前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[基于Nodejs的Docker镜像构建 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Docker
序号: 一、什么是Docker Docker 是一种轻量级的容器化平台,它可以帮助开发者更方便地构建、部署和运行应用。 Docker 之所以被称为容器化平台,是因为它可以将应用及其相关依赖项打包成一个容器,这个容器可以在不同的环境中运行,而无需担心底层操作系统的差异。 例如,在本地开发时,我们通常会安装所有必要的依赖项,并且配置环境变量,以便应用能够正确运行。然而,当你准备把应用推到生产环境这个“战场”时,可得琢磨琢磨许多其他的要素,比如说安全性、性能表现、还有能不能随需求灵活扩展这些个问题。这时,Docker就可以派上用场了。 Docker 可以将应用及其依赖项打包成一个容器,这个容器包含了应用所需的所有内容,包括操作系统、环境变量、配置文件等。这样一来,甭管你在哪个环境下运行,只要手头有个 Docker 容器,就能稳稳当当地保证应用的稳定性和一致性,就像你走到哪都能带着自己的小宇宙一样,随时随地给你提供稳定可靠的表现。 二、Docker的工作原理 Docker 的工作原理主要有两个方面: 1.镜像 Docker 使用镜像作为基础环境,镜像是一个只读的数据层,其中包含了一切构建应用所需的文件和设置。我们可以从官方仓库下载已有的镜像,也可以自己创建自己的镜像。 例如,我们可以从官方仓库下载一个基于 Ubuntu 的镜像,然后在这个基础上安装 Node.js 和 MongoDB: bash 在终端中执行以下命令 docker pull ubuntu 登录 Docker 框架 docker run -it ubuntu /bin/bash 安装 Node.js apt-get update && apt-get install -y nodejs 安装 MongoDB apt-get install -y mongodb-org 这样就创建了一个包含了 Node.js 和 MongoDB 的 Docker 镜像。 2.容器 当我们有了一个镜像后,就可以创建一个容器了。容器就像是Docker里实实在在跑应用的小天地,它就像乐高积木一样,可以从一个镜像构建出来。你随时可以对这个小天地进行启动、暂停、重启等各种操作,就像你在现实生活中管理你的小天地一样灵活自如。 例如,我们可以从刚刚创建的镜像创建一个新的容器: bash 创建一个新的容器 docker create --name my-container -p 8080:8080 -v /host/path:/container/path my-image-name 这样就创建了一个名为 my-container 的容器,该容器从 my-image-name 镜像创建而来,并且将主机上的 /host/path 映射到了容器中的 /container/path 目录上。 三、Docker的优势 使用 Docker 可以带来许多优势: 1.快速开发和部署 使用 Docker 可以快速地构建、测试和部署应用,因为它提供了一个一致性的环境,避免了在不同环境中可能出现的问题。 2.节省资源 使用 Docker 可以节省大量的资源,因为每个容器都是独立的,它们不会共享宿主机的资源。 3.提高可靠性 使用 Docker 可以提高应用的可靠性,因为每个容器都是独立的,即使某个容器崩溃,也不会影响其他容器。 四、总结 总的来说,Docker 是一种轻量级的容器化平台,它可以将应用及其相关依赖项打包成一个容器,这个容器可以在不同的环境中运行,而无需担心底层操作系统的差异。使用 Docker 可以带来许多优势,包括快速开发和部署、节省资源、提高可靠性等。 我是一个 AI,但我希望能为你提供有用的文章。嘿,我真心希望通过这篇文章,你能对Docker有个更接地气、更透彻的理解。要是你脑袋里蹦出了任何疑问或者困惑,别犹豫,就像和朋友聊天那样,随时向我抛过来吧!
2023-08-13 11:28:22
537
落叶归根_t
Docker
Docker , Docker是一种开源的应用容器引擎,它通过容器技术将应用程序及其依赖项打包在一起,形成可移植、轻量级的独立运行环境。在本文上下文中,用户可以使用Docker来实现应用程序的一键部署和运行,确保在不同环境中都能获得一致的行为表现。 容器 , 容器是一种操作系统级别的虚拟化技术,每个容器都包含一个完整的运行时环境(如库、配置文件等),可以在任何支持Docker的系统上运行,彼此之间互不影响且资源隔离。在Docker中,容器是基于镜像创建的,用于封装应用服务,确保其在开发、测试和生产环境中的无缝迁移与一致性。 apt-get , apt-get是一个在Debian、Ubuntu等基于Debian的Linux发行版中广泛使用的包管理工具,它可以自动处理软件包之间的依赖关系,并提供安装、更新、卸载软件包等功能。在本文中,用户通过运行特定的apt-get命令来卸载和安装Docker及相关组件。 systemctl , systemctl是Systemd系统和服务管理器的一部分,用于管理系统上的各项服务。在本文的上下文中,用户通过执行“sudo systemctl stop docker”命令停止Docker服务,这是在卸载Docker前必须进行的关键步骤之一,确保系统中与Docker相关的所有进程和服务已完全关闭。 Docker Engine , Docker Engine是Docker的核心组件,它负责管理和运行Docker容器,包括构建、运行、分发和编排容器等操作。在文章中提到的“sudo apt-get remove docker-engine”命令即用于从系统中移除Docker Engine软件包,完成Docker的彻底卸载。 Docker.io , Docker.io是Debian和Ubuntu系统中Docker的一个早期软件包名称,用于安装Docker。现在虽然官方推荐使用\ Docker Engine\ 或\ Docker Community Edition\ 这样的名称,但在某些旧版本或特定场景下,仍然可以通过安装docker.io来获取Docker功能。 hello-world , 在Docker语境中,“hello-world”是一个基础的Docker镜像,通常用于验证Docker是否正确安装并能够成功运行容器。当用户执行“sudo docker run hello-world”命令后,如果能输出相应的问候信息,则说明Docker已经成功挂载并在系统上运行正常。
2023-03-16 09:08:54
561
编程狂人
转载文章
... 快速参考 维护者:Docker 社区和 MySQL 团队 从哪里获得帮助:Docker 社区论坛、Docker 社区 Slack 或 Stack Overflow 2.2. 支持的标签和各自的 Dockerfile 链接 8.0.28, 8.0, 8, latest 5.7.37, 5.7, 5 2.3. 快速参考(续) 在哪里提交问题:https://github.com/docker-library/mysql/issues 支持的架构:(更多信息)amd64 发布的镜像工件详情:repo-info repo 的 repos/mysql/ 目录(历史)(镜像元数据、传输大小等) 镜像更新:official-images repo 的 library/mysql 标签 官方图像 repo 的库/mysql 文件(历史) 此描述的来源:docs repo 的 mysql/ 目录(历史) 2.4. 如何使用镜像 2.4.1. 启动一个mysql服务器实例 启动 MySQL 实例很简单: $ docker run --name some-mysql -e MYSQL_ROOT_PASSWORD=my-secret-pw -d mysql:tag 其中 some-mysql 是您要分配给容器的名称, my-secret-pw 是要为 MySQL root 用户设置的密码,而 tag 是指定您想要的 MySQL 版本的标签。 有关相关标签,请参见上面的列表。 以下是示例(通常要设置时区),注意-v 这里是挂载磁盘,请提前创建目录/var/mysql/data,/var/lib/mysql是容器里的原持久化目录: docker run --name mysql202201 -e MYSQL_ROOT_PASSWORD=123456 -e TZ=Asia/Shanghai -v /var/mysql/data:/var/lib/mysql -d mysql:5.7 2.4.2. 从 MySQL 命令行客户端连接到 MySQL 以下命令启动另一个 mysql 容器实例并针对您的原始 mysql 容器运行 mysql 命令行客户端,允许您针对您的数据库实例执行 SQL 语句: $ docker run -it --network some-network --rm mysql mysql -hsome-mysql -uexample-user -p 其中 some-mysql 是原始 mysql 容器的名称(连接到 some-network Docker 网络)。 此镜像也可以用作非 Docker 或远程实例的客户端: $ docker run -it --rm mysql mysql -hsome.mysql.host -usome-mysql-user -p 有关 MySQL 命令行客户端的更多信息,请参阅 MySQL 文档。 2.4.3. 容器外访问和查看 MySQL 日志 docker exec 命令允许您在 Docker 容器内运行命令。 以下命令行将为您提供 mysql 容器内的 bash shell: $ docker exec -it some-mysql bash 第一次启动一个MySQL容器后,需要对账户进行授权,否则无法远程访问,请先使用上面的命令进入容器内,然后使用以下命令连接到mysql服务: mysql -uroot -p 输入密码回车,进入mysql命令界面mysql> 接着授权root远程访问权限: mysql> GRANT ALL PRIVILEGES ON . TO 'root'@'%' IDENTIFIED BY '123456'; 然后就可以远程用MySQL客户端连接到MySQL容器了。 日志可通过 Docker 的容器日志获得: $ docker logs some-mysql 2.4.4. 使用自定义 MySQL 配置文件 MySQL 的默认配置可以在 /etc/mysql/my.cnf 中找到,其中可能包含额外的目录,例如 /etc/mysql/conf.d 或 /etc/mysql/mysql.conf.d。 请检查 mysql 映像本身中的相关文件和目录以获取更多详细信息。 