前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[专利全文批量下载攻略]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Cassandra
...中的Batch操作及批量加载详解 1. 引言 Cassandra与批处理的亲密接触 在大数据的世界里,Apache Cassandra以其卓越的分布式架构、高可用性和线性扩展性赢得了广泛的应用。特别是在处理大量数据录入和更新这事儿上,Cassandra的那个批量操作功能,可真是个宝贝,重要性杠杠的!它允许我们在一次网络往返中执行多个CQL(Cassandra Query Language)语句,从而显著提高数据插入和更新效率,节省网络开销,并保持数据库的一致性。 2. 理解Cassandra Batch操作 (1)什么是Batch? 在Cassandra中,Batch主要用于将多个CQL语句捆绑在一起执行。想象一下,你正在为一个大型电商系统处理订单,需要同时在不同的表中插入或更新多条记录,这时候Batch就派上用场了。使用Batch操作,你就能像一次性打包处理那样,让这些操作要么全盘搞定,要么一个也不动,就像“要干就干到底,不干就拉倒”的那种感觉,确保了操作的完整性。 cql BEGIN BATCH INSERT INTO orders (order_id, customer_id, product) VALUES (1, 'user1', 'productA'); INSERT INTO order_details (order_id, detail_id, quantity) VALUES (1, 1001, 2); APPLY BATCH; (2)Batch操作的注意事项 虽然Batch操作在提高性能方面有显著效果,但并非所有情况都适合使用。Cassandra对Batch大小有限制(默认约16MB),过大的Batch可能导致性能下降甚至错误。另外,你知道吗,Cassandra这个数据库啊,它属于AP型的,所以在批量操作这块儿,就不能给你提供像传统数据库那样的严格的事务保证啦。它更倾向于保证“原子性”,也就是说,一个操作要么全完成,要么全不完成,而不是追求那种所有的数据都得在同一时刻保持完全一致的“一致性”。 3. Cassandra的数据批量加载 (1)SSTableLoader工具 当我们面对海量历史数据迁移或初始化大量预生成数据时,直接通过CQL进行批量插入可能并不高效。此时,Cassandra提供的sstableloader工具可以实现大批量数据的快速导入。这个工具允许我们将预先生成好的SSTable文件直接加载到集群中,极大地提高了数据加载速度。 bash bin/sstableloader -u -p -d /path/to/sstables/ (2)Bulk Insert与COPY命令 对于临时性的大量数据插入,也可以利用CQL的COPY命令从CSV文件中导入数据,或者编写程序进行Bulk Insert。这种方式虽然不如sstableloader高效,但在灵活性上有一定优势。 cql COPY orders FROM '/path/to/orders.csv'; 或者编程实现Bulk Insert: java Session session = cluster.connect("my_keyspace"); PreparedStatement ps = session.prepare("INSERT INTO orders (order_id, customer_id, product) VALUES (?, ?, ?)"); for (Order order : ordersList) { BoundStatement bs = ps.bind(order.getId(), order.getCustomerId(), order.getProduct()); session.execute(bs); } 4. 深入探讨与实践总结 尽管Cassandra的Batch操作和批量加载功能强大,但运用时需要根据实际业务场景灵活调整策略。比如,在网络比较繁忙、负载较高的时候,咱就得避免一股脑地进行大批量的操作。这时候,咱们可以灵活调整批次的大小,就像在平衡木上保持稳定一样,既要保证性能不打折,又要让网络负载不至于过大,两头都得兼顾好。此外,说到批量加载数据这事儿,咱们得根据实际情况,灵活选择最合适的方法。比如说,你琢磨一下是否对实时性有要求啊,数据的格式又是个啥样的,这些都是决定咱采用哪种方法的重要因素。 总之,无论是日常开发还是运维过程中,理解和掌握Cassandra的Batch操作及批量加载技术,不仅能提升系统的整体性能,还能有效应对复杂的大规模数据管理挑战。在实际操作中不断尝试、捣鼓,让Cassandra这个家伙更好地为我们业务需求鞍前马后地服务,这才是技术真正价值的体现啊!
2024-02-14 11:00:42
505
冬日暖阳
ClickHouse
...连续存储,从而在进行批量查询和聚合操作时能够实现高效读取和计算,ClickHouse就是一种高性能的列式数据库管理系统。 分布式集群部署 , 分布式集群部署是指将多个硬件节点通过网络连接起来,共同组成一个统一的数据处理系统。在ClickHouse中,可以根据业务需求将数据分散存储在不同的节点上,并通过复制和分片技术提高系统的容错性和扩展性,以应对海量数据存储和实时分析挑战。 MergeTree系列引擎 , MergeTree是ClickHouse中的核心表引擎系列,它专为OLAP(在线分析处理)场景设计,提供了高效的分区、排序和合并功能。MergeTree通过将数据按照特定的主键有序存储,并支持数据版本合并,能够在保证写入性能的同时大幅度提升复杂查询的效率,是构建大规模数据分析系统时常用的表引擎选择。
2023-07-29 22:23:54
509
翡翠梦境
Tornado
...PyPI) 或其他源下载并安装所需的软件包,确保应用环境具备所有必需的依赖组件,例如在文中提到的使用 pip install tornado 命令来安装 Tornado 库。 requirements.txt , requirements.txt 文件是 Python 项目中常见的用来记录项目依赖关系的文本文件。开发人员会在该文件中列出项目运行所必需的所有第三方库及其版本信息。当需要在新的环境中重新构建或部署项目时,可以使用 pip install -r requirements.txt 命令一次性安装所有指定版本的依赖包,从而保证不同环境下项目的运行一致性及可重复部署性。 配置文件(如 my_config.json) , 配置文件是一种存储应用程序参数和设置的文件,它允许开发人员在不修改代码的情况下更改应用程序的行为。在 Tornado 应用部署中,配置文件可能包含诸如数据库连接字符串、监听端口等重要信息。当应用启动时会读取这些配置信息以确定如何正确初始化和运行服务,如文中示例所示,若 my_config.json 中缺少关键配置项如 server.port ,可能导致服务无法正常启动。
2023-03-14 20:18:35
60
冬日暖阳
转载文章
...删除相应内容。 1、下载第三方扩展库 filterbuilder.jar htmllexer.jar htmlparser.jar jsoup-1.9.2.jar junit.jar sax2.jar thumbelina.jar 2、执行以下方法 package com.zgs.look;import java.io.BufferedReader;import java.io.File;import java.io.FileInputStream;import java.io.InputStreamReader;import java.util.HashMap;import java.util.Map;import java.util.regex.Matcher;import java.util.regex.Pattern;import org.htmlparser.Node;import org.htmlparser.NodeFilter;import org.htmlparser.Parser;import org.htmlparser.filters.NodeClassFilter;import org.htmlparser.filters.OrFilter;import org.htmlparser.tags.LinkTag;import org.htmlparser.tags.TableTag;import org.htmlparser.util.NodeList;import org.jsoup.Jsoup;import org.jsoup.nodes.Document;import