(CSVOutputFormat.class); // 设置输入路径和输出路径 FileInputFormat.addInputPath(job, new Path("input.csv")); FileOutputFormat.setOutputPath(job, new Path("output.csv")); // 运行任务 boolean success = job.waitForCompletion(true); if (success) { System.out.println("Data cleaning and preprocessing complete!"); } else { System.out.println("Data cleaning and preprocessing failed."); } 在这个例子中,我们使用了CSVInputFormat和CSVOutputFormat这两个类来进行数据清洗和预处理。说得更直白点,CSVInputFormat就像是个数据搬运工,它的任务是从CSV文件里把我们需要的数据给拽出来;而CSVOutputFormat呢,则是个贴心的数据管家,它负责把我们已经清洗干净的数据,整整齐齐地打包好,再存进一个新的CSV文件里。 3.2 模型选择和参数调优 选择合适的推荐算法和参数设置是构建成功推荐模型的关键。Mahout提供了许多常用的推荐算法,如协同过滤、基于内容的推荐等。同时呢,它还带来了一整套给力的工具,专门帮我们微调模型的参数,让模型的表现力更上一层楼。 以下是一个简单的例子,展示了如何使用Mahout的ALS(Alternating Least Squares)算法来构建推荐模型: java // 创建一个新的推荐器 RecommenderSystem recommenderSystem = new RecommenderSystem(); // 使用 ALS 算法来构建推荐模型 Recommender alsRecommender = new MatrixFactorizationRecommender(new ItemBasedUserCF(alternatingLeastSquares(10), userItemRatings)); recommenderSystem.addRecommender(alsRecommender); // 进行参数调优 alsRecommender.setParameter(alsRecommender.getParameter(ALS.RANK), 50); // 尝试增加隐藏层维度 在这个例子中,我们首先创建了一个新的推荐器,并使用了ALS算法来构建推荐模型。然后,我们对模型的参数进行了调优,尝试增加了隐藏层的维度。 3.3 数据监控与故障恢复 最后,我们需要建立一套完善的数据监控体系,以便及时发现并修复数据模型构建失败的问题。Mahout这玩意儿,它帮我们找到了一个超简单的方法,就是利用Hadoop的Streaming API,能够实时地、像看直播一样掌握推荐系统的运行情况。 以下是一个简单的例子,展示了如何使用Mahout和Hadoop的Streaming API来实现实时监控: java // 创建一个MapReduce任务来监控数据 Job job = new Job(); job.setJarByClass(Mahout.class); job.setMapperClass(StreamingInputFormat.class); job.setReducerClass(StreamingOutputFormat.class); // 设置输入路径和输出路径 FileInputFormat.addInputPath(job, new Path("input.csv")); FileOutputFormat.setOutputPath(job, new Path("output.csv")); // 运行任务 boolean success = job.waitForCompletion(true); if (success) { System.out.println("Data monitoring and fault recovery complete!"); } else { System.out.println("Data monitoring and fault recovery failed."); } 在这个例子中,我们使用了StreamingInputFormat和StreamingOutputFormat这两个类来进行数据监控。换句话说,StreamingInputFormat这小家伙就像是个专门从CSV文件里搬运数据的勤快小工,而它的搭档StreamingOutputFormat呢,则负责把我们监控后的结果打包整理好,再稳稳当当地存放到新的CSV文件中去。 四、结论 本文介绍了推荐系统中最常见的问题之一——数据模型构建失败的原因,并提供了解决这个问题的一些策略,包括数据清洗与预处理、模型选择和参数调优以及数据监控与故障恢复。虽然这些问题确实让人头疼,不过别担心,只要我们巧妙地运用那个超给力的开源神器Mahout,就能让推荐系统的运行既稳如磐石又准得惊人,妥妥提升它的稳定性和准确性。