如果 /my/custom/config-file.cnf 是你的自定义配置文件的路径和名称,你可以这样启动你的 mysql 容器(注意这个命令只使用了自定义配置文件的目录路径): $ docker run --name some-mysql -v /my/custom:/etc/mysql/conf.d -e MYSQL_ROOT_PASSWORD=my-secret-pw -d mysql:tag 这将启动一个新容器 some-mysql,其中 MySQL 实例使用来自 /etc/mysql/my.cnf 和 /etc/mysql/conf.d/config-file.cnf 的组合启动设置,后者的设置优先 . 没有 cnf 文件的配置 许多配置选项可以作为标志传递给 mysqld。 这将使您可以灵活地自定义容器,而无需 cnf 文件。 例如,如果要将所有表的默认编码和排序规则更改为使用 UTF-8 (utf8mb4),只需运行以下命令: $ docker run --name some-mysql -e MYSQL_ROOT_PASSWORD=my-secret-pw -d mysql:tag --character-set-server=utf8mb4 --collation-server=utf8mb4_unicode_ci 如果您想查看可用选项的完整列表,只需运行: $ docker run -it --rm mysql:tag --verbose --help 2.4.5. 环境变量 启动 mysql 镜像时,可以通过在 docker run 命令行中传递一个或多个环境变量来调整 MySQL 实例的配置。 请注意,如果您使用已包含数据库的数据目录启动容器,则以下任何变量都不会产生任何影响:任何预先存在的数据库在容器启动时将始终保持不变。 另请参阅 https://dev.mysql.com/doc/refman/5.7/en/environment-variables.html 以获取 MySQL 的环境变量的文档(尤其是 MYSQL_HOST 等变量,已知与此镜像一起使用时会导致问题)。 MYSQL_ROOT_PASSWORD 此变量是必需的,并指定将为 MySQL root 超级用户帐户设置的密码。 在上面的示例中,它被设置为 my-secret-pw。 MYSQL_DATABASE 此变量是可选的,允许您指定要在映像启动时创建的数据库的名称。 如果提供了用户/密码(见下文),则该用户将被授予对此数据库的超级用户访问权限(对应于 GRANT ALL)。 MYSQL_USER、MYSQL_PASSWORD 这些变量是可选的,用于创建新用户和设置该用户的密码。 该用户将被授予对 MYSQL_DATABASE 变量指定的数据库的超级用户权限(见上文)。 要创建用户,这两个变量都是必需的。 请注意,不需要使用此机制来创建超级用户超级用户,默认情况下会使用 MYSQL_ROOT_PASSWORD 变量指定的密码创建该用户。 MYSQL_ALLOW_EMPTY_PASSWORD 这是一个可选变量。 设置为非空值,例如 yes,以允许使用 root 用户的空白密码启动容器。 注意:除非您真的知道自己在做什么,否则不建议将此变量设置为 yes,因为这将使您的 MySQL 实例完全不受保护,从而允许任何人获得完全的超级用户访问权限。 MYSQL_RANDOM_ROOT_PASSWORD 这是一个可选变量。 设置为非空值,如 yes,为 root 用户生成随机初始密码(使用 pwgen)。 生成的根密码将打印到标准输出(生成的根密码:…)。 MYSQL_ONETIME_PASSWORD 一旦初始化完成,将 root(不是 MYSQL_USER 中指定的用户!)用户设置为过期,强制在第一次登录时更改密码。 任何非空值都将激活此设置。 注意:此功能仅在 MySQL 5.6+ 上受支持。 在 MySQL 5.5 上使用此选项将在初始化期间引发适当的错误。 MYSQL_INITDB_SKIP_TZINFO 默认情况下,入口点脚本会自动加载 CONVERT_TZ() 函数所需的时区数据。 如果不需要,任何非空值都会禁用时区加载。 2.4.6. Docker Secrets 作为通过环境变量传递敏感信息的替代方法,_FILE 可以附加到先前列出的环境变量中,从而导致初始化脚本从容器中存在的文件中加载这些变量的值。 特别是,这可用于从存储在 /run/secrets/<secret_name> 文件中的 Docker 机密中加载密码。 例如: $ docker run --name some-mysql -e MYSQL_ROOT_PASSWORD_FILE=/run/secrets/mysql-root -d mysql:tag 目前,这仅支持 MYSQL_ROOT_PASSWORD、MYSQL_ROOT_HOST、MYSQL_DATABASE、MYSQL_USER和 MYSQL_PASSWORD。 2.4.7. 初始化一个新实例 首次启动容器时,将使用提供的配置变量创建并初始化具有指定名称的新数据库。 此外,它将执行 /docker-entrypoint-initdb.d 中的扩展名为 .sh、.sql 和 .sql.gz 的文件。 文件将按字母顺序执行。 您可以通过将 SQL 转储安装到该目录并提供带有贡献数据的自定义镜像来轻松填充您的 mysql 服务。 SQL 文件将默认导入到 MYSQL_DATABASE 变量指定的数据库中。 2.5. 注意事项 2.5.1. 在哪里存储数据 重要提示:有几种方法可以存储在 Docker 容器中运行的应用程序使用的数据。 我们鼓励 mysql 映像的用户熟悉可用的选项,包括: 让 Docker 通过使用自己的内部卷管理将数据库文件写入主机系统上的磁盘来管理数据库数据的存储。 这是默认设置,对用户来说简单且相当透明。 缺点是对于直接在主机系统(即外部容器)上运行的工具和应用程序,可能很难找到这些文件。 在主机系统(容器外部)上创建一个数据目录,并将其挂载到容器内部可见的目录。 这会将数据库文件放置在主机系统上的已知位置,并使主机系统上的工具和应用程序可以轻松访问这些文件。 缺点是用户需要确保目录存在,例如主机系统上的目录权限和其他安全机制设置正确。 Docker 文档是了解不同存储选项和变体的一个很好的起点,并且有多个博客和论坛帖子在该领域讨论和提供建议。 我们将在这里简单地展示上面后一个选项的基本过程: 在主机系统上的合适卷上创建数据目录,例如 /my/own/datadir。 像这样启动你的 mysql 容器: $ docker run --name some-mysql -v /my/own/datadir:/var/lib/mysql -e MYSQL_ROOT_PASSWORD=my-secret-pw -d mysql:tag 命令的 -v /my/own/datadir:/var/lib/mysql 部分将底层主机系统中的 /my/own/datadir 目录挂载为容器内的 /var/lib/mysql ,默认情况下 MySQL 将 写入其数据文件。 2.5.2. 在 MySQL 初始化完成之前没有连接 如果容器启动时没有初始化数据库,则会创建一个默认数据库。 虽然这是预期的行为,但这意味着在初始化完成之前它不会接受传入的连接。 在使用同时启动多个容器的自动化工具(例如 docker-compose)时,这可能会导致问题。 如果您尝试连接到 MySQL 的应用程序没有处理 MySQL 停机时间或等待 MySQL 正常启动,那么在服务启动之前放置一个连接重试循环可能是必要的。 有关官方图像中此类实现的示例,请参阅 WordPress 或 Bonita。 2.5.3. 针对现有数据库的使用 如果您使用已经包含数据库的数据目录(特别是 mysql 子目录)启动 mysql 容器实例,则应该从运行命令行中省略 $MYSQL_ROOT_PASSWORD 变量; 在任何情况下都将被忽略,并且不会以任何方式更改预先存在的数据库。 2.5.4. 以任意用户身份运行 如果你知道你的目录的权限已经被适当地设置了(例如对一个现有的数据库运行,如上所述)或者你需要使用特定的 UID/GID 运行 mysqld,那么可以使用 --user 调用这个镜像设置为任何值(root/0 除外)以实现所需的访问/配置: $ mkdir data$ ls -lnd datadrwxr-xr-x 2 1000 1000 4096 Aug 27 15:54 data$ docker run -v "$PWD/data":/var/lib/mysql --user 1000:1000 --name some-mysql -e MYSQL_ROOT_PASSWORD=my-secret-pw -d mysql:tag 2.5.5. 创建数据库转储 大多数普通工具都可以工作,尽管在某些情况下它们的使用可能有点复杂,以确保它们可以访问 mysqld 服务器。 确保这一点的一种简单方法是使用 docker exec 并从同一容器运行该工具,类似于以下内容: $ docker exec some-mysql sh -c 'exec mysqldump --all-databases -uroot -p"$MYSQL_ROOT_PASSWORD"' > /some/path/on/your/host/all-databases.sql 2.5.6. 从转储文件恢复数据 用于恢复数据。 您可以使用带有 -i 标志的 docker exec 命令,类似于以下内容: $ docker exec -i some-mysql sh -c 'exec mysql -uroot -p"$MYSQL_ROOT_PASSWORD"' < /some/path/on/your/host/all-databases.sql 备注 docker安装完MySQL,后面就是MySQL容器在跑,基本上就是当MySQL服务去操作,以前MySQL怎么做现在还是一样怎么做,只是个别操作因为docker包了一层,麻烦一点。 有需要的话,我们也可以基于MySQL官方镜像去定制我们自己的镜像,就比如主从镜像之类的。 本篇文章为转载内容。原文链接:https://blog.csdn.net/muluo7fen/article/details/122731852。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-29 17:31:06
101
转载
Docker