org.jsoup.nodes.Element;import org.jsoup.select.Elements;public class HtmlLook {private static String ENCODE = "UTF-8";public static void main(String[] args) {String szContent = openFile( "d:/index.html");try {Document doc = Jsoup.parse(szContent);Elements elList=doc.getElementsByAttributeValue("id","vulDataTable");szContent=elList.outerHtml();Parser parser = Parser.createParser(szContent, ENCODE);NodeFilter[] filters = new NodeFilter[2];filters[0] = new NodeClassFilter(TableTag.class); filters[1] = new NodeClassFilter(LinkTag.class);NodeFilter filter =new OrFilter (filters);NodeList list = parser.extractAllNodesThatMatch(filter);String ldName="";String ldJianjie="";for (int i = 0; i < list.size(); i++) { Node node = list.elementAt(i); if(node instanceof LinkTag){String nodeHtml=node.toHtml();if(nodeHtml.contains("onclick")&&nodeHtml.contains("vul-")){if(!"".equals(ldName)&&!"".equals(ldJianjie)){//提交数据System.out.println("---commit---漏洞名称-------"+ldName);System.out.println("---commit---漏洞简介-------"+ldJianjie);ldName="";ldJianjie="";}String level="";if(nodeHtml.contains("vul-vh")){level="高危漏洞";}else if(nodeHtml.contains("vul-vm")){level="中危漏洞";}else if(nodeHtml.contains("vul-vl")){level="低危漏洞";}ldName=getLinkTagContent(nodeHtml)+"-----"+level+"------";// System.out.println("---漏洞名称-----"+getLinkTagContent(nodeHtml)+"-----"+level+"------");} }else{ldJianjie=getTableTagContent(node.toHtml());} } } catch (Exception e) {e.printStackTrace();} }/ 提取文件里面的文本信息 @param szFileName @return/public static String openFile(String szFileName) {try {BufferedReader bis = new BufferedReader(new InputStreamReader(new FileInputStream(new File(szFileName)), ENCODE));String szContent = "";String szTemp;while ((szTemp = bis.readLine()) != null) {szContent += szTemp + "\n";}bis.close();return szContent;} catch (Exception e) {return "";} }/ 提取标签<a>a</a>内的内容 return a;/public static String getLinkTagContent(String link){String content="";Pattern pattern = Pattern.compile("<a[^>]>(.?)</a>");Matcher matcher = pattern.matcher(link);if(matcher.find()){content=matcher.group(1);}return content;}/ 解析Table标签内的东西 @param table/public static String getTableTagContent(String table){Map<String,String> conMap=new HashMap<String,String>();String content="";Document doc = Jsoup.parse(table);Elements elList=doc.getElementsByAttributeValue("class","cmn_table plumb");Element el=elList.first();Elements trLists = el.select("tr");for (int i = 0; i < trLists.size(); i++) {Elements tds = trLists.get(i).select("td");String key="";String val="";for (int j = 0; j < tds.size(); j++) {String text = tds.get(j).text();if(j==0){key=text; }else{val=text; } }conMap.put(key, val);content+="|"+key+"-"+val;// System.out.println(key+"-"+val);}return content;} } 本篇文章为转载内容。原文链接:https://blog.csdn.net/zhaoguoshuai91/article/details/51802116。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-19 10:42:16
295
转载
HBase
...y' 5. 批量删除多行数据 sql delete 'mytable', [ 'rowkey1', 'rowkey2' ] 四、深入理解HBase查询 然而,这只是HBase查询的基础知识。实际上,HBase查询的功能远比这强大得多。例如,我们可以使用通配符来模糊匹配行键,可以使用范围过滤器来筛选特定范围内的值,还可以使用复杂的组合过滤器来进行高级查询。 以下是一些更复杂的HBase查询示例: 1. 使用通配符模糊匹配行键 sql scan 'mytable', {filter: "RowFilter( PrefixFilter('rowprefix'))"} 2. 使用范围过滤器筛选特定范围内的值 sql scan 'mytable', {filter: "SingleColumnValueFilter(columnFamily, qualifier, CompareFilter.CompareOp.GREATER_OR_EQUAL, value), SingleColumnValueFilter(columnFamily, qualifier, CompareFilter.CompareOp.LESS_OR_EQUAL, value) } 3. 使用组合过滤器进行高级查询 sql scan 'mytable', { filter: [ new org.apache.hadoop.hbase.filter.BinaryComparator('value1'), new org.apache.hadoop.hbase.filter.ColumnCountGetFilter(2) ] } 五、结论 总的来说,HBase是一种功能强大的分布式数据库系统,非常适合用于大数据分析和流式处理应用。通过使用HBase Shell,我们可以方便地进行数据查询和管理。虽然HBase这玩意儿初学时可能会让你觉得有点像爬陡坡,不过只要你把那些基础概念和技术稳稳拿下,就完全能够游刃有余地处理各种眼花缭乱的复杂问题啦。 我相信,在未来的发展中,HBase会变得越来越重要,成为大数据领域的主流工具之一。嘿,老铁!如果你还没尝过HBase这个“甜头”,我真心拍胸脯推荐你,不妨抽点时间深入学习并动手实践一把。这绝对值得你投入精力去探索!你会发现,HBase能为你带来前所未有的体验和收获。
