前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[动态扩展 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...而提高系统的可用性和扩展性。例如,旗鱼云梯就提供了良好的集群化功能,允许用户无限制添加自己的服务器进行统一管理。
2023-10-25 12:23:09
518
转载
转载文章
...个堆内存最大值(可以动态申请这个大小),这个Max Heap Size的大小,决定了软件运行时可以申请的最大运行内存。App软件内存分配是个不断创建和GC回收的过程,就像一个水池拥有注入和排出水的通道,当注入过快,排出不足时,水池满了溢出,Out of Memory,即我们常说的OOM。 内存泄漏 当我们在代码中创建对象,会申请内存空间,同时包含一个对象的引用,当我们长时间不使用该引用时,JVM GC操作时会根据这个引用去释放内存。但是,对象的回收可能有点差错,如果这个对象A被另一个线程B所引用,当我们不再使用A,可A却处于B的hold状态,那么我们每次创建的A都得不到回收,这个时候就会发生内存泄漏了。 频繁GC卡顿 上面说了,App的堆内存有最大值,是有限的,那么如果我们频繁的创建,当运行内存不断上升,为了维持App的运行,GC回收也会频繁操作,软件运行资源有些,必然导致卡顿问题。 JAVA的GC机制,非常的复杂和精辟,不可一言概论之,在看过许多blog之后,给出一点自己的总结。 简述JVM GC 我们都知道Java语言非常的方便,不像C语言,申请和释放内存都是自己操作,java有虚拟机帮忙。Android 的每个应用程序都会使用一个专有的Dalvik虚拟机实例来运行,即使内存泄漏也只是kill当前App. Java虚拟机有一套完整的GC方案,只是简单理解的话就是,它维持着一个对象关系树,当开始GC操作时,它会从GC Roots开始扫描整个Object Tree,当发现某个无法从Tree中引用到的对象时,便将其回收。 GC Roots分类举例: Class类 Alive Thread 线程stack上的对象,如方法或者局部变量 JNI活动对象 System Class Loader Java中的引用关系 java中有四种对象引用关系,分别是:强引用StrongRefernce、软引用SoftReference、弱引用WeakReference、虚引用PhantomReference,这四种引用关系分别对应的效果: StrongRefernce 通过new创建的对象,如Object obj = new Object();,强引用不会被垃圾回收器回收和销毁,即是OOM,所以这也容易造成我们接下来会分析的《非静态内部类持有对象导致的内存泄漏问题》 SoftReference 软引用可以被垃圾回收器回收,但它的生命周期要强于弱引用,但GC回收发生时,只有在内存空间不足时才会回收它 WeakReference 弱引用的生命周期短,可以被GC回收,但GC回收发生时,扫描到弱引用便会被垃圾回收和销毁掉 PhantomReference 虚引用任何时候都可以被GC回收,它不会影响对象的垃圾回收机制,它只有一个构造函数,因此只能配合ReferenceQueue一起使用,用于记录对象回收的过程 PhantomReference(T referent, ReferenceQueue<? super T> q) 关于ReferenceQueue 他的作用主要用于记录引用是否被回收,除了强引用其他的引用方式得构造函数中都包含了ReferenceQueue参数。当调用引用的get()方法返回null时,我们的对象不一定已经回收掉了,可能正在进入回收流程中,而当对象被确认回收后,它的引用会被添加到ReferenceQueue中。 Felix obj = new Felix();ReferenceQueue<Felix> rQueue = new ReferenceQueue<Felix>();WeakReference<Felix> weakR = new WeakReference<Felix>(obj,rQueue); 总结 看完Android引用和回收机制,我们对于代码中内存问题的原因也有一定认识,当时现实中内存泄漏或者溢出的问题,总是不经意间,在我之后一些列的文章中,会对不同场景的代码问题进行分析和解决,一起来关注吧! 本篇文章为转载内容。原文链接:https://blog.csdn.net/sslinp/article/details/84787843。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-10 11:39:05