Docker , Docker是一种开源的应用容器引擎,它通过将应用程序及其依赖项打包在轻量级可执行容器中,实现应用的便捷部署、运行和迁移。在本文上下文中,Docker被用于为团队搭建统一且易于管理的开发环境,以及部署和运行应用程序。通过创建Docker镜像和容器,团队成员可以快速复现一致的开发环境,并简化部署流程,从而提高协作效率和软件交付质量。 Dockerfile , Dockerfile是一个文本文件,包含了一系列用于构建Docker镜像的指令集合。在文章的具体示例中,Dockerfile定义了基于Node.js 14-alpine镜像的基础环境,设置了工作目录,复制并安装项目所需的package.json文件及依赖,然后将项目源代码复制到镜像中,并暴露3000端口以供服务访问,最后指定启动命令为npm start。通过执行docker build命令,Docker会根据Dockerfile中的指令逐行构建出一个定制化的Docker镜像。 Docker Compose , Docker Compose是Docker提供的一款工具,用于对多个Docker容器进行定义和编排,实现容器化应用的生命周期管理。在团队协作场景下,Docker Compose通过配置文件(如docker-compose.yml)来描述多容器应用程序的服务、网络和数据卷等组件间的依赖关系。用户只需通过一条简单的docker-compose up命令,即可一次性启动、停止或重启所有相关的服务容器,极大地简化了复杂微服务架构下的环境搭建和维护工作,增强了团队开发与协作的便利性。
2023-08-21 13:49:56
559
编程狂人
Docker
...术也得到了普遍应用。Docker作为容器技术的典型,已经成为了构建和部署应用程序的常用手段之一。它可以提供一种轻量级的解决办法,将应用和它们的依赖项封装到一个可移动的容器中,并在不同的环境下执行。这篇文章将介绍如何运用Docker整合应用程序。 第一步是装置Docker。在Linux或Mac系统上执行以下命令: curl -fsSL https://get.docker.com -o get-docker.sh sudo sh get-docker.sh 在Windows上,需要从官网下载装置包并进行装置。装置完成后,可以执行以下命令查看版本: docker version 接下来,需要将应用程序封装为Docker镜像。Docker镜像是一个只读的文件,它包括了执行应用程序所需要的所有文件及设定。可以运用Dockerfile来规定镜像构建步骤。在文件系统中新建一个Dockerfile文件,然后编写以下内容: FROM ubuntu:latest RUN apt-get update RUN apt-get install -y python3 RUN apt-get install -y python3-pip WORKDIR /app COPY requirements.txt /app RUN pip3 install -r requirements.txt COPY . /app CMD ["python3", "app.py"] 这个Dockerfile的作用是:运用最新版本的Ubuntu作为基础镜像,然后装置Python3和pip包管理器。我们的程序源码位于/app目录下,所以我们将运行目录设置为/app。接下来,我们将应用程序的依赖项列表存储于requirements.txt文件中,并装置这些依赖项。最后,我们拷贝整个程序源码到/app目录下,并规定了应用程序的启动指令。 当我们构建这个Docker镜像时,会执行上述Dockerfile中的指令,生成包括应用程序及其依赖项的镜像。运用以下命令来创建镜像: docker build -t myapp . 其中,“myapp”是我们为此镜像赋予的名字,点号表示运用当前目录中的Dockerfile文件。 现在,我们可以在Docker容器中执行我们的应用程序了。运用以下命令来启动容器: docker run -d -p 5000:5000 myapp 其中,“-d”选项表示在后台执行容器,“-p”选项是将容器的5000端口连接至主机的5000端口。这意味着我们可以在本地浏览器中打开http://localhost:5000来访问应用程序了。 这就是运用Docker整合应用程序的基本过程,它可以简化应用程序的构建和部署过程,提高开发效率。
2023-05-14 18:00:01
553
软件工程师
Docker
...想告诉你一个好消息:Docker可以解决这些问题。 Docker是一个开源的应用容器引擎,它允许开发者打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化。让我们一起开始学习如何安装和使用Docker吧! 二、Docker的基本概念 在我们深入学习Docker之前,我们需要先理解一些基本的概念。首先,Docker镜像可不得了,它超级轻巧、灵活便携,而且是个全能自给自足的小型运行环境容器。这些镜像,你可以随意选择从仓库直接下载,或者更 DIY 一点,通过 Dockerfile 自己动手打造! 接下来,我们来了解下Dockerfile是什么。Dockerfile,你可把它想象成一本菜谱,里面密密麻麻记录了一连串神奇的指令。这些指令啊,就像是做一道道工序,一步步告诉你如何从零开始,精心打造出一个完整的Docker镜像。当你准备动手构建一个新的Docker镜像时,完全可以告诉Docker那个藏着构建秘籍的Dockerfile在哪儿,然后Docker就会超级听话地根据这个文件一步步自动搭建出你的新镜像来。 最后,我们要知道Docker容器。Docker容器是在宿主机(主机)上运行的独立的进程空间。每个容器都有自己的文件系统,网络,端口映射等特性。 三、Docker的安装步骤 1. 更新操作系统的软件源列表 在Ubuntu上,可以通过以下命令更新软件源列表: bash sudo apt-get update 2. 安装Docker Ubuntu用户可以在终端中输入以下命令安装Docker: bash sudo apt-get install docker-ce docker-ce-cli containerd.io 3. 启动Docker服务并设置开机启动 在Ubuntu上,可以执行以下命令启动Docker服务,并设置为开机启动: bash sudo systemctl start docker sudo systemctl enable docker 4. 验证Docker的安装 你可以使用以下命令验证Docker的安装: bash docker run hello-world 5. 设置Docker加速器 如果你在中国,为了提高Docker镜像下载速度,可以设置Docker加速器。首先,需要在Docker官网注册账号,然后复制加速器的地址。在终端中,输入以下命令添加加速器: bash docker pull --registry-username= --registry-password= registry.cn-shanghai.aliyuncs.com/: 将、、和替换为你自己的信息。 四、使用Docker的基本命令 现在,我们已经完成了Docker的安装,接下来让我们一起学习一些基本的Docker命令吧! 1. 查看Docker版本 bash docker version 2. 显示正在运行的容器 bash docker ps 3. 列出所有的镜像 bash docker images 4. 创建一个新的Docker镜像 bash docker build -t . 5. 运行一个Docker容器 bash docker run -it 6. 查看所有容器的日志 bash docker logs 五、总结 总的来说,Docker是一个非常强大的工具,可以帮助我们更高效地管理我们的应用程序。通过本篇文章的学习,我相信你对Docker已经有了初步的理解。希望你以后不论是上班摸鱼,还是下班享受生活,都能更溜地用上Docker这个神器,让效率嗖嗖往上升。
2023-02-21 20:40:21
477
星河万里-t
Docker
Docker , Docker是一种开源的应用容器引擎,它通过将应用程序及其依赖项打包在可移植的容器中,实现了软件开发、打包和部署的一致性环境。在本文中,Docker作为一种容器化平台,使得用户能够在单一主机上运行多个相互隔离的应用程序,并能够方便地管理和优化服务器资源。 容器 , 在Docker环境下,容器是一种轻量级的虚拟化技术实现,每个容器包含一个应用程序及其所有依赖(如库、配置文件等),并在主机操作系统上以隔离的方式运行。容器与宿主机共享内核,但拥有独立的用户空间,从而实现高效、快速且资源占用少的应用部署和运行环境。 Docker run命令 , docker run是Docker CLI(命令行界面)中的一个核心命令,用于创建并启动一个新的Docker容器。当执行该命令时,用户可以指定容器使用的镜像、容器运行时的配置选项以及命名容器等信息。例如,在文中提到的docker run --name my-container docker-image命令,就是用来基于特定的docker-image创建并启动一个名为my-container的新容器。
2023-07-24 13:07:20
782
软件工程师
Docker
Docker , Docker是一种开源的应用容器引擎,它通过将应用程序及其依赖环境打包在轻量级的、可移植的容器中,实现了应用的快速部署、运行和扩展。在本文语境下,Docker被用来创建一个独立且隔离的操作系统层,用户可以在其中放入文件夹,并基于此构建和运行应用程序。 Dockerfile , Dockerfile是一个文本文件,用于定义如何构建一个Docker镜像。在Dockerfile中,用户可以编写一系列指令,如设置基础镜像、复制文件、运行命令等,这些指令会在执行docker build命令时按照顺序逐行解析并执行,最终生成一个新的定制化Docker镜像。文中提到的Dockerfile使用了COPY指令,将本地的myfolder文件夹复制到新构建的Docker容器内部。 Docker容器 , Docker容器是Docker技术的核心概念,它是基于镜像运行的应用实例。每个容器都包含了运行一个应用所需的所有内容(代码、运行时、库、环境变量等),并且与宿主机和其他容器之间相互隔离。在本文的具体场景中,我们通过Dockerfile创建了一个新的Docker镜像,并使用docker run命令启动了一个基于该镜像的新容器,在这个容器内部,我们成功地将本地的myfolder文件夹复制了过来。
2023-11-22 11:10:48
520
键盘勇士
Docker
Docker , Docker是一种开源的应用容器引擎,它使用操作系统级的虚拟化技术为应用程序创建轻量级、可移植且隔离的运行环境。在文中,Docker通过将应用程序及其所有依赖项打包成一个容器镜像,使得开发者可以便捷地构建、部署和运行应用,同时确保了跨开发、测试和生产环境的一致性。 容器 , 在Docker中,容器是一个独立运行的软件单元,它可以包含一个或多个进程。容器基于Linux内核的命名空间、控制组以及其他一些Linux特性实现资源隔离和限制,从而形成一个与主机和其他容器相隔离的运行时环境。相较于传统的虚拟机,容器更为轻量,启动更快,并能更高效地共享主机的操作系统内核。 端口映射 , 端口映射是网络连接管理中的一个重要概念,在Docker环境下尤为关键。当需要从宿主机或其他外部网络访问容器内部运行的服务时,可以通过端口映射将容器内的服务端口与宿主机的某个端口建立关联。例如,文中提到的docker run -p 8080:80 nginx命令就是将Nginx容器的80端口映射到宿主机的8080端口,这样外部客户端就可以通过访问宿主机的8080端口来访问到Nginx服务器提供的服务。
