前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[SQL语句执行计划分析与索引选择 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
SqlCommand , SqlCommand是.NET框架中System.Data.SqlClient命名空间下的一种类,用于在SQL Server数据库上执行Transact-SQL语句或存储过程。在文章中,SqlCommand对象被用来执行SQL查询命令以获取投票结果和总票数,它是连接应用程序与数据库进行数据交互的关键组件。 SqlDataReader , SqlDataReader是.NET Framework中的一个数据读取器类,位于System.Data.SqlClient命名空间下。它提供了一种只进、只读、高效的方式从SQL Server数据库检索大量记录。在文中,DataReader对象dr用于存储从数据库查询得到的各项投票结果数据,并通过Read方法逐条读取这些记录,以便进一步计算和展示投票进度。 ADO.NET , ADO(ActiveX Data Objects)的.NET版本,是一种数据访问技术,允许.NET应用程序连接到各种不同类型的数据源(如SQL Server、Oracle等),并进行数据的检索、更新、插入和删除操作。在该文上下文中,作者使用了ADO.NET的组件如SqlCommand和SqlDataReader来实现与数据库的交互,从而获取投票信息并动态生成投票进度条。 TF-IDF , TF-IDF(Term Frequency-Inverse Document Frequency)是一种广泛应用于信息检索和文本挖掘领域的统计方法,用于评估一个词对于一个文档或者一个文档集合中的重要程度。在本文中,虽然并未直接应用TF-IDF算法,但提及它的原理,即计算单项票数占总票数的比例类似于TF-IDF计算某个词汇在文档中相对重要性的思想,将投票比例映射为进度条长度。 进度条(Progress Bar) , 在用户界面设计中,进度条是一种常见的可视化组件,用于显示任务完成的程度或过程。在文中,作者通过编程方式动态调整图片宽度模拟实现了四个项目的投票进度条,直观地展示了各选项得票情况相对于总票数的百分比。
2023-09-23 15:54:07
347
转载
MyBatis
...ngBuilder sql, Date date, BoundSql boundSql) { sql.append("TO_TIMESTAMP('").append(date).append("')"); } @Override public Date read(Class type, String source) { return new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").parse(source); } } 在这里,我们首先调用了父类的write方法,然后在SQL语句中添加了一个函数TO_TIMESTAMP,这个函数可以将日期字符串转换为TIMESTAMP类型。而在read方法中,我们将数据库返回的字符串转换为了日期对象。 3. 在实体类中使用注解进行映射 除了全局映射之外,我们还可以在实体类中使用@Type注解来进行一对一的映射。例如,如果我们有一个User类,其中有一个Date类型的生日属性,我们可以这样使用@Type注解: java public class User { private String name; @Type(type = "com.example.mybatis.DateToTimestampTypeHandler") private Date birthday; // getters and setters... } 在这里,我们指定了birthday属性应该使用DateToTimestampTypeHandler进行映射。 三、总结 通过以上步骤,我们就可以在MyBatis中完成数据类型映射了。这个功能简直不要太重要,它简直就是我们提升开发效率、减少无谓错误的小帮手,最关键的是,它还能让我们的代码变得更加简洁明了,读起来就像看小说一样轻松愉快!所以,希望大家能够熟练掌握并使用这个功能。
2023-12-18 11:45:51
118
半夏微凉-t
Hive
... 引言 在大数据分析领域,Apache Hive作为一款基于Hadoop的数据仓库工具,因其强大的SQL查询能力和易用性而广受欢迎。嘿嘿,你知道吗,在Hive SQL里有个特厉害的功能叫做窗口函数。这个功能可神了,它不是对整个大表进行全局性的计算,而是允许我们在一组相关的行,我们可以把这组行想象成一个小窗口,在这个“窗口”里面进行各种灵活的计算操作,是不是很酷?这篇内容,我将手把手带你潜入Hive的神秘世界,探索如何灵活玩转窗口函数这个神器,搞定多列数据排序和那些让人挠头的复杂聚合运算,让你的数据处理技能蹭蹭上涨。 1. 窗口函数的基本概念与语法 窗口函数的独特之处在于其能够定义一个“窗口”,在这个窗口内进行数据处理。这个窗口功能挺灵活的,它能够按照行数或者特定的分区进行划分,并且如果你想对窗口内部的数据做个排序什么的,也是完全可以按需操作的!基本语法如下: sql [aggregate_function() | rank() | dense_rank() | row_number() OVER ( [PARTITION BY column1, column2,...] [ORDER BY column3, column4,...] )] - PARTITION BY:用于将数据分割成多个分区,每个分区内部独立应用窗口函数。 - ORDER BY:在每个分区内部按照指定列进行排序。 2. 多列排序的窗口函数示例 假设我们有一个销售记录表sales_data,包含以下字段:order_id、product_id、customer_id、sale_date 和 amount_sold。现在,我们想按customer_id分组并根据sale_date和amount_sold降序排列,然后获取每个客户的最新销售记录。 sql SELECT customer_id, order_id, product_id, sale_date, amount_sold FROM ( SELECT customer_id, order_id, product_id, sale_date, amount_sold, ROW_NUMBER() OVER ( PARTITION BY customer_id ORDER BY sale_date DESC, amount_sold DESC ) as row_num FROM sales_data ) t WHERE row_num = 1; 上述代码首先通过ROW_NUMBER()窗口函数为每个客户的所有订单生成了一个行号,行号的顺序由sale_date和amount_sold共同决定。最后,我们筛选出每个客户行号为1的记录,也就是每个客户最新的销售记录。 3. 聚合操作的窗口函数示例 窗口函数不仅支持排序,还可以结合聚合函数,例如求某段时间窗口内的累计销售额: sql SELECT customer_id, sale_date, amount_sold, SUM(amount_sold) OVER ( PARTITION BY customer_id ORDER BY sale_date ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW ) as cumulative_sales FROM sales_data; 在这段代码中,我们使用了SUM窗口函数来计算每个客户的累计销售额。"ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW"这个表达,简单来说就是指从第一个订单开始,一直到现在处理到的订单为止,包括这一整个时间段内每个客户的累积销售额。换句话说,它涵盖了当前行以及它前边所有的行,相当于在跟你说:“嘿,从这个客户下单的第一笔开始算起,直到现在这笔订单的销售额,统统给我加起来!” 4. 结语 深入理解与灵活运用 理解并掌握窗口函数的使用方式,无疑会极大地提升我们在Hive中处理复杂业务场景的能力。在实际工作中,当你遇到要对多列进行排序或者需要做聚合处理的时候,完全可以按照业务的具体情况,像变魔术一样灵活调整窗口函数的参数。这样一来,数据就像听话的小兵,整齐有序地流动起来,进而让我们的数据分析工作更加精准,更有力度,也更贴近实际情况。所以,请带着这份探索的热情,在实践中不断尝试、优化,你会发现窗口函数就像一把神奇的钥匙,能帮你打开数据洞察的大门!