263
转载
Mongo
...,具备高可用性、水平扩展能力和丰富的查询语言。在本文中,MongoDB的日志文件格式不兼容问题指的是由于版本升级或配置变化导致的日志文件结构变化,从而影响原有日志解析脚本的正常运行。 日志文件 , 日志文件是记录软件系统运行过程中所发生事件的文件,通常用于追踪错误、调试问题以及监控系统性能。MongoDB的日志文件主要包括操作日志(oplog)和常规日志(mongod.log),前者用于记录副本集成员间的数据同步过程,后者则记录服务器启动、关闭及各种操作的结果。在本文中,日志文件格式不兼容问题特指MongoDB不同版本间日志文件结构变化引发的解析脚本失效现象。 操作日志(oplog) , 操作日志(oplog)是MongoDB中的一种特殊日志文件,专门用于存储副本集成员之间进行数据同步所需的操作记录。oplog包含插入、更新和删除等操作信息,确保每个副本集成员的数据一致性。在本文中,oplog格式不兼容问题是指由于MongoDB版本升级导致的oplog结构变化,进而影响依赖于特定格式的监控和管理工具的功能。
2024-11-21 15:43:58
83
人生如戏
Etcd
...管理的最新趋势和技术动态。近日,CNCF(云原生计算基金会)发布的《2023年云原生存储与日志管理最佳实践》报告中强调了日志数据的有效收集、分析和存储对于提升系统可观测性和故障排查效率的重要性。 同时,随着开源生态的发展,如Loki、Jaeger等新一代日志查询与追踪工具逐渐崭露头角,它们通过优化的日志压缩算法和灵活的查询接口,极大地提升了大规模分布式系统日志处理的能力。例如,Etcd用户在实践中不仅可以通过调整Etcd自身的日志级别和输出方式,还可以将日志对接到这些现代日志管理系统中,实现更高效的问题定位和性能优化。 此外,鉴于数据安全与合规性的要求日益严苛,如何在保证日志功能的同时确保敏感信息的安全也成为当前热点话题。因此,学习并采用加密传输、日志脱敏等相关技术,也是Etcd以及其他分布式系统运维者在日志管理方面不可忽视的一环。 综上所述,在实际运维工作中,结合最新的日志管理理念和技术手段,将有助于运维团队更加从容地应对复杂多变的业务场景,使Etcd及其他关键组件在保障服务稳定性的同时,更好地服务于企业的数字化转型和云原生战略实施。
2023-01-29 13:46:01
832
人生如戏
Netty
...多重要。它能将字节码动态地编译成机器码,从而大大提升执行效率。而Netty作为一个高性能的网络应用框架,自然也离不开JIT编译器的帮助。 思考过程: - 我们都知道,JIT编译器能够根据运行时的数据类型信息和执行模式进行优化。那么,Netty是如何利用这些特性来提高性能的呢? - 想象一下,在处理大量并发连接时,我们如何让每一行代码都尽可能高效?这不仅涉及到硬件层面的优化,更离不开软件层面的策略。 2. Netty中的ChannelPipeline:优化的起点 让我们先从Netty的核心组件之一——ChannelPipeline开始讲起。ChannelPipeline就像是一个传送带,专门用来处理进入和离开的各种事件。每个处理器(ChannelHandler)就像传送带上的一环,共同完成整个流程。当数据流经管道时,每个处理器都可以对其进行修改或过滤。 java public class MyHandler extends ChannelInboundHandlerAdapter { @Override public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception { // 处理接收到的消息 System.out.println("Received message: " + msg); // 将消息传递给下一个处理器 ctx.fireChannelRead(msg); } } 理解过程: - MyHandler 是一个简单的处理器,它接收消息并打印出来,然后调用 ctx.fireChannelRead(msg) 将消息传递给管道中的下一个处理器。 - JIT编译器可以针对这种频繁调用的方法进行优化,通过预测调用路径减少分支预测错误,进而提升整体性能。 3. ByteBuf 内存管理的艺术 接下来,我们来看看ByteBuf,这是Netty用来替代传统的byte[]数组的一个高性能类。ByteBuf提供了自动内存管理和池化功能,能够显著减少垃圾回收的压力。 java ByteBuf buffer = Unpooled.buffer(16); buffer.writeBytes(new byte[]{1, 2, 3, 4}); System.out.println(buffer.readByte()); buffer.release(); 探讨性话术: - 在这个例子中,我们创建了一个容量为16字节的缓冲区,并写入了一些字节。之后读取第一个字节并释放缓冲区。这里的关键在于JIT编译器如何识别和优化这些内存操作。 - 比如,JIT可能会预热并缓存一些常见的方法调用路径,如writeBytes() 和 readByte(),从而在实际运行时提供更快的访问速度。 4. 内联与逃逸分析 JIT优化的利器 说到JIT编译器的优化策略,不得不提的就是内联和逃逸分析。内联就像是把函数的小身段直接塞进调用的地方,这样就省去了函数调用时的那些繁文缛节;而逃逸分析呢,就像是个聪明的侦探,帮JIT(即时编译器)搞清楚对象到底能不能在栈上安家,这样就能避免在堆上分配对象时产生的额外花销。 java public int sum(int a, int b) { return a + b; } // 调用sum方法 int result = sum(10, 20); 思考过程: - 这段代码展示了简单的内联优化。比如说,如果那个sum()方法老是被反复调用,聪明的JIT编译器可能就会直接把它变成简单的加法运算,这样就省去了每次调用函数时的那些麻烦和开销。 - 同样,如果JIT发现某个对象只在方法内部使用且不逃逸到外部,它可能决定将该对象分配到栈上,这样就无需进行垃圾回收。 5. 结语 拥抱优化,追求极致 总之,Netty框架通过精心设计和利用JIT编译器的各种优化策略,实现了卓越的性能表现。作为开发者,咱们得好好搞懂这些机制,然后在自己的项目里巧妙地用上。说真的,性能优化就像一场永无止境的马拉松,每次哪怕只有一点点进步,也都值得我们去琢磨和尝试。 希望这篇文章能给你带来一些启发,让我们一起在编程的道路上不断前行吧! --- 以上就是我对Netty中JIT编译优化的理解和探讨。如果你有任何问题或者想法,欢迎随时留言交流!
2025-01-21 16:24:42
56
风中飘零_
Redis
...优化配置与实践的最新动态。最近的一篇技术博客《Redis 6.2新特性解析:智能客户端连接管理》中提到,Redis 6.2版本引入了一种更智能的客户端连接管理机制,它能够根据系统资源状况自动调整最大连接数,有效防止因并发连接过多导致的资源耗尽问题。 同时,随着微服务架构的普及,如何在分布式环境下合理分配各个节点的Redis最大连接数也成为热点话题。InfoQ的一篇报道《在Kubernetes集群中实现Redis高可用与弹性伸缩》指出,在K8s环境中,通过HPA(Horizontal Pod Autoscaler)可以动态调整Redis实例的数量以应对流量波动,而通过合理的Pod资源配置以及自定义metrics,可以确保每个Redis实例的最大连接数始终处于最优状态。 此外,对于那些寻求深度优化Redis性能的企业来说,《Redis源码分析:连接池与内存管理策略》一文提供了从底层原理出发,解读Redis如何高效利用文件描述符、内存等系统资源,并给出了针对特定业务场景定制化调整连接池大小和内存分配策略的实战建议。 综上所述,随着技术的不断演进,理解和掌握Redis连接管理的最新趋势和技术细节,结合实际业务需求进行精细化调优,将有助于我们在保障Redis服务稳定性和高性能的同时,充分挖掘其潜能,助力企业应用高效运行。
2024-02-01 11:01:33
301
彩虹之上_t
转载文章
