前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[微服务架构中dataId访问异常解决 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 金融经济数据方面应用Python非常广泛,也可以算是用Python进行数据分析的一个实际应用。 数据规整化方面的应用 时间序列与截面对齐 在处理金融数据时,最费神的一个问题就是所谓的“数据对齐” (data alignment)问题。两个相关的时间序列的索引可能没有很好的对齐,或两个DataFrame对象可能含有不匹配的列或行。 Pandas可以在算术运算中自动对齐数据。在实际工作中,这不仅能为你带来极大自由度,而且还能提升工作效率。如下,看这个两个DataFrame分别含有股票价格和成交量的时间序列: 假设你想要用所有有效数据计算一个成交量加权平均价格(为了简单起见,假设成交量数据是价格数据的子集)。由于pandas会在算术运算过程中自动将数据对齐,并在sum这样的函数中排除缺失数据,所以我们只需编写下面这条简洁的表达式即可: 由于SPX在volume中找不到,所以你随时可以显式地将其丢弃。如果希望手工进行对齐,可以使用DataFrame的align方法,它返回的是一个元组,含有两个对象的重索引版本: 另一个不可或缺的功能是,通过一组索引可能不同的Series构建一个DataFrame。 跟前面一样,这里也可以显式定义结果的索引(丢弃其余的数据): 时间和“最当前”数据选取 假设你有一个很长的盘中市场数据时间序列,现在希望抽取其中每天特定时间的价格数据。如果数据不规整(观测值没有精确地落在期望的时间点上),该怎么办?在实际工作当中,如果不够小心仔细的话,很容易导致错误的数据规整化。看看下面这个例子: 利用Python的datetime.time对象进行索引即可抽取出这些时间点上的值: 实际上,该操作用到了实例方法at_time(各时间序列以及类似的DataFrame对象都有): 还有一个between_time方法,它用于选取两个Time对象之间的值: 正如之前提到的那样,可能刚好就没有任何数据落在某个具体的时间上(比如上午10点)。这时,你可能会希望得到上午10点之前最后出现的那个值: 如果将一组Timestamp传入asof方法,就能得到这些时间点处(或其之前最近)的有效值(非NA)。例如,我们构造一个日期范围(每天上午10点),然后将其传入asof: 拼接多个数据源 在金融或经济领域中,还有几个经常出现的合并两个相关数据集的情况: ·在一个特定的时间点上,从一个数据源切换到另一个数据源。 ·用另一个时间序列对当前时间序列中的缺失值“打补丁”。 ·将数据中的符号(国家、资产代码等)替换为实际数据。 第一种情况:其实就是用pandas.concat将两个TimeSeries或DataFrame对象合并到一起: 其他:假设data1缺失了data2中存在的某个时间序列: combine_first可以引入合并点之前的数据,这样也就扩展了‘d’项的历史: DataFrame也有一个类似的方法update,它可以实现就地更新。如果只想填充空洞,则必须传入overwrite=False才行: 上面所讲的这些技术都可实现将数据中的符号替换为实际数据,但有时利用DataFrame的索引机制直接对列进行设置会更简单一些: 收益指数和累计收益 在金融领域中,收益(return)通常指的是某资产价格的百分比变化。一般计算两个时间点之间的累计百分比回报只需计算价格的百分比变化即可:对于其他那些派发股息的股票,要计算你在某只股票上赚了多少钱就比较复杂了。不过,这里所使用的已调整收盘价已经对拆分和股息做出了调整。不管什么样的情况,通常都会先算出一个收益指数,它是一个表示单位投资(比如1美元)收益的时间序列。 从收益指数中可以得出许多假设。例如,人们可以决定是否进行利润再投资。我们可以利用cumprod计算出一个简单的收益指数: 得到收益指数之后,计算指定时期内的累计收益就很简单了: 当然了,就这个简单的例子而言(没有股息也没有其他需要考虑的调整),上面的结果也能通过重采样聚合(这里聚合为时期)从日百分比变化中计算得出: 如果知道了股息的派发日和支付率,就可以将它们计入到每日总收益中,如下所示: 本篇文章为转载内容。原文链接:https://blog.csdn.net/geerniya/article/details/80534324。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-16 19:15:59
324
转载
PostgreSQL
...如说要应对大量的同时访问,还得绞尽脑汁优化查询速度啥的。不过别担心,掌握了基础之后,一切都会变得容易起来。 希望这篇技术分享对你有所帮助,也欢迎你在评论区分享你的想法和经验。让我们一起进步,共同成长! --- 这就是我关于“如何在数据库中实现数据的分页和排序功能?”的全部内容啦!如果你对PostgreSQL或者其他数据库技术有任何疑问或见解,记得留言哦。编程路上,我们一起加油!