2023-01-30 16:29:18
121
风轻云淡-t
Python
数据清洗 , 数据清洗是指在进行数据分析之前,对原始数据集进行预处理的过程,以去除无关数据、纠正错误数据、填充缺失值或异常值,并统一数据格式和结构。在文章中,作者使用Pandas库进行数据清洗工作,例如通过fillna()函数填充缺失值,确保数据质量,为进一步的数据分析提供准确可靠的基础。 DataFrame , DataFrame是Python数据分析库Pandas中的核心数据结构,它是一个二维表格型数据结构,类似于电子表格或SQL表。DataFrame可以容纳多种类型的数据(如整数、字符串、布尔值等),并提供了丰富的操作方法,如排序、统计计算、合并、重塑等,便于高效地处理和分析大规模结构化数据。 视图函数 , 在Web开发领域,视图函数是MVC(模型-视图-控制器)架构中的“视图”部分的实现,负责处理HTTP请求并将相应结果返回给客户端。在Django框架中,视图函数接收HttpRequest对象作为参数,根据请求内容执行相应的业务逻辑(如数据库查询、数据处理等),然后将处理结果转换为HttpResponse对象返回。文章中的例子展示了如何创建一个简单的Django视图函数,该函数从数据库获取所有博客文章并返回到客户端。 迭代器 , 迭代器是一种设计模式,在Python中表现为具有next()方法的对象,用于访问集合(如列表、字典或生成器)中的元素,但不一次性加载整个集合到内存中。迭代器允许开发者按需逐个访问集合中的项目,从而在处理大量数据时显著减少内存占用,提高程序性能。在文章中,作者提到面对性能优化问题时,会尝试使用迭代器代替列表操作来提升处理大量数据的效率。
2023-09-07 13:41:24
323
晚秋落叶_
转载文章
...相应内容。 金融经济数据方面应用Python非常广泛,也可以算是用Python进行数据分析的一个实际应用。 数据规整化方面的应用 时间序列与截面对齐 在处理金融数据时,最费神的一个问题就是所谓的“数据对齐” (data alignment)问题。两个相关的时间序列的索引可能没有很好的对齐,或两个DataFrame对象可能含有不匹配的列或行。 Pandas可以在算术运算中自动对齐数据。在实际工作中,这不仅能为你带来极大自由度,而且还能提升工作效率。如下,看这个两个DataFrame分别含有股票价格和成交量的时间序列: 假设你想要用所有有效数据计算一个成交量加权平均价格(为了简单起见,假设成交量数据是价格数据的子集)。由于pandas会在算术运算过程中自动将数据对齐,并在sum这样的函数中排除缺失数据,所以我们只需编写下面这条简洁的表达式即可: 由于SPX在volume中找不到,所以你随时可以显式地将其丢弃。如果希望手工进行对齐,可以使用DataFrame的align方法,它返回的是一个元组,含有两个对象的重索引版本: 另一个不可或缺的功能是,通过一组索引可能不同的Series构建一个DataFrame。 跟前面一样,这里也可以显式定义结果的索引(丢弃其余的数据): 时间和“最当前”数据选取 假设你有一个很长的盘中市场数据时间序列,现在希望抽取其中每天特定时间的价格数据。如果数据不规整(观测值没有精确地落在期望的时间点上),该怎么办?在实际工作当中,如果不够小心仔细的话,很容易导致错误的数据规整化。看看下面这个例子: 利用Python的datetime.time对象进行索引即可抽取出这些时间点上的值: 实际上,该操作用到了实例方法at_time(各时间序列以及类似的DataFrame对象都有): 还有一个between_time方法,它用于选取两个Time对象之间的值: 正如之前提到的那样,可能刚好就没有任何数据落在某个具体的时间上(比如上午10点)。这时,你可能会希望得到上午10点之前最后出现的那个值: 如果将一组Timestamp传入asof方法,就能得到这些时间点处(或其之前最近)的有效值(非NA)。