2023-10-19 10:52:50
472
醉卧沙场
Apache Pig
...g Latin脚本来执行ETL(提取、转换、加载)任务,以及进行复杂的数据分析,而无需直接编写复杂的MapReduce程序。Apache Pig会将Pig Latin脚本转换为一系列MapReduce作业,并优化其执行效率。 Pig Latin , Pig Latin是Apache Pig项目中的脚本语言,设计目标是让开发者能够更高效地处理大规模数据。它具有类似SQL的表达式和操作符,可以实现数据加载、清洗、转换、分组、聚合、排序等多种功能。Pig Latin语句通常较简洁且易于理解,使得大数据分析工作更加直观和高效。 UDF(用户自定义函数) , 在Apache Pig中,UDF是指用户根据特定业务需求自行编写的函数,它可以扩展Pig Latin的功能。通过创建UDF,用户可以定义新的数据类型或操作符,以处理Pig内置函数无法直接处理的复杂数据格式或逻辑。例如,在数据分析过程中,可能需要对特殊格式的日期字符串进行解析,或者应用某种特定算法进行数值计算,此时就可以编写相应的UDF来完成这些任务。
2023-04-05 17:49:39
643
翡翠梦境
Hive
...统中的重要组件,以其SQL-like查询语言和对大规模数据集的高效管理能力赢得了广泛的认可。然而,在我们日常运维的过程中,有时候会遇到个让人超级头疼的状况——Hive表的数据竟然出岔子了,或者干脆是损坏了。这篇东西咱们要实实在在地把这个难题掰开了、揉碎了讲明白,从它可能的“病因”一路聊到会带来哪些影响,再到解决这个问题的具体步骤和策略,还会手把手地带你瞅瞅实例代码是怎么操作演示的。 2. 数据损坏的原因剖析 (1)元数据错误 在Hive中,元数据存储在如MySQL或Derby等数据库中,若这部分信息出现丢失或损坏,可能导致Hive无法正确解析和定位数据块。例如,分区信息错误、表结构定义丢失等情况。 sql -- 假设某个分区信息在元数据库中被误删除 ALTER TABLE my_table DROP PARTITION (dt='2022-01-01'); (2)HDFS文件系统问题 Hive底层依赖于HDFS存储实际数据,若HDFS发生节点故障、网络中断导致数据复制因子不足或者数据块损坏,都可能导致Hive表数据不可用。 (3)并发写入冲突 多线程并发写入Hive表时,如果未做好事务隔离和并发控制,可能导致数据覆盖或损坏。 3. 数据损坏的影响及应对思考 数据损坏直接影响业务的正常运行,可能导致数据分析结果错误、报表异常、甚至业务决策失误。因此,发现数据损坏后,首要任务是尽快定位问题根源,并采取相应措施: - 立即停止受影响的服务,防止进一步的数据写入和错误传播。 - 备份当前状态,为后续分析和恢复提供依据。 - 根据日志排查,查找是否有异常操作记录或其他相关线索。 4. 数据恢复实战 (1)元数据恢复 对于元数据损坏,通常需要从备份中恢复,或重新执行DDL语句以重建表结构和分区信息。 sql -- 重新创建分区(假设已知分区详情) ALTER TABLE my_table ADD PARTITION (dt='2022-01-01') LOCATION '/path/to/backup/data'; (2)HDFS数据恢复 对于HDFS层的数据损坏,可利用Hadoop自带的hdfs fsck命令检测并修复损坏的文件块。 bash hdfs fsck /path/to/hive/table -blocks -locations -files -delete 此外,如果存在完整的数据备份,也可直接替换损坏的数据文件。 (3)并发控制优化 对于因并发写入引发的数据损坏,应在设计阶段就充分考虑并发控制策略,例如使用Hive的Transactional Tables(ACID特性),确保数据的一致性和完整性。 sql -- 开启Hive ACID支持 SET hive.support.concurrency=true; SET hive.txn.manager=org.apache.hadoop.hive.ql.lockmgr.DbTxnManager; 5. 结语 面对Hive表数据损坏的挑战,我们需要具备敏锐的问题洞察力和快速的应急响应能力。同时,别忘了在日常运维中做好预防工作,这就像给你的数据湖定期打个“小强针”,比如按时备份数据、设立警戒线进行监控告警、灵活配置并发策略等等,这样一来,咱们的数据湖就能健健康康,稳稳当当地运行啦。说实在的,对任何一个大数据平台来讲,数据安全和完整性可是咱们绝对不能马虎、时刻得捏在手心里的“命根子”啊!