...端框架对于数据交互和动态渲染的重要性。近年来,随着前端技术的快速发展,Angular已升级至了Angular(v2+),它采用全新的架构设计,性能更优、模块化程度更高。例如,在Angular最新版本中,HttpClient模块替代了原有的$http服务,提供了更现代化的HTTP请求处理方式,同时引入了RxJS库,增强了异步编程能力。 另外,针对分页组件的开发,Bootstrap等UI框架提供了现成且易于集成的分页组件,开发者可以通过指令或服务的方式与Angular结合使用,简化开发流程,提高用户体验。而在Angular Material等官方支持的组件库中,也有专门针对分页设计的mat-paginator组件,可实现更为丰富且灵活的分页效果,并能轻松与数据源绑定,进行实时数据更新。 此外,现代前端应用越来越注重SEO优化及服务器端渲染(SSR)。Angular Universal项目允许开发者在服务器端预渲染应用,从而提升网页加载速度和搜索引擎可见性,这对于电商类网站的商品评价列表展示场景尤其重要。 总之,虽然文章关注的是AngularJS 1.7中的具体实践,但放眼当前的技术趋势,不断学习和掌握新版Angular框架及其生态系统中的最新工具和技术,将有助于开发者更好地应对复杂多变的前端需求,高效构建出实用高效的商品评价系统和其他丰富的Web应用程序。
2023-10-12 14:36:16
73
转载
Apache Pig
...年来大数据领域的发展动态和相关研究进展。2021年,Apache软件基金会发布了Pig 0.18.0版本,该版本优化了对Hadoop 3.x系列的兼容性,并引入了若干新的Pig Latin函数以支持更复杂的数据转换任务,这无疑为大规模文本数据处理提供了更为高效、灵活的解决方案。 同时,在实际应用层面,众多企业正积极采用Apache Pig进行海量日志分析、社交媒体情绪挖掘等场景。例如,某知名电商平台利用Pig Latin脚本实现了对其数亿条用户评论数据的快速清洗与情感分析,不仅提升了客户体验管理效率,还为企业决策提供了实时、准确的数据支持。 此外,学术界也在持续探索Apache Pig在文本挖掘领域的潜能。近期一项研究将Pig Latin与深度学习框架TensorFlow结合,构建了一种混合式的大规模文本预处理流程,成功应用于新闻语料库的自动分类项目中,展示了Apache Pig在结合前沿技术推动大数据处理创新方面的巨大潜力。 综上所述,Apache Pig在大规模文本数据处理方面的价值得到了实践和理论研究的双重验证,而随着大数据技术的不断迭代更新,我们有理由期待Apache Pig在未来能继续发挥其关键作用,帮助企业和社会科研机构更深入地挖掘和利用信息宝藏。
2023-05-19 13:10:28
724
人生如戏
Maven
...列表,学习如何创建并扩展自定义模板; 3. 关注DevOps领域中关于Maven archetype与云原生、持续集成/持续部署(CI/CD)实践的案例分享和技术文章; 4. 参与相关论坛和社区讨论,了解业界如何解决利用Maven archetype面临的复杂场景问题,不断提升自身技术水平和工作效率。
2024-03-20 10:55:20
109
断桥残雪
Mahout
...时跟进官方文档和技术动态,适时对旧有代码进行重构和迁移。这样一来,我们不仅能巧妙地躲开API改版可能引发的各种运行故障,更能搭上新版Mahout这班快车,让我们的机器学习应用效果和用户体验蹭蹭往上涨。同时,这也是一个不断学习、不断提升的过程,让我们一起拥抱变化,走在技术进步的前沿。
2023-09-14 23:01:15
105
风中飘零
CSS
...能——“专注模式”的动态效果。这项功能不仅提升了系统的交互感,还通过细腻的动画设计减少了用户的认知负担。这一案例再次证明了细节设计对用户体验的重要性。 与此同时,国内也有不少平台在无障碍设计方面取得了显著进展。例如,某电商平台近期推出了一款针对视障用户的语音助手插件,该插件通过深度学习技术实现了更自然的语言交互,极大改善了视障用户购物时的操作体验。这一举措不仅体现了企业社会责任,也为其他互联网公司提供了可借鉴的经验。 此外,W3C(万维网联盟)最近发布了一份关于无障碍标准的新指南,强调了“包容性设计”的必要性。这份指南指出,现代网页设计不仅要注重美观,更要考虑到不同人群的需求,包括老年人、残障人士以及文化背景不同的用户。例如,对于老年用户,设计师应减少复杂的交互步骤,并提供更大的字体和更明显的对比度;而对于多语言环境下的用户,则需要确保内容的翻译准确且符合当地习惯。 这些趋势表明,互联网设计正在从单纯的美学追求向更加人性化、社会化的方向演进。未来,随着人工智能和大数据技术的发展,我们有理由相信,更多基于用户行为分析的设计创新将涌现出来,从而推动整个行业的进步。
2025-04-27 15:35:12
47
风轻云淡_