例如,我们构造一个日期范围(每天上午10点),然后将其传入asof: 拼接多个数据源 在金融或经济领域中,还有几个经常出现的合并两个相关数据集的情况: ·在一个特定的时间点上,从一个数据源切换到另一个数据源。 ·用另一个时间序列对当前时间序列中的缺失值“打补丁”。 ·将数据中的符号(国家、资产代码等)替换为实际数据。 第一种情况:其实就是用pandas.concat将两个TimeSeries或DataFrame对象合并到一起: 其他:假设data1缺失了data2中存在的某个时间序列: combine_first可以引入合并点之前的数据,这样也就扩展了‘d’项的历史: DataFrame也有一个类似的方法update,它可以实现就地更新。如果只想填充空洞,则必须传入overwrite=False才行: 上面所讲的这些技术都可实现将数据中的符号替换为实际数据,但有时利用DataFrame的索引机制直接对列进行设置会更简单一些: 收益指数和累计收益 在金融领域中,收益(return)通常指的是某资产价格的百分比变化。一般计算两个时间点之间的累计百分比回报只需计算价格的百分比变化即可:对于其他那些派发股息的股票,要计算你在某只股票上赚了多少钱就比较复杂了。不过,这里所使用的已调整收盘价已经对拆分和股息做出了调整。不管什么样的情况,通常都会先算出一个收益指数,它是一个表示单位投资(比如1美元)收益的时间序列。 从收益指数中可以得出许多假设。例如,人们可以决定是否进行利润再投资。我们可以利用cumprod计算出一个简单的收益指数: 得到收益指数之后,计算指定时期内的累计收益就很简单了: 当然了,就这个简单的例子而言(没有股息也没有其他需要考虑的调整),上面的结果也能通过重采样聚合(这里聚合为时期)从日百分比变化中计算得出: 如果知道了股息的派发日和支付率,就可以将它们计入到每日总收益中,如下所示: 本篇文章为转载内容。原文链接:https://blog.csdn.net/geerniya/article/details/80534324。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-16 19:15:59
323
转载
Logstash
引言 在数据驱动的世界中,确保数据的准确性和完整性是至关重要的任务之一。哎呀,你知道Logstash这个家伙吗?这家伙可是个超级厉害的数据收集和预处理的能手!它就像是搭建数据处理流水线的专家,把各种各样的数据从源头捞起来,清洗得干干净净,然后送到我们需要的地方去。无论是网络流量、日志文件还是数据库里的数据,Logstash都能搞定,简直是数据处理界的多面手啊!哎呀,你知道吗?在我们真正用上这些配置的时候,如果搞错了,可能会让数据审计这事儿全盘皆输。就像你做一道菜,调料放不对,整道菜可能就毁了。这样一来,咱们做决策的时候,参考的数据就不准确了,就好像盲人摸象,摸到的只是一小块,以为这就是大象全貌呢。所以啊,配置这块得细心点,别大意了!本文旨在深入探讨Logstash配置中的常见问题以及如何避免这些问题,确保数据审计的顺利进行。 一、Logstash基础与重要性 Logstash是一个开源的数据处理管道工具,用于实时收集、解析、过滤并发送事件至各种目的地,如Elasticsearch、Kafka等。其灵活性和强大功能使其成为构建复杂数据流系统的核心组件。 二、错误类型与影响 1. 配置语法错误 不正确的JSON语法会导致Logstash无法解析配置文件,从而无法启动或运行。 2. 过滤规则错误 错误的过滤逻辑可能导致重要信息丢失或误报,影响数据分析的准确性。 3. 目标配置问题 错误的目标配置(如日志存储位置或传输协议)可能导致数据无法正确传递或存储。 4. 性能瓶颈 配置不当可能导致资源消耗过大,影响系统性能或稳定性。 三、案例分析 数据审计失败的场景 假设我们正在审计一家电商公司的用户购买行为数据,目的是识别异常交易模式。配置了如下Logstash管道: json input { beats { port => 5044 } } filter { grok { match => { "message" => "%{TIMESTAMP_ISO8601:time} %{SPACE} %{NUMBER:amount} %{SPACE} %{IPORHOST:host}" } } mutate { rename => { "amount" => "transactionAmount" } add_field => { "category" => "purchase" } } } output { elasticsearch { hosts => ["localhost:9200"] index => "purchase_data-%{+YYYY.MM.dd}" } } 在这段配置中,如果elasticsearch输出配置错误,例如将hosts配置为无效的URL或端口,那么数据将无法被正确地存储到Elasticsearch中,导致审计数据缺失。 