2023-01-31 08:42:41
431
青春印记-t
ElasticSearch
...分布式、多租户能力的全文搜索引擎,用于快速地存储、搜索和分析大量数据。在本文中,Elasticsearch 被用来异步采集和存储非业务数据,如日志和监控指标,从而帮助分析用户行为和系统性能。 Logstash , Logstash 是一个开源的数据收集引擎,具有实时管道功能。它可以动态地从多个来源收集数据,对其进行转换,并将数据发送到你指定的地方。在本文中,Logstash 被用来从 Nginx 访问日志文件中采集数据,并将其传输到 Elasticsearch 中进行存储和分析。 索引模板 , 索引模板是一种配置文件,用于定义 Elasticsearch 中索引的默认设置和映射。通过预定义索引模板,可以确保新创建的索引遵循一致的结构和配置。在本文中,索引模板被用来定义数据字段(如时间戳和消息内容)及其数据类型,以确保数据在 Elasticsearch 中被正确存储和检索。
2024-12-29 16:00:49
75
飞鸟与鱼_
Maven
...挠头的难题。比如亲手下载并自定义配置了Maven后,当你满心欢喜地引入其他模块时,它却突然给你来个错误提示,让你措手不及。今天咱们就一块儿把这个难题给掰扯清楚,我手把手带你,从入门级别一路升级打怪,直到成为解决这个问题的老司机。 二、Maven基础概念 1. 什么是Maven? Maven是一个基于Java语言的项目构建工具,它的核心理念是约定优于配置。你知道吗,就像乐高说明书一样,我们通过一个叫做pom.xml的XML文件来给项目“画图纸”。这个文件可厉害了,它详细规划了项目的结构布局、各个部分之间的依赖关系,还负责制定构建任务等一系列重要信息。这样一来,整个项目的构建过程就变得既规范又自动化,跟流水线生产似的。这不仅让工作流程顺畅无比,更是让团队成员间的协作效率蹭蹭上涨,效果那是杠杠滴! 2. Maven生命周期与核心模块 Maven项目存在默认的生命阶段,如clean, initialize, validate, compile, test-compile, test, package, install, deploy等。这些阶段按照顺序执行,并在每个阶段内部执行相应的任务。此外,Maven的核心模块主要包括:Artifact(即我们常说的jar包)、Repository(仓库)、Plugin(插件)等。 三、自定义下载Maven及配置 1. 下载与安装Maven 在互联网上,官方提供了Maven的预编译发行版供用户直接下载。下载完成后,解压得到Maven安装目录,通常为apache-maven-X.X.X-bin.tar.gz(X.X.X为版本号)。将此目录添加至系统的PATH环境变量即可全局使用。 bash Linux/Mac tar -xzf apache-maven-X.X.X-bin.tar.gz export MVN_HOME=路径/to/maven_home export PATH=$MVN_HOME/bin:$PATH powershell Windows $env:Path += ";$env:mvn_home\bin" 2. 配置本地仓库与远程仓库 Maven在构建过程中会首先检查本地仓库是否有所需依赖,如果没有则从远程仓库下载。配置这两个仓库需要在settings.xml文件中进行: xml path/to/local/repo central https://repo1.maven.org/maven2/ 四、自定义下载Maven引入报错分析 当我们自定义下载Maven并正确配置后,常见的引入报错主要有以下几种: 1. 标签错误 如果我们在pom.xml文件中的标签内书写依赖声明不规范,如缺少groupId、artifactId、version等属性,Maven会在编译阶段抛出异常。 示例: xml example-dependency 正确写法: xml com.example example-dependency 1.0.0 2. 依赖版本冲突 当两个或多个模块引用了同一个依赖的不同版本,导致版本冲突时,Maven无法确定使用哪个版本,从而引发依赖冲突。 示例: xml ... org.slf4j slf4j-api 1.7.30 ... org.slf4j slf4j-api 2.0.0 解决方案:统一各模块对同一依赖使用的版本,或者利用Maven的dependencyManagement或dependencyResolutionProblemAggregator插件来处理。 五、总结与反思 面对自定义下载Maven引入报错问题,我们需要仔细排查并理解依赖声明、配置设置、版本管理等方面可能存在的问题。有时候,这不仅仅是在考验我们的编程功夫,更是实实在在地磨炼我们搞定问题、排解代码bug的硬实力。想要真正地玩转Maven,让这个家伙在项目构建这条道路上为你效力到极致,那就必须不断动手实践、积极摸索,没别的捷径可走。所以,请勇敢地面对报错,学会从中吸取教训,相信每一个Maven新手最终都能成为真正的专家!
2024-02-05 11:45:22
90
心灵驿站_t
转载文章
...,对于初级用户,可以下载dede的php套件包,以方便简单的使用。 二、程序安装使用 1.下载程序解压到本地目录; 2.上传程序目录中的/uploads到网站根目录 3.运行http://www.yourname.com/install/index.php(yourname表示你的域名),按照安装提速说明进行程序安装 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_31879641/article/details/115616068。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-24 09:08:23
278
转载
Hive
...版本号 - 下载并放置:如果在服务器上运行,可能需要从Apache Hive的官方网站下载对应版本的驱动并放入服务器的类路径中。 2. Hive Client jar包 - 确认包含Hive Server的jar:Hive Server通常包含了Hive Client的jar,如果单独部署,确保$HIVE_SERVER2_HOME/lib目录下存在hive-exec-.jar等Hive相关jar。 3. Hive Server配置 - Hive-site.xml:检查Hive的配置文件,确保标签内的javax.jdo.option.ConnectionURL和标签内的javax.jdo.option.ConnectionDriverName指向正确的JDBC URL和驱动。 四、代码示例与实战演练 1. 连接Hive示例(Java) java try { Class.forName("org.apache.hive.jdbc.HiveDriver"); Connection conn = DriverManager.getConnection( "jdbc:hive2://localhost:10000/default", "username", "password"); Statement stmt = conn.createStatement(); String sql = "SELECT FROM my_table"; ResultSet rs = stmt.executeQuery(sql); // 处理查询结果... } catch (Exception e) { e.printStackTrace(); } 2. 错误处理与诊断 如果上述代码执行时出现异常,可能是驱动加载失败或者URL格式错误。查看ClassNotFoundException或SQLException堆栈信息,有助于定位问题。 五、总结与经验分享 面对这类问题,耐心和细致的排查至关重要。记住,Hive的世界并非总是那么直观,尤其是当涉及到多个组件的集成时。逐步检查环境配置、依赖关系以及日志信息,往往能帮助你找到问题的根源。嘿,你知道吗,学习Hive JDBC就像解锁新玩具,开始可能有点懵,但只要你保持那股子好奇劲儿,多动手试一试,翻翻说明书,一点一点地,你就会上手得越来越溜了。关键就是那份坚持和探索的乐趣,时间会带你熟悉这个小家伙的每一个秘密。 希望这篇文章能帮你解决在使用Hive JDBC时遇到的困扰,如果你在实际操作中还有其他疑问,别忘了社区和网络资源是解决问题的好帮手。祝你在Hadoop和Hive的探索之旅中一帆风顺!
