前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[用户类结构设计与推荐用户计数 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Linux
...nux系统的网络拓扑结构与网络设备配置 引言 在互联网日益普及的今天,Linux作为一款强大的操作系统,不仅在服务器领域占据主导地位,也在个人电脑、嵌入式系统等多个领域有着广泛的应用。哎呀,你瞧这Linux操作系统,它超棒的一点就是超级灵活,就像个调皮的小朋友,你想要怎么玩,它就能怎么来!特别是配置网络这一块,简直就是开挂了,你可以随心所欲地调整,就像是在拼积木,想怎么搭就怎么搭,完全按照你的想法来!这不,用户们可高兴了,都夸它能深度定制,让电脑变得独一无二,就像是穿上自己亲手设计的衣服,酷毙了!本文将深入探讨Linux系统的网络拓扑结构和网络设备配置,帮助读者更好地理解并掌握这一重要技术。 网络拓扑结构概述 网络拓扑结构是指网络中节点(如计算机、服务器、路由器等)之间连接方式的抽象表示。在Linux系统中,常见的网络拓扑结构包括星型、总线型、环型、网状型等。每种拓扑结构都有其特点和适用场景,例如: - 星型拓扑:所有节点通过单一中心节点相连,中心节点负责数据转发。适用于小型网络环境。 - 总线型拓扑:所有节点共享一条传输介质,信息在介质上传播直到目的地。适合于资源共享和成本控制。 - 环型拓扑:节点按照环形顺序连接,数据沿环双向流动。适用于对延迟敏感的网络。 - 网状型拓扑:节点间有多条路径连接,提高了网络的可靠性和容错性,适用于大规模复杂网络。 Linux网络设备配置 在Linux中,网络设备配置主要涉及IP地址分配、路由设置、防火墙规则建立等。Linux通过ifconfig、ip、netplan或network-manager等工具进行网络设备管理。 1. IP地址分配 为网络接口分配IP地址是网络配置的基础。在命令行环境下,可以使用ifconfig或ip命令来查看和修改接口状态及IP地址。例如,为eth0接口分配静态IP地址: bash 使用 ifconfig sudo ifconfig eth0 192.168.1.10 netmask 255.255.255.0 up 或者使用 ip 命令 sudo ip addr add 192.168.1.10/24 dev eth0 sudo ip link set dev eth0 up 2. 路由设置 路由表用于指导数据包的转发。可以使用route命令查看和修改路由表: bash 查看当前路由表 sudo route -n 添加静态路由,例如指向默认网关的路由 sudo route add default gw 192.168.1.1 3. 防火墙规则 Linux的iptables或firewalld服务提供了强大的防火墙功能,允许用户根据需要配置进出网络的数据流规则。以下是一个简单的iptables规则示例: bash 打开所有端口(不推荐生产环境使用) sudo iptables -P INPUT ACCEPT sudo iptables -P FORWARD ACCEPT sudo iptables -P OUTPUT ACCEPT 允许特定端口访问 sudo iptables -A INPUT -p tcp --dport 80 -j ACCEPT sudo iptables -A INPUT -p tcp --dport 443 -j ACCEPT 保存规则 sudo iptables-save > /etc/iptables/rules.v4 实战演练:构建简单局域网 假设我们有两台Linux机器,一台作为服务器(Server),另一台作为客户端(Client)。我们将在它们之间建立一个简单的局域网,并配置IP地址、路由以及防火墙规则。 步骤一:配置IP地址 在Server上: bash sudo ip addr add 192.168.1.1/24 dev eth0 sudo ip link set dev eth0 up 在Client上: bash sudo ip addr add 192.168.1.2/24 dev eth0 sudo ip link set dev eth0 up 步骤二:添加路由 在Server上添加到Client的路由: bash sudo ip route add 192.168.1.2/32 dev eth0 在Client上添加到Server的路由: bash sudo ip route add 192.168.1.1/32 dev eth0 步骤三:测试网络连接 使用ping命令验证两台机器之间的连通性: bash ping 192.168.1.2 步骤四:配置防火墙 为了简化,我们只允许TCP端口80(HTTP)和443(HTTPS)的流量: bash sudo iptables -A INPUT -p tcp --dport 80 -j ACCEPT sudo iptables -A INPUT -p tcp --dport 443 -j ACCEPT 以上步骤仅为示例,实际部署时应考虑安全性和更详细的策略设置。 结语 通过本文的介绍,我们不仅了解了Linux系统中的网络拓扑结构和网络设备配置的基本概念,还通过具体操作和代码示例实践了这些配置。Linux的强大之处在于它的可定制性和灵活性,使得网络管理员可以根据具体需求进行高度定制化的网络设置。希望本文能激发你对Linux网络技术的兴趣,并在实践中不断探索和深化理解。网络世界广阔无垠,每一步探索都是对未知的好奇和挑战的回应。让我们一起在Linux的海洋中航行,发现更多可能吧!
2024-09-17 16:01:33
25
山涧溪流
Kylin
...数据建模功能深受广大用户喜爱。然而,在实际应用中,我们可能会遇到一些问题,例如在进行Cube构建时,出现了内存溢出的错误。这不仅会影响我们的工作效率,还会对数据分析的结果产生影响。那么,如何解决这个问题呢?下面我们就来一起探讨一下。 二、理解内存溢出错误的原因 首先,我们需要明白内存溢出是什么意思。说白了,就是程序运行的时候太“贪心”,想要的内存超过了系统的“肚量”,让系统没法满足它的需求,这样一来,程序就闹脾气不干了,可能直接罢工出异常,或者干脆整个“撂挑子”崩溃掉。对于Kylin来说,如果在构建Cube的过程中出现内存溢出,可能是由于以下几个原因: 1. 数据量过大 如果要处理的数据量非常大,那么在构建Cube的时候需要占用大量的内存。特别是当数据存在大量的维度和度量时,这种问题会更加明显。 2. 代码效率低下 如果我们在构建Cube的过程中使用的算法或者数据结构不合理,也可能导致内存溢出的问题。比如说,如果我们选错了用来做计算的数据结构,或者在玩循环操作的时候对内存管理不上心,这些都有可能引发这个问题。 3. 系统配置不足 最后,还有一种可能就是系统的硬件资源不足。比如说,如果你的服务器内存不够大,像个小肚鸡肠的家伙,而你又想让它消化处理一大堆数据的话,那它很可能就要“撑吐了”,也就是出现内存溢出的问题。 三、解决内存溢出错误的方法 了解了内存溢出的原因后,我们就可以采取相应的措施来解决了。一般来说,我们可以从以下几个方面入手: 1. 调整数据处理策略 如果是因为数据量过大而导致的内存溢出,我们可以考虑调整数据处理的策略。比如说,咱们可以尝试把那个超大的数据集,像切蛋糕那样切成几个小块儿,分批处理;或者索性找一个更溜的数据处理方式,这样一来,就能更好地“喂饱”内存,减少它的压力。 2. 优化代码 如果是由于代码效率低下的原因导致的内存溢出,我们可以通过优化代码来解决问题。比如,你可以在做计算时,聪明地选用合适的数据结构,就像选对工具干活才顺手;在进行循环操作时,得当管理内存,就像是个精打细算的家庭主妇,尽量避免那些不必要的内存分配和释放,让程序运行更流畅、更高效。 3. 增加系统资源 最后,如果以上两种方法都无法解决问题,我们可以考虑增加系统的硬件资源,例如增大服务器的内存等。 四、具体案例 接下来,我们将通过一个具体的例子来演示如何在Kylin中解决内存溢出的问题。假设我们要构建一个包含1亿条记录的Cube,每条记录有10个维度和5个度量。我们先来看看如果不做任何优化,直接进行构建会出现什么情况: python 假设我们有一个DataFrame df,其中包含了所有的数据 df = ... 创建一个新的Cube cube = Kylin.create_cube('my_cube', 'table') 开始构建Cube cube.build() 运行这段代码后,我们可能会发现程序出现了内存溢出的错误。这是因为数据量实在太大了,我们在搭建Cube的时候没把内存管理这块整明白,所以才冒出了这个问题来。 为了解决这个问题,我们可以尝试以下几种方法: 1. 将数据分割成多个小的数据集进行处理 python 将数据分割成10个小的数据集 partitions = np.array_split(df, 10) 对每个数据集进行构建 for i in range(10): 构建Cube cube = Kylin.create_cube(f'my_cube_{i}', f'table_{i}') cube.build() 这样,我们就可以将大的数据集分