四、避免错误的策略 1. 详细阅读文档 了解每个插件的使用方法和限制,避免常见的配置陷阱。 2. 单元测试 在部署前,对Logstash配置进行单元测试,确保所有组件都能按预期工作。 3. 代码审查 让团队成员进行代码审查,可以发现潜在的错误和优化点。 4. 使用模板和最佳实践 借鉴社区中成熟的配置模板和最佳实践,减少自定义配置时的试错成本。 5. 持续监控 部署后,持续监控Logstash的日志和系统性能,及时发现并修复可能出现的问题。 五、总结与展望 通过深入理解Logstash的工作原理和常见错误,我们可以更加有效地利用这一工具,确保数据审计流程的顺利进行。嘿,兄弟!听好了,你得记着,犯错不是啥坏事,那可是咱成长的阶梯。每次摔一跤,都是咱向成功迈进一步的机会。咱们就踏踏实实多练练手,不断调整,优化策略。这样,咱就能打造出让人心头一亮的实时数据处理系统,既高效又稳当,让别人羡慕去吧!哎呀,随着科技这艘大船的航行,未来的Logstash就像个超级多功能的瑞士军刀,越来越厉害了!它能干的事儿越来越多,改进也是一波接一波的,简直就是我们的得力助手,帮咱们轻松搞定大数据这滩浑水,让数据处理变得更简单,更高效!想象一下,未来,它能像魔术师一样,把复杂的数据问题变个无影无踪,咱们只需要坐享其成,享受数据分析的乐趣就好了!是不是超期待的?让我们一起期待Logstash在未来发挥更大的作用,推动数据驱动决策的进程。
2024-09-15 16:15:13
151
笑傲江湖
转载文章
...字符串 , 在计算机科学和数学中,回文字符串是指一个字符串,从前往后读和从后往前读完全一样。例如,在文章中的“aba”和“abccba”就是回文字符串,它们正序和逆序都相同。在该编程题中,目标是通过插入字符 a 来使得给定的字符串不再是回文字符串。 动态构造非回文字符串算法 , 这是一种程序设计策略或算法,用于处理字符串数据,特别是当任务要求在保持字符串原有部分不变的基础上,通过插入特定字符(如本题中的字符 a )以改变其原本的回文属性,使其变为非回文字符串。算法通常会涉及遍历、判断以及可能的修改操作。 ACM国际大学生程序设计竞赛(ACM-ICPC) , ACM-ICPC是一项全球范围内的高水平大学生计算机编程竞赛,由美国计算机协会(Association for Computing Machinery, ACM)主办。该竞赛旨在展示并提升大学生在算法分析、问题解决、编程技巧及团队合作等方面的能力。在文章中提到,此类竞赛经常出现与回文串相关的题目,参赛者需灵活运用算法知识来解决实际问题。 DNA序列分析 , 在生物学领域,DNA序列分析是一种研究方法,通过对生物体DNA分子进行测序和比对,了解基因组结构、功能及进化信息等。文中提及,回文结构在DNA序列中扮演着重要角色,往往与基因调控区域相关联,因此理解回文串特性对于遗传学研究具有重要意义。 加密算法 , 在密码学领域,加密算法是一种将明文信息转化为密文以确保信息安全传输和存储的方法。文中虽然没有直接介绍加密算法,但指出特定类型的回文串可以应用于构建加密算法的关键部分,说明回文串在高级密码学应用中具有一定价值。
2023-10-05 13:54:12
228
转载
转载文章
...一、建模背景及目的及数据源说明 二、描述性分析 2.1 连续自变量与连续因变量的相关性分析 2.2 二分类变量与连续变量的相关性分析 2.3 多分类变量与连续变量的相关性分析 三、模型建立与诊断 3.1 一元线形回归及模型解读 3.2 残差可视化分析 3.3 多元线性回归 一、建模背景及目的及数据源说明 本案例数据来源于常国珍等人的《Python数据科学》一书第7章中的信用卡公司客户申请信息(年龄、收入、地区等信息)以及已有开卡客户的申请信息和信用卡消费信息数据,案例希望通过对该数据的分析和建模,根据已有的开卡用户的用户信息和消费来线形回归模型,来预测未开卡用户的消费潜力。