Superset
...技术,结合实时的科研动态与行业发展趋势,将有助于我们在实际工作中更好地运用数据可视化工具,揭示隐藏在庞大数据背后的深层次信息,从而驱动决策优化和业务增长。
2023-09-13 11:26:54
100
清风徐来-t
Ruby
...高内聚、低耦合、易于扩展和维护的代码。在文章语境中,遵循SOLID原则有助于构建稳定可靠的软件结构,使得资源管理更加清晰可控。 GIL(Global Interpreter Lock) , 全局解释器锁是Ruby(以及其他一些解释型语言如Python)为实现线程安全而引入的一种机制。GIL在同一时刻只允许一个线程执行字节码,防止多线程环境下因共享数据引发的竞争条件问题。然而,在多核CPU系统中,GIL可能会限制Ruby并发性能的提升。尽管如此,在处理异常和资源管理时,理解GIL的作用仍非常重要,因为它影响着如何在多线程环境中有效地释放资源并保证一致性。
2023-09-10 17:04:10
90
笑傲江湖
DorisDB
...中,实时掌握最新技术动态和最佳实践的重要性。近期,Apache Doris项目社区发布了其最新的稳定版本,不仅优化了系统稳定性,还针对资源管理和元数据保护进行了改进,显著降低了由于配置错误和资源不足导致的启动失败及运行中崩溃的风险。 与此同时,业界对于MPP数据库系统的运维研究也在持续深化。有专家分析指出,随着大数据环境的日益复杂,除了常规的系统日志分析和环境检查外,采用AIops智能运维手段进行数据库性能预测与故障预警已逐渐成为趋势。例如,利用机器学习算法对DorisDB及其他分布式数据库系统的运行状态进行实时监控与智能分析,能够在问题发生前识别潜在风险,从而提前采取预防措施。 此外,对于企业用户而言,建立健全的数据备份与恢复策略同样至关重要。某知名互联网公司在实际应用中分享了他们如何通过结合DorisDB的内置备份功能以及外部存储解决方案,构建了一套完善的数据安全防护体系,确保即使在极端情况下也能快速恢复服务,保障业务连续性。 总之,在应对DorisDB或其他数据库系统的运维挑战时,紧跟技术发展步伐,借鉴行业最佳实践,并结合自身业务特点,建立全方位、多层次的运维保障机制,方能在瞬息万变的大数据时代立于不败之地。
2023-10-20 16:26:47
567
星辰大海
.net
...IQueryable扩展方法,使得开发者能更灵活地处理大规模数据。 新的IQueryableExtensions模块允许在内存之外进行查询,这意味着在处理大量数据时,不必一次性加载所有数据到内存,从而显著降低内存压力。此外,Microsoft还加强了对延迟加载和流式处理的支持,使得在处理大数据集时,性能和用户体验得以优化。 同时,关于数据一致性,业界已经开始关注无服务器计算(Serverless)和事件驱动架构,这在.NET世界中也有所体现。Azure Functions等服务为开发者提供了无需管理服务器和基础设施的环境,有助于在处理大规模数据时保持数据一致性。 对于.NET开发者来说,学习如何利用这些新特性和工具,如使用LINQ的Streaming API,或者配合Docker和Kubernetes进行容器化部署,将是未来提升数据库操作能力和应对大数据挑战的关键。同时,持续关注.NET生态系统的更新和社区的最佳实践分享,将有助于在大数据时代更好地驾驭C进行数据库操作。
2024-04-07 11:24:46
437
星河万里_
ZooKeeper
...该领域的一些最新发展动态与研究趋势。近年来,随着微服务和云原生架构的普及,对高效、灵活的分布式协调服务需求日益增强,而ZooKeeper作为其中的关键组件,其负载均衡策略也在持续优化升级。 例如,在Kubernetes等容器编排系统中,研究人员正尝试将ZooKeeper与Service Mesh结合,利用Istio等服务网格工具实现更智能的流量管理和节点负载均衡,以适应瞬息万变的应用场景和大规模集群环境。这种新的融合方案能够更好地处理网络延迟问题,通过精细化控制请求路由,显著提升系统的稳定性和性能表现。 此外,学术界也不断有新的研究成果涌现,比如改进的基于ZooKeeper的动态负载均衡算法,这类算法能实时响应系统负载变化,有效避免热点现象,提高资源利用率。同时,对于如何在大规模分布式系统中保障数据一致性与正确性的问题,一些学者提出借助Raft等一致性协议强化ZooKeeper的数据管理能力,从而在高并发场景下也能确保节点负载信息的准确更新与传播。 综上所述,随着技术的不断发展和应用场景的拓展,ZooKeeper节点负载均衡策略的研究与实践正逐步走向精细化、智能化。对于广大开发者而言,紧跟这些前沿动态,不仅有助于提升现有系统的性能与稳定性,更能为未来设计和构建更为复杂且高效的分布式系统奠定坚实基础。