2023-02-19 17:47:55
129
海阔天空-t
ElasticSearch
...对实时数据分析、智能推荐系统等场景的新特性。例如,最新版本中优化的近义词自动扩展功能,能更精准地捕捉用户意图,极大提升用户体验,尤其适用于电商、新闻资讯等行业的大规模内容检索。 同时,随着物联网、日志分析等领域的快速发展,Elasticsearch的应用边界也在不断拓宽。不少企业利用其地理空间搜索功能进行车辆定位追踪、物流路径优化等业务实践,实现数据驱动决策。此外,Elasticsearch结合Kibana可视化工具,可将复杂的数据以直观易懂的图表形式展现,为数据分析人员提供高效的数据洞察手段。 对于希望深入研究Elasticsearch技术原理与实战应用的读者,可以参考《Elasticsearch权威指南》一书,或关注Elastic Stack官方博客及社区论坛,获取最新的技术动态和最佳实践案例。通过持续学习和实践,您将能够更好地驾驭这一强大的搜索引擎,为企业数字化转型赋能。
2023-02-26 23:53:35
527
岁月如歌-t
Greenplum
...引言 在大数据时代,推荐系统已经成为我们生活的一部分。无论是你在逛电商网站时看到的各种商品推荐,还是在音乐视频平台刷到的个性化内容推送,甚至是社交媒体上为你精心匹配的好友建议,可以说它们简直就是无处不在,充斥着我们的日常生活。然而,现如今啊,随着数据量蹭蹭地往上涨,怎么才能把这些海量数据吃得透透的,并且精准地给用户推送他们想要的东西,这可真成了我们眼前一道躲不过去的大难题了。 这就是我们要讨论的主题——使用Greenplum进行实时推荐系统开发。Greenplum这个家伙,是Pivotal公司家的明星产品,一款超级给力的分布式数据库系统。它特擅长对付那种海量数据,而且还能做到实时分析,就像个数据处理的超能勇士一样。 二、绿萍普的基本概念与特性 首先,我们需要了解什么是Greenplum。简单来说,Greenplum是一种基于PostgreSQL的关系型数据库管理系统。它具有以下特点: 1. 分布式架构 Greenplum采用了MPP(Massively Parallel Processing)架构,可以将数据分布在多个节点上进行处理,大大提高了处理速度。 2. 实时查询 Greenplum支持实时查询,可以在海量数据中快速找到需要的信息。 3. 高可用性 Greenplum采用了冗余设计,任何一个节点出现问题,都不会影响整个系统的运行。 三、Greenplum在实时推荐系统中的应用 接下来,我们将详细介绍如何使用Greenplum来构建一个实时推荐系统。 首先,我们需要收集用户的行为数据,如用户的浏览记录、购买记录等。这些数据可以通过日志文件、API接口等方式获取。 然后,我们可以使用Greenplum来存储和管理这些数据。比如说,我们可以动手建立一个用户行为记录表,就像个小本本一样,把用户的ID号码、干了啥类型的行为、啥时候干的这些小细节,都一五一十地记在这个表格里。 接着,我们需要计算用户的历史行为模式,以便于对用户进行个性化推荐。这可以通过一些机器学习算法来完成,如协同过滤、矩阵分解等。 最后,我们可以使用Greenplum来进行实时推荐。当有新的用户行为数据蹦出来的时候,我们能立马给用户行为表来个实时更新。接着,咱们通过一套算法“火速”算出用户的最新行为习惯,最后就能生成专属于他们的个性化推荐啦! 四、代码示例 下面是一段使用Greenplum进行实时推荐的代码示例: sql CREATE TABLE user_behavior ( user_id INT, behavior_type TEXT, behavior_time TIMESTAMP ); INSERT INTO user_behavior VALUES (1, 'view', '2021-01-01 00:00:00'); INSERT INTO user_behavior VALUES (1, 'buy', '2021-01-02 00:00:00'); INSERT INTO user_behavior VALUES (2, 'view', '2021-01-01 00:00:00'); -- 计算用户行为模式 SELECT user_id, behavior_type, COUNT() as frequency FROM user_behavior GROUP BY user_id, behavior_type; -- 实时推荐 INSERT INTO user_behavior VALUES (3, 'view', '2021-01-01 00:00:00'); SELECT u.user_id, m.product_id, m.rating FROM user_behavior u JOIN product_behavior b ON u.user_id = b.user_id AND u.behavior_type = b.behavior_type JOIN matrix m ON u.user_id = m.user_id AND b.product_id = m.product_id WHERE u.user_id = 3; 以上代码首先创建了一个用户行为表,然后插入了一些样本数据。然后,我们统计了大家的使用习惯频率,最后,根据每个人独特的行为模式,实时地给出了个性化的推荐内容~ 五、结论 总的来说,使用Greenplum进行实时推荐系统开发是一个既有趣又有挑战的任务。通过巧妙地搭建架构和精挑细选高效的算法,我们能够轻松应对海量数据的挑战,进而为用户提供贴心又个性化的推荐服务。就像是给每一片浩瀚的数据海洋架起一座智慧桥梁,让每位用户都能接收到量身定制的好内容推荐。 当然,这只是冰山一角。在未来,随着科技的进步和大家需求的不断变化,咱们的推荐系统肯定还会碰上更多意想不到的挑战,当然啦,机遇也是接踵而至、满满当当的。但是,只要我们敢于尝试,勇于创新,就一定能创造出更好的推荐系统。
2023-07-17 15:19:10
745
晚秋落叶-t
Consul
...大规模分布式环境下的用户来说,无疑是一次重要的升级选择。 然而,即使有着详尽的Upgrade Guide和稳定性的保证,从实际运维角度来看,任何一次服务发现工具的版本跃迁都需要严谨的评估和规划。为此,IT社区内多位专家建议,在进行Consul版本升级前,除了常规的功能测试、性能验证外,还应结合自身业务场景,考虑利用Canary Release(金丝雀发布)等现代部署策略,确保在新旧版本交替过程中业务连续性和稳定性不受影响。 另外,针对因版本更迭带来的API变更问题,《分布式系统架构设计》一书作者Martin Kleppmann曾指出,构建抽象化的服务接口层是解决此类问题的有效途径之一,这不仅可以隔离底层技术变化对上层应用的影响,也有利于在未来的技术选型中保持更大的灵活性。 综上所述,无论是紧跟Consul最新版本以利用其新特性提升服务效能,还是深挖兼容性问题背后的设计哲学,都要求我们作为技术实践者不断学习、适应并创新应对策略,从而在瞬息万变的技术浪潮中始终保持系统的健壮与高效运行。
2023-02-25 21:57:19
544
人生如戏
Apache Pig