数据下载见如下链https://download.csdn.net/download/baidu_26137595/85101874 数据读入及示例: raw = pd.read_csv('./data/creditcard_exp.csv', skipinitialspace = True)raw.head() 数据字段及说明: Acc: 是否开卡, 为0说明未开卡,对应的 avg_exp 为NaN;为1说明已开卡,对应avg_exp有值 avg_exp: 月均信用卡支出 avg_exp_ln:月均信用卡支出的对熟 gender : 性别 Ownrent: 是否自有住房 Selfempl: 是否自谋职业 Income:收入 dist_home_val: 所住小区均价 w dist_avg_income: 当地人均收入 age2: 年龄的平方 high_avg: 高出当地平均收入 edu_class:教育等级,0、1、2、3 依次是小学、初中、高中、大学 二、描述性分析 首先可筛选Acc为1的数据,分别以avg_exp为因变量,其余变量为自变量进行数据探索,主要是发现自变量和因变量是否有线形关系。 raw_1 = raw[raw['Acc'] == 1] 2.1 连续自变量与连续因变量的相关性分析 首先对连续变量和目标变量进行相关性分析,因变量avg_exp为连续变量,一般可以用相关系数来看其线形相关性。 cons_vasr = ['avg_exp', 'avg_exp_ln', 'Age', 'Income', 'dist_home_val', 'dist_avg_income', 'age2', 'high_avg']raw_1[cons_vasr].corr()vg']].corr() 结果如下,可以看到收入 Income 和当地人均收入 dist_avg_income这两个变量和avg_exp月均信用卡支出有较强的相关性,同时观察自变量间的相关性可发现人均收入 Income 和当地人均收入 dist_avg_income 之间也有较强的相关性,相关系数为0.99,说明接下来我们可以把这两个变量加入模型,但要注意可能会存在多重共线性。 2.2 二分类变量与连续变量的相关性分析 分类变量和连续变量之间的相关性可以用t检验进行,接下来以是否自有住房 Ownrent 变量 和 月均收入之间进行相关性检验。首先查看Ownrent 不同取值的数量以及avg_exp均值分布情况如何: pd.pivot_table(raw_1, values = ['avg_exp'], index = ['Ownrent'], aggfunc = {'avg_exp': ['count', np.mean]}) 接着分别对 Ownrent 为0、1的 avg_exp 进行t检验: import scipy.stats as st 引入scipy.stats进行t检验 创建变量Ownrent_0 = raw_1[raw_1['Ownrent'] == 0]['avg_exp'].valuesOwnrent_1 = raw_1[raw_1['Ownrent'] == 1]['avg_exp'].valuesst.ttest_ind(Ownrent_0, Ownrent_1, equal_var = True) p值为0.01 < 0.05,可以拒绝原假设,即认为是否自有住房和月均信用卡支出是相关的。 2.3 多分类变量与连续变量的相关性分析 多分类变量和连续变量之间的相关性检验可以用多次t检验进行,但较为繁琐,用方差分析进行快速检验相关性,然后再运用多重检验查看具体是哪些处理之间存在差异。以教育水平edu_class为例进行分析,同理首先查看分布 raw_1.pivot_table(index = 'edu_class', values = ['avg_exp'], aggfunc={'avg_exp': ['count', np.mean]}) 可以看到不同教育水平之间消费水平有明显差异,接下来通过方差分析进行检验差异是否明显。 from statsmodels.stats.anova import anova_lm 引入anova_lm进行方差分析from ststsmodels.stats.formula import ols 引入ols进行线性回归建模lm = ols('avg_exp~C(edu_class)', data = raw_1).fit() C(edu_class) 将数值型的变量指定为分类型anova_lm(lm, typ = 2) 可以看到不同教育水平之间的月均消费支出之间的差异是显著的,继续用多重检验来看哪些处理之间是显著的。 