2024-04-04 10:40:57
769
百转千回
转载文章
...shell脚本自动化批量处理文件,或利用inotifywait工具监控文件变化实时触发相应操作,这些都大大提升了工作效率。 在信息安全领域,《Linux Journal》最近的一篇文章指出,熟练运用find、grep等命令进行日志分析与安全审计至关重要。同时,du命令结合ncdu这样的可视化工具,不仅能够帮助管理员直观了解磁盘使用情况,还能及时发现潜在的大文件问题,避免存储资源浪费。 此外,对于分布式文件系统如Hadoop HDFS或GlusterFS的管理,虽然底层原理与本地文件系统有所不同,但依然离不开ls、mkdir、cp、rm等基础命令的灵活运用。因此,在进一步学习中,读者可以关注如何将这些基础命令应用于大型集群环境,以及如何通过高级配置实现跨节点的文件操作。 在最新的Linux内核版本中,针对文件系统的优化和新特性也值得关注,例如Btrfs和ZFS等现代文件系统的引入,为用户提供更为强大且灵活的文件管理功能。综上所述,持续关注Linux操作系统的新发展动态,结合实战案例深入理解并灵活运用各项命令,是提高Linux系统管理能力的关键所在。
2023-06-16 19:29:49
511
转载
转载文章
...l pyttsx3 下载缓慢推荐您使用第三方通道下载 pip install -i https://mirrors.aliyun.com/pypi/simple pyttsx3 【示例】使用 pyttsx 实现文本转换语音 import pyttsx3 as pyttsx 调用初始化方法,获取讲话对象engine = pyttsx.init()engine.say('加油!努力吧少年')engine.runAndWait() 使用 SAPI 在 python 中,你也可以使用 SAPI 来做文本到语音的转换。 【示例】使用 SAPI 实现文本转换语音 from win32com.client import Dispatch 获取讲话对象speaker = Dispatch('SAPI.SpVoice') 讲话内容speaker.Speak('猪哥猪哥,你真了不起')speaker.Speak('YL美吗?')speaker.Speak('ZS说她美吖') 释放对象del speaker 使用 SpeechLib 使用 SpeechLib,可以从文本文件中获取输入,再将其转换为语音。先使用 pip 安装, 命令如下: pip install comtypes 【示例】使用 SpeechLib 实现文本转换语音 from comtypes.client import CreateObjectfrom comtypes.gen import SpeechLib 获取语音对象,源头engine = CreateObject('SAPI.SpVoice') 输出到目标对象的流stream = CreateObject('SAPI.SpFileStream')infile = 'demo.txt'outfile = 'demo_audio.wav' 获取流写入通道stream.open(outfile, SpeechLib.SSFMCreateForWrite) 给语音源头添加输出流engine.AudioOutputStream = stream 读取文本内容 打开文件f = open(infile, 'r', encoding='utf-8') 读取文本内容theText = f.read() 关闭流对象f.close() 语音对象,读取文本内容engine.speak(theText)stream.close() 语音转换为文本 使用 PocketSphinx PocketSphinx 是一个用于语音转换文本的开源 API。它是一个轻量级的语音识别引擎, 尽管在桌面端也能很好地工作,它还专门为手机和移动设备做过调优。首先使用 pip 命令安装所需模块,命令如下: pip install PocketSphinxpip install SpeechRecognition 下载地址:https://pypi.org/project/SpeechRecognition/ 下载缓慢推荐您使用第三方通道下载 pip install -i https://mirrors.aliyun.com/pypi/simple 模块名 【示例】使用 PocketSphinx 实现语音转换文本 import speech_recognition as sr 获取语音文件audio_file = 'demo_audio.wav' 获取识别语音内容的对象r = sr.Recognizer() 打开语音文件with sr.AudioFile(audio_file) as source:audio = r.record(source) 将语音转化为文本 print('文本内容:', r.recognize_sphinx(audio)) recognize_sphinx() 参数中language='en-US' 默认是英语print('文本内容:', r.recognize_sphinx(audio, language='zh-CN')) 普通话识别问题 speech_recognition 默认识别英文,是不支持中文的,需要在Sphinx语音识别工具包里面下载对应的 普通话包 和 语言模型 。 安装步骤: 下 载 地 址:https://sourceforge.net/projects/cmusphinx/files/Acoustic%20and%20Language%20Models/ 点击 Mandarin下载cmusphinx-zh-cn-5.2.tar.gz并解压. 在python安装目录下找到Lib\site-packages\speech_recognition 点击进入pocketsphinx-data文件夹,会看到一个en-US文件夹,再新建文件夹zh-CN 在这个文件夹中添加进入刚刚解压的文件,需要注意:把解压出来的zh_cn.cd_cont_5000文件夹重命名为acoustic-model、zh_cn.lm.bin命名为language-model.lm.bin、zh_cn.dic中dic改为dict格式。即与en-US文件夹中命名一样。 参考:https://blog.csdn.net/qq_32643313/article/details/99936268 致以感谢 后序 浅显的学习语音识别,不足之处甚多,深究后,将更新文章。 感谢跟随老师的代码在未知领域里探索,希望我能走的更高更远 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_46092061/article/details/113945654。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-27 19:34:15
277
转载
SpringBoot
