前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[HTTP API权限管理 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Greenplum
... , 分区表是数据库管理中的一种策略,允许将大表逻辑分割为较小、更易管理的部分,通常基于某一列的值或范围进行划分。在Greenplum数据库中,分区表能将海量数据分门别类地存储在不同的节点上,使得读取和写入数据时可以根据分区规则并行操作,提高整体性能。 gpfdist , gpfdist是Greenplum提供的一个高性能数据加载工具,专门用于从文件系统高效地导入或导出大量数据。它作为一个独立的服务运行,支持多线程并行读取源文件并将数据传输到Greenplum数据库中的多个段(Segment)。通过gpfdist,用户可以充分利用Greenplum的并行处理能力,显著提升批量数据加载的速度。
2023-08-02 14:35:56
546
秋水共长天一色
Greenplum
...复杂场景,建议数据库管理员持续关注官方发布的安全更新和最佳实践指南,例如PostgreSQL Global Development Group发布的《确保Greenplum数据库安全性和完整性的最佳实践》白皮书,其中详细阐述了如何通过合理配置、实时审计及加密技术来进一步加固Greenplum数据库的安全防护体系。 同时,对于企业内部,应强化数据库运维人员的技术培训,提升其在面对突发情况时的应急处理能力和风险防范意识,以确保即使在遇到数据文件完整性检查失败等问题时,也能快速有效地定位原因并采取相应措施,最大程度保障企业核心数据资产的安全与完整。
2023-12-13 10:06:36
530
风中飘零-t
Java
... String jsapiTicket; private String noncestr; private Long timestamp; private String url; public String generateSignature() { // 按照字段名ASCII字典序排序 String[] sortedItems = { "jsapi_ticket=" + jsapiTicket, "noncestr=" + noncestr, "timestamp=" + timestamp, "url=" + url }; Arrays.sort(sortedItems); // 将排序后的字符串拼接成一个字符串用于sha1加密 StringBuilder sb = new StringBuilder(); for (String item : sortedItems) { sb.append(item); } String stringToSign = sb.toString(); try { // 使用SHA1算法生成签名 MessageDigest crypt = MessageDigest.getInstance("SHA-1"); crypt.reset(); crypt.update(stringToSign.getBytes("UTF-8")); byte[] signatureBytes = crypt.digest(); // 将签名转换为小写的十六进制字符串 Formatter formatter = new Formatter(); for (byte b : signatureBytes) { formatter.format("%02x", b); } String signature = formatter.toString(); formatter.close(); return signature; } catch (Exception e) { throw new RuntimeException("Failed to generate signature: " + e.getMessage()); } } // 设置各个参与签名的字段值的方法省略... } 这段代码中,我们定义了一个WxJsSdkSignatureGenerator类,用于生成微信JS-SDK所需的签名。嘿,重点来了啊,首先你得按照规定的步骤和格式,把待签名的字符串像拼图一样拼接好,然后再用SHA1这个加密算法给它“上个锁”,就明白了吧? 4. 签名问题排查锦囊 --- 当你仍然遭遇“invalid signature”问题时,不妨按以下步骤逐一排查: - 检查时间戳是否同步:确保服务器和客户端的时间差在允许范围内。 - 确认jsapi_ticket的有效性:jsapi_ticket过期或获取有误也会导致签名无效。 - URL编码问题:在计算签名前,务必确保url已正确编码且前后端URL保持一致。 - 签名字段排序问题:严格按照规定顺序拼接签名字符串。 5. 结语 --- 面对“wx.config:invalid signature”的困扰,作为Java开发者,我们需要深入了解微信JS-SDK的签名机制,并通过严谨的编程实现和细致的调试,才能妥善解决这一问题。记住,每一个错误提示都是通往解决问题的线索,而每一步的探索过程,都饱含着我们作为程序员的独特思考和情感投入。只有这样,我们才能在技术的世界里披荆斩棘,不断前行。
2023-09-10 15:26:34
316
人生如戏_
MyBatis
...QL、分页查询、事务管理等。在数据加密这一块儿,Mybatis-plus虽然没提供现成的支持功能,但是咱可以脑洞大开,借助它自带的TypeHandler这个小工具,自定义一个TypeHandler就能轻松实现加密需求啦。 三、实现原理 接下来我们来看看如何实现多个字段的加密。其实,这个问题的关键点就在于怎么在TypeHandler里头一块儿处理多个字段的加密问题,就像咱们平时做饭时,怎样一次性炒好几样菜一样。这就需要我们在自定义TypeHandler时,通过封装一系列的逻辑来实现。 四、具体步骤 下面我们将一步步地演示如何实现这个功能。 1. 创建TypeHandler 首先,我们需要创建一个新的TypeHandler,用来处理我们的加密操作。这里我们假设我们要对两个字段(field1和field2)进行加密,代码如下: java @MappedJdbcTypes(JdbcType.VARCHAR) @MappedTypes(String.class) public class EncryptTypeHandler extends BaseTypeHandler { private String key = "your secret key"; @Override public void setNonNullParameter(PreparedStatement ps, int i, String parameter, JdbcType jdbcType) throws SQLException { ps.setString(i, encrypt(parameter)); } @Override public String getNullableResult(ResultSet rs, String columnName) throws SQLException { return decrypt(rs.getString(columnName)); } private String encrypt(String str) { try { SecretKeySpec keySpec = new