...据集,每条记录都包含用户的情感表达、行为习惯等丰富信息。瞧瞧这海量的数据,我们急需一个懂咱们心思、能麻溜处理复杂任务的好帮手。这时候,Apache Pig就像我们的超级英雄,瞬间闪亮登场,帮我们大忙了! 2. Apache Pig基础介绍 Apache Pig是一种高级数据流语言及运行环境,用于查询大型半结构化数据集。它的精髓在于采用了一种叫做Pig Latin的语言,这种语言设计得超级简单易懂,编程人员一看就能轻松上手。而且,更厉害的是,你用Pig Latin编写的脚本,可以被转化为一系列MapReduce任务,然后在Hadoop这个大家伙的集群上欢快地执行起来。就像是给计算机下达一连串的秘密指令,让数据处理变得既高效又便捷。 3. 大规模文本数据处理实例 3.1 数据加载与预处理 首先,让我们通过一段Pig Latin脚本来看看如何用Apache Pig加载并初步处理文本数据: pig -- 加载原始文本文件 raw_data = LOAD 'input.txt' AS (line:chararray); -- 将文本行分割为单词 tokenized_data = FOREACH raw_data GENERATE FLATTEN(TOKENIZE(line)) AS word; -- 对单词进行去重 unique_words = DISTINCT tokenized_data; 在这个例子中,我们首先从input.txt文件加载所有文本行,然后使用TOKENIZE函数将每一行文本切割成单词,并进一步通过DISTINCT运算符找出所有唯一的单词。 3.2 文本数据统计分析 接下来,我们可以利用Pig进行更复杂的统计分析: pig -- 计算每个单词出现的次数 word_counts = GROUP unique_words BY word; word_count_stats = FOREACH word_counts GENERATE group, COUNT(unique_words) AS count; -- 按照单词出现次数降序排序 sorted_word_counts = ORDER word_count_stats BY count DESC; -- 存储结果到HDFS STORE sorted_word_counts INTO 'output'; 以上代码展示了如何对单词进行计数并按频次降序排列,最后将结果存储回HDFS。这个过程就像是在大数据海洋里淘金,关键几步活生生就是分组、聚合和排序。这就好比先按照矿石种类归类(分组),再集中提炼出纯金(聚合),最后按照纯度高低排个序。这一连串操作下来,Apache Pig的实力那是展现得淋漓尽致,真可谓是个大数据处理的超级神器! 4. 人类思考与探讨 当你深入研究并实践Apache Pig的过程中,你会发现它不仅简化了大规模文本数据处理的编写难度,而且极大地提升了工作效率。以前处理那些要写一堆堆嵌套循环、各种复杂条件判断的活儿,现在用Pig Latin轻轻松松几行代码就搞定了,简直太神奇了! 更重要的是,Apache Pig还允许我们以近乎自然语言的方式表达数据处理逻辑,使得非程序员也能更容易参与到大数据项目中来。这正是Apache Pig的魅力所在——它让数据处理变得更人性化,更贴近我们的思考模式。 总之,Apache Pig在处理大规模文本数据方面展现了无可比拟的优势,无论是数据清洗、转化还是深度分析,都能轻松应对。只要你愿意深入探索和实践,Apache Pig将会成为你在大数据海洋中畅游的有力舟楫。
2023-05-19 13:10:28
723
人生如戏
.net
....2 数据一致性 在设计数据库表结构时,考虑使用唯一索引或主键来保证数据的唯一性,这将减少在应用程序中手动去重的需求。 五、结论 虽然.NET的C为我们提供了强大的数据库操作能力,但处理重复数据时需要我们细心考虑。要想在翻遍数据库的时候不被重复数据烦扰,关键在于透彻明白查询的门道,熟练掌握去重技巧,还得根据实际情况灵活运用策略,就像找宝藏一样,每次都能避开那些已经踩过的雷区。记住,编程不仅仅是语法,更是逻辑和思维的艺术。祝你在.NET的世界里游刃有余!
2024-04-07 11:24:46
434
星河万里_
Hadoop
...性的分布式文件系统,设计用于在廉价的硬件上运行,并能提供高吞吐量的数据访问。在Hadoop生态系统中,HDFS为海量数据提供了存储解决方案,将大文件分割成多个块存储在集群中的不同节点上,从而实现数据的分布式存储和管理。 MapReduce , MapReduce是一种编程模型和相关实现,用于大规模数据集(通常大于单个机器内存容量)的并行处理。在Hadoop框架中,MapReduce通过“映射”阶段将输入数据分解成独立的键值对,然后在“归约”阶段对这些中间结果进行合并和进一步处理,最终生成用户所需的输出结果。这种方式极大地简化了并行计算过程的设计与实现,使得开发者无需关心底层的分布式细节。 Apache Spark , Apache Spark是一个开源的大数据处理框架,提供了对大规模数据集的快速、通用且可扩展的计算引擎。相较于Hadoop MapReduce,Spark基于内存计算,可以显著提高迭代工作负载的速度,并支持SQL查询、流处理、图形计算以及机器学习等多种计算范式。在需要实时或近实时处理以及复杂分析任务的场景下,Spark常被作为更高效的选择来替代或补充Hadoop。
2023-04-18 09:23:00
469
秋水共长天一色
Logstash
...sh的较新版本开始,推荐的做法是在input阶段配置multiline codec来直接合并多行日志: ruby input { file { path => "/path/to/your/logs/.log" start_position => "beginning" 或者是 "end" 以追加模式读取 codec => multiline { pattern => "^%{TIMESTAMP_ISO8601}" 自定义匹配下一行开始的正则表达式 what => "previous" 表示当前行与上一行合并 negate => true 匹配失败才合并,对于堆栈跟踪等通常第一行不匹配模式的情况有用 } } } 在这个例子中,codec会根据指定的pattern识别出新的一行日志的开始,并将之前的所有行合并为一个事件。当遇到新的时间戳时,Logstash认为一个新的事件开始了,然后重新开始合并过程。 3. 使用multiline Filter的旧版方案 在Logstash的早期版本中,multiline功能是通过filter插件实现的: ruby input { file { path => "/path/to/your/logs/.log" start_position => "beginning" } } filter { multiline { pattern => "^%{TIMESTAMP_ISO8601}" what => "previous" negate => true } } 尽管在最新版本中这一做法已不再推荐,但在某些场景下,你仍可能需要参考这种旧有的配置方法。 4. 解析多行日志实战思考 在实际应用中,理解并调整multiline配置参数至关重要。比如,这个pattern呐,它就像是个超级侦探,得按照你日志的“穿衣风格”准确无误地找到每一段多行日志的开头标志。再来说说这个what字段,它就相当于我们的小助手,告诉我们哪几行该凑到一块儿去,可能是上一个兄弟,也可能是下一个邻居。最后,还有个灵活的小开关negate,你可以用它来反转匹配规则,这样就能轻松应对各种千奇百怪的日志格式啦! 当你调试多行日志合并规则时,可能会经历一些曲折,因为不同的应用程序可能有着迥异的日志格式。这就需要我们化身成侦探,用敏锐的眼光去洞察,用智慧的大脑去推理,手握正则表达式的“试验田”,不断试错、不断调整优化。直到有一天,我们手中的正则表达式如同一把无比精准的钥匙,咔嚓一声,就打开了与日志结构完美匹配的那扇大门。 总结起来,在Logstash中处理多行日志合并是一个涉及对日志结构深入理解的过程,也是利用Logstash强大灵活性的一个体现。你知道吗,如果我们灵巧地使用multiline这个codec或者filter小工具,就能把那些本来七零八落的上下文信息,像拼图一样拼接起来,对齐得整整齐齐的。这样一来,后面我们再做数据分析时,不仅效率蹭蹭往上涨,而且结果也会准得没话说,简直不要太给力!