2024-10-17 16:29:27
54
晚秋落叶
Kylin
...持,使得在现代大数据架构下运行更加高效。同时,Kylin 4.0增强了与云服务的集成能力,更好地满足了企业混合云和多云环境下的部署需求。 此外,业界也开始关注到Kylin与其他开源项目的深度整合,如将其与Apache Flink、Apache Kafka等流式计算框架结合,实现实时或近实时的大数据分析,以应对瞬息万变的业务场景。更有研究者和开发者们积极探索如何利用Kylin处理更复杂的数据模型,挖掘更多深层次的商业洞察。 值得一提的是,全球众多知名企业,包括金融、电信、电商等多个行业,都在实际业务中广泛应用Apache Kylin,验证了其在海量数据处理上的强大实力。通过一系列用户案例分析,我们可以发现Kylin不仅在提升数据分析效率上表现出色,还在助力企业构建数据驱动文化、推动数字化转型等方面发挥了重要作用。 总之,Apache Kylin凭借其与时俱进的技术迭代与广泛的行业实践,正不断拓展大数据处理的可能性边界,为全球企业和开发者提供了一个坚实可靠的大数据分析平台。未来,随着大数据技术的持续发展,Kylin的故事还将书写出更多精彩的篇章。
2023-03-26 14:19:18
78
晚秋落叶
Hive
...L查询”问题的根源与解决方案后,我们可以进一步关注Hive及其相关技术的最新发展动态和最佳实践。近期,随着大数据分析需求的增长,开源社区对Hive的优化工作从未停止。 一方面,Apache Hive 3.x版本引入了一系列新特性以增强SQL兼容性和查询性能,如对窗口函数、CTE(公共表表达式)等更复杂查询结构的支持更加完善,大大降低了用户因语法不兼容导致的“无法解析SQL查询”问题。此外,Hive LLAP(Live Long and Process)服务的改进显著提升了交互式查询响应速度,对于数据分析师而言,这意味着能够更快地获取到所需的数据洞察。 另一方面,结合最新的云原生技术和容器化部署方案,例如通过Kubernetes对Hive进行集群管理,不仅简化了运维流程,而且可以实现资源的弹性伸缩,从而有效应对大规模数据处理场景下的各类挑战。 同时,为了进一步提升查询效率,业界也在积极探索将Hive与其他大数据处理框架如Spark、Flink等深度整合,通过优化查询引擎、利用列存格式等方式,实现在保证SQL兼容性的同时,大幅提升海量数据处理能力。 综上所述,紧跟Apache Hive的发展步伐,了解并掌握其新特性和最佳实践,是解决“无法解析SQL查询”等问题,并在实际工作中高效利用Hive处理海量数据的关键所在。不断学习和实践,方能在大数据江湖中游刃有余,从容应对各种挑战。
2023-06-17 13:08:12
589
山涧溪流-t
Logstash
...执行复杂的数据清洗、异常检测和预测分析任务,减少人工干预,提升数据分析的精度和速度。 结论 Logstash作为数据管道的核心组件,正逐步适应并引领现代数据管理的趋势。通过增强实时处理能力、优化多源数据整合、加强安全合规保障以及引入自动化与智能化技术,Logstash为企业提供了更高效、更安全、更智能的数据处理解决方案。未来,随着数据科学和人工智能技术的不断发展,Logstash有望在数据管道领域发挥更加重要的作用,助力企业实现数据驱动的创新与增长。 --- 本文深入探讨了Logstash在现代数据管道中的角色与发展趋势,强调了实时处理、数据源整合、安全合规和智能化升级四个关键方向。通过分析当前行业趋势和挑战,展示了Logstash如何通过技术创新和优化,满足企业在大数据时代的需求,为数据驱动的战略决策提供强有力的支持。
2024-09-15 16:15:13
152
笑傲江湖
Apache Atlas
...确保只有授权用户才能访问特定类型的数据。例如: java // 创建一个表示个人身份信息(PII)的标签定义 EntityDefinition piiTagDef = new EntityDefinition(); piiTagDef.setName("PII"); piiTagDef.setDataType(Types.STRING_TYPE); // 添加描述并保存标签定义 AtlasTypeDefStore.createOrUpdateTypeDef(piiTagDef); // 将某个表标记为包含PII Entity entity = atlasClient.getEntityByGuid(tableGuid); entity.addTrait(new Trait("PII", Collections.emptyMap())); atlasClient.updateEntity(entity); 这段代码首先创建了一个名为"PII"的标签定义,然后将此标签应用到指定表实体,表明该表存储了个人身份信息。这样,在后续的数据查询或处理过程中,可以通过标签筛选机制限制非授权用户的访问。 1.2 合规性策略执行 Apache Atlas的另一大优势在于其支持灵活的策略引擎,可根据预设规则自动执行合规性检查。