SecretKeySpec(key.getBytes(), "AES"); Cipher cipher = Cipher.getInstance("AES/ECB/PKCS5Padding"); cipher.init(Cipher.ENCRYPT_MODE, keySpec); byte[] encryptedBytes = cipher.doFinal(str.getBytes()); return Base64.getEncoder().encodeToString(encryptedBytes); } catch (Exception e) { throw new RuntimeException(e); } } private String decrypt(String encryptedStr) { try { SecretKeySpec keySpec = new SecretKeySpec(key.getBytes(), "AES"); Cipher cipher = Cipher.getInstance("AES/ECB/PKCS5Padding"); cipher.init(Cipher.DECRYPT_MODE, keySpec); byte[] decryptedBytes = cipher.doFinal(Base64.getDecoder().decode(encryptedStr)); return new String(decryptedBytes); } catch (Exception e) { throw new RuntimeException(e); } } } 在这个TypeHandler中,我们实现了setNonNullParameter和getNullableResult方法,分别用于设置和获取字段的值。在这些方法中,我们都调用了encrypt和decrypt方法来进行加密和解密操作。 2. 配置TypeHandler 接下来,我们需要在Mybatis的配置文件中配置这个TypeHandler。举个例子,实际上我们得在那个标签区域里头,给它添个新成员。具体操作就像这样:给这个新元素设定好它对应处理的Java类型和数据库类型,就像是给它分配了特定的任务一样。代码如下: xml 这样,我们就成功地配置了这个TypeHandler。 3. 使用TypeHandler 最后,我们可以在Mybatis的映射文件中使用这个TypeHandler来处理我们的加密字段。例如,如果我们有一个User实体类,其中有两个字段(field1和field2),我们就可以在映射文件中这样配置: xml SELECT FROM users; UPDATE users SET field1 = {field1}, field2 = {field2} WHERE id = {id}; 这样,当我们在查询或更新用户的时候,就会自动调用我们刚才配置的TypeHandler来进行加密操作。 五、总结 总的来说,通过利用Mybatis的TypeHandler功能,我们可以很方便地实现多个字段的加密。虽然这个过程可能稍微有点绕,不过只要我们把这背后的原理摸透了,就能像变戏法一样,在各种场景中轻松应对,游刃有余。 六、后续工作 未来,我们可以考虑进一步优化这个TypeHandler,让它能够支持更多的加密算法和加密模式。另外,咱们还可以琢磨一下把这个功能塞进其他的平台或者工具里头,让更多的小伙伴都能享受到它的便利之处。 这就是我对于Mybatis-plus多字段如何加密不同密码的一些理解和实践,希望能够对你有所帮助。如果你有任何问题或者建议,欢迎随时给我留言。
2023-07-21 08:07:55
149
飞鸟与鱼_t
Apache Lucene
...e为我们提供了丰富的API以供自定义相似度算法,但这也意味着我们必须谨慎对待每一次改动。如果算法优化脱离了实际需求,那就像是在做菜时乱加调料,结果很可能就是搜索结果的相关性排序一团糟。所以在实际操作中,我们得像磨刀石一样反复打磨、不断尝试更新优化,确保搜索结果既能让业务目标吃得饱饱的,也能让用户体验尝起来美滋滋的。
2023-05-29 21:39:32
519
寂静森林
转载文章
...转载内容。原文链接:https://blog.csdn.net/weixin_39884323/article/details/110752404。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 {"moduleinfo":{"card_count":[{"count_phone":1,"count":1}],"search_count":[{"count_phone":4,"count":4}]},"card":[{"des":"阿里技术人对外发布原创技术内容的最大平台;社区覆盖了云计算、大数据、人工智能、IoT、云原生、数据库、微服务、安全、开发与运维9大技术领域。","link1":"https://developer.aliyun.com/group/?spm=a2c6h.12883283.1377930.25.7287201c9RKTCi&groupType=other","link":"https://developer.aliyun.com/","icon":"https://img.alicdn.com/tfs/TB1TlXBEkT2gK0jSZPcXXcKkpXa-200-200.png","btn2":"开发者藏经阁","tip":"打通开发者成长路径,学习中心 。全线阿里云技术大牛公开课,立即查看","btn1":"技术与产品技术圈","link2":"https://developer.aliyun.com/topic/ebook?spm=a2c6h.12883283.1362932.15.7287201c9RKTCi","title":"阿里云开发者社区"}],"search":[{"txt":"学习中心","link":"https://developer.aliyun.com/learning?spm=a2c6h.13788135.1364563.41.299f5f24exe3IS"},{"txt":"技能测试中心 ","link":"https://developer.aliyun.com/exam?spm=a2c6h.13716002.1364563.42.6cac18a3JWCM5U"},{"txt":"开发者云 ","link":"https://developer.aliyun.com/adc/?spm=a2c6h.13716002.1364563.59.6b0818a3DV0vzN"},{"txt":"在线编程 ","link":"https://developer.aliyun.com/coding?spm=5176.13257455.1364563.57.701e7facHvqi5r"},{"txt":"学习中心 ","link":"https://developer.aliyun.com/learning?spm=a2c6h.12883283.1364563.41.5f1f201c5CLDCC"},{"txt":"高校计划 ","link":"https://developer.aliyun.com/adc/college/?spm=a2c6h.13716002.1364563.58.6cac18a3JWCM5U"}],"countinfo":{"search":{"length_pc":0,"length":0},"card":{"length_pc":0,"length":0} }} {"$env":{"JSON":{} },"$page":{"env":"production"},"$context":{"moduleinfo":{"card_count":[{"count_phone":1,"count":1}],"search_count":[{"count_phone":4,"count":4}]},"card":[{"des":"阿里技术人对外发布原创技术内容的最大平台;社区覆盖了云计算、大数据、人工智能、IoT、云原生、数据库、微服务、安全、开发与运维9大技术领域。","link1":"https://developer.aliyun.com/group/?spm=a2c6h.12883283.1377930.25.7287201c9RKTCi&groupType=other","link":"https://developer.aliyun.com/","icon":"https://img.alicdn.com/tfs/TB1TlXBEkT2gK0jSZPcXXcKkpXa-200-200.png","btn2":"开发者藏经阁","tip":"打通开发者成长路径,学习中心 。全线阿里云技术大牛公开课,立即查看","btn1":"技术与产品技术圈","link2":"https://developer.aliyun.com/topic/ebook?spm=a2c6h.12883283.1362932.15.7287201c9RKTCi","title":"阿里云开发者社区"}],"search":[{"txt":"学习中心","link":"https://developer.aliyun.com/learning?spm=a2c6h.13788135.1364563.41.299f5f24exe3IS"},{"txt":"技能测试中心 ","link":"https://developer.aliyun.com/exam?spm=a2c6h.13716002.1364563.42.6cac18a3JWCM5U"},{"txt":"开发者云 ","link":"https://developer.aliyun.com/adc/?spm=a2c6h.13716002.1364563.59.6b0818a3DV0vzN"},{"txt":"在线编程 ","link":"https://developer.aliyun.com/coding?spm=5176.13257455.1364563.57.701e7facHvqi5r"},{"txt":"学习中心 ","link":"https://developer.aliyun.com/learning?spm=a2c6h.12883283.1364563.41.5f1f201c5CLDCC"},{"txt":"高校计划 ","link":"https://developer.aliyun.com/adc/college/?spm=a2c6h.13716002.1364563.58.6cac18a3JWCM5U"}],"countinfo":{"search":{"length_pc":0,"length":0},"card":{"length_pc":0,"length":0} }} } 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39884323/article/details/110752404。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-31 19:12:04
257
转载
JQuery
...操作,还提供了丰富的API接口以满足开发者对滑动事件的深度处理和个性化设置。 与此同时,Web Components技术的发展也为滑动条控件带来了新的可能性。通过原生HTML自定义元素,开发者可以创建出与平台兼容性更强、性能更优的滑动条组件。例如,Google的Material Design库推出的Slider组件,其设计遵循现代UI/UX规范,提供了平滑滚动效果及动画过渡,使用户体验得到显著提升。 此外,关于如何优化滑动条在播放器等特定场景下的使用,一篇名为《深入剖析:音频播放器设计与实现》的技术文章,从实战角度出发,详细解读了利用现代前端框架(如React、Vue)结合HTML5 Audio API进行滑动条播放器高级功能开发的策略与技巧,值得对此感兴趣的读者进一步研读学习。 综上所述,在紧跟技术潮流的同时,深入理解和掌握滑动条这一基础而又关键的UI元素,无疑将助力开发者打造出更加高效、易用且富有吸引力的网页应用。
2023-01-20 22:28:12
352
山涧溪流-t
转载文章
...转载内容。原文链接:https://blog.csdn.net/weixin_38168760/article/details/102271589。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 在单引号,双引号,三引号内,由一串字符组成 本文所写只是常用的一些字符串操作方法,如想了解更多, 请移步python官方文档,或者菜鸟编程 注意: 所有的对字符串的操作都是生成了新的字符串, 而原本的字符串不发生改变 name = "wangcong" print(name[1:3]) 切片操作 print(len(name)) 求字符串的长度 in or not in 判断一个字符是否在字符串中 print('a' in name) 返回布尔值 字符串也可以进行运算 print('' + '') print('' 5) name = 'wangcong' print(name.strip("")) 去除两边的星号 print(name.rstrip("")) 去除右边的星号 print(name.lstrip("")) 去除左边的星号 name = ' wangcong ' print(name.strip()) 默认为去除 空格 \t 换行 name = 'WANGcong' print(name.lower()) 大写字母小写,小写字母不变 print(name.upper()) 小写字母大写,大写字母不变 print(name) 注意看name的值 name = 'wangcong' print(name.startswith('wang')) 判断是否为wang 开头,返回值为布尔值 print(name.endswith('cong')) 判断是否为cong结尾, 返回值为布尔值 print(name) 注意看name的值 format三种用法 people1 = "{} {} {}".format('wangcong',18,'male') people2 = "{0} {1} {2}".format('wangcomg',18,'male') people3 = "{name} {age} {sex}".format(sex='male',name = 'wangcong',age = 18) print(people1,people2,people3) print(name) 注意看name的值 name = 'wang cong' print(name.split()) 默认分隔符为空格,返回值为一个列表 print(name.split('o')) split 可以指定分隔符的位置 demo = 'a/b/c/d/e' print(demo.split('/',1)) ['a', 'b/c/d/e'] print(demo.split('/',2)) ['a', 'b', 'c/d/e'] rsplit 可以指定从右边切分 print(demo.rsplit('/',1)) ['a/b/c/d', 'e'] print(name) 注意看name的值 join 拼接字符串 name = ' ' print(name.join(['wang','cong'])) 必须为可迭代对象 注意join和 + 的不同 name = '' print(name.join(['w','a','n','g'])) wang print(name + 'wang' + 'cong') wangcong print(name) 注意看name的值 replace 字符串替换 name = 'wang ' print(name.replace('','cong')) wang cong 注意这里是全部替换 name = 'wang ' print(name.replace('','cong')) wang congcongcongcongcong print(name) 注意看name的值 find,rfind,index,rindex,count str1 = 'hello world' print(str1.find('l')) 返回第一个'l'的索引值 print(str1.find('b')) 找不到返回-1 print(str1.find('l',3,5)) 顾头不顾尾 rfind:从右边开始查找 index,rindex 同find,rfind 只不过找不到的时候不报错 count :统计字母出现的次数 print(str1.count('l',1,4)) 顾头不顾尾,如果不指定范围则查找所有 一些转义字符 \(在末尾时):续行符 ;\\:反斜杠 \n :换行 ;\t :横向制表符 ;\':单引号;\":双引号 字符串格式化符号 %c:格式化字符以及其ASCII码 print("%c"%89) Y print("%c"%'Y') Y %s:格式化字符串 print("%s" %"wang cong") wang cong %d 格式化整数 number = 87 print("%d" % number) 87 %u 格式化无符号整型 %o 格式化无符号八进制数 print("%o" % number) 1X27:八进制数显示 %x 格式化无符号十六进制数 (小写) number = 15 print("%x" % number) f %X 格式化无符号十六进制数 (大写) print("%X" % number) F 转载于:https://www.cnblogs.com/cong12586/p/11349697.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_38168760/article/details/102271589。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-11 17:43:10
354
转载
Hadoop
...件之一,它们分别负责管理和监控工作负载以及执行任务。在实际动手操作的时候,我们常常会碰上这么个头疼的问题——JobTracker和TaskTracker之间的通信时不时会掉链子。这种情况就像是一场交响乐,指挥和乐手突然听不清彼此的节奏了,整个乐队演奏起来自然就乱套了,效率大打折扣,严重时甚至会让整个系统直接罢工,没法正常运转起来。 二、 问题原因分析 那么,为什么会出现这样的问题呢? 首先,可能是由于网络连接不稳定或者存在故障所导致的。如果TaskTracker和JobTracker这两个家伙之间的网络连线出了岔子,那就意味着它们没法好好交流了,这样一来,任务自然也就没法顺利完成啦。 其次,也有可能是因为系统的硬件设备出现故障所导致的。比如,假如TaskTracker所在的那台服务器闹罢工了,硬盘挂了或者内存不够用啥的,那它就没法好好干活儿,这样一来,整个系统的正常运行也就跟着遭殃了。 最后,还有一种可能是因为系统的软件配置存在问题所导致的。比如说,就好比JobTracker和TaskTracker是两个搭档,如果它们各自的“版本语言”对不上号,或者说是它们共同的“行动指南”——配置文件里的一些参数被设置错了,那这俩家伙就没法好好交流、协同工作。这样一来,任务自然也就没法顺利完成啦。 三、 解决方案 那么,如何解决这个问题呢? 首先,我们可以尝试修复或替换出现故障的硬件设备。比如,假如我们发现某个TaskTracker运行的服务器硬盘挂了,那我们就得赶紧换个新的硬盘,再把TaskTracker重启一下,这样一来它就能重新满血工作啦。 其次,我们也可以尝试调整网络环境,以确保JobTracker和TaskTracker之间的网络连接稳定。比如说,我们可以考虑给网络“加加油”,提升一下带宽;再者呢,可以精心设计一下网络的“行车路线”,优化路由;还有啊,换个更靠谱、更稳当的网络服务供应商也是个不错的选择。 最后,我们还可以尝试更新或重置系统的软件配置,以解决配置文件中的参数设置错误问题。比如,咱们可以瞅瞅JobTracker和TaskTracker这两个家伙的版本信息,看看它们俩是不是能和平共处,如果发现有兼容问题,那就该升级就升级,该降级就降级;除此之外,咱还得像查账本一样仔细核对配置文件里的每一个参数值,确保这些小细节都设定得恰到好处,一步到位。 四、 结论 总的来说,JobTracker和TaskTracker之间的通信失败问题是由于多种因素所引起的,包括网络连接不稳定、硬件设备故障、软件配置错误等。所以呢,咱们得把各种因素都综合起来掂量一下,然后找准方向,采取一些对症下药的措施,这样才有可能真正把这个难题给妥妥地解决掉。只有这样,我们才能够保证Hadoop系统的正常运行,充分发挥其高效、可靠的特点。
2023-07-16 19:40:02
501
春暖花开-t
RabbitMQ
...需要首先创建一个事务管理器,并将其绑定到RabbitMQ连接上。接下来,我们可以直接用这个事务管理器开启一个新的交易,然后在新开的这个交易里头,放心大胆地发送消息就对了。最后,我们需要调用事务管理器的commit方法来提交事务,或者调用其rollback方法来回滚事务。 下面是一个具体的示例: java import com.rabbitmq.client.; public class TransactionalProducer { private final Connection connection; private final Channel channel; public TransactionalProducer(String host, int port) throws IOException { // 创建连接和通道 this.connection = new Connection(host, port); this.channel = connection.createChannel(); } public void sendMessage(String exchangeName, String routingKey, String message) throws IOException { // 开始一个新的事务 channel.txSelect(); // 发送消息 channel.basicPublish(exchangeName, routingKey, null, message.getBytes()); // 提交事务 channel.txCommit(); } public static void main(String[] args) throws IOException { TransactionalProducer producer = new TransactionalProducer("localhost", 5672); producer.sendMessage("hello-exchange", "hello-routing-key", "Hello World!"); } } 在这个示例中,我们首先创建了一个新的交易连接,并从中获取到了一个交易频道。