2023-06-15 13:54:04
280
编程狂人
Docker
Docker , Docker是一款开源的应用容器引擎,它使用容器化技术将应用程序及其依赖项打包在一起,形成一个可移植、自包含的软件单元。在不同的操作系统和环境下,Docker容器可以确保应用的一致性运行,极大地提高了开发、测试和部署的效率与灵活性。 Docker镜像 , Docker镜像是创建Docker容器的基础,是一个只读模板,包含了运行某个软件服务所需的所有文件系统结构、环境变量以及配置信息。在本文中,“liumiaocn/thunder-linux”就是一个迅雷的Docker镜像,通过docker pull命令从Docker Hub仓库下载到本地,然后基于此镜像启动迅雷的Docker容器。 数据卷挂载(-v 参数) , 在Docker中,数据卷是宿主机和容器之间共享数据的一种方式。通过 -v 参数可以在启动容器时指定宿主机目录与容器内部目录的映射关系,使得容器内产生的数据能够持久化存储在宿主机上。在本文的具体场景下,使用 -v $ HOME /Downloads:/root/Downloads 将主机用户的下载目录挂载到容器的根用户下载目录,这样迅雷在容器内下载的文件就可以直接保存在主机的 ~/Downloads 目录下,方便用户在宿主机层面访问和管理这些文件。 X11服务器 (DISPLAY) , X11是一个用于Unix和类Unix系统图形界面显示的网络协议。在Docker容器中运行需要图形界面的应用程序时,通常需要将容器连接到宿主机的X11服务器,以便在宿主机上显示应用程序窗口。在文章中,通过 -e DISPLAY=$DISPLAY 和 -v /tmp/.X11-unix:/tmp/.X11-unix 参数设置,实现了迅雷这个图形界面应用在Docker容器内运行时,其界面能正确显示在宿主机桌面上的功能。
2023-01-28 13:49:08
526
程序媛
Docker
Docker , Docker是一个开源的应用容器引擎,它通过容器化技术将应用程序及其依赖环境打包成一个可移植、自包含的镜像,能够在不同的Linux操作系统上以一致的方式运行。在本文中,用户通过手动输入Docker命令来管理(如创建、启动、停止和进入容器)这些容器。 Docker Hub , Docker Hub是Docker官方提供的镜像仓库服务,类似于软件应用商店,其中包含了大量由社区和官方发布的预构建Docker镜像。用户可以通过docker pull命令从Docker Hub下载所需的镜像,以便快速部署和运行各种应用程序或服务。 容器 , 在Docker环境下,容器是一种轻量级、独立运行的一组进程,它们与主机和其他容器共享内核,但每个容器拥有自己独立的文件系统、网络配置和资源限制。容器提供了隔离且一致的运行环境,使得应用程序可以在不同环境中实现无缝迁移和快速部署。 端口映射 , 端口映射是在Docker容器与宿主机之间建立的一种网络通信机制,通过-p选项在docker run命令中指定。例如,-p 80:80表示将宿主机的80端口与容器内部的80端口进行映射,这样外部客户端可以通过访问宿主机的80端口来与容器内的服务进行通信。 Docker Compose , 尽管文章没有直接提到,但它是Docker生态中的一个重要工具,用于定义和运行多容器应用程序。通过编写一个YAML格式的docker-compose.yml文件,可以轻松地定义一组相关联的服务以及它们之间的依赖关系,然后使用一条命令来启动和协调所有容器的生命周期。 Kubernetes(简称K8s) , 虽然在给出的文章摘要中未详细阐述,但在现代云原生架构中,Kubernetes是一个流行的开源容器编排系统,它可以自动化容器应用的部署、扩展和管理。在文中提及的新版Docker优化了与Kubernetes的集成体验,意味着用户能够更加便捷地将基于Docker的容器部署到Kubernetes集群中,实现大规模容器集群的高效管理和调度。
2023-03-26 21:05:17
324
软件工程师
Docker
Docker , Docker是一种开源的应用容器引擎技术,它通过操作系统级别的虚拟化方式,将应用程序及其依赖环境封装在轻量级的、可移植的容器中。这些容器能够在不同基础设施之间无缝运行,实现应用的快速部署、扩展和版本管理。每个Docker容器都是一个独立的运行时环境,基于只读的Docker镜像创建,并且可以配置资源限制、网络设置以及存储卷等。 Docker镜像 , Docker镜像是创建Docker容器的基础模板,是一个包含应用程序及其所有依赖组件(包括操作系统层)的静态文件集合。镜像以层级结构保存,遵循可复用原则,允许开发人员构建分层的、模块化的软件交付物。在Docker中,用户可以通过编写Dockerfile来定义镜像的具体构建过程,然后使用docker build命令生成新的镜像。 Docker Compose , Docker Compose是一款用于定义和运行多容器Docker应用程序的工具,它通过一个名为docker-compose.yml的YAML文件来描述多个容器服务、网络及数据卷等组件间的依赖关系和服务配置。借助Docker Compose,开发者能够简化多容器应用的部署与管理,轻松地在一个命令下启动、停止或重新配置整个应用栈,极大地提升了开发效率和生产力。例如,在docker-compose.yml文件中,可以定义web服务器容器和数据库容器,并配置它们之间的网络连接、端口映射和环境变量等信息。
2024-01-21 17:25:00
424
电脑达人
Docker
Docker , Docker是一种开源的应用容器引擎,通过容器化技术实现软件的标准化打包、分发和部署。在文中,Docker被用于将SpringBoot应用及其依赖环境封装在一个轻量级、可移植的容器中,使得开发、测试和部署流程更为便捷高效。 Nginx反向代理 , Nginx是一个高性能的HTTP和反向代理服务器,能够处理大量并发连接。在本文场景下,Nginx作为反向代理服务器,其功能是接收来自客户端的HTTP请求,并根据配置将这些请求转发到内部运行的多个SpringBoot应用实例上,同时对外提供统一的服务入口和负载均衡能力。 SpringBoot应用 , SpringBoot是由Pivotal公司提供的一个基于Java的开源框架,用于简化Spring应用程序的初始搭建以及开发过程。它内嵌了Tomcat等Web容器,允许开发者快速构建独立运行、生产级别的基于Spring框架的应用程序。在本文中,SpringBoot应用指的是开发者使用SpringBoot框架开发并需要通过Docker和Nginx进行部署管理的Web服务。
2024-01-24 15:58:35
617
柳暗花明又一村_t
Docker
Dockerfile编写指南:从入门到实践 1. 引言 理解Docker与Dockerfile的重要性 在数字化转型的浪潮中,Docker作为一款强大的容器化技术工具,为软件开发、测试和部署带来了革命性的改变。Dockerfile,这个家伙可是构建Docker镜像的关键“配方”,你就把它想象成一本烹饪手册,一步步手把手教Docker怎么捣鼓出一个既精确又可重复利用的应用环境。今天,咱们就一起唠唠这个超级神奇的“菜谱”——Dockerfile的编写秘籍吧! 2. Dockerfile基础 搭建你的第一个Docker镜像 首先,让我们通过一个简单的示例来揭开Dockerfile的神秘面纱: dockerfile 这是一个最基础的Dockerfile模板 FROM ubuntu:latest 我们基于最新的Ubuntu镜像开始构建 RUN apt-get update && apt-get install -y curl 在镜像内安装curl命令 CMD ["curl", "https://www.docker.com"] 设置默认启动时运行的命令 在这个例子中,我们执行了三个基本操作: - FROM 指令指定了基础镜像。 - RUN 指令用于在新创建的镜像中执行命令并提交结果。 - CMD 指令设置了容器启动后的默认执行命令。 3. Dockerfile进阶 深入理解和使用指令 3.1 COPY与ADD指令 当我们需要将宿主机的文件复制到镜像内部时,可以使用COPY或ADD指令: dockerfile COPY . /app 将当前目录下的所有内容复制到镜像的/app目录下 ADD requirements.txt /app/ 添加特定文件到镜像指定位置,并支持自动解压tar归档文件 3.2 ENV指令 设置环境变量对于配置应用程序至关重要,ENV指令允许我们在构建镜像时定义环境变量: dockerfile ENV NODE_ENV=production 3.3 WORKDIR指令 WORKDIR用来指定工作目录,后续的RUN、CMD、ENTRYPOINT等指令都将在这个目录下执行: dockerfile WORKDIR /app 3.4 EXPOSE指令 EXPOSE用于声明容器对外提供服务所监听的端口: dockerfile EXPOSE 80 443 4. 高级话题 Dockerfile最佳实践与思考 - 保持镜像精简:每次修改镜像都应尽量小且独立,遵循单一职责原则,每个镜像只做一件事并做好。 - 层叠优化:合理安排Dockerfile中的指令顺序,减少不必要的层构建,提升构建效率。 - 充分利用缓存:Docker在构建过程中会利用缓存机制,如果已有的层没有变化,则直接复用,因此,把变动可能性大的步骤放在最后能有效利用缓存加速构建。 在编写Dockerfile的过程中,我们常常会遇到各种挑战和问题,这正是探索与学习的乐趣所在。每一次动手尝试,都是我们对容器化这个理念的一次接地气的深入理解和灵活运用,就好比每敲出的一行代码,都在悄无声息地讲述着我们这群人,对于打造出那种既高效、又稳定、还能随时随地搬来搬去的应用环境,那份死磕到底、永不言弃的坚持与热爱。 所以,亲爱的开发者朋友们,不妨亲手拿起键盘,去编写属于你自己的Dockerfile,感受那种“从无到有”的创造魅力,同时也能深深体验到Docker所带来的便捷和力量。在这场编程之旅中,愿我们都能以更轻便的方式,拥抱云原生时代!
2023-08-01 16:49:40
513
百转千回_
RabbitMQ
... 2. 使用Docker搭建测试环境 Docker是一种轻量级的容器化平台,可以用来快速构建和部署各种应用程序和服务。我们可以动手用Docker搭建一个模拟网络波动的环境,就像搭积木一样构建出一个专门用来“折腾”RabbitMQ性能的小天地,在这个环境中好好地对RabbitMQ进行一番“体检”。 bash 安装Docker sudo apt-get update sudo apt-get install docker.io 创建一个包含网络波动模拟器的Docker镜像 docker build -t network-flakiness .