例如,我们可以设置规则以防止未经授权的地理位置访问敏感数据: java // 创建一个策略定义 PolicyDefinition policyDef = new PolicyDefinition(); policyDef.setName("LocationBasedAccessPolicy"); policyDef.setDescription("Restrict access to PII data based on location"); policyDef.setModule("org.apache.atlas.example.policies.LocationPolicy"); // 设置策略条件与动作 Map config = new HashMap<>(); config.put("restrictedLocations", Arrays.asList("CountryA", "CountryB")); policyDef.setConfiguration(config); // 创建并激活策略 AtlasPolicyStore.createPolicy(policyDef); AtlasPolicyStore.activatePolicy(policyDef.getName()); 这个策略会基于用户所在的地理位置限制对带有"PII"标签数据的访问,如果用户来自"CountryA"或"CountryB",则不允许访问此类数据,从而帮助企业在数据操作层面满足特定的地域合规要求。 2. 深入理解和探索 在实际运用中,Apache Atlas不仅提供了一套强大的API供开发者进行深度集成,还提供了丰富的可视化界面以直观展示数据的流动、关联及合规状态。这种能让数据“亮晶晶”、一目了然的数据治理体系,就像给我们的数据世界装上了一扇大窗户,让我们能够更直观、更全面地掌握数据的全貌。它能帮我们在第一时间发现那些潜藏的风险点,仿佛拥有了火眼金睛。这样一来,我们就能随时根据实际情况,灵活调整并不断优化咱们的数据隐私保护措施和合规性策略,让它们始终保持在最佳状态。 总结来说,Apache Atlas凭借其强大的元数据管理能力和灵活的策略执行机制,成为了企业在大数据环境下实施数据隐私和合规性策略的理想选择。虽然机器代码乍一看冷冰冰的,感觉不带一丝情感,但实际上它背后却藏着咱们对企业和组织数据安全、合规性的一份深深的关注和浓浓的人文关怀。在这个处处都靠数据说话的时代,咱们就手拉手,带上Apache Atlas这位好伙伴,一起为数据的价值和尊严保驾护航,朝着更合规、更安全的数据新天地大步迈进吧!
2023-11-04 16:16:43
454
诗和远方
MyBatis
...当,导致大量订单数据异常,引起了广泛关注。这一事件再次提醒我们,即使在高度自动化的系统中,事务管理仍然是确保数据准确性和系统稳定性的关键环节。 另一则案例发生在区块链领域,由于区块链本质上是一个分布式的数据库系统,其交易确认过程需要高度的数据一致性和事务隔离性。近期,一项研究指出,在某些区块链网络中,由于事务隔离级别设置不当,导致交易回滚和数据丢失的现象时有发生。这一发现促使开发者们重新审视和优化现有区块链平台的事务处理机制,以提高系统的可靠性和安全性。 此外,学术界也对事务隔离级别展开了深入探讨。一篇发表在《计算机科学》期刊上的论文,通过对多种隔离级别在实际应用场景中的表现进行对比分析,提出了基于业务需求动态调整事务隔离级别的新思路。该研究指出,通过智能算法和机器学习技术,可以根据实时监控的数据流量和负载情况,自动调整数据库的事务隔离级别,从而在保障数据一致性的前提下,最大限度地提高系统的并发性能。 这些案例和研究不仅验证了文章中提到的观点,还为我们提供了更多关于如何在实际项目中有效管理事务隔离级别的实用建议。在当前技术快速发展的背景下,持续关注这些领域的最新进展,对于我们更好地理解和运用MyBatis等数据库管理工具至关重要。
2024-11-12 16:08:06
33
烟雨江南
Go Iris
...架下的SQL查询错误异常处理:深度解析与实战示例 1. 引言 在开发基于Go语言的Web应用时,Go Iris作为一款高性能且易于使用的Web框架,深受开发者喜爱。然而,在与数据库交互的过程中,SQL查询错误是难以避免的问题之一。本文将围绕“Go Iris中的SQL查询错误异常”这一主题,探讨其产生的原因、影响以及如何有效地进行捕获和处理,同时辅以丰富的代码示例,力求让您对这个问题有更深入的理解。 2. SQL查询错误概述 在使用Go Iris构建应用程序并集成数据库操作时,可能会遇到诸如SQL语法错误、数据不存在或权限问题等导致的SQL查询错误。这类异常情况如果不被好好处理,那可不只是会让程序罢工那么简单,它甚至可能泄露一些核心机密,搞得用户体验大打折扣,严重点还可能会对整个系统的安全构成威胁。 