接着呢,我们就像这样操作的:在把消息发送出去之前,先启动了一个全新的事务,这一步就是通过调用txSelect方法来完成的。而等到消息成功发送出去之后,咱们再潇洒地执行txCommit方法,这就意味着那个事务被顺利提交啦。这样,即使在发送消息的过程中出现了异常,RabbitMQ也会自动撤销已经发送的所有消息,从而保证了消息的完整性和一致性。 四、结论 总的来说,在RabbitMQ中实现事务性消息发送是一项非常重要的功能,它可以为我们提供原子性的操作保障,避免因为单个操作失败而导致的数据丢失或损坏。而通过上面的示例,我们也看到其实现起来并不复杂,只需要简单地几步操作即可。所以,如果你正在用RabbitMQ搞数据传输、处理消息这些活儿,那你就得把这个功能玩得溜溜的,确保在关键时刻能把它物尽其用,一点儿不浪费。
2023-02-21 09:23:08
100
青春印记-t
Sqoop
...需要对接具体的数据库API public class CustomMySQLDriver extends com.mysql.jdbc.Driver { // 重写方法以支持对MEDIUMBLOB类型的处理 @Override public java.sql.ResultSetMetaData getMetaData(java.sql.Connection connection, java.sql.Statement statement, String sql) throws SQLException { ResultSetMetaData metadata = super.getMetaData(connection, statement, sql); // 对于MEDIUMBLOB类型的列,返回对应的Java类型 for (int i = 1; i <= metadata.getColumnCount(); i++) { if ("MEDIUMBLOB".equals(metadata.getColumnTypeName(i))) { metadata.getColumnClassName(i); // 返回"java.sql.Blob" } } return metadata; } } 然后在Sqoop命令行中引用这个自定义的驱动: bash sqoop import \ --driver com.example.CustomMySQLDriver \ ... 4. 思考与讨论 尽管Sqoop在大多数情况下可以很好地处理数据迁移任务,但在面对一些特殊的数据库表列类型时,我们仍需灵活应对。无论是对JDBC驱动进行小幅度的类映射微调,还是大刀阔斧地深度定制,最重要的一点,就是要摸透Sqoop的工作机制,搞清楚它背后是怎么通过底层的JDBC接口,把那些Java对象两者之间巧妙地对应和映射起来的。想要真正玩转那个功能强大的Sqoop数据迁移神器,就得在实际操作中不断摸爬滚打、学习积累。这样,才能避免被“ClassNotFoundException”这类让人头疼的小插曲绊住手脚,顺利推进工作进程。
2023-04-02 14:43:37
84
风轻云淡
c#
...,对于并发控制和事务管理,.NET 6也提供了更为精细的控制手段,确保数据的一致性和完整性。 因此,在面对数据库操作问题时,除了手工封装SqlHelper类进行原始SQL命令执行外,开发者还可以关注并研究如何充分利用现代ORM框架的优势来解决类似的数据插入问题,以适应不断变化的技术环境和项目需求,进一步提升代码质量和开发效率。同时,结合领域驱动设计(DDD)等架构设计理念,可以更好地组织业务逻辑和数据访问层,实现更高级别的抽象和解耦,从而应对未来可能出现的各种新挑战。
2023-08-19 17:31:31
470
醉卧沙场_
ZooKeeper
...提供高效的服务发现与管理等方面发挥着不可替代的作用。然而,实践中遇到如客户端无法获取集群状态信息等问题时,不仅需要深入理解ZooKeeper的运行机制和通信原理,还需密切关注相关领域的最新进展和技术动态。 近期,社区对于ZooKeeper的高可用性和容错性进行了更深层次的研究和优化。例如,最新的ZooKeeper 3.7版本引入了QUORUM_READHttpServletRequest处理器,以支持在读操作层面实现强一致性,这有助于减少因网络分区或其他异常情况导致的客户端状态信息获取异常问题。同时,业界也在探索采用Raft一致性算法替换原有的ZAB协议,以进一步提升ZooKeeper的性能和可运维性。 此外,随着云原生架构的发展,Kubernetes等容器编排平台上的ZooKeeper服务管理和监控也日益受到关注。通过适配Operator模式或利用Prometheus等开源监控工具,能够实时感知并处理ZooKeeper集群的状态变化,从而有效预防和解决状态信息获取异常的问题。 综上所述,在面对ZooKeeper集群状态信息获取异常这一挑战时,除了深入理解和遵循基本原理及最佳实践外,我们还应积极跟进技术前沿,结合最新的研究成果和工具,以构建更为稳定、健壮且高效的分布式系统环境。
2023-11-13 18:32:48
69
春暖花开
转载文章
...转载内容。原文链接:https://blog.csdn.net/eastmoon502136/article/details/7909688。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 手机都是有震动的效果的,前天飞刀从手机里拆了一个振动器,然后让我下周把这个调一下,昨天来公司小试了一把,就搞定了。下面把过程讲一下吧。 其实android中已经做好了底层的驱动,那便是timed_gpio,就是把定时功能和gpio的功能结合在一起了,振动就是一个小直流电机了,当gpio口是高电平的时候,电机就转动了,当gpio口为低电平的时候,电机就不转了,而time是控制转的时间,也就是gpio口处于高电平的时间。 具体的代码就在/drivers/staging/android/timed_gpio.c 在相关平台的platform.c中加入platform device就可以了。 static struct timed_gpio vibrator = {.name = “vibrator”,.gpio = 61, //对应自己平台的gpio号.max_timeout = 100000,.active_low = 0;};static struct timed_gpio_platform_data timed_gpio_data = {.num_gpios = 1,.gpios = &vibrator,};static struct platform_device my_timed_gpio = {.name = “timed-gpio”,.id = -1,.dev = {.platform_data = &timed_gpio_data,},}; 然后在make menuconfig中选上device下的staging下的android中的相关选项 然后就可以跑一下内核来了,当内核跑起来后,就可以测试了。 