2023-08-19 08:55:43
249
春暖花开
MemCache
... 假设我们有一个更新用户信息的方法 def update_user_info(user_id, new_info): 先更新数据库 db.update_user(user_id, new_info) 清除MemCache中相关的缓存数据 memcached_client.delete(f'user_{user_id}') 另一种策略是引入消息队列,例如使用Redis Pub/Sub或者RabbitMQ等中间件,当数据库发生变更时,发布一条消息通知所有MemCache节点删除对应的缓存项。 4. MemCache节点的维护与监控 为了保证MemCache集群的稳定运行,我们需要定期对各个节点进行健康检查和性能监控,及时发现并处理可能出现的内存溢出、节点失效等问题。可以通过编写运维脚本定期检查,或者接入诸如Prometheus+Grafana这样的监控工具进行可视化管理。 bash 示例:简单的shell脚本检查MemCache节点状态 for node in $(cat memcache_nodes.txt); do echo "Checking ${node}..." telnet $node 11211 <<< stats | grep -q 'STAT bytes 0' if [ $? -eq 0 ]; then echo "${node} is down or not responding." else echo "${node} is up and running." fi done 总的来说,要在分布式环境中有效管理和维护多个MemCache节点,并实现数据的分布式存储与同步更新,不仅需要合理设计数据分布策略,还需要在应用层面对数据一致性进行把控,同时配合完善的节点监控和运维体系,才能确保整个缓存系统的高效稳定运行。在整个探险历程中,咱们得时刻动脑筋、动手尝试、灵活应变、优化咱的计划,这绝对是一个挑战多多、趣味盎然的过程,让人乐在其中。
2023-11-14 17:08:32
69
凌波微步
Redis
...s在数据字典与微服务设计中的实践应用 1. 引言 在当今的软件开发领域,尤其是在构建高并发、高性能且具备可扩展性的微服务架构时,Redis以其独特的内存存储、高速读写和丰富的数据结构特性,成为我们解决复杂问题、优化系统性能的重要工具。这篇文儿,咱们就来唠唠Redis怎么摇身一变,成为一个超高效的数据字典储存法宝,并且在微服务设计这个大舞台上,它又是如何扮演着不可或缺的关键角色的。 2. Redis 不只是缓存 (1)Redis作为数据字典 想象一下,在日常开发过程中,我们经常需要维护一个全局共享的“数据字典”,它可能是各种静态配置信息,如权限列表、地区编码映射等。这些数据虽然不常变更,但查询频繁。利用Redis的哈希(Hash)数据结构,我们可以轻松实现这样的数据字典: python import redis r = redis.Redis(host='localhost', port=6379, db=0) 存储用户权限字典 r.hset('user:permissions', 'user1', '{"read": true, "write": false}') r.hset('user:permissions', 'user2', '{"read": true, "write": true}') 查询用户权限 user_permissions = r.hget('user:permissions', 'user1') print(user_permissions) 这段代码展示了如何使用Redis Hash存储并查询用户的权限字典,其读取速度远超传统数据库,极大地提高了系统的响应速度。 (2)Redis在微服务设计中的角色 在微服务架构中,各个服务之间往往需要进行数据共享或状态同步。Redis凭借其分布式锁、发布/订阅以及有序集合等功能,能够有效地协调多个微服务之间的交互,确保数据一致性: java import org.springframework.data.redis.core.StringRedisTemplate; import org.springframework.data.redis.core.script.DefaultRedisScript; // 使用Redis实现分布式锁 StringRedisTemplate template = new StringRedisTemplate(); String lockKey = "serviceLock"; Boolean lockAcquired = template.opsForValue().setIfAbsent(lockKey, "locked", 30, TimeUnit.SECONDS); if (lockAcquired) { try { // 执行核心业务逻辑... } finally { template.delete(lockKey); } } // 使用Redis Pub/Sub 实现服务间通信 template.convertAndSend("microservice-channel", "Service A sent a message"); 上述Java示例展现了Redis如何帮助微服务获取分布式锁以处理临界资源,以及通过发布/订阅模式实现实时消息通知,从而提升微服务间的协同效率。 3. Redis在微服务设计咨询中的思考与探索 当我们考虑将Redis融入微服务设计时,有几个关键点值得深入讨论: - 数据一致性与持久化:尽管Redis提供了RDB和AOF两种持久化方式,但在实际场景中,我们仍需根据业务需求权衡性能与数据安全,适时引入其他持久化手段。 - 服务解耦与扩展性:借助Redis Cluster支持的分片功能,可以轻松应对海量数据及高并发场景,同时有效实现微服务间的松耦合。 - 实时性与性能优化:对于实时性要求高的场景,例如排行榜更新、会话管理等,Redis的排序集合(Sorted Set)、流(Stream)等数据结构能显著提升系统性能。 - 监控与运维挑战:在大规模部署Redis时,要充分关注内存使用、网络延迟等问题,合理利用Redis提供的监控工具和指标,为微服务稳定运行提供有力保障。 综上所述,Redis凭借其强大的数据结构和高效的读写能力,不仅能够作为高性能的数据字典,更能在微服务设计中扮演重要角色。然而,这其实也意味着我们的设计思路得“更上一层楼”了。说白了,就是得在实际操作中不断摸索、改进,把Redis那些牛掰的优势,充分榨干、发挥到极致,才能搞定微服务架构下的各种复杂场景需求,让它们乖乖听话。
2023-08-02 11:23:15
217
昨夜星辰昨夜风_
转载文章
...处理不相交集合的数据结构,常被用于判断两个元素是否属于同一集合以及合并两个集合。在该文章中,题目L2-007的家庭房产问题中,通过并查集数据结构来表示和处理家庭成员之间的关系,便于统计每个家庭的成员数、房产信息等。 逆文档频率(Inverse Document Frequency, IDF) , 虽然本文并未直接涉及逆文档频率,但在关键词提取或文本分析领域,IDF是一个常用的指标。它衡量一个词在所有文档中出现的相对频率,数值越高表示该词在整个语料库中的独特性越强。结合词频TF,可以计算出TF-IDF值,用以评估一个词对于某篇特定文档的重要性。 结构体(Struct) , 在C++编程语言中,结构体是一种用户自定义的数据类型,允许将不同类型的数据组合在一起形成一个新的数据类型。文中提到的“node”和“GG”结构体分别用来存储个人的房产信息和排序所需的家庭统计数据。例如,“node”结构体包含一个人的房产套数、总面积及其亲属关系信息;而“GG”结构体则用于保存按要求格式排序后的家庭信息,如家庭人口数、人均房产套数和面积等。 NLP(Natural Language Processing) , 自然语言处理是计算机科学和人工智能的一个分支,致力于研究如何让计算机理解、生成和学习人类语言。尽管文章主要讨论的是一个编程题目,但其中涉及的信息处理、输入输出格式解析等内容与NLP技术有密切关联。在实际应用中,利用NLP技术可以更好地理解和处理房产领域的文本型数据,提高房产信息管理的智能化水平。
2023-01-09 17:56:42
562
转载
转载文章
...89。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 创建数组 val 声明的数组只能改变元素 var 声明的数组可以改变引用 创建方式 举例 Array () 通用数组 Array(size: Int, init: (Int) -> T) val array: Array<Int> = Array(5) { i -> i 2 } 5是数组长度,i是索引值,元素赋值为索引值2 原生数组 IntArray (长度) Array (长度) val ys1 = IntArray(5) //元素都是0 val ys2 = BooleanArray(5) //元素都是false val ys3 = CharArray(5) //元素都是空格 arrayOfXXX () 指定元素(元素可为任意类型) arrayOf () val array1: Array<Any> = arrayOf(1, '你', "hahaah", false) for (element: Any in array1) print(element) val array2: Array<Int> = arrayOf(1, 2, 3) val array3: Array<Person> = arrayOf(person1, person2) 指定长度(元素都为null) arrayOfNulls () val arrayNull: Array<String> = arrayOfNulls<String>(6) 空数组 emptyArray () val empty: Array<String> = emptyArray<String>() 原生数组(避免拆装箱开销) intArrayOf () ArrayOf () val array3: IntArray = intArrayOf(1, 3, 5, 7) val array4: CharArray = charArrayOf('a', 'b', 'c') 原生数组 & 通用数组 为了避免不必要的拆装箱开销,或者与Java互操作,可以使用原生类型数组。