2024-01-21 23:46:49
123
秋水共长天一色
Flink
...注近期相关领域的技术动态与研究进展。近日,Apache Flink社区发布了新版本,其中对异步I/O接口进行了优化升级,不仅增强了对各类外部系统的兼容性,还提供了更完善的错误处理机制,使得开发者能够更加便捷、高效地利用异步I/O操作来应对大规模流数据处理场景中的延迟挑战。 与此同时,阿里巴巴集团在其海量数据实时计算实践中,公开分享了如何借助Flink的异步I/O特性,成功实现了与多种存储系统如Hadoop HDFS和阿里云OSS的无缝对接,显著提升了整体业务流程的响应速度和吞吐量。这一实战经验为行业内外的大数据从业者提供了宝贵参考。 此外,针对异步编程模型的深入解读与探讨也不容忽视。例如,知名论文《Asynchronous Programming Models for Big Data Processing》中,作者从理论层面剖析了异步I/O在分布式系统及大数据处理中的核心价值,并结合具体案例阐述了其在降低延迟、提高资源利用率等方面的优越表现。这些前沿研究成果对于指导实际工程实践以及未来技术创新具有重要意义。
2024-01-09 14:13:25
493
幽谷听泉-t
Tornado
...为它能够提高系统的可扩展性和灵活性。例如,Netflix、亚马逊和谷歌等大型互联网公司都在其产品中广泛采用微服务架构。这种架构模式允许开发者将应用程序分解为多个小型、独立的服务,每个服务运行在自己的进程中,通过轻量级通信协议(如HTTP/REST或gRPC)进行交互。这不仅简化了开发和部署过程,还提高了系统的可靠性和性能。 最近的一个案例是,GitHub 在其平台上引入了微服务架构,以支持其快速增长的用户基础和不断增加的功能需求。GitHub 的工程师团队发现,传统的单体架构已经无法满足日益增长的需求,因此决定采用微服务架构来重构部分系统。这一举措显著提升了系统的响应速度和稳定性,同时也使得团队能够更快地迭代新功能。 此外,微服务架构还促进了DevOps文化的普及。通过将应用拆分成多个小服务,团队可以更加灵活地进行持续集成和持续交付(CI/CD),从而缩短开发周期,提高软件质量。例如,Spotify 就在其开发流程中采用了微服务架构和DevOps实践,这使得他们能够迅速响应市场变化,快速发布新功能。 对于开发者来说,学习和掌握微服务架构的相关知识变得尤为重要。除了了解基本原理外,还需要熟悉相关的工具和技术,如Docker、Kubernetes、Istio等。这些工具可以帮助开发者更高效地管理和部署微服务,确保系统的稳定性和安全性。 总之,微服务架构已经成为现代软件开发的重要组成部分。随着技术的不断发展,微服务的应用范围将进一步扩大,为开发者带来更多的机遇和挑战。
2025-01-01 16:19:35
115
素颜如水
SpringBoot
...各的,独立部署、自由扩展、轻松升级,这样一来,系统的维护和扩容就变得超级灵活便捷,就像搭积木一样简单易行。为了确保各个服务间能顺畅地“交流”和协同工作,我们一般会借助一个叫做消息中间件的工具来帮忙传递信息和数据。这就像是在各个服务之间搭建起一座无形的桥梁,让数据能够高效、准确地从一个地方跑到另一个地方。本文我们将通过Spring Boot集成RocketMQ来实现实现异步任务的消息推送。 二、Spring Boot简介 Spring Boot是Spring框架的一个子项目,旨在简化Spring应用的构建和配置过程。它提供了一个开箱即用的开发环境,能够快速地搭建出基于Spring的应用程序。另外,Spring Boot还自带了一大堆好用的内置组件和自动化工具,这些家伙能帮我们更轻松地搞定应用程序的管理问题。 三、RocketMQ简介 RocketMQ是一款开源的分布式消息中间件,由阿里巴巴公司推出。这个家伙,可厉害了!它能够飞快地传输大量数据,速度嗖嗖的,延迟低得几乎可以忽略不计。而且,它的稳定性和容错能力也是一级棒,就像个永不停歇、从不出错的小超人一样,随时待命,让人安心又放心。