因为timed gpio驱动程序为每个设备在/sys/class/timed_output/目录下建立一个子 录,设备子目录的enable文件就是控制设备的时间的。因为在platform中名称为vibrator, 所以,用以下命令可以测试: echo 10000 > /sys/class/timed_output/vibrator/enable 然后可以看下振动器在转了,也可以用示波器或者万用表来验证 接着可以 cat /sys/class/timed_output/vibrator/enable 发现enable的值一直在变小,直到为0的时候停止了转动了。 OK,底层驱动好了,那么android上层就好办多了,因为android上层几乎和平台关系不大,要改的东西很少很少。 至于android硬件抽象层,在hardware/libhardware_legacy/include/hardware_legacy/ vibrator目录下。 include <hardware_legacy/vibrator.h>include "qemu.h"include <stdio.h>include <unistd.h>include <fcntl.h>include <errno.h>define THE_DEVICE "/sys/class/timed_output/vibrator/enable"int vibrator_exists(){int fd;ifdef QEMU_HARDWAREif (qemu_check()) {return 1;}endiffd = open(THE_DEVICE, O_RDWR);if(fd < 0)return 0;close(fd);return 1;}static int sendit(int timeout_ms){int nwr, ret, fd;char value[20];ifdef QEMU_HARDWAREif (qemu_check()) {return qemu_control_command( "vibrator:%d", timeout_ms );}endiffd = open(THE_DEVICE, O_RDWR);if(fd < 0)return errno;nwr = sprintf(value, "%d\n", timeout_ms);ret = write(fd, value, nwr);close(fd);return (ret == nwr) ? 0 : -1;}int vibrator_on(int timeout_ms){/ constant on, up to maximum allowed time /return sendit(timeout_ms);}int vibrator_off(){return sendit(0);} 看到了吧 define THE_DEVICE "/sys/class/timed_output/vibrator/enable" 就是我们要操作的底层驱动的地方,只要这个和驱动配上,那么剩下的事情就木有了,直接搞定了。 其实她也是往这里写数据,android的java层就不关心她了。好了,然后可以在android启动后设置一个闹钟来测试下了,发现可以,至此android的vibrator移植成功。 突然发现了,其实以前觉得很难得东西,很不好理解的东西,在过一段时间后再回过头去看的时候才会恍然大悟。学习是个漫长的过程,是一个知识慢慢积累的过程,一口气是吃不成胖子的。 本篇文章为转载内容。原文链接:https://blog.csdn.net/eastmoon502136/article/details/7909688。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-17 14:30:45
82
转载
Spark
...ger作为集群资源的管理者,可能会出现异常终止某个或多个Executor进程的情况。此时,您可能会在日志中看到类似“Container killed by YARN for exceeding memory limits”这样的错误提示。这就意味着,由于某些状况,ResourceManager觉着你的Executor吃掉的资源有点超出了给它的额度限制,所以呢,它就决定出手,采取了强制关闭这招来应对。 2. 原因分析 2.1 资源超限 最常见的原因是Executor占用的内存超出预设限制。例如,当我们的Spark应用程序进行大规模数据处理或者计算密集型任务时,如果未合理设置executor-memory参数,可能会导致内存溢出: scala val conf = new SparkConf() .setAppName("MyApp") .setMaster("yarn") .set("spark.executor.memory", "4g") // 如果实际需求大于4G,则可能出现问题 val sc = new SparkContext(conf) 2.2 心跳丢失 另一种可能是Executor与ResourceManager之间的心跳信号中断,导致ResourceManager误判Executor已经失效并将其杀掉。这可能与网络状况、系统负载等因素有关。 2.3 其他因素 此外,还有诸如垃圾回收(GC)频繁,长时间阻塞等其他情况,都可能导致Executor表现异常,进而被YARN ResourceManager提前结束。 3. 影响与后果 当Executor被提前杀死时,不仅会影响正在进行的任务,造成任务失败或重启,还会降低整个作业的执行效率。比如,如果你老是让任务重试,这就相当于在延迟上添砖加瓦。再者,要是Executor频繁地启动、关闭,这无疑就是在额外开销上雪上加霜啊。 4. 应对策略 4.1 合理配置资源 根据实际业务需求,合理设置Executor的内存、CPU核心数等参数,避免资源过载: scala conf.set("spark.executor.memory", "8g") // 根据实际情况调整 conf.set("spark.executor.cores", "4") // 同理 4.2 监控与调优 通过监控工具密切关注Executor的运行状态,包括内存使用情况、GC频率等,及时进行调优。例如,可以通过调节spark.memory.fraction和spark.memory.storageFraction来优化内存管理策略。 4.3 网络与稳定性优化 确保集群网络稳定,避免因为网络抖动导致的心跳丢失问题。对于那些需要长时间跑的任务,咱们可以琢磨琢磨采用更为结实牢靠的消息处理机制,这样一来,就能有效避免因为心跳问题引发的误操作,让任务运行更稳当、更皮实。 5. 总结与思考 面对Spark Executor在YARN上被提前杀死的问题,我们需要从源头入手,深入理解问题背后的原理,结合实际应用场景细致调整资源配置,并辅以严谨的监控与调优手段。这样不仅能一举摆脱当前的困境,还能让Spark应用在复杂环境下的表现更上一层楼,既稳如磐石又快如闪电。在整个探索和解决问题的过程中,我们的人类智慧和技术实践得到了充分融合,这也正是技术的魅力所在!