...,兄弟姐妹们,咱得先下载并安装Java运行环境。版本上没硬性要求,不过我强烈建议你们选择最新潮的那个——Java 8或者更新更高的版本,这样用起来更溜~然后,我们需要下载并安装SpringBoot和Maven这两个工具。SpringBoot可以为我们提供一个快速构建Web应用的基础框架,而Maven则可以帮助我们管理项目的依赖关系。 3. 创建SpringBoot项目 接下来,我们可以开始创建我们的SpringBoot项目。首先,打开命令行工具,并进入你要存放项目的位置。然后,输入以下命令来创建一个新的SpringBoot项目: bash mvn archetype:generate -DgroupId=com.example -DartifactId=springboot-mongoapp -DarchetypeArtifactId= spring-boot-starter-parent -DinteractiveMode=false 这行命令的意思是使用Maven的archetype功能来生成一个新的SpringBoot项目,该项目的组ID为com.example, artifactID为springboot-mongoapp,父依赖为spring-boot-starter-parent。这个命令会自动为你创建好所有的项目文件和目录结构,包括pom.xml和src/main/java/com/example/springbootmongoapp等文件。 4. 配置SpringBoot和MongoDB 在创建好项目之后,我们需要进行一些配置工作。首先,我们需要在pom.xml文件中添加SpringDataMongoDB的依赖: xml org.springframework.boot spring-boot-starter-data-mongodb 这行代码的意思是我们需要使用SpringDataMongoDB来处理MongoDB的相关操作。然后,我们需要在application.properties文件中添加MongoDB的连接信息: properties spring.data.mongodb.uri=mongodb://localhost:27017/mydb 这行代码的意思是我们的MongoDB服务器位于本地主机的27017端口上,且数据库名为mydb。 5. 使用MongoTemplate操作MongoDB 在配置完成后,我们就可以开始使用MongoTemplate来操作MongoDB了。MongoTemplate是SpringDataMongoDB提供的一个类,它可以帮助我们执行各种数据库操作。下面是一些基本的操作示例: java @Autowired private MongoTemplate mongoTemplate; public void insert(String collectionName, String id, Object entity) { mongoTemplate.insert(entity, collectionName); } public List find(String collectionName, Query query) { return mongoTemplate.find(query, Object.class, collectionName); } 6. 使用Repository操作MongoDB 除了MongoTemplate之外,SpringDataMongoDB还提供了Repository接口,它可以帮助我们更加方便地进行数据库操作。我们完全可以把这个接口“继承”下来,然后自己动手编写几个核心的方法,就像是插入数据、查找信息、更新记录、删除项目这些基本操作,让它们各司其职,活跃在我们的程序里。下面是一个简单的示例: java @Repository public interface UserRepository extends MongoRepository { User findByUsername(String username); void deleteByUsername(String username); default void save(User user) { if (user.getId() == null) { user.setId(UUID.randomUUID().toString()); } super.save(user); } @Query(value = "{'username':?0}") List findByUsername(String username); } 7. 总结 总的来说,SpringBoot与MongoDB的集成是非常简单和便捷的。只需要几步简单的配置,我们就可以使用SpringBoot的强大功能来操作MongoDB。而且你知道吗,SpringDataMongoDB这家伙还藏着不少好东西嘞,像数据映射、查询、聚合这些高级功能,全都是它的拿手好戏。这样一来,我们开发应用程序就能又快又高效,简直像是插上了小翅膀一样飞速前进!所以,如果你正在琢磨着用NoSQL数据库来搭建你的数据存储方案,那我真心实意地拍胸脯推荐你试试SpringBoot配上MongoDB这个黄金组合,准保不会让你失望!
2023-04-09 13:34:32
76
岁月如歌-t
Hadoop
...搜一搜相关的教程或者攻略,网上有很多热心网友分享的经验,总有一款适合你。 4. 启动辅助服务 对于因为辅助服务未正确启动而导致的问题,我们需要检查并确保所有服务都已正确启动。要是服务启动碰到状况了,不妨翻翻相关的文档资料,或者找专业的高手来帮帮忙。 总结 总的来说,解决“YARN ResourceManager初始化失败”这个问题需要我们具备一定的专业知识和技能。但是,只要我们有足够多的耐心和敏锐的观察力,就可以按照上面提到的办法,一步一步地把各种可能性都排查个遍,最后稳稳地找到那个真正能解决问题的好法子。最后,我想说的是,虽然这是一个比较棘手的问题,但我们只要有足够的信心和毅力,就一定能迎刃而解!
2024-01-17 21:49:06
567
青山绿水-t
RocketMQ
...着手优化: - 消息批量发送:利用DefaultMQProducer提供的send(batch)接口批量发送消息,减少单次操作创建的对象数,从而降低内存压力。 java List messageList = new ArrayList<>(); for (int i = 0; i < BATCH_SIZE; i++) { Message msg = ...; messageList.add(msg); } SendResult sendResult = producer.send(messageList); - 合理设置JVM参数:根据业务负载调整JVM堆大小(-Xms和-Xmx),并选择合适的GC算法,如G1或者ZGC,它们对于大内存及长时间运行的服务有良好的表现。 - 监控与预警:借助JMX或其他监控工具实时监控JVM内存状态和GC频率,及时发现并解决问题。 - 设计合理的消息消费逻辑:确保消费者能及时消费并释放已处理消息引用,避免消息堆积导致内存持续增长。 5. 结语 总之,我们在享受RocketMQ带来的便捷高效的同时,也需关注其背后可能存在的性能隐患,尤其是JVM内存管理和垃圾回收机制。通过一些实用的优化招数和实际行动,我们完全可以把内存溢出的问题稳稳扼杀在摇篮里,同时还能减少GC(垃圾回收)的频率,这样一来,咱们的系统就能始终保持稳定快速的运行状态,流畅得飞起。这不仅是一场技术的探索,更是对我们作为开发者不断追求卓越精神的体现。在咱们日常的工作里,咱们得换个更接地气儿的方式来看待问题,把每一个小细节都拿捏住,用更巧妙、更精细的招数来化解挑战。大家一起努力,让RocketMQ服务的质量噌噌往上涨,用户体验也得溜溜地提升起来!