from statsmodels.stats.multicomp import MultiComparison 引入MultiComparison进行tukey多重检验mc = MultiComparison(raw_1['avg_exp'],raw_1['edu_class'])tukey_result = mc.tukeyhsd(alpha = 0.5)print(tukey_result) 结果是每个处理之间因变量差异的显著性,最后一列reject都为True说明各组之间均存在显著差异。 三、模型建立与诊断 3.1 一元线性回归及模型解读 以Income为自变量,以avg_exp为因变量建立一元线形回归并对模型结果进行解释 lm_1 = ols('avg_exp ~ Income', data = raw_1).fit()print(lm_1.summary()) 首先从第一部分可以看到R^2为0.454,整个模型的F检验p值小于0.05,说明模型通过显著性检验。 其次模型结果的第二块也表明自变量和截距也通过显著性检验。 最后一部分主要是对残差进行检验,左侧Omnibus、Prob(Omnibus)主要是对偏度Skew和峰度Kurtosis进行检验,正态分布的偏度为0,峰度为3,模型的Prob(Omnibus)值为0.156大于0.05,说明不能拒绝残差符合正态分布。 右侧Durbin-Watson主要是对残差的自相关性进行检(改检验可表示为,为残差之间的相关系数),Durbin-Watson的取值范围是0-4,越接近2说明残差不存在自相关性,越接近0说明存在正相关,越接近4说明存在负相关性。 右侧Jarque-Bera (JB)、Prob(JB)是对残差正态性检验,可以用来判断残差是否符合正态分布,本案例中Prob(JB)值为0.173 > 0.05,基不能拒绝残差服从正态分布。 右侧Cond. No.是多重共线性检验,该值越大,共线性越严重。 整体上看模型虽然拟合效果没那么好,但是显著性通过了检验。接下来看一下模型具体的系数,Income的系数为97.7说明模型收入越高信用卡消费越高,是符合业务预期的。 3.2 残差可视化分析 接下来对残差进一步进行可视化分析,主要看残差是否满足以下几个假定,并尝试通过对自变量、因变量进行调整来优化模型。首先来回顾一下残差需要满足的几个假定: a.残差的要服从均值为0,方差为的正态分布; b.残差之间要相互独立 c.残差和自变量没有相关性 (1)通过残差图进行模型优化 模型avg_exp ~ Income的自变量与残差分布图、残差qq图、模型拟合情况图即自变量与因变量及其预测值的图像 lm_1 = ols('avg_exp ~ Income', data = raw_1).fit() 建模raw_1['resid_1'] = lm_1.resid 模型残差raw_1['resid_1_rank'] = raw_1['resid_1'].rank(ascending = False, pct = True) 计算残差的百分位数raw_1['pred_1'] = lm_1.predict() 添加预测值plt.figure(figsize = (20, 6)) 自变量与残差分布图ax1 = plt.subplot(131)ax1.scatter('Income', 'resid', data = raw_1)ax1.set_title('Income & resid') 残差的qq图ax2 = plt.subplot(132)stats.probplot(raw_1['resid_1_rank'], dist = 'norm', plot = ax2) 模型拟合情况图,自变量与因变量以及模型预测值ax3 = plt.subplot(133)ax3.scatter('Income', 'avg_exp', data = raw_1)ax3.plot('Income', 'pred_1', data = raw_1, color = 'red')ax3.legend()ax3.text(12, 1920, 'pred func R^2: %.2f'% lm_1.rsquared)ax3.set_title('Income & avg_exp') 从第一个自变量和残差散点图可以看出,残差基本符合对称分布,但随着自变量增大,残差也在变大,存在方差不齐的情况。第二个图残差的qq图可以看出,残差近似正态分布。第三个图可以看模型的拟合效果并不是很好,R^2只有0.45。对avg_exp取对数,能够改善预测值越大残差越大的情况,但由于只对因变量取对数导致模型不好解释,对自变量Income同时取对数,代码和以上类似,只是改变因变量和自变量形式而已,以下是残差图,可以看到残差的异方差现象被有效的抑制,并且R^2也得到了提高。 (2)通过残差图发现强影响点 仔细观察以上图像结果,左下侧有两个较为异常的数据,对模型的拟和效果有较大的影响, 对于这种影响较大的可将其进行删除并重新建模: 计算学生化残差raw_1['resid_t'] = (raw_1['resid_2'] - raw_1['resid_2'].mean())/raw_1['resid_2'].std() raw_1[abs(raw_1['resid_t']) > 2] 将残差大于2的筛选出来 将强影响点删除后,得到的结果如下,模型结果更稳定。 3.3 多元线性回归 上一篇文章有说到多重共线性会对模型产生致命的影响,用方差膨胀因子来处理的话会非常繁琐。通过正则化处理如Lasso回归,能够产生某些严格等于0的系数,从而达到变量筛选的目的。接下来以Lasso为例,首先用LassoCV来找到最优的alpha。由于statsmodels中的ols的fit_regularized方法没有很好的实现,所以用sklearn中linear_model模块来进行建模 from sklearn.preprocessing import StandardScaler sklearn进行线性回归前必须要进行标准化from sklearn.linear_model import LassoCV Lasso的交叉验证方法con_xcols = ['Age', 'Income', 'dist_home_val', 'dist_avg_income']scaler = StandardScaler()X = scaler.fit_transform(raw_1[con_xcols])y = raw_1['avg_exp_ln']lasso_alphas = np.logspace(-3, 0, 100, base = 10)lcv = LassoCV(alphas = lasso_alphas, cv = 10)lcv.fit(X, y)print('best alpha %.4f' % lcv.alpha_)print('the r-square %.4f' % lcv.score(X, y)) 接下来画出不同alpha下的岭迹图,来看alpha值对系数的影响 from sklearn.linear_model import Lassocoefs = []lasso = Lasso()for i in lasso_alphas:lasso.set_params(alpha = i)lasso.fit(X, y)coefs.append(lasso.coef_)ax = plt.gca()ax.plot(lasso_alphas, coefs)ax.set_xscale('log')ax.set_xlabel('$\\alpha$')ax.set_ylabel('coefs value') 从图中可以看到随着alpha的增大,系数不断在减小,有些系数会优先收缩为0,再继续增大时所欲系数都会为0,通过该特性从而达到变量筛选的目的。将LassoCV得到的系数打印出来,可以看到用户月均信用卡支出和当地小区均价、当地人均收入成正比,当地人均收入水平的影响更大。 以上就是线形回归在应用时的注意事项。 本篇文章为转载内容。原文链接:https://blog.csdn.net/baidu_26137595/article/details/123766191。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-23 15:52:56
106
转载
Python
...洁高效。此外,对于大数据处理或科学计算场景,NumPy库提供的ndarray对象在性能上远超Python原生列表,可以实现快速的矩阵运算和统计分析。 近期,一篇发布于“Real Python”网站的文章深入探讨了如何利用列表推导式(List Comprehensions)和生成器表达式(Generator Expressions)对列表进行复杂操作,如过滤、映射和压缩数据,从而提升代码可读性和运行效率。文章还介绍了functools模块中的reduce函数,用于对列表元素执行累积操作,如求乘积、求序列中最长连续子序列等。 另外,在实际编程实践中,掌握列表的排序、切片、连接、复制等基本操作同样至关重要。例如,使用sorted()函数或列表的sort()方法对列表进行排序;利用切片技术实现列表的部分提取或替换;通过extend()和+运算符完成列表合并等。这些操作不仅能丰富你对Python列表的理解,更能在日常开发任务中助你事半功倍。 总的来说,深入学习和熟练运用Python列表的各种特性与功能,不仅有助于数据分析和处理,更能提升代码编写质量,使程序更加简洁、高效。同时,关注Python社区的最新动态和最佳实践,将能持续拓展你的编程技能边界,紧跟时代发展步伐。