2023-09-09 20:58:28
642
月影清风
Sqoop
...案。 一、问题描述与分析 首先,我们需要明确一个问题,那就是 Sqoop 是什么?简单来说,Sqoop 是一款开源的数据集成工具,它可以将关系型数据库中的数据导入到 Hadoop 中进行存储和处理,也可以将 Hadoop 中的数据导出到关系型数据库中。 然而,在使用 Sqoop 导出数据的过程中,我们经常会遇到各种各样的问题。例如,以下是一些常见的错误: 1. org.apache.sqoop.mapreduce.ExportException: Could not export data from database 2. java.sql.SQLException: ORA-00955: 名称已经存在 3. java.io.IOException: Could not find or load main class com.cloudera.sqoop.lib.SqoopTool 这些错误往往会让初学者感到困惑,不知道如何解决。因此,下面我们将逐一分析这些错误,并给出相应的解决方案。 二、解决方案 (1)org.apache.sqoop.mapreduce.ExportException: Could not export data from database 这个问题通常是因为 sqoop 的数据库连接配置不正确导致的。解决这个问题的办法就是,你得亲自去瞅瞅 sqoop.xml 文件里边关于数据库连接的那些参数设置,保证这些参数都和实际情况对得上号哈。另外,你也可以试试重启 sqoop 服务这个法子,同时把临时文件夹清理一下。这样一来,就能确保 sqoop 在运行时稳稳当当,不闹脾气出状况啦。 (2)java.sql.SQLException: ORA-00955: 名称已经存在 这个问题是因为你在创建表的时候,名称已经被其他表使用了。解决方法是在创建表的时候,给表起一个新的名字,避免与其他表重名。 (3)java.io.IOException: Could not find or load main class com.cloudera.sqoop.lib.SqoopTool 这个问题是因为你的 Sqoop 版本过低,或者没有正确安装。解决方法是更新你的 Sqoop 到最新版本,或者重新安装 Sqoop。 三、实例演示 为了让大家更好地理解和掌握以上的方法,下面我将通过具体的实例来演示如何使用 Sqoop 导出数据。 首先,假设我们要从 Oracle 数据库中导出一个名为 "orders" 的表。首先,我们需要在 Sqoop.xml 文件中添加以下内容: xml connect.url jdbc:oracle:thin:@localhost:1521:ORCL connect.username scott connect.password tiger export.query select from orders 然后,我们可以使用以下命令来执行 Sqoop 导出操作: bash sqoop export --connect jdbc:oracle:thin:@localhost:1521:ORCL --username scott --password tiger --table orders --target-dir /tmp/orders 这个命令将会把 "orders" 表中的所有数据导出到 "/tmp/orders" 目录下。 四、总结 通过以上的讲解和实例演示,我相信大家已经对如何使用 Sqoop 导出数据有了更深的理解。同时呢,我真心希望大家都能在实际操作中摸爬滚打,不断去尝试、去探索、去学习,让自己的技术水平像火箭一样嗖嗖地往上窜。 最后,我要说的是,虽然在使用 Sqoop 的过程中可能会遇到各种各样的问题,但只要我们有足够的耐心和毅力,就一定能够找到解决问题的办法。所以,无论何时何地,我们都应该保持一颗积极向上的心态,勇往直前! 好了,今天的分享就到这里,感谢大家的阅读和支持!希望我的分享能对大家有所帮助,也希望大家在以后的工作和学习中取得更大的进步!
2023-05-30 23:50:33
120
幽谷听泉-t
Impala
...ala进行大规模日志分析:实战与探索 1. 引言 在大数据领域,实时、高效的数据分析能力对于企业决策和业务优化至关重要。Apache Impala,这可是个不得了的开源神器,它是一款超给力的大规模并行处理SQL查询引擎,专门为Hadoop和Hive这两大数据平台量身定制。为啥说它不得了呢?因为它有着高性能、低延迟的超强特性,在处理海量数据的时候,那速度简直就像一阵风,独树一帜。尤其在处理那些海量日志分析的任务上,更是游刃有余,表现得尤为出色。这篇文会手牵手带你畅游Impala的大千世界,咱不光说理论,更会实操演示,带着你一步步见识怎么用Impala这把利器,对海量日志进行深度剖析。 2. Impala简介 Impala以其对HDFS和HBase等大数据存储系统的原生支持,以及对SQL-92标准的高度兼容性,使得用户可以直接在海量数据上执行实时交互式SQL查询。跟MapReduce和Hive这些老哥不太一样,Impala这小子更机灵。它不玩儿那一套先将SQL查询变魔术般地转换成一堆Map和Reduce任务的把戏,而是直接就在数据所在的节点上并行处理查询,这一招可是大大加快了我们分析数据的速度,效率杠杠滴! 3. Impala在日志分析中的应用 3.1 日志数据加载与处理 首先,我们需要将日志数据导入到Impala可以访问的数据存储系统,例如HDFS或Hive表。以下是一个简单的Hive DDL创建日志表的例子: sql CREATE TABLE IF NOT EXISTS logs ( log_id BIGINT, timestamp TIMESTAMP, user_id STRING, event_type STRING, event_data STRING ) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS TEXTFILE; 然后,通过Hive或Hadoop工具将日志文件加载至该表: bash hive -e "LOAD DATA INPATH '/path/to/logs' INTO TABLE logs;" 3.2 Impala SQL查询实例 有了结构化的日志数据后,我们便可以在Impala中执行复杂的SQL查询来进行深入分析。