2023-05-31 21:40:26
91
半夏微凉
Kafka
...1MB,避免频繁的小批量请求 4.3 数据压缩与分片 对发送至Kafka的消息进行压缩处理,减少网络传输的数据量;同时考虑适当增加Topic分区数,分散网络负载。 4.4 监控与报警 建立完善的监控体系,实时关注网络延迟指标,一旦发现异常情况,立即触发报警机制,便于及时排查和解决。 5. 结语 面对Kafka服务器与外部系统间的网络延迟问题,我们需要从多个维度进行全面审视和分析,结合具体应用场景采取针对性措施。明白并能切实搞定网络延迟这个问题,那可不仅仅是对咱Kafka集群的稳定性和性能有大大的提升作用,更关键的是,它能像超级能量饮料一样,给整个数据处理流程注入活力,确保其高效顺畅地运作起来。在整个寻找答案、搞定问题的过程中,我们不停地动脑筋、动手尝试、不断改进,这正是技术进步带来的挑战与乐趣所在,让我们的每一次攻关都充满新鲜感和成就感。
2023-10-14 15:41:53
466
寂静森林
Maven
...仓库,用户可以从其中下载各种第三方库,极大地简化了项目的开发和维护工作。 跨平台部署 , 跨平台部署是指将应用程序从一种操作系统或硬件平台迁移到另一种平台的过程,同时保持其功能和性能的一致性。在软件开发中,跨平台部署的目的是确保应用能够在不同的环境中稳定运行,避免因平台差异导致的问题。为了实现这一目标,开发者需要考虑不同平台间的兼容性问题,并采取标准化的构建环境、容器化技术和持续集成/持续部署(CI/CD)等策略,以确保应用在各个平台上的表现一致。
2024-12-07 16:20:37
30
青春印记
NodeJS
...超级高效地同时应对大批量的请求,就像是一个技艺高超的小哥在忙碌的餐厅里轻松处理众多点单一样。这种机制特别适合搭建那种独立部署、只专心干一件事的微服务模块,让它们各司其职,把单一业务功能发挥到极致。此外,Node.js 生态系统中的大量库和框架(如Express、Koa等)也为快速搭建微服务提供了便利。 3. 利用 Node.js 创建微服务实例 下面我们将通过一个简单的 Node.js 微服务创建示例来演示其实现过程: javascript // 引入 express 框架 const express = require('express'); const app = express(); // 定义一个用户服务接口 app.get('/users', (req, res) => { // 假设我们从数据库获取用户列表 const users = [ { id: 1, name: 'Alice' }, { id: 2, name: 'Bob' } ]; res.json(users); }); // 启动微服务并监听指定端口 app.listen(3000, () => { console.log('User service is running on port 3000...'); }); 上述代码中,我们创建了一个简单的基于 Express 的微服务,它提供了一个获取用户列表的接口。这个啊,其实就是个入门级的小栗子。在真实的项目场景里,这个服务可能会跟数据库或者其他服务“打交道”,从它们那里拿到需要的数据。然后,它会通过API Gateway这位“中间人”,对外提供一个统一的服务接口,让其他应用可以方便地和它互动交流。 4. 微服务间通信 使用gRPC或HTTP 在微服务架构下,各个服务间的通信至关重要。Node.js 支持多种通信方式,例如 gRPC 和 HTTP。以下是一个使用 HTTP 进行微服务间通信的例子: javascript // 在另一个服务中调用上述用户服务 const axios = require('axios'); app.get('/orders/:userId', async (req, res) => { try { const response = await axios.get(http://user-service:3000/users/${req.params.userId}); const user = response.data; // 假设我们从订单服务获取用户的订单信息 const orders = getOrdersFromDatabase(user.id); res.json(orders); } catch (error) { res.status(500).json({ error: 'Failed to fetch user data' }); } }); 在这个例子中,我们的“订单服务”通过HTTP客户端向“用户服务”发起请求,获取特定用户的详细信息,然后根据用户ID查询订单数据。 5. 总结与思考 利用 Node.js 构建微服务架构,我们可以享受到其带来的快速响应、高并发处理能力以及丰富的生态系统支持。不过呢,每种技术都有它最适合施展拳脚的地方和需要面对的挑战。比如说,当碰到那些特别消耗CPU的任务时,Node.js可能就不是最理想的解决方案了。所以在实际操作中,咱们得瞅准具体的业务需求和技术特性,小心翼翼地掂量一下,看怎样才能恰到好处地用 Node.js 来构建一个既结实又高效的微服务架构。就像是做菜一样,要根据食材和口味来精心调配,才能炒出一盘色香味俱全的好菜。同时,随着我们提供的服务越来越多,咱们不得不面对一些额外的挑战,比如怎么管理好这些服务、如何进行有效的监控、出错了怎么快速恢复这类问题。这些问题就像是我们搭建积木过程中的隐藏关卡,需要我们在构建和完善服务体系的过程中,不断去摸索、去改进、去优化,让整个系统更健壮、更稳定。
2023-02-11 11:17:08
127
风轻云淡
Datax
...一步很重要~ 2. 下载DataX 访问DataX官网(https://datax.apache.org/)下载对应的操作系统版本的DataX压缩包。比如说,如果你正在用的是Linux系统,就可以考虑下载那个最新的“apache-datax-最新版本-number.tar.gz”文件哈。 bash wget https://datax.apache.org/releases/datax-最新版本-number.tar.gz 3. 解压DataX 使用tar命令解压下载的DataX压缩包: bash tar -zxvf apache-datax-最新版本-number.tar.gz cd apache-datax-最新版本-number 四、DataX环境配置 1. 配置DataX主目录 DataX默认将bin目录下的脚本添加至系统PATH环境变量中,以便于在任何路径下执行DataX命令。根据上述解压后的目录结构,设置如下环境变量: bash export DATAX_HOME=绝对路径/to/datax-最新版本-number/bin export PATH=$DATAX_HOME:$PATH 2. 配置DataX运行时依赖 在conf目录下找到runtime.properties文件,配置JVM参数及Hadoop、Spark等运行时依赖。以下是一份参考样例: properties JVM参数配置 设置内存大小为1G yarn.appMaster.resource.memory.mb=1024 yarn.appMaster.heap.memory.mb=512 executor.resource.memory.mb=512 executor.heap.memory.mb=256 executor.instances=1 如果有Hadoop环境 hadoop.home.dir=/path/to/hadoop hadoop.security.authentication=kerberos hadoop.conf.dir=/path/to/hadoop/conf 如果有Spark环境 spark.master=local[2] spark.executor.memory=512m spark.driver.memory=512m 3. 配置DataX任务配置文件 在conf目录下创建一个新的XML配置文件,例如my_data_sync.xml,用于定义具体的源和目标数据源、数据传输规则等信息。以下是简单的配置示例: xml 0 0 五、启动DataX任务 配置完成后,我们可以通过DataX CLI命令行工具来启动我们的数据同步任务: bash $ ./bin/datax job submit conf/my_data_sync.xml 此时,DataX会按照my_data_sync.xml中的配置内容,定时从MySQL数据库读取数据,并将其写入到HDFS指定的路径上。 六、总结 通过本文的介绍,相信您已经对DataX的基本安装及配置有了初步的认识和实践。在实际操作的时候,你可能还会碰到需要根据不同的业务情况,灵活调整DataX任务配置的情况。这样一来,才能让它更好地符合你的数据传输需求,就像是给它量身定制了一样,更加贴心地服务于你的业务场景。不断探索和实践,DataX将成为您数据处理与迁移的强大助手!