2023-07-08 15:42:34
190
断桥残雪
Groovy
...oovy提供了丰富的API来支持这种操作。比如,我们能够用before和after这两个小家伙来判断一个日期时间是不是比另一个日期时间更早或者更晚。就像是在比较两个时刻,“哎,你看这个时间点是在那个时间点之前呢,还是之后?”就是这么简单易懂!下面是一个示例: bash import java.util.Date def date1 = new Date(2023, 1, 1) def date2 = new Date(2023, 1, 2) if (date1.before(date2)) { println "date1 is before date2" } else if (date1.after(date2)) { println "date1 is after date2" } else { println "date1 and date2 are equal" } 这段代码首先创建了两个Date对象date1和date2,分别表示2023年1月1日和2023年1月2日。然后,我们使用before和after方法来判断这两个日期和时间的相对关系。 五、计算日期和时间差 有时候,我们需要计算两个日期和时间之间的差值。Groovy提供了getTime()方法来获取一个Date对象的时间戳,然后我们可以直接相减得到时间差。下面是一个示例: kotlin import java.util.Date def date1 = new Date(2023, 1, 1) def date2 = new Date(2023, 1, 2) def diff = date2.getTime() - date1.getTime() println "Time difference is: ${diff / (1000 60 60)} hours" 这段代码首先创建了两个Date对象date1和date2,分别表示2023年1月1日和2023年1月2日。然后,我们采用一个叫做getTime()的小妙招,分别从这两个日期和时间上抓取它们的时间戳。接着,咱们就像做数学题一样,把这两个时间戳相减,这样一来,就能轻松得出两者之间的时间差了。最后,我们将时间差转换为小时,并打印出来。 六、总结 Groovy对日期和时间的处理能力非常强大,无论是在创建、格式化、比较还是计算日期和时间差等方面,都提供了丰富的API和支持。这篇文儿只是抛砖引玉,实际上Groovy这家伙肚子里藏着更多厉害的招数和隐藏功能,正眼巴巴地等着我们去发现、去解锁呢!嘿,伙计们,我真心希望读完这篇文章后,你们能像老朋友一样熟悉Groovy里处理日期和时间的那些小窍门,把它们玩得溜溜转,掌握得透透的!
2023-05-09 13:22:45
504
青春印记-t
Docker
...置的空间不足或者出于管理上的需求,我们可以对其进行修改: 3.1 Linux系统 在Linux系统中,可以通过修改Docker守护进程启动参数来改变数据存储路径: bash 停止Docker服务 sudo systemctl stop docker 编辑Docker配置文件(通常是/etc/docker/daemon.json) sudo nano /etc/docker/daemon.json 添加如下内容(假设新的存储路径为 /mnt/docker) { "data-root": "/mnt/docker" } 重启Docker服务并检查新路径是否生效 sudo systemctl start docker sudo docker info | grep "Root Dir" 3.2 Windows和Mac (Docker Desktop) 对于Windows和Mac用户,通过Docker Desktop可以更方便地更改Docker数据盘的位置: - 打开Docker Desktop应用 - 进入“Preferences”或“Settings” - 在“Resources”选项卡中找到“Disk image location”,点击“Move”按钮选择新的存储路径 - 点击“Apply & Restart”以应用更改 4. 多路径映射与复杂场景 在某些情况下,我们可能需要映射多个路径,甚至自定义路径模式。例如,下面的命令展示了如何映射多个宿主机目录到容器的不同路径: bash docker run -d \ --name my-app \ -v /host/path/config:/app/config \ -v /host/path/data:/app/data \ your-image-name 这里,我们把宿主机上的 /host/path/config 和 /host/path/data 分别映射到了容器的 /app/config 和 /app/data。 总结起来,理解和掌握Docker映射路径及修改存储路径的技术,不仅可以帮助我们更好地管理和利用资源,还能有效保证容器数据的安全性和持久性。在这个过程中,我们可没闲着,一直在热火朝天地摸索、捣鼓和实战Docker技术。亲身体验到它的神奇魅力,也实实在在地深化了对虚拟化和容器化技术的理解,收获颇丰!