例如,我们可以找出过去一周内活跃用户的数量: sql SELECT COUNT(DISTINCT user_id) FROM logs WHERE timestamp >= UNIX_TIMESTAMP(CURRENT_DATE) - 7246060; 或者,我们可以统计各类事件发生的频率: sql SELECT event_type, COUNT() as event_count FROM logs GROUP BY event_type ORDER BY event_count DESC; 这些查询均能在Impala中以极快的速度得到结果,满足了对大规模日志实时分析的需求。 3.3 性能优化探讨 在使用Impala进行日志分析时,性能优化同样重要。比如,对常量字段创建分区表,可以显著提高查询速度: sql CREATE TABLE logs_partitioned ( -- 同样的列定义... ) PARTITIONED BY (year INT, month INT, day INT); 随后按照日期对原始表进行分区数据迁移: sql INSERT OVERWRITE TABLE logs_partitioned PARTITION (year, month, day) SELECT log_id, timestamp, user_id, event_type, event_data, YEAR(timestamp), MONTH(timestamp), DAY(timestamp) FROM logs; 这样,在进行时间范围相关的查询时,Impala只需扫描相应分区的数据,大大提高了查询效率。 4. 结语 总之,Impala凭借其出色的性能和易用性,在大规模日志分析领域展现出了强大的实力。它让我们能够轻松应对PB级别的数据,实现实时、高效的查询分析。当然啦,每个项目都有它独特的小脾气和难关,但只要巧妙地运用Impala的各种神通广大功能,并根据实际情况灵活机动地调整作战方案,保证能稳稳驾驭那滔滔不绝的大规模日志分析大潮。这样一来,企业就能像看自家后院一样清晰洞察业务动态,优化决策也有了如虎添翼的强大力量。在这个过程中,我们就像永不停歇的探险家,不断开动脑筋思考问题,动手实践去尝试,勇敢探索未知领域。这股劲头,就像是咱们在技术道路上前进的永动机,推动着我们持续进步,一步一个脚印地向前走。
2023-07-04 23:40:26
520
月下独酌
Impala
...P(大规模并行处理)SQL查询引擎,因其对HDFS和HBase的支持以及高效的交互式查询能力而广受青睐。然而,在面对大数据量的处理场景时,Impala的表现并不总是尽如人意。在这篇文章里,我们要好好掰扯一下Impala在对付海量数据时可能遇到的那些头疼问题。咱不仅会通过实际的代码实例,抽丝剥茧地找出问题背后的秘密,还会带着咱们作为探索者的人性化视角和情感化的思考过程,一起走进这场大数据的冒险之旅。 2. Impala的基本原理与优势 首先,让我们回顾一下Impala的设计理念。你知道Impala吗?这家伙可厉害了,它采用了超级酷炫的分布式架构设计,可以直接从HDFS或者HBase这些大数据仓库里拽出数据来用,完全不需要像传统那样繁琐地进行ETL数据清洗和转化过程。这样一来,你就能享受到飞一般的速度和超低的查询延迟,轻轻松松实现SQL查询啦!这全靠它那个聪明绝顶的查询优化器和咱们亲手用C++编写的执行引擎,让你能够瞬间对海量数据进行各种复杂的分析操作,就像在现实生活中实时互动一样流畅。 sql -- 示例:使用Impala查询HDFS上的表数据 USE my_database; SELECT FROM large_table WHERE column_a = 'value'; 3. Impala在大数据量下的性能瓶颈 然而,尽管Impala具有诸多优点,但在处理超大数据集时,它却可能面临以下挑战: - 内存资源限制:Impala在处理大量数据时严重依赖内存。当Impala Daemon的内存不够用,无法承载更多的工作负载时,就可能会引发频繁的磁盘数据交换(I/O操作),这样一来,查询速度可就要大打折扣啦,明显慢下来不少。例如,如果一个大型JOIN操作无法完全装入内存,就可能引发此类问题。 sql -- 示例:假设两个大表join操作超出内存限制 SELECT a., b. FROM large_table_a AS a JOIN large_table_b AS b ON a.key = b.key; - 分区策略与数据分布:Impala的性能也受到表分区策略的影响。假如数据分布得不够均匀,或者咱们分区的方法没整对,就很可能让部分节点“压力山大”,这样一来,整体查询速度也跟着“掉链子”啦。 - 并发查询管理:在高并发查询环境下,Impala的资源调度机制也可能成为制约因素。特别是在处理海量数据的时候,大量的同时请求可能会把集群资源挤得够呛,这样一来,查询响应的速度就难免会受到拖累了。 4. 针对性优化措施与思考 面对以上挑战,我们可以采取如下策略来改善Impala处理大数据的能力: - 合理配置硬件资源:根据实际业务需求,为Impala集群增加更多的内存资源,确保其能够有效应对大数据量的查询任务。 - 优化分区策略:对于大数据表,采用合适的分区策略(如范围分区、哈希分区等),保证数据在集群中的均衡分布,减少热点问题。 - 调整并发控制参数:根据集群规模和业务特性,合理设置Impala的并发查询参数(如impalad.memory.limit、query.max-runtime等),以平衡系统资源分配。 - 数据预处理与缓存:对于经常访问的热数据,可以考虑进行适当的预处理和缓存,减轻Impala的在线处理压力。 综上所述,虽然Impala在处理大数据量时存在一定的局限性,但通过深入了解其内在工作机制,结合实际业务需求进行有针对性的优化,我们完全可以将其打造成高效的数据查询利器。在这个过程中,我们实实在在地感受到了人类智慧在挑战技术极限时的那股冲劲儿,同时,也亲眼目睹了科技与挑战之间一场永不停歇、像打乒乓球一样的精彩博弈。 结语 技术的发展总是在不断解决问题的过程中前行,Impala在大数据处理领域的挑战同样推动着我们在实践中去挖掘其潜力,寻求更优解。今后,随着软硬件技术的不断升级和突破,我们完全可以满怀信心地期待,Impala会在处理大数据这个大难题上更上一层楼,为大家带来更加惊艳、无可挑剔的服务体验。
2023-11-16 09:10:53
783
雪落无痕
Spark