2023-10-10 09:49:37
99
青春印记-t
Spark
...接下载安装包,或者用Docker容器搞一个本地环境,超级方便!我推荐你用Docker,因为它真的超简单方便,还能随手搞出好几个实例来测试,特别实用。 bash 安装Docker sudo apt-get update sudo apt-get install docker.io 拉取Kafka镜像 docker pull wurstmeister/kafka 启动Kafka容器 docker run -d --name kafka -p 9092:9092 -e KAFKA_ADVERTISED_HOST_NAME=localhost wurstmeister/kafka 4. 集成实战 4.1 创建Kafka主题 首先,我们需要创建一个Kafka主题,以便后续的数据流能够被正确地发送和接收。 bash 进入容器 docker exec -it kafka /bin/bash 创建主题 kafka-topics.sh --create --topic test-topic --bootstrap-server localhost:9092 --replication-factor 1 --partitions 1 4.2 发送数据到Kafka 接下来,我们可以编写一个简单的脚本来向Kafka的主题中发送一些数据。这里我们使用Python的kafka-python库来实现。 python from kafka import KafkaProducer producer = KafkaProducer(bootstrap_servers='localhost:9092') for _ in range(10): message = "Hello, Kafka!".encode('utf-8') producer.send('test-topic', value=message) print("Message sent:", message.decode('utf-8')) producer.flush() producer.close() 4.3 使用Spark读取Kafka数据 现在,我们来编写一个Spark程序,用于读取刚才发送到Kafka中的数据。这里我们使用Spark的Structured Streaming API。 scala import org.apache.spark.sql.SparkSession val spark = SparkSession.builder.appName("SparkKafkaIntegration").getOrCreate() val df = spark.readStream .format("kafka") .option("kafka.bootstrap.servers", "localhost:9092") .option("subscribe", "test-topic") .load() val query = df.selectExpr("CAST(value AS STRING)") .writeStream .outputMode("append") .format("console") .start() query.awaitTermination() 这段代码会启动一个Spark应用程序,从Kafka的主题中读取数据,并将其打印到控制台。 4.4 实时处理 接下来,我们可以在Spark中对数据进行实时处理。例如,我们可以统计每秒钟接收到的消息数量。 scala import org.apache.spark.sql.functions._ val countDF = df.selectExpr("CAST(value AS STRING)") .withWatermark("timestamp", "1 minute") .groupBy( window($"timestamp", "1 minute"), $"value" ).count() val query = countDF.writeStream .outputMode("complete") .format("console") .start() query.awaitTermination() 这段代码会在每分钟的时间窗口内统计消息的数量,并将其输出到控制台。 5. 总结与反思 通过这次实战,我们成功地将Spark与Kafka进行了集成,并实现了数据的实时处理。虽然过程中遇到了一些挑战,但最终还是顺利完成了任务。这个经历让我明白,书本上的知识和实际动手做真是两码事。不一次次去试,根本没法真正搞懂怎么用这门技术。希望这次分享对你有所帮助,也期待你在实践中也能有所收获! 如果你有任何问题或想法,欢迎随时交流讨论。
2025-03-08 16:21:01
76
笑傲江湖
转载文章
... 1、下载nginx镜像(这一步可以省略,直接进入第二步会自动下载的) pull 2、启动容器 run 3、进入容器 exec 1、镜像: docker hub官网搜索nginx 下载:docker pull nginx 查看下载情况:docker images 2、容器: 创建容器命令:docker run [-d 后台启动] [–name nginx01 起别名] [-p 3344:80 端口:协议] [镜像(包含版本)] (创建)启动容器实例:docker run -d --name nginx01 -p 3344:80 nginx 查看容器运行状况:docker ps 本机访问测试一下:curl localhost:3344 ■ 端口暴露 -p 宿主机端口:容器内部端口 浏览器输入: http://服务器ip地址:3344/ 3344 是暴露的端口 ----接下来: 进入(正在运行的)容器内部:docker exec -it nginx01 /bin/bash [root@iZwz9535z41cmgcpkm7i81Z /] docker exec -it nginx01 /bin/bashroot@d1a29e4791e3:/ whereis nginxnginx: /usr/sbin/nginx /usr/lib/nginx /etc/nginx /usr/share/nginxroot@d1a29e4791e3:/ cd /etc/nginxroot@d1a29e4791e3:/etc/nginx lsconf.d fastcgi_params mime.types modules nginx.conf scgi_params uwsgi_paramsroot@d1a29e4791e3:/etc/nginx ■ /bin/bash 是Linux的一种常用shell脚本,用于解释执行Linux命令,根据镜像支持的shell的不同,可以使用不同的的shell脚本。 容器,也是和虚拟机一样是虚拟技术呀,通过脚本执行/bin/bash实现,创建并进入容器内部docker ● 思考问题:每次改动nginx配置文件,都需要进入容器内部,十分麻烦: 要是可以在容器外部提供一个映射路径,达到在容器修改文件名,容器内部就可以自动修改?-v 数据卷技术! 二、部署tomcat docker run 可以不用pull,能自动下载 ctrl+c退出 docker pull tomcat:9.0 启动运行,应该加上版本号: docker run -d -p 3355:8080 --name tomcat01 tomcat:9.0 进入容器 docker exec -it tomcat01 /bin/bash ● 部署tomcat,发现问题: 1、linux命令少了 2、没有webapps 这是阿里云镜像的原因:默认使用最小镜像,所有不必要的都剔除了,保证最小可运行环境 可以通过拷贝的方式,解决没有webapps的问题: 在浏览器中输入:http://服务器ip地址:3355/ 进行访问 ● 思考问题:我们以后部署项目,如果每次都要进入容器很麻烦? 要是可以在容器外部提供一个映射路径,webapps,我们在外部放置项目,容器内部就可以自动修改?-v 数据卷技术! 三、部署es+kibana ● Elasticsearch 的问题: es 暴露的端口很多 es 十分耗内存 es 的数据一般需要放置到安全目录!挂载 1、问题1:es 十分耗内存 下载启动运行elastissearch 之后,Linux系统就变得特别卡 # 启动了 linux就卡住了docker stats# 查看 cpu的状态 #es 是十分耗内存的,1.xG# 1核2G(学生机)! # 查看 docker stats 2、问题2:es 需要暴露的端口很多 -p (下载)启动 elasticsearch$ docker run -d --name elasticsearch01 -p 9200:9200 -p 9300:9300 -e "discovery.type=single-node" elasticsearch:7.6.2 查看内存占用情况docker stats 先感觉stop一下docker stop ba18713ca536 3、es 十分耗内存的解决:增加内存的限制,修改配置文件 -e 环境配置修改 通过 -e 限制内存docker run -d --name elasticsearch02 -p 9200:9200 -p 9300:9300 -e "discovery.type=single-node" -e ES_JAVA_OPTS="-Xms64m -Xmx512m" elasticsearch:7.6.2 [root@iZwz9535z41cmgcpkm7i81Z /] curl localhost:9200/{"name" : "14329968b00f","cluster_name" : "docker-cluster","cluster_uuid" : "0iDu-G_KTo-4X8KORDj1XQ","version" : {"number" : "7.6.2","build_flavor" : "default","build_type" : "docker","build_hash" : "ef48eb35cf30adf4db14086e8aabd07ef6fb113f","build_date" : "2020-03-26T06:34:37.794943Z","build_snapshot" : false,"lucene_version" : "8.4.0","minimum_wire_compatibility_version" : "6.8.0","minimum_index_compatibility_version" : "6.0.0-beta1"},"tagline" : "You Know, for Search"} 4、思考:用kibana连接elasticsearch? 思考(kibana连接elasticsearch)网络如何连接过去 ☺ 参考来源: 狂神的B站视频《【狂神说Java】Docker最新超详细版教程通俗易懂》 https://www.bilibili.com/video/BV1og4y1q7M4 如果本文对你有帮助的话记得给一乐点个赞哦,感谢! 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_45630258/article/details/124785912。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-12 10:54:44