2024-02-07 11:23:10
361
心灵驿站-t
Apache Lucene
...在Lucene中实现全文检索的文本自动摘要? 1. 引言 探索全文检索与文本摘要的魅力 嘿,朋友们!今天咱们聊聊一个既有趣又实用的话题——在Apache Lucene中实现全文检索中的文本自动摘要。嘿,如果你是Lucene的新手,或者是对文本处理和信息检索超级好奇的小伙伴,那你可来对地方了!这篇文章就是专门给你准备的,让你轻松上手,玩转这些酷炫的技术!全文检索技术让我们能够高效地从海量数据中挖掘出有用的信息,而文本自动摘要则帮助我们快速把握文档的核心内容,两者结合,简直不要太酷! 2. Apache Lucene简介 走进全文检索的世界 首先,我们得了解一下Apache Lucene。这货是个用Java写的开源全文搜索神器,索引能力超强,搜东西快得飞起!Lucene的核心功能包括创建索引、存储索引以及执行复杂的查询等。简单来说,Lucene就是你进行全文检索时的超级助手。 代码示例: java // 创建索引目录 Directory directory = FSDirectory.open(Paths.get("/path/to/index")); // 创建索引写入器 IndexWriterConfig config = new IndexWriterConfig(new StandardAnalyzer()); IndexWriter indexWriter = new IndexWriter(directory, config); // 添加文档到索引 Document doc = new Document(); doc.add(new TextField("content", "这是文档的内容", Field.Store.YES)); indexWriter.addDocument(doc); indexWriter.close(); 这段代码展示了如何利用Lucene创建索引并添加文档的基本步骤。这里用了TextField来存文档内容,这样一来,搜索起来就灵活多了,想找啥就找啥。 3. 全文检索中的文本自动摘要 为什么我们需要它? 文本自动摘要是指通过算法自动生成文档摘要的过程。这不仅有助于提高阅读效率,还能有效节省时间。想象一下,如果你能在搜索引擎里输入关键词后,直接看到每篇文章的重点内容,那该有多爽啊!在Lucene里实现这个功能,就意味着我们能让信息的处理和展示变得更聪明、更贴心。 思考过程: 当我们处理大量文本时,手动编写摘要显然是不现实的。因此,开发一种自动化的方法就显得尤为重要了。这不仅仅是技术上的挑战,更是提升用户体验的关键所在。 4. 实现文本自动摘要 策略与技巧 实现文本自动摘要主要涉及两个方面:选择合适的摘要生成算法,以及如何将这些算法集成到Lucene中。 摘要生成算法: - TF-IDF:一种统计方法,用来评估一个词在一个文档或语料库中的重要程度。 - TextRank:基于PageRank算法的思想,用于提取文本中的关键句子。 代码示例(使用TextRank): java import com.huaban.analysis.jieba.JiebaSegmenter; import com.huaban.analysis.jieba.SegToken; public class TextRankSummary { private static final int MAX_SENTENCE = 5; // 最大句子数 public static String generateSummary(String text) { JiebaSegmenter segmenter = new JiebaSegmenter(); List segResult = segmenter.process(text, JiebaSegmenter.SegMode.INDEX); // 这里简化处理,实际应用中需要构建图结构并计算TextRank值 return "这是生成的摘要,简化处理..."; // 真实实现需根据具体算法调整 } } 注意:上述代码仅作为示例,实际应用中需要完整实现TextRank算法逻辑,并将其与Lucene的搜索结果结合。 5. 集成到Lucene 让摘要成为搜索的一部分 为了让摘要功能更加实用,我们需要将其整合到现有的搜索流程中。这就意味着每当用户搜东西的时候,除了给出相关的资料,还得给他们一个简单易懂的内容概要,这样他们才能更快知道这些资料是不是自己想要的。 代码示例: java public class LuceneSearchWithSummary { public static void main(String[] args) throws IOException { Directory directory = FSDirectory.open(Paths.get("/path/to/index")); IndexReader reader = DirectoryReader.open(directory); IndexSearcher searcher = new IndexSearcher(reader); QueryParser parser = new QueryParser("content", new StandardAnalyzer()); Query query = parser.parse("搜索关键词"); TopDocs topDocs = searcher.search(query, 10); for (ScoreDoc scoreDoc : topDocs.scoreDocs) { Document doc = searcher.doc(scoreDoc.doc); System.out.println("文档标题:" + doc.get("title")); System.out.println("文档内容摘要:" + TextRankSummary.generateSummary(doc.get("content"))); } reader.close(); directory.close(); } } 这段代码展示了如何在搜索结果中加入文本摘要的功能。每次搜索时,都会调用TextRankSummary.generateSummary()方法生成文档摘要,并显示给用户。 6. 结论 展望未来,无限可能 通过本文的学习,相信你已经掌握了在Lucene中实现全文检索文本自动摘要的基本思路和技术。当然,这只是开始,随着技术的发展,我们还有更多的可能性去探索。无论是优化算法性能,还是提升用户体验,都值得我们不断努力。让我们一起迎接这个充满机遇的时代吧! --- 希望这篇文章对你有所帮助,如果有任何问题或想了解更多细节,请随时联系我!