Spark应用在执行分布式缓存操作时出现问题 一、问题初现 分布式缓存的初衷与现状 嘿,朋友们!今天我们来聊聊Spark在分布式缓存操作中遇到的一些坑。说到Spark,它可是大数据处理界的明星选手,性能强大,功能丰富。但即使是这么优秀的框架,有时候也会让我们头疼不已。 分布式缓存是Spark的一个重要特性,它的核心目标是减少重复计算,提升任务执行效率。简单来说,就是把一些频繁使用的数据放到内存里,供多个任务共享。听起来是不是很美好?但实际上,我在实际开发过程中遇到了不少麻烦。 比如有一次,我正在做一个数据分析项目,需要多次对同一份数据进行操作。我寻思着,这不就是常规操作嘛,直接用Spark的分布式缓存功能得了,这样岂不是能省掉好多重复加载的麻烦?嘿,事情是这样的——我辛辛苦苦搞完了任务,满怀期待地提交上去,结果发现这运行速度简直让人无语,不仅没达到预期的飞快效果,反而比啥缓存都不用的时候还慢!当时我就蒙圈了,心里直嘀咕:“卧槽,这是什么神仙操作?”没办法,只能硬着头皮一点点去查问题,最后才慢慢搞清楚了分布式缓存里到底藏着啥猫腻。 二、深入分析 为什么缓存反而变慢? 经过一番折腾,我发现问题出在以下几个方面: 2.1 数据量太大导致内存不足 首先,大家要明白一点,Spark的分布式缓存本质上是将数据存储在集群节点的内存中。要是数据量太大,超出了单个节点能装下的内存容量,那就会把多余的数据写到磁盘上,这个过程叫“磁盘溢写”。但这样一来,任务的速度就会被拖慢,变得特别磨叽。 举个例子吧,假设你有一份1GB大小的数据集,而你的集群节点只有512MB的可用内存。你要是想把这份数据缓存起来,Spark会自己挑个序列化的方式给数据“打包”,顺便还能压一压体积。不过呢,就算是这样,还是有可能会出现溢写这种烦人的情况,挡都挡不住。唉,真是没想到啊,本来想靠着缓存省事儿提速呢,结果这操作反倒因为磁盘老是读写(频繁I/O)变得更卡了,简直跟开反向加速器似的! 解决办法也很简单——要么增加节点的内存配置,要么减少需要缓存的数据规模。当然,这需要根据实际情况权衡利弊。 2.2 序列化方式的选择不当 另一个容易被忽视的问题是序列化方式的选择。Spark提供了多种序列化机制,包括JavaSerializer、KryoSerializer等。不同的序列化方式会影响数据的大小以及读取效率。 我曾经试过直接使用默认的JavaSerializer,结果发现性能非常差。后来改用了KryoSerializer之后,才明显感觉到速度有所提升。话说回来啊,用 KryoSerializer 的时候可别忘了先给所有要序列化的类都注册好,不然程序很可能就“翻车”报错啦! java import org.apache.spark.serializer.KryoRegistrator; import com.esotericsoftware.kryo.Kryo; public class MyRegistrator implements KryoRegistrator { @Override public void registerClasses(Kryo kryo) { kryo.register(MyClass.class); // 注册其他需要序列化的类... } } 然后在SparkConf中设置: java SparkConf conf = new SparkConf(); conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer"); conf.set("spark.kryo.registrator", "MyRegistrator"); 2.3 缓存时机的选择失误 还有一个关键点在于缓存的时机。有些人一启动任务就赶紧给数据加上.cache(),觉得这样数据就能一直乖乖待在内存里,不用再费劲去读了。但实际上,这种做法并不总是最优解。 比如,在某些情况下,数据可能只会在特定阶段被频繁访问,而在其他阶段则很少用到。要是你提前把这部分数据缓存了,不光白白占用了宝贵的内存空间,搞不好后面真要用缓存的地方还找不到足够的空位呢! 因此,合理规划缓存策略非常重要。比如说,在某个任务快开始了,你再随手调用一下.cache()这个方法,这样就能保证数据乖乖地待在内存里,别到时候卡壳啦! 三、实践案例 如何正确使用分布式缓存? 接下来,我想分享几个具体的案例,帮助大家更好地理解和运用分布式缓存。 案例1:简单的词频统计 假设我们有一个文本文件,里面包含了大量的英文单词。我们的目标是统计每个单词出现的次数。为了提高效率,我们可以先将文件内容缓存起来,然后再进行处理。 scala val textFile = sc.textFile("hdfs://path/to/input.txt") textFile.cache() val wordCounts = textFile.flatMap(_.split(" ")) .map(word => (word, 1)) .reduceByKey(_ + _) wordCounts.collect().foreach(println) 在这个例子中,.cache()方法确保了textFile RDD的内容只被加载一次,并且可以被后续的操作共享。其实嘛,要是没用缓存的话,每次你调用flatMap或者map的时候,都得重新去原始数据里翻一遍,这就跟每次出门都得把家里所有东西再检查一遍似的,纯属给自己找麻烦啊! 案例2:多步骤处理流程 有时候,一个任务可能会涉及到多个阶段的处理,比如过滤、映射、聚合等等。在这种情况下,合理安排缓存的位置尤为重要。 python from pyspark.sql import SparkSession spark = SparkSession.builder.appName("WordCount").getOrCreate() df = spark.read.text("hdfs://path/to/input.txt") 第一步:将文本拆分为单词 words = df.selectExpr("split(value, ' ') as words").select("words.") 第二步:缓存中间结果 words.cache() 第三步:统计每个单词的出现次数 word_counts = words.groupBy("value").count() word_counts.show() 这里,我们在第一步处理完之后立即调用了.cache()方法,目的是为了保留中间结果,方便后续步骤复用。要是不这么干啊,那每走一步都得把上一步的算一遍,想想就费劲,效率肯定低得让人抓狂。 四、总结与展望 通过今天的讨论,相信大家对Spark的分布式缓存有了更深刻的认识。虽然它能带来显著的性能提升,但也并非万能药。其实啊,要想把它用得溜、用得爽,就得先搞懂它是怎么工作的,再根据具体的情况去灵活调整。不然的话,它的那些本事可就都浪费啦! 未来,随着硬件条件的不断改善以及算法优化的持续推进,相信Spark会在更多领域展现出更加卓越的表现。嘿,咱们做开发的嘛,就得有颗永远好奇的心!就跟追剧似的,新技术一出就得赶紧瞅两眼,说不定哪天就用上了呢。别怕麻烦,多学点东西总没错,说不定哪天就能整出个大招儿来! 最后,感谢大家耐心阅读这篇文章。如果你有任何疑问或者想法,欢迎随时交流!让我们一起努力,共同进步吧!