这些类与Array没有继承关系,只是有相同的方法属性,因此 IntArray 和 Array<Int> 是完全不同的类型,但两者可以互转。 原生类型数组 对应Java中的基本数据类型数组 IntArray Array int [ ] [ ] 方法 说明 举例 toIntArray () toArray () 通用→原生 val ty: Array<Int> = arrayOf(1, 2, 3) val toIntArray: IntArray = ty.toIntArray() toTypedArray () 原生→通用 val ys: IntArray = intArrayOf(1, 2, 3) val toTypedArray: Array<Int> = ys.toTypedArray() Person[] people = {new Person(), new Person()}; //Javaval people: Array<Person> = arrayOf(Person(), Person()) //Kotlin 遍历 val arr = arrayOf(1,2,3,4,5)//通过forEach循环arr.forEach{println(it)}//通过iterator循环var iterable:Iterator<Integer> = arr.iterator();while(iterable.hasNext()){println(iterable.next())}for(element in arr.iterator()){println(element)}//for循环一for(element in arr){println(element)}//for循环二for(index in 0..arr.size-1){println(arr[index])}//for循环三for(index in arr.indices){println(arr[index])}//for循环四for((index, value) in arr.withIndex()){println("$index位置的元素是:$value")}// 上面写法等价于下面写法for (element in arr.withIndex()) {println("${element.index} : ${element.value}")} 操作 方法 说明 .size .indices 数组长度 数组最大索引值 get (索引) 获取元素,推荐使用操作符 [ ] arr[3] 等同于 arr.get(3) set (索引,目标值) 给元素赋值,推荐使用操作符 [ ] arr[3] = "哈" 等同于 arr.set(3,"哈") plus (目标值) 增加:返回一个数组长度+1并用目标值赋值新元素的新数组,不对原数组进行改动 arr + 6 等同于 arr.plus(6) slice (区间) 截取:返回一个截取该区间元素的新数组,不对原数组进行改动 fill (目标值) fill (目标值,起始索引,结束索引) 修改:将该区间的元素赋值为指定值 copyOf () copyOf (个数) copyOfRange (起始索引,结束索引) 返回一个 完全复制了原数组 的新数组 返回一个 正向复制原数组元素个数 的新数组,超过原数组大小的新元素值为null 返回一个 复制原数组该区间元素 的新数组,超过原数组索引范围报错 asList () 数组转集合 reverse () reversedArray () reversed () 反转:将数组中的元素顺序进行反转 返回一个反转后的新数组,不对原数组进行改动 返回一个反转后的list,不对原数组进行改动 sort () sortedArray () sorted () 排序:对数组中的元素进行自然排序 返回一个自然排序后的新数组,不对原数组进行改动 返回一个自然排序后的list,不对原数组进行改动 joinToString (字符串分隔符) 将Array原生数组拼接成一个String,默认分隔符是“,” all (predicate) any (predicate) 全部元素满足条件返回 true,否则 false 任一元素满足条件返回 true,否则 false val arr = arrayOf(1, 2, 3, 4, 5)val cc = charArrayOf('你','们','好')val brr = arrayOf(5,2,1,4,3)//数组长度val num1 = arr.size //5//最大索引val num2 = arr.indices //4for (i in arr.indices) print(i) //01234//条件判断val boolean1 = arr.all { i -> i > 3 } //false,不是全部元素>3//增val arr1 = arr.plus(6) //123456,长度+1并赋值为6val arr2 = arr + 6 //同上//改val arr3 = arr.slice(2..4) //345arr.fill(0) //00000,操作的是原数组val str1 = cc.joinToString("") //你们好brr.sort() //12345val list1 = brr.sorted() //返回一个排序后的listval brr4 = brr.sortedArray() //返回排序后的新数组val arr5 = arr.copyOf() //12345val arr6 = arr.copyOf(2) //12val arr7 = arr.copyOfRange(2,4) //34 多维数组 //方式一:数组里面存的元素是数组val aa = arrayOf(arrayOf(1, 2, 3),arrayOf(4, 5, 6))print(aa[1][2]) //6//方式二:元素为null但类型是数组val bb = arrayOfNulls<Array<Int>>(2) 本篇文章为转载内容。原文链接:https://blog.csdn.net/HugMua/article/details/121866989。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-31 12:34:25
66
转载
HessianRPC
...研究不同RPC框架的设计理念、性能指标以及在实际项目中的应用案例,有助于开发者根据业务需求选择最适合的解决方案。 3. 分布式系统架构设计实践:深入探讨如何在复杂分布式环境下合理使用HessianRPC及其他RPC框架。比如,如何优化服务注册发现机制以应对服务节点动态变化;如何结合负载均衡策略提高整体系统的可用性;如何借助熔断器、降级策略来保证在异常情况下服务的稳定性等。 4. 异常处理最佳实践:除了HessianURLException之外,实际开发中还可能会遇到其他各种类型的异常。理解并掌握一套完善的异常处理机制和策略,如采用责任链模式进行异常统一处理、通过日志记录及监控预警机制快速定位问题,都是提升系统健壮性的关键手段。 总之,在分布式系统开发领域,对HessianRPC的深入理解和灵活运用是构建高性能服务的基础,而紧跟行业发展趋势,不断吸取新的技术和经验,则是保持技术竞争力的重要途径。
2023-10-16 10:44:02
531
柳暗花明又一村
Mongo
...ngoDB的这个异步设计妙就妙在,即使你的应用程序正在处理海量数据读写,也能稳稳保证响应速度贼快,运行起来流畅得飞起,一点儿不卡顿。 2. 连接MongoDB数据库的异步过程 (以下示例采用Node.js环境及官方mongodb库) javascript const MongoClient = require('mongodb').MongoClient; // 异步连接MongoDB MongoClient.connect('mongodb://localhost:27017/mydatabase', { useNewUrlParser: true, useUnifiedTopology: true }, (err, client) => { if (err) { console.error('Error connecting to MongoDB:', err); return; } console.log('Connected successfully to MongoDB'); // 使用client对象进行数据库操作... const db = client.db(); // ... // 在完成所有数据库操作后,记得关闭连接 client.close(); }); 上述代码展示了如何异步地连接到MongoDB数据库。这里,MongoClient.connect()方法接受一个连接字符串、配置选项以及一个回调函数。当连接成功建立或发生错误时,回调函数会被调用。这正是异步编程的体现,主线程不会被阻塞,直到连接操作完成才执行后续逻辑。 3. 向MongoDB数据库异步写入数据 同样,向MongoDB插入或更新数据也是异步执行的。下面是一个向集合中插入文档的例子: javascript db.collection('mycollection').insertOne({ name: 'John Doe', age: 30 }, (err, result) => { if (err) { console.error('Error inserting document:', err); return; } console.log('Document inserted successfully:', result.insertedId); // 插入操作完成后,可以在这里执行其他逻辑 }); // 注意:这里的db是上一步异步连接成功后获取的数据库实例 这段代码展示了如何异步地向MongoDB的一个集合插入一个文档。你知道吗,这个insertOne()方法就像是个贴心的小帮手,它会接收一个文档对象作为“礼物”,然后再加上一个神奇的回调函数。当你把这个“礼物”放进去,或者在插入过程中不小心出了点小差错的时候,这个神奇的回调函数就会立马跳出来开始干活儿啦! 4. 思考与探讨 在实际开发过程中,异步操作无疑提升了我们的应用性能和用户体验。然而,这也带来了回调地狱、复杂的流程控制等问题。还好啦,现代的JavaScript可真是够意思的,它引入了Promise、async/await这些超级实用的工具,让咱们在处理异步编程时简直如虎添翼。这样一来,我们在和MongoDB打交道的时候,就能写出更加顺溜、更好懂、更好维护的代码,那感觉别提多棒了! 总结来说,MongoDB在连接数据库和写入数据时采取异步机制,这种设计让我们能够在高并发环境下更好地优化资源利用,提升系统效率。同时,作为开发者大兄弟,咱们得深入理解并灵活玩转异步编程这门艺术,才能应对各种意想不到的挑战,把MongoDB那牛哄哄的功能发挥到极致。