2023-10-05 18:16:18
359
算法侠
MySQL
...的基础上,进一步关注数据库性能调优和最新动态将有助于您更全面地掌握数据库管理。近期,MySQL 8.0版本对系统变量的管理进行了多项改进,例如引入了更多可动态设置的系统变量,并优化了全局变量与会话变量的处理机制,使得管理员可以根据实时负载更加灵活地调整数据库配置。 同时,针对特定场景下的系统变量调优策略也值得研究。例如,在高并发访问环境中,合理设置“innodb_buffer_pool_size”、“innodb_log_file_size”等与内存管理和事务日志相关的系统变量,可以显著提升数据库性能并降低延迟。此外,“max_connections”的设置也需要结合服务器硬件资源以及实际并发连接需求进行科学规划。 值得注意的是,随着云原生数据库服务的发展,许多云服务商提供了对MySQL系统变量自动调节的服务,如AWS RDS的参数组功能,能够根据实例类型、工作负载模式智能调整系统变量,减轻运维负担的同时确保数据库运行效率。 综上所述,不仅需要熟练掌握MySQL系统变量的查看与设置方法,更要紧跟技术发展趋势,结合实际情况及数据库最佳实践进行深度调优,以实现数据库系统的高效稳定运行。
2023-09-12 09:01:49
113
算法侠
Python
...,我们可以进一步探索数据可视化在当前科研和工业界的前沿应用。例如,近期Nature杂志的一项研究中,科学家们利用Python的Matplotlib和Seaborn库成功实现了复杂物理模型的动态可视化,生动展示了黑洞合并过程中的引力波变化特性,这一突破性成果极大地推动了天文学研究的发展。 此外,随着大数据时代的到来,数据可视化在教育领域的革新同样值得关注。例如,许多在线教育平台开始整合编程与数学教学,让学生通过编写Python代码并调用Matplotlib实时绘制函数图像,使抽象的数学概念具象化,从而提高学生对函数性质、微积分等核心知识点的理解能力。同时,这种实践性的教学方法也契合了STEM教育注重培养跨学科素养和动手实践能力的趋势。 不仅如此,在商业智能分析领域,Matplotlib与其他数据分析库如Pandas和Scikit-learn结合使用,能够帮助企业决策者快速洞察复杂数据背后的规律,直观展示销售趋势、用户行为特征等关键信息,为精准营销和战略规划提供有力支持。 综上所述,掌握Python和Matplotlib进行函数图像绘制不仅有助于数学理论的学习,更是在科学研究、教育创新及商业决策等多个领域展现出了广泛而深远的应用价值。未来,随着技术的不断迭代升级,我们有理由相信,Python的数据可视化功能将在更多场景中发挥更大的作用。
2023-10-08 22:57:22
84
算法侠
Python
...于简单数位分离,它在数据分析、人工智能以及网络爬虫等领域有着广泛的应用。 例如,在近日Google发布的TensorFlow 2.x版本中,Python作为其主要编程语言,开发者可以利用Python的高级计算特性与TensorFlow库紧密结合,实现高效率的机器学习模型构建与训练,其中就包含了大量涉及数值处理的操作。同时,Pandas库作为Python数据分析的重要工具,也频繁使用到类似的数学运算来清洗、整理和分析数据集。 此外,Python在网络爬虫领域同样大放异彩,如Scrapy框架中,开发者可通过Python灵活的数学运算对抓取的大量数字信息进行实时处理和格式转换,从而满足特定的业务需求。 进一步地,对于更复杂的数学问题,例如数值分析、科学计算等,Python有诸如NumPy、SciPy等强大的第三方库支持,它们不仅能高效处理数组和矩阵运算,还能解决线性代数、微积分等问题,展现了Python在数学计算领域的强大实力。 因此,掌握Python的数学计算技巧并结合相关库的运用,将极大地提升我们在数据分析、AI开发以及网络爬虫等现代技术领域的实战能力,为应对复杂多变的数据挑战提供有力的支持。
2023-04-20 12:09:22
42
软件工程师
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
mount /dev/sda1 /mnt
- 挂载设备到指定目录。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"