2025-05-02 15:46:14
80
素颜如水
MySQL
MySQL开启文件介绍 MySQL支持对文本文件的读取和写入功能,这使得整个网站的运作更加自动化和便捷化。本文将介绍如何运用MySQL开启文件。 开启文件之前 在实际操作之前,我们需要检验是否有许可开启文件。此外,还需要明确我们要开启的文件的地址以及种类。在MySQL中,运用LOAD DATA INFILE语句可以轻松地开启文件并将其输入到表格中。 开启文件的通常指令 开启文件的通常指令有两个:LOAD DATA INFILE和SELECT INTO OUTFILE。其中,LOAD DATA INFILE用于将文件输入MySQL数据库中,而SELECT INTO OUTFILE则用于将查询结果输出到本地文件中。比如: LOAD DATA INFILE '/tmp/myfile.txt' INTO TABLE mytable;SELECT INTO OUTFILE '/tmp/myfile.txt' FROM mytable WHERE field = 'value'; 开启文件的注意事项 在运用LOAD DATA INFILE指令时,需要注意以下几点: 地址需写绝对地址。 如果文件中包含引号,则需要运用ESCAPED BY和OPTIONALLY ENCLOSED BY参数来指定。 如果文件中包含分隔符,则需要运用FIELDS TERMINATED BY和LINES TERMINATED BY参数来指定。 运用LOAD DATA INFILE指令开启文件需要有FILE许可,如果没有该许可,则无法操作。 结论 通过上述介绍,我们可以看出,在MySQL中开启文件并将其输入到数据库中非常简单。只需要运用LOAD DATA INFILE指令即可轻易实现。值得一提的是,在执行输入操作之前,我们需要认真检验文件地址和许可等方面的设置,防止出现任何问题。
2023-01-09 12:22:04
139
逻辑鬼才
MySQL
MySQL , MySQL是一种开源的关系型数据库管理系统,广泛应用于Web应用开发中,尤其在LAMP(Linux、Apache、MySQL、PHP/Perl/Python)架构中扮演核心角色。用户可以使用SQL语言对MySQL进行数据查询、更新、管理和控制。在本文中,MySQL是被检测和安装的目标程序,用于满足用户在工作中处理和存储数据的需求。 sudo apt-get , 这是基于Debian和Ubuntu等Linux操作系统的包管理器命令,用于自动从软件仓库获取、安装、升级或卸载软件包及其依赖项。在本文语境下,当需要在Ubuntu系统上安装MySQL时,用户会运行\ sudo apt-get update\ 来更新软件源列表信息,接着执行\ sudo apt-get install mysql-server\ 命令以下载并安装MySQL服务器。 Windows命令提示符/终端 , Windows命令提示符(对于Windows操作系统)和终端(对于macOS和Linux操作系统)是操作系统提供的命令行界面工具,允许用户通过输入文本指令与系统交互,执行各种任务,包括文件管理、系统配置以及软件安装与管理等。在本文中,用户需在命令提示符或终端中输入特定命令来检测MySQL是否已安装,以及在必要时安装MySQL。
2023-02-06 16:45:27
103
程序媛
MySQL
...了如何启动和停止MySQL服务后,我们还可以进一步探究数据库管理的更多实用技巧与最新动态。近日,MySQL 8.0版本推出了多项重大更新,包括增强安全性、性能优化以及对JSON数据类型支持的改进。对于企业级用户而言,掌握新版本特性并进行升级迁移,能够有效提升数据处理效率和安全性。 与此同时,随着云计算和容器化技术的发展,越来越多的企业选择将MySQL部署在如Docker或云服务器上。例如,AWS RDS(Amazon Relational Database Service)提供了一键式部署MySQL服务的功能,并集成了自动备份、故障切换等高级特性,大大简化了数据库运维工作。 另外,针对数据库优化及安全防护方面,定期审计MySQL日志、合理设置索引策略、采用SSL加密通信协议以保护数据传输安全等也是现代数据库管理员必备的知识点。近期,业界还提出了通过机器学习算法预测数据库性能瓶颈,提前进行资源调度的新方法,这一创新研究为MySQL数据库的高效稳定运行提供了新的可能。 综上所述,在实际操作MySQL服务的基础上,关注其最新版本特性、云端部署趋势以及数据库优化和安全领域的前沿动态,将有助于我们在日常工作中更高效地利用MySQL这一强大而灵活的关系型数据库管理系统。
2023-10-18 17:15:18
48
电脑达人
JQuery
...数组转换时拥有了更多选择。 近期一篇来自Mozilla Developer Network(MDN)的技术文章《利用现代JavaScript特性高效处理数组》指出,Array.from()方法不仅能够将类数组对象转换为真正的数组,还可以用于实现类似jQuery.toArray()的功能。此外,该文还探讨了如何结合Map、Set、flatMap等新API提升数组操作的效率和代码可读性。 与此同时,React和Vue等主流前端框架在处理数据更新与渲染时,对原生数组操作有着深度优化。例如,在Vue3中,通过响应式系统对数组变化进行追踪,开发者可以更自然地操作数组,而无需显式调用特定的转换方法。 另外,对于那些依然广泛使用jQuery库但寻求性能优化方案的项目,有专家建议适时评估并逐步替换部分jQuery功能,转而采用原生JavaScript或者轻量级的替代品,以减少冗余代码并提高页面加载速度。这方面的案例分析和实战教程可以在许多技术博客和社区论坛上找到,如“重构:从jQuery到原生JavaScript的最佳实践”一文,提供了详细的步骤指导和性能对比测试。 总之,在当今快速发展的Web开发领域中,理解和掌握不同场景下最优的数组操作方式至关重要,无论是原生JavaScript还是第三方库提供的工具,都需要紧跟技术潮流,以便于构建高性能且易于维护的Web应用。
2023-03-19 10:40:17
88
代码侠
转载文章
...R函数,能够更精确地执行批量数据处理任务,同时有效避免了因数据类型不匹配导致的错误。 此外,对于数据库开发者而言,深入理解SQL查询中的类型转换规则是至关重要的。Oracle官方社区近期发布的一篇技术解读文章,以丰富的实例阐述了NVL、TO_NUMBER、REPLACE等函数与CEIL、FLOOR函数联合使用时的最佳实践。作者强调,在进行复杂数据预处理时,务必注意隐式类型转换可能导致的潜在风险,如ORA-01722(无效数字)错误,提倡通过明确的数据类型转换操作确保函数调用的正确性。 综上所述,随着Oracle数据库技术的不断演进,用户在实际业务场景中灵活运用CEIL、FLOOR等数值函数的同时,也需紧跟官方更新动态和技术指南,以便更好地规避数据处理过程中可能遇到的问题,提升系统的稳定性和效率。