2024-11-13 16:23:47
86
夜色朦胧
转载文章
...除相应内容。 Git下载及基本使用https://www.bootcss.com/p/git-guide/ 文章目录 Git下载及基本使用[https://www.bootcss.com/p/git-guide/](https://www.bootcss.com/p/git-guide/) 一、下载 二、基本命令 1.初始化本地库 2、设置签名 3.将文件/目录从工作区追加到暂存区 4.查看状态 5.把暂存区的文件移除 6.把文件从暂存区上传到本地库 7.将文件变为未暂存状态 8.创建远程仓库并推送 9.删除远程仓库 10.拉取远程仓库 三、其他命令 1.查看命令信息指令 2.查看版本的提交记录 3.进入不同版本 4.分支操作 5.比较文件 四、遇到的错误 一、下载 用于 Windows 安装程序的 32 位 Git。 用于 Windows 安装程序的 64 位 Git。 二、基本命令 git命令和linux的命令基本相同,大部分linux命令在git中都可以使用。 1.初始化本地库 a.首先新建一个文件夹,进入文件夹,点击鼠标右键,找到菜单中的 Git Bash Here,点击进入命令界面。 b.输入命令 git init 初始化本地仓库 你会发现你的文件夹内多出一个 .git文件证明你的本地仓库初始化成功。 有的电脑可能会隐藏后缀名的文件,无法看到 .git文件,你需要去电脑设置可查看隐藏文件。方法:进入此电脑,点击上方查看,勾选隐藏的项目即可查看被隐藏的文件。 2、设置签名 签名主要是设置用户名和email地址,有两种级别:一种是项目级别 git config user.name 用户名, git config user.email邮箱地址;另一种是系统用户级别 git config --global user.name 用户名, git config --global user.email 邮箱地址。项目级别是优先于系统级别的,但二者至少设置一个。一般只用项目级别就行。 用 cat .git/config可以查看设置的项目签名。 3.将文件/目录从工作区追加到暂存区 命令 :git add 文件/目录 4.查看状态 命令:git status。 第一行信息告诉我们,目前正处于master分支; 第二行信息告诉我们,本地库还没有上传任何文件; 第三、四、五行信息告诉我们,可以用以下命令把暂存区的文件(绿色文件)上传到本地库。 5.把暂存区的文件移除 代码:git rm --cached 文件名。注意文件只是从暂存区中移除,并没有在目录中被删除。 未追加在暂存区的文件显示红色。 6.把文件从暂存区上传到本地库 命令:git commit -m "注释内容" 文件名。 这是查看状态可以看到暂存区已经没有文件可以上传到本地库,说明你上传成功。 7.将文件变为未暂存状态 命令:git rest HEAD 文件名。对在暂存区的文件进行操作。 8.创建远程仓库并推送 a.首先我们要有一个github或gitee账号: github官网:https://github.com/ gitee官网:https://gitee.com/ b.然后在里面创建一个远程仓库(以gihub为例): 登录进入主页面,找到并点击右上角的加号,点击 New repository,然后填写仓库信息。或者找到点击左方的 New选项。进入创建界面,填入信息。 下面三个选项可根据需要勾选。点击 Create...就创建号一个仓库了。 c.复制仓库地址 找到左上方导航Code选项,点击进入该选项 有两个地址:HTTP地址和SSH地址。我一般用HTTP地址(简单)。 如果你创建远程仓库时选择了下面的三个选项,可能你的Code界面会有所差别,点击右方的 Code即可查看仓库地址。 然后进入git命令界面:输入命令 git remote add origin(别名) 地址为你复制的地址创建别名并储存。命令 git remote -v查看你设置过的地址。 d.最后进行推送操作,将本地仓库推送到远程仓库。 命令 git push -u origin(你要推送到的远程仓库地址) master(你要推送的分支).在第一次推送是用上 -u选项,之后就可以不用。 该界面为成功推送,你再刷新你的github或gitee仓库,这是你上传的文件将出现在远程仓库表明推送成功。 注意:1.如果创建远程仓库时勾选了下面的三个选项,则可能你刷新时没发现有新文件推送到仓库,这是先找到红色划线位置,查看当前分支是否自己推送的分支,找到正确分支再看是否正确推送。 2.如果你是第n次推送,必须要在和远程仓库版本一样的条件下进行修改后推送,否则无法推送(不能跨多个版本推送)。 3.如果推送不成功,可能是你修改前的版本和远程库的版本不一致造成,先进行拉取,在修改推送。 9.删除远程仓库 首先进入要删除的远程仓库,点击上方导航条中的 Settings选项 然后找到进入左边菜单栏中的 Options选项,鼠标划到最下面找到 点击Delete this repository选项 最后按指示输入github用户名和密码进行删除即可。 10.拉取远程仓库 命令:git pull origin master。 在打算更新远程库时,先拉取远程库然后修改或添加,否则可能报错。 表明拉取成功。 注意:若你的本地仓库进行了修该导致无法拉去成功,则尝试用 git pull --rebase命令进行拉取。 三、其他命令 1.查看命令信息指令 命令:git help 2.查看版本的提交记录 命令:git log 以每条版本日志显示一行:git log --pretty=oneline 简写哈希值的方式:git log --oneline 可以看到前进后退步数:git reflog 3.进入不同版本 先用 git reflog命令查看哈希值 a.命令:git reset --hard 哈希值(索引) b.命令:git reset --hard HEAD^,该命令只能后退(查看当前版本之前的版本),后面几个 ^ 则后退几步。 c.命令:git reset --hard~,该命令只能后退(查看当前版本之前的版本),后退 (数值) 步; 4.分支操作 命令:git branch -v,查看所有分支 命令:git branch 分支名,创建分支 命令:git checkout 分支名,切换分支 5.比较文件 命令:git diff 文件名,工作区和暂存区比较 命令:git diff HEAD 文件名,当前版本比较 命令:git diff HEAD^ 文件名,历史版本比较 四、遇到的错误 git config --global http.sslVerify false 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_56180999/article/details/117634968。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-18 13:38:15
75
转载
NodeJS
...aScript软件库下载第三方代码包,以便在自己的项目中复用他人开发的功能组件,极大地提高了开发效率。
2024-01-24 17:58:24
145
青春印记-t
Superset
...扫描、优化查询结构、批量处理等策略,以确保数据查询在处理大量数据时保持高效。 缓存优化指南 , 是针对缓存机制的一系列策略和实践,旨在提高数据访问速度和减少延迟。缓存通过存储经常访问的数据副本,使得数据可以在本地快速获取,而不是每次都从原始数据源加载。有效的缓存策略需要考虑缓存的大小、过期策略、数据一致性维护等多方面因素。 自动化脚本构建 , 指的是使用编程语言(如Python、Shell脚本等)编写自动执行任务的脚本。在数据管理和分析场景中,自动化脚本可以用于执行定期的数据验证、数据更新、错误检测和修复等任务,提高工作效率和减少人为错误。 分页查询最佳实践 , 是指在处理大型数据集时,使用分页查询技术的一种优化策略。分页查询允许系统一次只加载一部分数据,从而减少内存使用和加载时间,提高查询性能。这种策略在数据量大、需要频繁查询的场景下特别有用。 云计算和边缘计算技术 , 云计算指的是通过互联网提供可扩展的计算资源和服务,用户无需直接管理硬件基础设施。边缘计算则是在数据产生源附近处理数据,减少数据传输延迟,提高响应速度和效率。两者都对实时数据分析和处理有重要作用,能够帮助企业更快速、更有效地利用数据。 智能化水平 , 指的是通过自动化、机器学习、人工智能等技术提高系统或过程的自主性和效率的能力。在数据管理和分析领域,智能化水平的提升可以帮助企业自动化重复性工作、预测趋势、优化决策,从而提高整体运营效率和竞争力。
2024-08-21 16:16:57
110
青春印记
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
watch -n 5 'command'
- 定时执行命令并刷新输出结果(每5秒一次)。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"