2024-03-10 10:44:19
167
林中小径_
Kibana
...cs”区域添加一个“计数”指标,计算每个方法的请求总数。 保存这个可视化图表,命名为“HTTP方法请求统计”。 4. 构建仪表板 - 创建仪表板: 进入“仪表板”界面,点击“新建”,创建一个新的空白仪表板。 - 添加可视化组件: 点击右上角的“添加可视化”按钮,选择我们在第3步创建的“HTTP方法请求统计”图表,将其添加至仪表板中。 - 扩展仪表板: 不止于此,我们可以继续创建其他可视化组件,比如折线图显示随着时间推移的响应时间变化,热力图展示不同路径和状态码的分布情况等,并逐一将它们添加到此仪表板上。 5. 自定义与交互性调整 Kibana的真正魅力在于其丰富的自定义能力和交互性设计。比如,你完全可以给每张图表单独设定过滤器规则,这样一来,整个仪表板上的数据就能像变魔术一样联动更新,超级炫酷。另外,你还能借助那个时间筛选器,轻轻松松地洞察到特定时间段内数据走势的变化,就像看一部数据演变的电影一样直观易懂。 在整个创建过程中,你可能会遇到疑惑、困惑,甚至挫折,但请记住,这就是探索和学习的魅力所在。随着对Kibana的理解逐渐加深,你会发现它不仅是一个工具,更是你洞察数据、讲述数据故事的强大伙伴。尽情发挥你的创造力,让数据活起来,赋予其生动的故事性和价值性。 总结来说,创建Kibana可视化仪表板的过程就像绘制一幅数据画卷,从准备画布(导入数据)开始,逐步添置元素(创建可视化组件),最后精心布局(构建仪表板),期间不断尝试、调整和完善,最终成就一份令人满意的可视化作品。在这个探索的过程中,你要像个充满好奇的小探险家一样,时刻保持对未知的热情,脑袋瓜子灵活运转,积极思考各种可能性。同时,也要有敢于动手实践的勇气,大胆尝试,别怕失败。这样下去,你肯定能在浩瀚的数据海洋中挖到那些藏得深深的宝藏,收获满满的惊喜。
2023-08-20 14:56:06
336
岁月静好
ElasticSearch
...网站,每天都有大量的用户访问、购买商品。不过呢,除了这些基本的交易数据,你是不是还想知道用户都是怎么逛你的网站的,他们在每个页面上花了多长时间啊?这些数据虽然不会直接让销售额飙升,但对提升用户体验和改进产品设计可是大有裨益。这就是我们为什么要异步采集非业务数据的原因。 2. 选择合适的数据采集工具 既然要采集非业务数据,那么选择合适的工具就显得尤为重要了。这里有几个流行的开源工具可以考虑: - Logstash: 它是Elastic Stack的一部分,专门用于日志收集。 - Fluentd: 一个开源的数据收集器,支持多种数据源。 - Telegraf: 一款轻量级的代理,用于收集各种系统和应用的度量数据。 这些工具各有特点,可以根据你的具体需求选择最适合的一个。比如,假如你的数据主要来自日志文件,那Logstash绝对是个好帮手;但要是你需要监控的是系统性能指标,那Telegraf可能会更对你的胃口。 3. 配置Elasticsearch以接收数据 接下来,我们要确保Elasticsearch已经配置好,能够接收来自不同数据源的数据。首先,你需要安装并启动Elasticsearch。假设你已经安装好了,接下来要做的就是配置索引模板(Index Template)。 json PUT _template/my_template { "index_patterns": ["my-index-"], "settings": { "number_of_shards": 1, "number_of_replicas": 1 }, "mappings": { "_source": { "enabled": true }, "properties": { "timestamp": { "type": "date" }, "message": { "type": "text" } } } } 上面这段代码定义了一个名为my_template的模板,适用于所有以my-index-开头的索引。这个模板里头设定了索引的分片数和副本数,还定义了两个字段:一个存时间戳叫timestamp,另一个存消息内容叫message。 4. 使用Logstash采集数据 现在我们有了Elasticsearch,也有了数据采集工具,接下来就是让它们协同工作。这里我们以Logstash为例,看看如何将日志数据采集到Elasticsearch中。 首先,你需要创建一个Logstash配置文件(.conf),指定输入源、过滤器和输出目标。 conf input { file { path => "/var/log/nginx/access.log" start_position => "beginning" } } filter { grok { match => { "message" => "%{COMBINEDAPACHELOG}" } } date { match => [ "timestamp", "dd/MMM/yyyy:HH:mm:ss Z" ] } } output { elasticsearch { hosts => ["localhost:9200"] index => "nginx-access-%{+YYYY.MM.dd}" } } 这段配置文件告诉Logstash从/var/log/nginx/access.log文件读取数据,使用Grok过滤器解析日志格式,然后将解析后的数据存入Elasticsearch中。这里的hosts参数指定了Elasticsearch的地址,index参数定义了索引的命名规则。 5. 实战演练 分析数据 最后,让我们来看看如何通过Elasticsearch查询和分析这些数据。好了,假设你已经把日志数据成功导入到了Elasticsearch里,现在你想看看最近一天内哪些网址被访问得最多。 bash GET /nginx-access-/_search { "size": 0, "aggs": { "top_pages": { "terms": { "field": "request", "size": 10 } } } } 这段查询语句会返回过去一天内访问量最高的10个URL。通过这种方式,你可以快速获取关键信息,从而做出相应的决策。 6. 总结与展望 通过这篇文章,我们学习了如何使用Elasticsearch异步采集非业务数据,并进行了简单的分析。这个过程让我们更懂用户的套路,还挖出了不少宝贝,帮我们更好地升级产品和服务。 当然,实际操作中可能会遇到各种问题和挑战,但只要保持耐心,不断实践和探索,相信你一定能够掌握这项技能。希望这篇教程能对你有所帮助,如果你有任何疑问或者建议,欢迎随时留言交流! --- 好了,朋友们,今天的分享就到这里。希望你能从中获得灵感,开始你的Elasticsearch之旅。记住,技术的力量在于应用,让我们一起用它来创造更美好的世界吧!
2024-12-29 16:00:49
75
飞鸟与鱼_
转载文章
...87。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 介绍一下通过在线免费制图网站 Freedgo Design绘制各类图形的方法。 什么是 Freedgo Design? Freedgo Design 是一in款在线绘制专业图形的网站。Freedgo Design可以绘制各种类型的图形,针对业务逻辑的流程图,软件设计ER模板,工作流,各种云平台的系统部署架构图包括阿里云、AWS云、腾讯云、Oracle、Asure云、IBM云平台等。 使用 用户通过浏览器访问网址:https://www.freedgo.com 点击在线制图,进入图形设计工具页面即可在线制图. 选择制图不同类型的图形,请点击页面下面 + 更多图形,选择相应的制图类型。如下图: 可以绘制哪些图表UML UML统一建模语言(英语:Unified Modeling Language,缩写 UML),是一种开放的方法,用于说明、可视化、构建和编写一个正在开发的、面向对象的、软件密集系统的制品的开放方法。UML展现了一系列最佳工程实践,这些最佳实践在对大规模,复杂系统进行建模方面,特别是在软件架构层次已经被验证有效。 在UML系统开发中有三个主要的模型: 功能模型:从用户的角度展示系统的功能,包括用例图。 对象模型:采用对象,属性,操作,关联等概念展示系统的结构和基础,包括类别图、对象图。 动态模型:展现系统的内部行为。包括序列图,活动图,状态图。 