2023-11-18 18:54:51
343
转载
MySQL
MySQL , MySQL是一个开源的关系型数据库管理系统,由Oracle公司开发并维护。在本文的语境中,MySQL是开发者在本地计算机上可能需要安装的核心软件,用于存储、管理和处理结构化数据,支持多种SQL语句进行数据操作,并可通过客户端与服务器架构与其他应用程序交互。 MySQL客户端 , MySQL客户端是指用来连接到MySQL服务器并执行查询、管理数据库等任务的软件工具。在文章中提到的“mysql --version”命令就是在检查用户电脑上是否安装了可以与MySQL服务器通信的客户端程序,以便进行数据库的相关操作和管理。 MySQL服务器 , MySQL服务器是MySQL数据库系统中的核心部分,负责接收来自客户端的请求,执行SQL语句,返回结果,并对存储在其中的数据进行管理和维护。在文章情境下,“mysql -u root -p -h localhost”命令是用来尝试连接到本地MySQL服务器,如果该命令无法执行,意味着用户的电脑尚未安装或启动MySQL服务器服务,不具备处理数据库请求的能力。 Python扩展包 , Python扩展包是为Python编程语言设计的附加模块,提供额外的功能以丰富Python应用生态。在本文中,\ pymysql\ 就是一种MySQL的Python扩展包,它允许Python开发者通过编写Python代码来连接MySQL数据库,执行SQL查询、插入、更新及删除数据等操作。通过运行\ import pymysql;print(pymysql.__version__)\ 指令,可以检测Python环境中是否已成功安装并导入了这个特定的MySQL连接库。
2023-04-24 15:12:40
49
电脑达人
MySQL
...发和运维工作中,MySQL数据库的管理远不止于打开文件夹与基础服务初始化。随着技术的发展和安全需求的提升,对MySQL进行高效、安全的配置与优化显得尤为重要。近期,MySQL 8.0版本推出了一系列新特性,如窗口函数、原子DDL操作以及改进的安全特性(如 caching_sha2_password 密码插件),这些都极大地提升了数据库性能和安全性。 对于管理员来说,掌握如何通过命令行或图形界面工具如MySQL Workbench进行用户权限管理、数据备份与恢复、性能调优等操作是必备技能。例如,可以利用mysqlpump工具实现快速且灵活的数据备份,并结合gtid模式确保备份与恢复的一致性。 此外,在云环境下,越来越多的企业选择使用如Amazon RDS等云托管数据库服务,其中MySQL实例的管理也包含了自动化扩展、高可用架构设计等高级主题。近日,AWS宣布了对MySQL 8.0.27版本的支持,进一步增强了其云上MySQL数据库服务的功能性和稳定性。 深入理解MySQL日志系统(错误日志、慢查询日志和二进制日志)的工作原理,能够帮助开发者和DBA定位问题、优化SQL语句以及实现基于时间点的恢复等功能。同时,数据库审计与合规性要求促使我们关注并启用MySQL的通用日志或审计插件,以满足法规遵从性需求。 综上所述,MySQL数据库管理是一个既包含基础操作又涉及深度优化及安全管理的综合性领域,持续跟进MySQL最新动态和技术演进,将有助于提升整体数据库管理水平和应用系统的健壮性。
2023-11-16 22:43:19
84
键盘勇士
MySQL
...何通过命令行查找MySQL实例的安装位置后,我们还可以进一步探讨MySQL数据库的管理与优化。近日,MySQL 8.0版本推出了一系列新特性,如窗口函数的增强、JSON功能的升级以及性能改进等,这为数据库管理员提供了更高效便捷的操作手段。例如,基于新的窗口函数,可以更轻松地进行复杂的数据分析和统计计算;而JSON字段类型的增强则顺应了现代应用中大量非结构化数据处理的需求。 同时,对于MySQL实例的运维管理,安全性和稳定性至关重要。定期检查并更新MySQL服务器的配置文件、确保数据目录的安全权限设置,并合理利用缓存机制以提升查询效率,是每一位数据库管理人员应熟练掌握的基本功。此外,针对线上大规模并发访问场景,深入理解并运用MySQL的InnoDB存储引擎的事务处理机制、锁机制及索引策略,有助于提升系统整体性能和用户体验。 另外,在云服务日益普及的今天,各大云服务商(如AWS RDS、阿里云RDS等)提供了托管型MySQL服务,用户无需关心底层MySQL实例的具体安装位置,即可享受到便捷的数据库创建、备份恢复及监控告警等功能。但这也要求DBA们熟悉云环境下的MySQL管理工具和服务接口,以便更好地适应云计算时代的新挑战。 总之,无论是对MySQL实例进行精细的本地部署维护,还是依托于云平台实现高效便捷的数据库管理,都需要不断跟进MySQL技术的发展动态,深入理解其核心原理,并结合实际业务场景灵活运用各种优化策略,从而确保数据库系统的稳定、安全、高效运行。
2023-04-12 10:49:01
62
键盘勇士
MySQL
何为MySQL? MySQL是一种关系型DBMS,通常用来构建网络应用。与其他关系型DBMS不同,MySQL在在使用过程中可以选择开源免费或者商业授权版本。 何为插入记录命令? 插入记录命令是用来将数据插入MySQL数据库表格内的命令。使用这个命令,可以在MySQL数据库表格内创建一个新增行,这个记录可以包含一行或者多行数据。 MySQL中插入记录命令的格式 以下是MySQL中插入记录命令的基础格式: INSERT 进入 table_name (column1, column2, column3,...columnN)VALUES (value1, value2, value3,...valueN); 其中,table_name是要插入数据的数据库表的名称,column1, column2,...是要插入的字段名,value1, value2,...是要插入到相应数据字段中的数据。 MySQL中插入记录命令的例子 以下是一个MySQL中插入记录命令的示例,将新的客户记录插入到名为“customers”的数据库表格内: INSERT 进入 customers (customer_name, contact_name, country)VALUES ('John Doe', 'Jane Smith', 'USA'); 使用这个语句,可以将客户姓名为“John Doe”,联系人为“Jane Smith”,国家为“USA”的数据插入到名为“customers”的数据表格内。 总结 MySQL中插入记录命令是一个非常有用的工具,在构建网络应用时经常需要使用到。熟练掌握它的格式和使用方法,可以帮助构建人员更高效地管理和使用MySQL数据库。