RocketMQ支持多种协议,包括Java API、Stomp、RESTful API等,可以方便地与其他系统进行集成。 四、Spring Boot集成RocketMQ 要实现Spring Boot与RocketMQ的集成,我们需要引入相关的依赖。首先,在pom.xml文件中添加如下依赖: xml org.springframework.boot spring-boot-starter-rocketmq 然后,我们需要在配置文件application.properties中添加如下配置: properties spring.rocketmq.namesrv-address=127.0.0.1:9876 这里的namesrv-address属性表示RocketMQ的命名服务器地址,我们可以通过这个地址获取到Broker节点列表。 接下来,我们就可以开始编写生产者的代码了。下面是一个简单的生产者示例: java import org.apache.rocketmq.client.consumer.DefaultMQPushConsumer; import org.apache.rocketmq.common.message.MessageQueue; import java.util.ArrayList; import java.util.List; public class Producer { public static void main(String[] args) { // 创建一个消息消费者,并设置一个消息消费者组 DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("testGroup"); // 指定NameServer地址 consumer.setNamesrvAddr("localhost:9876"); // 初始化消费者,整个应用生命周期内只需要初始化一次 consumer.start(); // 关闭消费者 consumer.shutdown(); } } 在这个示例中,我们创建了一个名为testGroup的消息消费者组,并指定了NameServer地址为localhost:9876。然后,我们就像启动一辆跑车那样,先给消费者来个“start”热身,让它开始运转起来;最后嘛,就像关上家门一样,我们顺手给它来了个“shutdown”,让这个消费者妥妥地休息了。 五、总结 本文介绍了如何通过Spring Boot集成RocketMQ实现异步任务的消息推送。用这种方式,我们就能轻轻松松地管理好消息队列,让系统的稳定性和扩展性噌噌噌地往上涨。同时,Spring Boot和RocketMQ的结合也使得我们的应用程序更加易于开发和维护。以后啊,我们还可以捣鼓捣鼓其他的通讯工具,比如Kafka、RabbitMQ这些家伙,让咱们的系统的运行速度和稳定性更上一层楼。
2023-12-08 13:35:20
83
寂静森林_t
RocketMQ
...高性能、高可靠和灵活扩展的特性赢得了众多开发者们的青睐。然而,在实际动手部署和使用的时候,我们可能会碰上这么个情况:RocketMQ的软件版本跟服务器环境玩不来,就是说它们之间存在兼容性问题。这种状况不仅可能让RocketMQ运行起来磕磕绊绊,甚至可能会对整个系统架构产生难以预料的影响,就像一颗定时炸弹,随时可能给整个系统带来意想不到的“惊喜”。本文将通过生动的示例代码和探讨性话术,深入剖析这个问题,并给出相应的解决方案。 2. 问题现象与影响 --- 现象描述 假设你正在尝试在一个Java 8环境中运行RocketMQ 4.9.x版本(该版本需要Java 11及以上环境),此时你可能会遭遇如下错误: java Exception in thread "main" java.lang.UnsupportedClassVersionError: org/apache/rocketmq/client/producer/DefaultMQProducer : Unsupported major.minor version 55.0 这个错误提示表明了RocketMQ客户端类库与当前Java运行时环境的不兼容性。 影响分析 这种版本不兼容问题会导致RocketMQ无法启动,进而影响到依赖于RocketMQ的消息传递功能,比如订单处理、日志收集、数据同步等核心业务流程。另外,要是消息队列服务突然罢工了,那可能会拖累整个系统的运行速度,甚至可能像多米诺骨牌一样引发一连串的故障。