通过Freedgo Desgin 可以绘制各类UML图表,包括 UML 用例图 UML 类图 UML 时序图 UML 活动图 UML 泳道图 点击页面下面 + 更多图形,选择 商务/(业务建模) -> UML, 可以设计各类UML图表, 参见下图: 数据库ER模型 ER模型是在数据库设计中常用的数据建模工具,通常是用来描述实体的信息及实体与实体之前的关系。 在Freedgo Design提供了对ER模型的支持: 通过图标库 选择ER模型绘制数据库ER模型 通过菜单 调整图形 -> 插入 -> SQL... 导入sql DDL脚本创建数据库ER模型 BPMN模型设计 BPMN是业务流程建模与标记,是用于构建业务流程图的一种建模语言标准。 可以通过图标库 选择BPMN绘制BPMN模型 Archimate设计 Archimate是一种整合多种架构的一种可视化业务分析模型语言,属于架构描述语言(ADL),它从业务、应用和技术三个层次(Layer),物件、行为和主体三个方面(Aspect)和产品、组织、流程、资讯、资料、应用、技术领域(Domain)来进行描述。 可以通过图标库 选择BPMN绘制BPMN模型 EPC设计 EPC是用于说明业务流程工作流,是进行业务工程设计的 SAP R/3 建模概念的重要组件。 可以通过图标库 选择EPC绘制EPC模型 流程图 流程图是流经一个系统的信息流、观点流或部件流的图形代表。在企业中,流程图主要用来说明某一过程。这种过程既可以是生产线上的工艺流程,也可以是完成一项任务必需的管理过程。 流程图是揭示和掌握封闭系统运动状况的有效方式。作为诊断工具,它能够辅助决策制定,让管理者清楚地知道,问题可能出在什么地方,从而确定出可供选择的行动方案。 流程图有时也称作输入-输出图。该图直观地描述一个工作过程的具体步骤。流程图对准确了解事情是如何进行的,以及决定应如何改进过程极有帮助。这一方法可以用于整个企业,以便直观地跟踪和图解企业的运作方式。 流程图使用一些标准符号代表某些类型的动作,如决策用菱形框表示,具体活动用方框表示。但比这些符号规定更重要的,是必须清楚地描述工作过程的顺序。流程图也可用于设计改进工作过程,具体做法是先画出事情应该怎么做,再将其与实际情况进行比较。 可以通过图标库 选择流程图绘制 UX设计 Freedgo Design提供一系列UX设计的制作,可以实现IOS,安卓,以及一系列页面设计的效果制图,下面简单说明:IOS android material Bootstrap 手机应用 网站应用 平面图 Freedgo Design可以绘制平面图包括建筑平面表,房屋平面表,房屋效果图设计,在图例中提供了家庭、办公、厨房、卫生间等等图例,具体可以登录在线制图网站,查看 图例 网络架构图 Freedgo Design 可以绘制各种网络拓扑图,和机架图。 云架构 Freedgo Design 提供了各类云架构的系统架构图、系统部署图,包括AWS架构,阿里云架构、腾讯云架构、IBM、ORACLE、Azure和Google云等等。AWS 阿里云架构 腾讯云架构 IBM架构 ORACLE架构 Azure架构 GOOGLE架构 工程 Freedgo Design 提供在线基本电气图设计、在线电气逻辑图设计、在线电路原理图设计、在线接线图设计 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39605997/article/details/109976987。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-03 21:03:06
105
转载
转载文章
...68。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 织梦dedecms是集简单、健壮、灵活、开源几大特点的开源内容管理系统,是国内开源CMS的领先品牌,目前程序安装量已达七十万,超过六成的站点正在使用织梦CMS或基于织梦CMS核心开发。 织梦Dede CMS功能特点: 良好的用户口碑,丰富的开源经验 灵活的模块组合,让网站更丰富 简单易用的模板引擎,网站界面想换就换 便捷自定义模型 高效的动态静态页面部署 流畅专业界面设计,良好的用户体验 指纹验证,升级无忧 低维护成本 国际语言支持 会员互动,让您的网站火起来 DedeCMS 产品使用说明 一、平台需求 1.Windows 平台: IIS/Apache/Nginx + PHP4/PHP5.2+/PHP5.3+ + MySQL4/5 如果在windows环境中使用,建议用DedeCMS提供的DedeAMPZ套件以达到最佳使用性能。 2.Linux/Unix 平台 Apache + PHP4/PHP5 + MySQL3/4/5 (PHP必须在非安全模式下运行) 建议使用平台:Linux + Apache2.2 + PHP5.2/PHP5.3 + MySQL5.0 3.PHP必须环境或启用的系统函数: allow_url_fopen GD扩展库 MySQL扩展库 系统函数 —— phpinfo、dir 4.基本目录结构 / ..../install 安装程序目录,安装完后可删除[安装时必须有可写入权限] ..../dede 默认后台管理目录(可任意改名) ..../include 类库文件目录 ..../plus 附助程序目录 ..../member 会员目录 ..../images 系统默认模板图片存放目录 ..../uploads 默认上传目录[必须可写入] ..../a 默认HTML文件存放目录[必须可写入] ..../templets 系统默认内核模板目录 ..../data 系统缓存或其它可写入数据存放目录[必须可写入] ..../special 专题目录[生成一次专题后可以删除special/index.php,必须可写入] 5.PHP环境容易碰到的不兼容性问题 (1)data目录没写入权限,导致系统session无法使用,这将导致无法登录管理后台(直接表现为验证码不能正常显示); (2)php的上传的临时文件夹没设置好或没写入权限,这会导致文件上传的功能无法使用; (3)出现莫名的错误,如安装时显示空白,这样能是由于系统没装载mysql扩展导致的,对于初级用户,可以下载dede的php套件包,以方便简单的使用。 二、程序安装使用 1.下载程序解压到本地目录; 2.上传程序目录中的/uploads到网站根目录 3.运行http://www.yourname.com/install/index.php(yourname表示你的域名),按照安装提速说明进行程序安装 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_31879641/article/details/115616068。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-24 09:08:23
278
转载
SpringCloud
... 在现代分布式系统架构设计中,Spring Cloud 微服务框架以其强大的功能和易用性赢得了开发者的青睐。当我们谈论微服务时,往往绕不开一个重要组件——注册中心。那么问题来了,在构建Spring Cloud微服务架构时,注册中心是否是必不可少的环节呢?我们是否可以直接通过远程调用来访问其他服务的Service层方法? 1.1 注册中心的重要性 注册中心在微服务架构中的角色就像一个中央通讯录,例如Eureka、Consul或Nacos等,它们负责服务实例的注册与发现。当每个微服务启动后,它们就像一个个小员工,兴奋地跑到注册中心那报到,把自己的详细地址(也就是IP和端口)登记在册。这样一来,消费者服务这个“需求方”就可以像查电话簿一样,轻松找到生产者服务这个“供给方”的具体位置了。没有注册中心,各个服务之间的交互将变得异常复杂且难以管理。 java // Spring Cloud Eureka客户端配置示例 @Configuration @EnableEurekaClient public class EurekaClientConfig { } 2. 可以不用注册中心吗? 答案是理论上可以,但实际上不推荐。 - 无注册中心方案:在没有注册中心的情况下,服务间通信需要硬编码或者使用配置中心存储服务实例地址。这种做法在服务数量不多,变动也不是很频繁的时候,勉勉强强还能对付过去。不过,一旦服务规模开始吹气球般地膨胀起来,或者需要灵活调整服务数量时,手动去管理这些服务之间的“牵一发动全身”的依赖关系,那就真的会让人头疼得不行,甚至很可能成为引发系统故障的罪魁祸首。 - 可用性挑战:没有注册中心意味着服务发现能力的缺失,无法实时感知服务实例的上线、下线以及健康状态的变化,这会直接影响系统的稳定性和高可用性。 3. 直接调用Service层? 对于这个问题,从技术角度讲,直接跨服务调用Service层是可能的,但这并不符合微服务的设计原则。 - 侵入式调用:假设两个微服务A和B,如果服务A直接通过RPC或RESTful API的方式调用服务B的Service层方法,这就打破了微服务的边界,使得服务之间高度耦合。如果服务B的内部结构或者方式发生变动,那可能就像多米诺骨牌一样,引发一连串反应影响到服务A,这样一来,我们整个系统的维护保养和未来扩展升级就可能会遇到麻烦了。 java @Service public class ServiceA { @Autowired private RestTemplate restTemplate; public void callServiceB() { // 这里虽然可以实现远程调用,但不符合微服务的最佳实践 String serviceBUrl = "http://service-b/service-method"; ResponseEntity response = restTemplate.getForEntity(serviceBUrl, String.class); // ... } } - 面向接口而非实现:遵循微服务的原则,服务间的通信应当基于API契约进行,即调用方只关心服务提供的接口及其返回结果,而不应关心对方具体的实现细节。所以,正确的做法就像是这样:给各个服务之间设立明确、易懂的API接口,然后就像过家家一样,通过网关或者直接“喊话”调用这些接口来实现彼此的沟通交流。 4. 探讨与建议 在实践中,构建健康的微服务生态系统离不开注册中心的支持。它不仅简化了服务间的依赖管理和通信,也极大地提升了系统的健壮性和弹性。讲到直接调用Service层这事儿,乍一看在一些简单场景里确实好像省事儿不少,不过你要是从长远角度琢磨一下,其实并不利于咱们系统的松耦合和扩展性发展。 结论:即使面临短期成本或复杂度增加的问题,为了保障系统的长期稳定和易于维护,我们强烈建议在Spring Cloud微服务架构中采用注册中心,并遵循服务间通过API进行通信的最佳实践。这样才能充分发挥微服务架构的优势,让每个服务都能独立部署、迭代和扩展。