2023-09-26 10:25:10
67
编程狂人
MySQL
MySQL是一种普遍的关联型DBMS,它被广泛使用在工业实时数据管理中。 MySQL的优势在于它的稳定性和高效能。使用者可以使用SQL语言进行表的建立、更改、移除、检索等操作,而MySQL会自动地进行改进和运行。 CREATE TABLE example ( id int(11) NOT NULL AUTO_INCREMENT, name varchar(255) NOT NULL, age int(11) NOT NULL, gender varchar(16) NOT NULL, PRIMARY KEY (id) ); MySQL还支持多种不同的数据存储引擎,包括InnoDB、MyISAM、Memory等。每种存储引擎有其各自的优缺点,使用者可以根据需要进行选择和配置。 SHOW ENGINES; 在工业实时数据管理中,MySQL的主要使用场景包括数据采集、生产监控、质量控制、故障诊断等。使用者可以通过对MySQL的数据表进行操作,快速地获取到所需的数据并进行实时分析和处理。 总结来说,MySQL是一种可靠、高效的工业实时数据库,可以为使用者提供完善的数据管理和分析功能。
2024-02-07 16:13:02
55
逻辑鬼才
MySQL
...就来学习如何使用MySQL轻松完成这项任务。 2. MySQL的基本语法 首先,我们需要知道的是,MySQL的SELECT语句是我们获取数据的主要工具。它的基本语法如下: sql SELECT column_name(s) FROM table_name; 在这个语句中,column_name是我们想要获取的列名,table_name是我们的表名。例如,我们有一个名为"users"的表,其中有一列名为"username",我们可以使用以下SQL语句获取所有用户名: sql SELECT username FROM users; 3. 计算一列值的个数 那么,如果我们要计算"username"列的值个数呢?这时候,就需要借助到COUNT函数了。 COUNT函数的作用是返回某个集合中的元素数量。其基本语法如下: sql SELECT COUNT(column_name) FROM table_name; 我们可以将上面的例子稍微修改一下,变成这样: sql SELECT COUNT(username) FROM users; 运行这段代码,你就可以得到"username"列的所有值的个数了。 4. 处理NULL值 但是,在实际应用中,我们可能会遇到一个问题,那就是有些值可能为NULL。在这种情况下,如果我们直接拿COUNT函数来用的话,它会把那些NULL值当作不存在一样,给忽略掉。如果你想把这些NULL值也算上的话,我们就得使出COUNT()这个函数法宝了。 sql SELECT COUNT() FROM users; 这段代码将会统计出"users"表中的所有行数,包括那些值为NULL的行。 5. 小结 通过以上内容的学习,相信你已经掌握了如何使用MySQL计算一列值的个数。这是一个非常基础的操作,但是在很多场景下都非常有用。记住,熟练掌握SQL的基本操作,是我们进行数据库管理的基础。希望这篇文章能帮助你更好地理解和运用MySQL。如果你有任何问题或者建议,欢迎随时联系我们。我们会继续努力,提供更多有价值的内容。谢谢大家!
2023-03-09 20:28:54
148
诗和远方_t
Python
...应用在网页开发、数据分析、AI等领域。它有非常功能强大的组件库和组件,可以让程序员迅速地实现功能。但是,在调用Python时,我们需要知道该如何准确地放置和调用Python组件。 在Python中,组件是一种文件,包括了Python代码和其他资源。组件通常以.py为后缀,可以包括类、函数、属性等。Python组件放置目录是指这些组件放置的位置。 Python组件放置目录可以划分为全局组件放置目录和局部组件放置目录。 全局组件放置目录是指Python系统安装后自带的组件的放置位置。这些组件通常存储在Python解释器的site-packages目录下。在Windows系统中,这个目录位于Python的安装目录下的Lib\site-packages文件夹里。在Linux系统中,这个目录位于Python的安装目录下的/usr/local/lib/pythonX.X/site-packages文件夹里。其中,X.X表示Python的版本号。 局部组件放置目录是指我们自己创建的Python组件的放置位置。我们通常会根据需要创建一些Python组件来满足特定的需求。这些组件可以存储在任何我们希望的位置,只要确保Python程序能够找到它们即可。我们可以将这些组件放置在某个目录下,然后在Python程序中调用sys.path.append()方法将这个目录添加到Python路径中就可以了。 import sys sys.path.append('/path/to/module_directory') 在这个例子中,我们向Python路径中添加了一个名为module_directory的目录。这个目录可以放置我们创建的Python组件。 总之,Python组件放置目录是Python程序员必须了解的一些知识。准确地放置和组织Python组件可以帮助我们更好地管理Python程序,提高代码重用率,降低程序开发和维护成本。
2023-01-16 18:22:18
157
键盘勇士
转载文章
...理和特定领域如数据库索引构建中具有广泛的应用前景。 近期,Google在优化其大数据处理框架Apache Beam的排序组件时,就考虑采用了计数排序等非比较型排序算法以提升系统性能。研究人员发现,通过针对性地分析数据分布特征,并适时引入计数排序算法,可以在不影响稳定性的同时显著减少排序所需的时间成本。 然而,对于浮点数或数据范围极大的情况,计数排序则可能因为需要创建极大空间的计数数组而导致空间效率低下。因此,在实际应用中,往往需要结合其他高效排序算法(如快速排序、归并排序等)进行混合使用,根据实际情况灵活选择最优策略。 此外,深入探究排序算法背后的理论基础也十分有益,例如Knuth在其经典著作《计算机程序设计艺术》中对各种排序算法进行了详尽而深入的解读,其中包括计数排序的设计原理及其在实际问题中的应用场景分析。学习这些理论知识将有助于我们更好地理解并运用计数排序以及其他各类排序算法,从而在面对不同的工程问题时能够做出更为精准有效的决策。
2023-10-02 13:00:57
130
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
touch file.txt
- 创建新文件。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"