65
转载
转载文章
...企业系统从0开始全新构建的场景,这种场景相对简单。 容器实践路线图 企业着手实践容器的路线,建议从3个维度评估,然后根据评估结果落地实施。3个评估维度为:商业目标,技术选型,团队配合。 商业目标是重中之重,需要回答为何要容器化,这个也是牵引团队在容器实践路上不断前行的动力,是遇到问题是解决问题的方向指引,最重要的是让决策者认同商业目标,并能了解到支持商业目标的技术原理,上下目标对齐才好办事。 商业目标确定之后,需要确定容器相关的技术选型,容器是一种轻量化的虚拟化技术,与传统虚拟机比较有优点也有缺点,要找出这些差异点识别出对基础设施与应用的影响,提前识别风险并采取应对措施。 技术选型明确之后,在公司或部门内部推广与评审,让开发人员、架构师、测试人员、运维人员相关人员与团队理解与认同方案,听取他们意见,他们是直接使用容器的客户,不要让他们有抱怨。 最后是落地策略,一般是选取一些辅助业务先试点,在实践过程中不断总结经验。 商业目标 容器技术是以应用为中心的轻量级虚拟化技术,而传统的Xen与KVM是以资源为中心的虚拟化技术,这是两者的本质差异。以应用为中心是容器技术演进的指导原则,正是在这个原则指导下,容器技术相对于传统虚拟化有几个特点:打包既部署、镜像分层、应用资源调度。 打包即部署:打包即部署是指在容器镜像制作过程包含了传统软件包部署的过程(安装依赖的操作系统库或工具、创建用户、创建运行目录、解压、设置文件权限等等),这么做的好处是把应用及其依赖封装到了一个相对封闭的环境,减少了应用对外部环境的依赖,增强了应用在各种不同环境下的行为一致性,同时也减少了应用部署时间。 镜像分层:容器镜像包是分层结构,同一个主机上的镜像层是可以在多个容器之间共享的,这个机制可以极大减少镜像更新时候拉取镜像包的时间,通常应用程序更新升级都只是更新业务层(如Java程序的jar包),而镜像中的操作系统Lib层、运行时(如Jre)层等文件不会频繁更新。因此新版本镜像实质有变化的只有很小的一部分,在更新升级时候也只会从镜像仓库拉取很小的文件,所以速度很快。 应用资源调度:资源(计算/存储/网络)都是以应用为中心的,中心体现在资源分配是按照应用粒度分配资源、资源随应用迁移。 基于上述容器技术特点,可以推导出容器技术的3大使用场景:CI/CD、提升资源利用率、弹性伸缩。这3个使用场景自然推导出通用的商业层面收益:CI/CD提升研发效率、提升资源利用率降低成本、按需弹性伸缩在体验与成本之间达成平衡。 当然,除了商业目标之外,可能还有其他一些考虑因素,如基于容器技术实现计算任务调度平台、保持团队技术先进性等。 CI/CD提升研发效率 为什么容器技术适合CI/CD CI/CD是DevOps的关键组成部分,DevOps是一套软件工程的流程,用于持续提升软件开发效率与软件交付质量。DevOps流程来源于制造业的精益生产理念,在这个领域的领头羊是丰田公司,《丰田套路》这本书总结丰田公司如何通过PDCA(Plan-Do-Check-Act)方法实施持续改进。PDCA通常也称为PDCA循环,PDCA实施过程简要描述为:确定目标状态、分析当前状态、找出与目标状态的差距、制定实施计划、实施并总结、开始下一个PDCA过程。 DevOps基本也是这么一个PDCA流程循环,很容易认知到PDCA过程中效率是关键,同一时间段内,实施更多数量的PDCA过程,收益越高。在软件开发领域的DevOps流程中,各种等待(等待编译、等待打包、等待部署等)、各种中断(部署失败、机器故障)是影响DevOps流程效率的重要因素。 容器技术出来之后,将容器技术应用到DevOps场景下,可以从技术手段消除DevOps流程中的部分等待与中断,从而大幅度提升DevOps流程中CI/CD的效率。 容器的OCI标准定义了容器镜像规范,容器镜像包与传统的压缩包(zip/tgz等)相比有两个关键区别点:1)分层存储;2)打包即部署。 分层存储可以极大减少镜像更新时候拉取镜像包的时间,通常应用程序更新升级都只是更新业务层(如Java程序的jar包),而镜像中的操作系统Lib层、运行时(如Jre)层等文件不会频繁更新。因此新版本镜像实质有变化的只有很小的一部分,在更新升级时候也只会从镜像仓库拉取很小的文件,所以速度很快。 打包即部署是指在容器镜像制作过程包含了传统软件包部署的过程(安装依赖的操作系统库或工具、创建用户、创建运行目录、解压、设置文件权限等等),这么做的好处是把应用及其依赖封装到了一个相对封闭的环境,减少了应用对外部环境的依赖,增强了应用在各种不同环境下的行为一致性,同时也减少了应用部署时间。 基于容器镜像的这些优势,容器镜像用到CI/CD场景下,可以减少CI/CD过程中的等待时间,减少因环境差异而导致的部署中断,从而提升CI/CD的效率,提升整体研发效率。 CI/CD的关键诉求与挑战 快 开发人员本地开发调试完成后,提交代码,执行构建与部署,等待部署完成后验证功能。这个等待的过程尽可能短,否则开发人员工作容易被打断,造成后果就是效率降低。如果提交代码后几秒钟就能够完成部署,那么开发人员几乎不用等待,工作也不会被打断;如果需要好几分钟或十几分钟,那么可以想象,这十几分钟就是浪费了,这时候很容易做点别的事情,那么思路又被打断了。 所以构建CI/CD环境时候,快是第一个需要考虑的因素。要达到快,除了有足够的机器资源免除排队等待,引入并行编译技术也是常用做法,如Maven3支持多核并行构建。 自定义流程 不同行业存在不同的行业规范、监管要求,各个企业有一套内部质量规范,这些要求都对软件交付流程有定制需求,如要求使用商用的代码扫描工具做安全扫描,如构建结果与企业内部通信系统对接发送消息。 在团队协同方面,不同的公司,对DevOps流程在不同团队之间分工有差异,典型的有开发者负责代码编写构建出构建物(如jar包),而部署模板、配置由运维人员负责;有的企业开发人员负责构建并部署到测试环境;有的企业开发人员直接可以部署到生产环境。这些不同的场景,对CI/CD的流程、权限管控都有定制需求。 提升资源利用率 OCI标准包含容器镜像标准与容器运行时标准两部分,容器运行时标准聚焦在定义如何将镜像包从镜像仓库拉取到本地并更新、如何隔离运行时资源这些方面。得益于分层存储与打包即部署的特性,容器镜像从到镜像仓库拉取到本地运行速度非常快(通常小于30秒,依赖镜像本身大小等因素),基于此可以实现按需分配容器运行时资源(cpu与内存),并限定单个容器资源用量;然后根据容器进程资源使用率设定弹性伸缩规则,实现自动的弹性伸缩。 这种方式相对于传统的按峰值配置资源方式,可以提升资源利用率。 按需弹性伸缩在体验与成本之间达成平衡 联动弹性伸缩 应用运行到容器,按需分配资源之后,理想情况下,Kubernetes的池子里没有空闲的资源。这时候扩容应用实例数,新扩容的实例会因资源不足调度失败。这时候需要资源池能自动扩容,加入新的虚拟机,调度新扩容的应用。 由于应用对资源的配比与Flavor有要求,因此新加入的虚拟机,应当是与应用所需要的资源配比与Flavor一致的。缩容也是类似。 弹性伸缩还有一个诉求点是“平滑”,对业务做到不感知,也称为“优雅”扩容/缩容。 请求风暴 上面提到的弹性伸缩一般是有计划或缓慢增压的场景,存在另外一种无法预期的请求风暴场景,这种场景的特征是无法预测、突然请求量增大数倍或数十倍、持续时间短。典型的例子如行情交易系统,当行情突变的时候,用户访问量徒增,持续几十分钟或一个小时。 这种场景的弹性诉求,要求短时间内能将资源池扩大数倍,关键是速度要快(秒级),否则会来不及扩容,系统已经被冲垮(如果无限流的话)。 目前基于 Virtual Kubelet 与云厂家的 Serverless 容器,理论上可以提供应对请求风暴的方案。不过在具体实施时候,需要考虑传统托管式Kubernetes容器管理平台与Serverless容器之间互通的问题,需要基于具体厂家提供的能力来评估。 基于容器技术实现计算调度平台 计算(大数据/AI训练等)场景的特征是短时间内需要大量算力,算完即释放。容器的环境一致性以及调度便利性适合这种场景。 技术选型 容器技术是属于基础设施范围,但是与传统虚拟化技术(Xen/KVM)比较,容器技术是应用虚拟化,不是纯粹的资源虚拟化,与传统虚拟化存在差异。在容器技术选型时候,需要结合当前团队在应用管理与资源管理的现状,对照容器技术与虚拟化技术的差异,选择最合适的容器技术栈。 什么是容器技术 (1)容器是一种轻量化的应用虚拟化技术。 在讨论具体的容器技术栈的时候,先介绍目前几种常用的应用虚拟化技术,当前有3种主流的应用虚拟化技术: LXC,MicroVM,UniKernel(LibOS)。 LXC: Linux Container,通过 Linux的 namespace/cgroups/chroot 等技术隔离进程资源,目前应用最广的docker就是基于LXC实现应用虚拟化的。 MicroVM: MicroVM 介于 传统的VM 与 LXC之间,隔离性比LXC好,但是比传统的VM要轻量,轻量体现在体积小(几M到几十M)、启动快(小于1s)。 AWS Firecracker 就是一种MicroVM的实现,用于AWS的Serverless计算领域,Serverless要求启动快,租户之间隔离性好。 UniKernel: 是一种专用的(特定编程语言技术栈专用)、单地址空间、使用 library OS 构建出来的镜像。UniKernel要解决的问题是减少应用软件的技术栈层次,现代软件层次太多导致越来越臃肿:硬件+HostOS+虚拟化模拟+GuestOS+APP。UniKernel目标是:硬件+HostOS+虚拟化模拟+APP-with-libos。 三种技术对比表: 开销 体积 启动速度 隔离/安全 生态 LXC 低(几乎为0) 小 快(等同进程启动) 差(内核共享) 好 MicroVM 高 大 慢(小于1s) 好 中(Kata项目) UniKernel 中 中 中 好 差 根据上述对比来看,LXC是应用虚拟化首选的技术,如果LXC无法满足隔离性要,则可以考虑MicroVM这种技术。当前社区已经在着手融合LXC与MicroVM这两种技术,从应用打包/发布调度/运行层面统一规范,Kubernetes集成Kata支持混合应用调度特性可以了解一下。 UniKernel 在应用生态方面相对比较落后,目前在追赶中,目前通过 linuxkit 工具可以在UniKernel应用镜像中使用docker镜像。这种方式笔者还未验证过,另外docker镜像运行起来之后,如何监控目前还未知。 从上述三种应用虚拟化技术对比,可以得出结论: (2)容器技术与传统虚拟化技术不断融合中。 再从规范视角来看容器技术,可以将容器技术定义为: (3)容器=OCI+CRI+辅助工具。 OCI规范包含两部分,镜像规范与运行时规范。简要的说,要实现一个OCI的规范,需要能够下载镜像并解压镜像到文件系统上组成成一个文件目录结构,运行时工具能够理解这个目录结构并基于此目录结构管理(创建/启动/停止/删除)进程。 