2023-11-23 11:39:17
36
岁月如歌_
转载文章
...39。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 1 引言 定长数组包 在平时的开发中,缓冲区数据收发时,如果采用缓冲区定长包,假定大小是 1k,MAX_LENGTH 为 1024。结构体如下: // 定长缓冲区struct max_buffer{int len;char data[MAX_LENGTH];}; 数据结构的大小 >= sizeof(int) + sizeof(char) MAX_LENGTH为了防止数据溢出的情况,data 的长度一般会设置得足够大,但也正是因为这样,才会导致数组的冗余。 假如发送 512 字节的数据, 就会浪费 512 个字节的空间, 平时通信时,大多数是心跳包,大小远远小于 1024,除了浪费空间还消耗很多流量。 内存申请: if ((m_buffer = (struct max_buffer )malloc(sizeof(struct max_buffer))) != NULL){m_buffer->len = CUR_LENGTH;memcpy(m_buffer->data, "max_buffer test", CUR_LENGTH);printf("%d, %s\n", m_buffer->len, m_buffer->data);} 内存释放: free(m_buffer);m_buffer = NULL; 指针数据包 为了避免空间上的浪费,我们可以将上面的长度为 MAX_LENGTH 的定长数组换为指针, 每次使用时动态的开辟 CUR_LENGTH 大小的空间。数据包结构体定义: struct point_buffer{int len;char data;}; 数据结构大小 >= sizeof(int) + sizeof(char )但在内存分配时,需要两步进行: 需为结构体分配一块内存空间; 为结构体中的成员变量分配内存空间; 内存申请: if ((p_buffer = (struct point_buffer )malloc(sizeof(struct point_buffer))) != NULL){p_buffer->len = CUR_LENGTH;if ((p_buffer->data = (char )malloc(sizeof(char) CUR_LENGTH)) != NULL){memcpy(p_buffer->data, "point_buffer test", CUR_LENGTH);printf("%d, %s\n", p_buffer->len, p_buffer->data);} } 内存释放: free(p_buffer->data);free(p_buffer);p_buffer = NULL; 虽然这样能够节约内存,但是两次分配的内存是不连续的, 需要分别对其进行管理,导致的问题就是需要对结构体和数据分别申请和释放内存,这样对于程序员来说无疑是一个灾难,因为这样很容易导致遗忘释放内存造成内存泄露。 有没有更好的方法呢?那就是今天的主题柔性数组。 2 柔性数组 什么是柔性数组? 柔性数组成员(flexible array member)也叫伸缩性数组成员,这种代码结构产生于对动态结构体的需求。在日常的编程中,有时候需要在结构体中存放一个长度动态的字符串,鉴于这种代码结构所产生的重要作用,C99 甚至把它收入了标准中: As a special case, the last element of a structure with more than one named member may have an incomplete array type; this is called a flexible array member. 柔性数组是 C99 标准引入的特性,所以当你的编译器提示不支持的语法时,请检查你是否开启了 C99 选项或更高的版本支持。 C99 标准的定义如下: struct test {short len; // 必须至少有一个其它成员char arr[]; // 柔性数组必须是结构体最后一个成员(也可是其它类型,如:int、double、...)}; 柔性数组成员必须定义在结构体里面且为最后元素; 结构体中不能单独只有柔性数组成员; 柔性数组不占内存。 在一个结构体的最后,申明一个长度为空的数组,就可以使得这个结构体是可变长的。对于编译器来说,此时长度为 0 的数组并不占用空间,因为数组名本身不占空间,它只是一个偏移量,数组名这个符号本身代表了一个不可修改的地址常量, 但对于这个数组的大小,我们可以进行动态分配,对于编译器而言,数组名仅仅是一个符号,它不会占用任何空间,它在结构体中,只是代表了一个偏移量,代表一个不可修改的地址常量! 对于柔性数组的这个特点,很容易构造出变成结构体,如缓冲区,数据包等等, 其实柔性数组成员在实现跳跃表时有它特别的用法,在Redis的SDS数据结构中和跳跃表的实现上,也使用柔性数组成员。它的主要用途是为了满足需要变长度的结构体,为了解决使用数组时内存的冗余和数组的越界问题。 柔性数组解决引言的例子 //柔性数组struct soft_buffer{int len;char data[0];}; 数据结构大小 = sizeof(struct soft_buffer) = sizeof(int),这样的变长数组常用于网络通信中构造不定长数据包, 不会浪费空间浪费网络流量。 申请内存: if ((softbuffer = (struct soft_buffer )malloc(sizeof(struct soft_buffer) + sizeof(char) CUR_LENGTH)) != NULL){softbuffer->len = CUR_LENGTH;memcpy(softbuffer->data, "softbuffer test", CUR_LENGTH);printf("%d, %s\n", softbuffer->len, softbuffer->data);} 释放内存: free(softbuffer);softbuffer = NULL; 对比使用指针和柔性数组会发现,使用柔性数组的优点: 由于结构体使用指针地址不连续(两次 malloc),柔性数组地址连续,只需要一次 malloc,同样释放前者需要两次,后者可以一起释放。 在数据拷贝时,结构体使用指针时,必须拷贝它指向的内存,内存不连续会存在问题,柔性数组可以直接拷贝。 减少内存碎片,由于结构体的柔性数组和结构体成员的地址是连续的,即可一同申请内存,因此更大程度地避免了内存碎片。另外由于该成员本身不占结构体空间,因此,整体而言,比普通的数组成员占用空间要会稍微小点。 缺点:对结构体格式有要求,必要放在最后,不是唯一成员。 3 总结 在日常编程中,有时需要在结构体中存放一个长度是动态的字符串(也可能是其他数据类型),可以使用柔性数组,柔性数组是一种能够巧妙地解决数组内存的冗余和数组的越界问题一种方法。非常值得大家学习和借鉴。 推荐阅读: 专辑|Linux文章汇总 专辑|程序人生 专辑|C语言 我的知识小密圈 本篇文章为转载内容。原文链接:https://linus.blog.csdn.net/article/details/112645639。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-21 13:56:11
501
转载
转载文章
...象、解释型计算机程序设计语言,因其语法简洁清晰、易于学习且功能强大而广受欢迎。在本文中,Python语言的火爆导致了学习者数量剧增,从而引发了关于如何有效学习Python,是选择自学还是参加培训班的讨论。 在线教育平台 , 在线教育平台是指通过互联网技术提供教育资源和教学服务的数字化平台,在本文语境下,它为学习Python的用户提供了由专业教师主讲的入门课程,使学员能够不受地域限制地进行系统化学习,并强调实操以提升编程能力。 就业竞争力 , 就业竞争力是指个人在劳动力市场中相对于其他求职者的竞争优势,包括技能水平、经验积累、学历背景等多个方面。在文中提到,面对Python领域的激烈竞争,通过参加培训班可以节省时间,提高学习效率,从而增强自身的就业竞争力,获取更多的工作机会。 系统学习计划 , 系统学习计划是指为了实现特定学习目标,将学习内容按照一定的逻辑顺序和结构进行规划的过程。在自学Python的过程中,制定系统的学习计划有助于克服知识碎片化的问题,确保知识点之间的衔接性和连贯性,从而达到高效学习的目的。 实践操作 , 实践操作在本文中特指Python语言的学习过程中,理论知识应用于实际项目或案例中的动手环节。由于Python是一门应用性强的语言,只有通过不断的实践操作才能更好地掌握其精髓,实现从理论到实践的转化,提升解决实际问题的能力。
2023-07-01 23:27:10
313
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
env -i command
- 在干净的环境变量状态下执行命令。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"