2023-09-10 14:02:30
541
繁华落尽_
HBase
...通过深度整合底层资源管理和自动化运维工具,实现了RegionServer资源的按需扩展和高效利用,有效解决了海量数据下的性能瓶颈问题。 此外,对于如何结合业务特性进行数据预处理和分区设计优化,一些大型互联网公司分享了实践经验。例如,某公司在社交网络数据分析中,采用了一种创新的分区策略和实时数据聚合技术,成功降低了HBase Region迁移频率,显著提升了整个系统的稳定性和响应速度。 综上所述,在面对HBase的大规模数据处理问题时,除了深入理解其内部机制外,紧跟行业发展趋势和技术前沿,及时应用最新的研究成果与最佳实践,无疑能帮助我们更好地解决实际问题,提升整体业务效率。
2023-06-04 16:19:21
449
青山绿水-t
ClickHouse
...一个开源的列式数据库管理系统(Column-Oriented DBMS),由俄罗斯搜索引擎Yandex开发,特别针对在线分析处理(OLAP)场景进行了优化。它能够在海量数据集上提供极高的查询性能,尤其擅长进行复杂的数据分析和实时报表生成。 UNION操作符 , 在SQL查询语句中,UNION操作符用于合并两个或多个SELECT语句的结果集。执行UNION时会自动去除重复行,若需包含所有行(包括重复行),则使用UNION ALL。在ClickHouse中,UNION操作符是实现跨表或跨子查询数据聚合、合并的关键工具,要求参与合并的SELECT语句选择列表具有相同数量且对应位置的数据类型一致。 分布式环境 , 分布式环境是指将数据和计算任务分布在多台独立计算机上的系统架构。在ClickHouse中,通过分布式表结构,可以将数据分散存储在集群中的不同节点上,并利用UNION操作符跨节点汇总数据,从而高效处理大规模数据。在这种环境下,合理设计数据分布策略与索引结构,结合UNION操作符和其他查询优化技术,能够显著提升查询性能和系统的可扩展性。
2023-09-08 10:17:58
427
半夏微凉
Apache Pig
...DataFrame API和DataSet API,能够无缝对接多种数据源并实现高效的JOIN操作,这为用户在选择合适的大数据处理工具时提供了更多可能。 同时,对于深入理解和优化JOIN性能,业界专家和学者也在不断地探索和研究。一篇发表于《VLDB Journal》的研究论文探讨了基于排序、索引和其他策略在分布式环境下的JOIN算法优化,这对于希望深入挖掘大数据处理潜力的数据工程师具有极高的参考价值。 综上所述,Apache Pig在多表联接领域的优秀表现以及大数据技术生态系统的持续发展与创新,都在不断推动着大数据处理能力的进步。掌握并适时更新相关知识,将有助于应对日益复杂的数据挑战,提高数据分析及决策的效率与准确性。
2023-06-14 14:13:41
457
风中飘零
HTML
...译完成后的自动化文件管理任务。这种做法,可不光是让手动操作变得省心省力,工作效率嗖嗖往上升,更重要的是,它让构建流程变得更聪明、更自动化了。就好比给生产线装上了智能小助手,让webpack插件系统那灵活多变、随时拓展的特性展现得淋漓尽致。 总结一下,面对“webpack --watch 编译完成之后执行一个callback,将部分文件拷贝到指定目录”的需求,通过编写自定义webpack插件,我们可以轻松解决这个问题,这也是前端工程化实践中的一个小技巧,值得我们在日常开发中加以运用和探索。当然啦,每个项目的个性化需求肯定是各不相同的,所以呢,咱们就可以在这个基础上灵活变通,根据实际情况来个“私人订制”,把咱们的构建过程打磨得更贴合项目的独特需求,让每一个环节都充满浓浓的人情味儿,更有温度。
2023-12-07 22:55:37
690
月影清风_
Mongo
...,还提高了其性能和可管理性,使得开发人员在处理复杂业务逻辑时能够更好地确保数据的一致性。 此外,MongoDB公司不断优化副本集的同步机制,通过引入即时成员(Rolling Member)角色,提升了集群中数据复制的速度与一致性,降低了延迟带来的不一致性风险。同时,MongoDB的分片技术也在持续演进,例如通过提供更智能的自动均衡功能,以适应实时数据分布变化,进一步确保了大规模分布式环境下的数据一致性。 值得注意的是,在实际应用中,理解并有效利用诸如会话、读关注点(Read Concerns)和写关注点(Write Concerns)等高级特性是解决MongoDB数据一致性问题的关键手段。近期一篇来自MongoDB官方博客的技术解析文章深入探讨了如何结合这些特性在实际场景中实现强一致性,为开发者提供了宝贵的实践指导。 综上所述,随着MongoDB技术栈的不断完善,用户可以期待在保持其原有灵活性与扩展性优势的同时,享受到更高层次的数据一致性保障。而对于广大数据库工程师及开发者而言,紧跟MongoDB的发展动态,结合实际需求灵活运用各种新特性与最佳实践,无疑是确保系统稳定性和数据准确性的必由之路。
2023-12-21 08:59:32
78
海阔天空-t
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
watch -g file.txt
- 实时监控文件内容变化并刷新显示。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"