容器(container)的技术构成就是实现OCI规范的技术集合。 对于不同的操作系统(Linux/Windows),OCI规范的实现技术不同,当前docker的实现,支持Windows与Linux与MacOS操作系统。当前使用最广的是Linux系统,OCI的实现,在Linux上组成容器的主要技术: chroot: 通过分层文件系统堆叠出容器进程的rootfs,然后通过chroot设置容器进程的根文件系统为堆叠出的rootfs。 cgroups: 通过cgroups技术隔离容器进程的cpu/内存资源。 namesapce: 通过pid, uts, mount, network, user namesapce 分别隔离容器进程的进程ID,时间,文件系统挂载,网络,用户资源。 网络虚拟化: 容器进程被放置到独立的网络命名空间,通过Linux网络虚拟化veth, macvlan, bridge等技术连接主机网络与容器虚拟网络。 存储驱动: 本地文件系统,使用容器镜像分层文件堆叠的各种实现驱动,当前推荐的是overlay2。 广义的容器还包含容器编排,即当下很火热的Kubernetes。Kubernetes为了把控容器调度的生态,发布了CRI规范,通过CRI规范解耦Kubelet与容器,只要实现了CRI接口,都可以与Kubelet交互,从而被Kubernetes调度。OCI规范的容器实现与CRI标准接口对接的实现是CRI-O。 辅助工具用户构建镜像,验证镜像签名,管理存储卷等。 容器定义 容器是一种轻量化的应用虚拟化技术。 容器=OCI+CRI+辅助工具。 容器技术与传统虚拟化技术不断融合中。 什么是容器编排与调度 选择了应用虚拟化技术之后,还需要应用调度编排,当前Kubernetes是容器领域内编排的事实标准,不管使用何种应用虚拟化技术,都已经纳入到了Kubernetes治理框架中。 Kubernetes 通过 CRI 接口规范,将应用编排与应用虚拟化实现解耦:不管使用何种应用虚拟化技术(LXC, MicroVM, LibOS),都能够通过Kubernetes统一编排。 当前使用最多的是docker,其次是cri-o。docker与crio结合kata-runtime都能够支持多种应用虚拟化技术混合编排的场景,如LXC与MicroVM混合编排。 docker(now): Moby 公司贡献的 docker 相关部件,当前主流使用的模式。 docker(daemon) 提供对外访问的API与CLI(docker client) containerd 提供与 kubelet 对接的 CRI 接口实现 shim负责将Pod桥接到Host namespace。 cri-o: 由 RedHat/Intel/SUSE/IBM/Hyper 公司贡献的实现了CRI接口的符合OCI规范的运行时,当前包括 runc 与 kata-runtime ,也就是说使用 cir-o 可以同时运行LXC容器与MicroVM容器,具体在Kata介绍中有详细说明。 CRI-O: 实现了CRI接口的进程,与 kubelet 交互 crictl: 类似 docker 的命令行工具 conmon: Pod监控进程 other cri runtimes: 其他的一些cri实现,目前没有大规模应用到生产环境。 容器与传统虚拟化差异 容器(container)的技术构成 前面主要讲到的是容器与编排,包括CRI接口的各种实现,我们把容器领域的规范归纳为南向与北向两部分,CRI属于北向接口规范,对接编排系统,OCI就属于南向接口规范,实现应用虚拟化。 简单来讲,可以这么定义容器: 容器(container) ~= 应用打包(build) + 应用分发(ship) + 应用运行/资源隔离(run)。 build-ship-run 的内容都被定义到了OCI规范中,因此也可以这么定义容器: 容器(container) == OCI规范 OCI规范包含两部分,镜像规范与运行时规范。简要的说,要实现一个OCI的规范,需要能够下载镜像并解压镜像到文件系统上组成成一个文件目录结构,运行时工具能够理解这个目录结构并基于此目录结构管理(创建/启动/停止/删除)进程。 容器(container)的技术构成就是实现OCI规范的技术集合。 对于不同的操作系统(Linux/Windows),OCI规范的实现技术不同,当前docker的实现,支持Windows与Linux与MacOS操作系统。当前使用最广的是Linux系统,OCI的实现,在Linux上组成容器的主要技术: chroot: 通过分层文件系统堆叠出容器进程的rootfs,然后通过chroot设置容器进程的根文件系统为堆叠出的rootfs。 cgroups: 通过cgroups技术隔离容器进程的cpu/内存资源。 namesapce: 通过pid, uts, mount, network, user namesapce 分别隔离容器进程的进程ID,时间,文件系统挂载,网络,用户资源。 网络虚拟化: 容器进程被放置到独立的网络命名空间,通过Linux网络虚拟化veth, macvlan, bridge等技术连接主机网络与容器虚拟网络。 存储驱动: 本地文件系统,使用容器镜像分层文件堆叠的各种实现驱动,当前推荐的是overlay2。 广义的容器还包含容器编排,即当下很火热的Kubernetes。Kubernetes为了把控容器调度的生态,发布了CRI规范,通过CRI规范解耦Kubelet与容器,只要实现了CRI接口,都可以与Kubelet交互,从而被Kubernetes调度。OCI规范的容器实现与CRI标准接口对接的实现是CRI-O。 容器与虚拟机差异对比 容器与虚拟机的差异可以总结为2点:应用打包与分发的差异,应用资源隔离的差异。当然,导致这两点差异的根基是容器是以应用为中心来设计的,而虚拟化是以资源为中心来设计的,本文对比容器与虚拟机的差异,更多的是站在应用视角来对比。 从3个方面对比差异:资源隔离,应用打包与分发,延伸的日志/监控/DFX差异。 1.资源隔离 隔离机制差异 容器 虚拟化 mem/cpu cgroup, 使用时候设定 require 与 limit 值 QEMU, KVM network Linux网络虚拟化技术(veth,tap,bridge,macvlan,ipvlan), 跨虚拟机或出公网访问:SNAT/DNAT, service转发:iptables/ipvs, SR-IOV Linux网络虚拟化技术(veth,tap,bridge,macvlan,ipvlan), QEMU, SR-IOV storage 本地存储: 容器存储驱动 本地存储:virtio-blk 差异引入问题与实践建议 应用程序未适配 cgroup 的内存隔离导致问题: 典型的是 JVM 虚拟机,在 JVM 启动时候会根据系统内存自动设置 MaxHeapSize 值,通常是系统内存的1/4,但是 JVM 并未考虑 cgroup 场景,读系统内存时候任然读取主机的内存来设置 MaxHeapSize,这样会导致内存超过 cgroup 限制从而导致进程被 kill 。问题详细阐述与解决建议参考Java inside docker: What you must know to not FAIL。 多次网络虚拟化问题: 如果在虚拟机内使用容器,会多一层网络虚拟化,并加入了SNAT/DNAT技术, iptables/ipvs技术,对网络吞吐量与时延都有影响(具体依赖容器网络方案),对问题定位复杂度变高,同时还需要注意网络内核参数调优。 典型的网络调优参数有:转发表大小 /proc/sys/net/netfilter/nf_conntrack_max 使用iptables 作为service转发实现的时候,在转发规则较多的时候,iptables更新由于需要全量更新导致非常耗时,建议使用ipvs。详细参考[华为云在 K8S 大规模场景下的 Service 性能优化实践](https://zhuanlan.zhihu.com/p/37230013)。 容器IP地址频繁变化不固定,周边系统需要协调适配,包括基于IP地址的白名单或防火墙控制策略需要调整,CMDB记录的应用IP地址需要适配动态IP或者使用服务名替代IP地址。 存储驱动带来的性能损耗: 容器本地文件系统是通过联合文件系统方式堆叠出来的,当前主推与默认提供的是overlay2驱动,这种模式应用写本地文件系统文件或修改已有文件,使用Copy-On-Write方式,也就是会先拷贝源文件到可写层然后修改,如果这种操作非常频繁,建议使用 volume 方式。 2.应用打包与分发 应用打包/分发/调度差异 容器 虚拟化 打包 打包既部署 一般不会把应用程序与虚拟机打包在一起,通过部署系统部署应用 分发 使用镜像仓库存储与分发 使用文件存储 调度运行 使用K8S亲和/反亲和调度策略 使用部署系统的调度能力 差异引入问题与实践建议 部署提前到构建阶段,应用需要支持动态配置与静态程序分离;如果在传统部署脚本中依赖外部动态配置,这部分需要做一些调整。 打包格式发生变化,制作容器镜像需要注意安全/效率因素,可参考Dockerfile最佳实践 容器镜像存储与分发是按layer来组织的,镜像在传输过程中放篡改的方式是传统软件包有差异。 3.监控/日志/DFX 差异 容器 虚拟化 监控 cpu/mem的资源上限是cgroup定义的;containerd/shim/docker-daemon等进程的监控 传统进程监控 日志采集 stdout/stderr日志采集方式变化;日志持久化需要挂载到volume;进程会被随机调度到其他节点导致日志需要实时采集否则分散很难定位 传统日志采集 问题定位 进程down之后自动拉起会导致问题定位现场丢失;无法停止进程来定位问题因为停止即删除实例 传统问题定位手段 差异引入问题实践与建议 使用成熟的监控工具,运行在docker中的应用使用cadvisor+prometheus实现采集与警报,cadvisor中预置了常用的监控指标项 对于docker管理进程(containerd/shim/docker-daemon)也需要一并监控 使用成熟的日志采集工具,如果已有日志采集Agent,则可以考虑将日志文件挂载到volume后由Agent采集;需要注意的是stderr/stdout输出也要一并采集 如果希望容器内应用进程退出后保留现场定位问题,则可以将Pod的restartPolicy设置为never,进程退出后进程文件都还保留着(/var/lib/docker/containers)。但是这么做的话需要进程没有及时恢复,会影响业务,需要自己实现进程重拉起。 团队配合 与周边的开发团队、架构团队、测试团队、运维团队评审并交流方案,与周边团队达成一致。 落地策略与注意事项 逐步演进过程中网络互通 根据当前已经存在的基础实施情况,选择容器化落地策略。通常使用逐步演进的方式,由于容器化引入了独立的网络namespace导致容器与传统虚拟机进程网络隔离,逐步演进过程中如何打通隔离的网络是最大的挑战。 分两种场景讨论: 不同服务集群之间使用VIP模式互通: 这种模式相对简单,基于VIP做灰度发布。 