这样一来,咱们系统的稳定性和可用性可就要大大地打折扣了。 3. 原因探究 --- 问题的根本原因在于软件组件版本之间的依赖关系没有得到妥善处理。比如说,就拿RocketMQ的新版本举个例子吧,它可能开始用上了JDK更新版里的一些酷炫新特性。不过呢,你要是还用着老版本的JDK,那可就尴尬了,因为它压根儿还没法支持这些新玩意儿,这样一来,两者就闹起了“兼容性”的小矛盾咯。 4. 解决策略 --- 面对此类问题,我们可以从以下几个方面进行解决: - 升级服务器环境:根据RocketMQ官方文档的要求,更新服务器上的Java版本以满足RocketMQ软件的需求。例如,将Java 8升级至Java 11或更高版本。 bash 在Linux环境下升级Java版本 sudo apt-get update sudo apt-get install openjdk-11-jdk - 选择合适RocketMQ版本:如果由于某些原因不能升级服务器环境,那么应选择与现有环境兼容的RocketMQ版本进行安装和部署。在Apache RocketMQ的GitHub仓库或官方网站上,可以查阅各个版本的详细信息及其所需的运行环境要求。 - 保持版本管理和跟踪:建立完善的软件版本管理制度,确保所有组件能够及时进行更新和维护,避免因版本过低引发的兼容性问题。 5. 总结与思考 --- 在日常开发和运维工作中,我们不仅要关注RocketMQ本身的强大功能和稳定性,更要对其所依赖的基础环境给予足够的重视。要让RocketMQ在实际生产环境中火力全开,关键得把软硬件版本之间的依赖关系摸得门儿清,并且妥善地管好这些关系,否则它可没法展现出真正的实力。同时呢,这也让我们在捣鼓和搭建那些大型的分布式系统时,千万要记得把“向下兼容”原则刻在脑子里。为啥呢?因为这样一来,咱们在给系统升级换代的时候,就能有效地避免踩到潜在的风险雷区,也能省下不少不必要的开销,让整个过程变得更顺溜、更经济实惠。 以上内容仅是针对RocketMQ版本与服务器环境不兼容问题的一个浅显探讨,具体实践中还涉及到更多细节和技术挑战,这都需要我们不断学习、实践和总结,方能在技术海洋中游刃有余。
2023-05-24 22:36:11
188
灵动之光
Tomcat
...一样,实时留意着流量动态,一旦发现有啥不对劲的行为,就能立马出手拦截,确保安全无虞。 当然,除了上述方法外,还有很多其他的方法可以防止跨站脚本攻击(XSS),比如使用验证码、限制用户提交的内容类型等等。这些都是值得我们深入研究和实践的技术。 总的来说,防止访问网站时出现的安全性问题,如跨站脚本攻击(XSS)或SQL注入,是一项非常重要的任务。作为开发小哥/小姐姐,咱们得时刻瞪大眼睛,绷紧神经,不断提升咱的安全防护意识和技术能力。这样一来,才能保证我们的网站能够安安稳稳、健健康康地运行,不给任何安全隐患留空子钻。只有这样,我们才能赢得用户的信任和支持,实现我们的业务目标。"
2023-08-10 14:14:15
283
初心未变-t
PostgreSQL
...时负载和硬件资源进行动态分配,从而有效避免因手动设置不当导致的性能瓶颈问题。 同时,PostgreSQL 14还对max_connections参数进行了重新设计,新增了一项名为"connection limiting"的功能,允许数据库根据CPU核心数、内存大小等硬件特性来推荐合理的最大连接数,并在达到阈值时采取更平滑的拒绝策略,降低了因过度并发连接引发系统崩溃的风险。 此外,日志管理方面也有显著提升,新版提供了更精细化的日志级别控制和日志轮转功能,管理员可以根据实际情况灵活配置log_line_prefix及log_directory参数,以防止因日志文件过大占用过多磁盘空间而影响服务运行。 综上所述,随着PostgreSQL持续迭代与优化,用户在实际应用中应对系统配置有更为深入的理解与实践。建议密切关注官方发布的最新文档和技术博客,结合自身业务需求,充分利用新版本特性进行系统调优,确保数据库高效稳定运行,为企业的数字化转型提供强大支持。
2023-12-18 14:08:56
237
林中小径
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
ps aux | grep process
- 查找正在运行的特定进程。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"