不同服务集群之间使用微服务点对点模式互通(SpringCloud/ServiceComb/Dubbo都是这一类): 这种模式相对复杂,在逐步容器化过程中,要求容器网络与传统虚拟机网络能够互通(难点是在虚拟机进程内能够直接访问到容器网络的IP地址),当前解决这个问题有几种方法。 自建Kubernetes场景,可使用开源的kube-router,kube-router 使用BGP协议实现容器网络与传统虚拟机网络之间互通,要求网络交换机支持BGP协议。 使用云厂商托管Kubernetes场景,选择云厂商提供的VPC-Router互通的网络插件,如阿里云的Terway网络插件, 华为云的Underlay网络模式。 选择物理机还是虚拟机 选择物理机运行容器还是虚拟机运行容器,需要结合基础设施与业务隔离性要求综合考虑。分两种场景:自建IDC、租用公有云。 自建IDC: 理想情况是使用物理机组成一个大集群,根据业务诉求,对资源保障与安全性要求高的应用,使用MicorVM方式隔离;普通应用使用LXC方式隔离。所有物理机在一个大集群内,方便削峰填谷提升资源利用率。 租用公有云:当前公有云厂家提供的裸金属服务价格较贵且只能包周期,使用裸金属性价比并不高,使用虚拟机更合适。 集群规模与划分 选择集群时候,是多个应用共用一个大集群,还是按应用分组分成多个小集群呢?我们把节点规模数量>=1000的定义为大集群,节点数<1000的定义为小集群。 大集群的优点是资源池共享容器,方便资源调度(削峰填谷);缺点是随着节点数量与负载数量的增多,会引入管理性能问题(需要量化): DNS 解析表变大,增加/删除 Service 或 增加/删除 Endpoint 导致DNS表刷新慢 K8S Service 转发表变大,导致工作负载增加/删除刷新iptables/ipvs记录变慢 etcd 存储空间变大,如果加上ConfigMap,可能导致 etcd 访问时延增加 小集群的优点是不会有管理性能问题,缺点是会导致资源碎片化,不容易共享。共享分两种情况: 应用之间削峰填谷:目前无法实现 计算任务与应用之间削峰填谷:由于计算任务是短时任务,可以通过上层的任务调度软件,在多个集群之间分发计算任务,从而达到集群之间资源共享的目的。 选择集群规模的时候,可以参考上述分析,结合实际情况选择适合的集群划分。 Helm? Helm是为了解决K8S管理对象散碎的问题,在K8S中并没有"应用"的概念,只有一个个散的对象(Deployment, ConfigMap, Service, etc),而一个"应用"是多个对象组合起来的,且这些对象之间还可能存在一定的版本配套关系。 Helm 通过将K8S多个对象打包为一个包并标注版本号形成一个"应用",通过 Helm 管理进程部署/升级这个"应用"。这种方式解决了一些问题(应用分发更方便)同时也引入了一些问题(引入Helm增加应用发布/管理复杂度、在K8S修改了对象后如何同步到Helm)。对于是否需要使用Helm,建议如下: 在自运维模式下不使用Helm: 自运维模式下,很多场景是开发团队交付一个运行包,运维团队负责部署与配置下发,内部通过兼容性或软件包与配置版本配套清单、管理软件包与配置的配套关系。 在交付软件包模式下使用Helm: 交付软件包模式下,Helm 这种把散碎组件组装为一个应用的模式比较适合,使用Helm实现软件包分发/部署/升级场比较简单。 Reference DOCKER vs LXC vs VIRTUAL MACHINES Cgroup与LXC简介 Introducing Container Runtime Interface (CRI) in Kubernetes frakti rkt appc-spec OCI 和 runc:容器标准化和 docker Linux 容器技术史话:从 chroot 到未来 Linux Namespace和Cgroup Java inside docker: What you must know to not FAIL QEMU,KVM及QEMU-KVM介绍 kvm libvirt qemu实践系列(一)-kvm介绍 KVM 介绍(4):I/O 设备直接分配和 SR-IOV [KVM PCI/PCIe Pass-Through SR-IOV] prometheus-book 到底什么是Unikernel? The Rise and Fall of the Operating System The Design and Implementation of the Anykernel and Rump Kernels UniKernel Unikernel:从不入门到入门 OSv 京东如何打造K8s全球最大集群支撑万亿电商交易 Cloud Native App Hub 更多云最佳实践 https://best.practices.cloud 本篇文章为转载内容。原文链接:https://blog.csdn.net/sinat_33155975/article/details/118013855。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-17 15:03:28
225
转载
Docker
Docker , Docker是一种开源的应用容器引擎,它允许开发者打包应用及其依赖包到一个可移植的容器中,然后发布到任何流行的Linux或Windows机器上,也可以实现虚拟化。在本文中,Docker被用作一种工具,帮助用户构建、部署和运行包含应用程序及其所有依赖项的独立容器镜像。 Dockerfile , Dockerfile是用于自动化创建Docker镜像的一种文本文件,其中包含了若干条用于配置镜像环境及安装软件等操作的指令集合。在文章中,Dockerfile用于指导从基础镜像scratch开始,添加hello二进制文件,并设置启动命令,从而生成一个定制化的Docker镜像。 Docker镜像 , Docker镜像是Docker容器的基础,是一个只读模板,包含运行某个应用所需的所有内容,包括代码、运行时、库、环境变量和配置文件等。在本文的场景下,通过编写并执行Dockerfile中的指令,创建了一个包含hello应用程序及其依赖项的Docker镜像,随后可以基于此镜像启动Docker容器来运行该应用。 Docker容器 , Docker容器是从Docker镜像创建的运行实例,它可以被视为一个轻量级的、独立运行的一组进程,与主机系统和其他容器隔离。在文中提到,使用docker run命令启动了一个名为hello-app的Docker容器,这个容器就是基于之前构建好的hello镜像运行的,能够在其中执行预设的命令(即运行hello二进制文件)。
2023-02-25 10:58:36
491
数据库专家
Docker
Docker , Docker是一种开源的应用容器引擎,它通过容器化技术将应用程序及其依赖环境打包成独立、可移植的软件单元。在Docker中,每个容器都是一个轻量级、隔离的操作系统层,可以在任何支持Docker的主机上运行,确保了应用在不同环境下的一致性和可移植性。 Volumes , 在Docker中,Volumes是用于持久化存储的一种机制,允许将宿主机的文件系统与容器内部的文件系统进行挂载映射。即使容器停止或重新创建,通过Volumes机制绑定的数据也能得到持久保存,实现容器内外数据的共享和持久化存储。 Dockerfile , Dockerfile是一个文本文件,包含了一系列用于构建Docker镜像的指令集合。开发人员可以通过编写Dockerfile来定义应用程序如何被封装到Docker容器中,包括所需的基础镜像、安装依赖、配置环境变量以及复制本地文件到容器内等操作步骤。通过执行docker build命令基于Dockerfile生成的镜像,可以保证每次部署时,容器内的应用程序环境一致且可重复构建。
2023-12-30 15:13:37
472
编程狂人
Docker
...植的单元——容器。在Docker这样的容器化平台上,每个容器都运行在宿主机操作系统上,但拥有隔离的用户空间,从而实现轻量级的资源隔离和部署。这意味着开发者可以将应用及其所有依赖项封装在一个容器中,在任何支持Docker的环境中,只需简单命令即可启动并运行该应用,确保了跨环境的一致性和便捷性。 Docker Hub , Docker Hub是Docker官方提供的镜像仓库服务,类似于软件开发中的代码仓库,但它存储的是Docker镜像。开发者可以在Docker Hub上查找、下载、分享和管理自己的Docker镜像,极大地简化了镜像分发与复用的过程。例如,通过docker run hello-world命令就能从Docker Hub拉取并运行hello-world镜像,体现了Docker Hub作为中心化镜像仓库的核心价值。 镜像 , 在Docker环境下,镜像是创建和运行容器的基础模板,包含了应用程序及其运行所需的所有文件和配置信息。镜像以层式结构构建,每层代表应用程序的一个修改或添加,从而使得镜像具有高效存储和快速分发的特点。例如,使用docker build -t myapp .命令基于当前目录下的Dockerfile构建一个名为myapp的新镜像,然后通过docker run -p 80:80 myapp命令使用这个新镜像启动一个容器,并映射端口以便外部访问。这样,无论何时何地,只要有了这个镜像,就可以快速且一致地创建出能够运行特定应用程序的容器实例。
2023-03-13 14:25:53
347
编程狂人
Docker
Docker是一种容器技术,可以将应用程序和它们的依赖资源封装在一个容器中,使它们可以在任何系统上运行。但是,有时候Docker容器或许会崩溃,这时需要重启容器。 docker ps -a // 查看现有全部容器以及运行情况 docker start<容器ID>// 开启已暂停的容器 docker attach<容器ID>// 登陆容器 ctrl + p + q // 离开并将容器暂停 docker exec -it<容器ID>/bin/bash // 以命令行交互模式方式登陆容器 docker top<容器ID>// 显示容器内运行的进程 docker logs<容器ID>// 查看容器的日志 docker stats<容器ID>// 查看容器的资源占用情况 如果以上命令无法解决问题,可以考虑删除容器重新构建并运行: docker stop<容器ID>// 停止当前崩溃的容器 docker rm<容器ID>// 删除容器 docker images // 查看所有镜像 docker rmi<镜像ID>// 删除相关的镜像 docker build -t<新容器名称>. // 构建新容器 docker run -d<新容器名称>// 运行新容器 重启Docker容器的方法有许多,需要依据具体问题具体分析,选择最佳方案进行重启。
2023-12-29 23:51:06
593
电脑达人
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
ps aux | grep keyword
- 查看含有特定关键词的进程详情。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"