3. Go Iris中处理SQL查询错误的方法 让我们通过一段实际的Go Iris代码示例来观察和理解如何优雅地处理SQL查询错误: go package main import ( "github.com/kataras/iris/v12" "github.com/go-sql-driver/mysql" "fmt" ) func main() { app := iris.New() // 假设我们已经配置好了数据库连接 db, err := sql.Open("mysql", "user:password@tcp(127.0.0.1:3306)/testdb") if err != nil { panic(err.Error()) // 此处处理数据库连接错误 } defer db.Close() // 定义一个HTTP路由处理函数,其中包含SQL查询 app.Get("/users/{id}", func(ctx iris.Context) { id := ctx.Params().Get("id") var user User err = db.QueryRow("SELECT FROM users WHERE id=?", id).Scan(&user.ID, &user.Name, &user.Email) if err != nil { if errors.Is(err, sql.ErrNoRows) { // 处理查询结果为空的情况 ctx.StatusCode(iris.StatusNotFound) ctx.WriteString("User not found.") } else if mysqlErr, ok := err.(mysql.MySQLError); ok { // 对特定的MySQL错误进行判断和处理 ctx.StatusCode(iris.StatusInternalServerError) ctx.WriteString(fmt.Sprintf("MySQL Error: %d - %s", mysqlErr.Number, mysqlErr.Message)) } else { // 其他未知错误,记录日志并返回500状态码 log.Printf("Unexpected error: %v", err) ctx.StatusCode(iris.StatusInternalServerError) ctx.WriteString("Internal Server Error.") } return } // 查询成功,继续处理业务逻辑... // ... }) app.Listen(":8080") } 4. 深入思考与讨论 面对SQL查询错误,我们应该首先确保它被正确捕获并分类处理。就像刚刚提到的例子那样,面对各种不同的错误类型,我们完全能够灵活应对。比如说,可以选择扔出合适的HTTP状态码,让用户一眼就明白是哪里出了岔子;还可以提供一些既友好又贴心的错误提示信息,让人一看就懂;甚至可以细致地记录下每一次错误的详细日志,方便咱们后续顺藤摸瓜,找出问题所在。 在实际项目中,我们不仅要关注错误的处理方式,还要注重设计良好的错误处理策略,例如使用中间件统一处理数据库操作异常,或者在ORM层封装通用的错误处理逻辑等。这些方法不仅能提升代码的可读性和维护性,还能增强系统的稳定性和健壮性。 5. 结语 总之,理解和掌握Go Iris中SQL查询错误的处理方法至关重要。只有当咱们应用程序装上一个聪明的错误处理机制,才能保证在数据库查询出岔子的时候,程序还能稳稳当当地运行。这样一来,咱就能给用户带来更稳定、更靠谱的服务体验啦!在实际编程的过程中,咱们得不断摸爬滚打,积攒经验,像升级打怪一样,一步步完善我们的错误处理招数。这可是我们每一位开发者都该瞄准的方向,努力做到的事儿啊!
2023-08-27 08:51:35
459
月下独酌
SeaTunnel
...库容量成为了一个亟待解决的问题。例如,某知名电商公司在“双十一”大促期间,由于数据库容量预警机制缺失,导致系统在高并发访问下崩溃,严重影响了用户体验和业务收入。这一事件再次凸显了数据库容量预警的重要性。 此外,阿里云近期发布了一款全新的数据库管理系统,该系统集成了先进的机器学习算法,能够实时监测数据库容量变化,并在容量接近阈值时自动触发预警机制。这一创新性的解决方案不仅提高了系统的稳定性和可靠性,还大大降低了运维人员的工作负担。该系统已经在多个行业得到了广泛应用,取得了显著的效果。 与此同时,开源社区也在不断推进相关技术的发展。例如,Apache SeaTunnel作为一个强大的数据集成平台,不仅可以用于数据库容量预警,还可以应用于复杂的数据处理和ETL流程。最近,SeaTunnel社区发布了多个新版本,增加了许多实用的功能和优化,使得它在实际应用中更加灵活和高效。 综上所述,随着技术的进步和应用场景的多样化,数据库容量预警机制的建设变得越来越重要。无论是通过商业产品还是开源工具,企业都应该重视并积极采用先进的技术和解决方案,以确保数据库系统的稳定运行。
2025-01-29 16:02:06
74
月下独酌
Apache Atlas
...手,就是专门来帮我们解决这些头疼事儿的好伙伴。 三、设置基础环境与配置 首先,我们需要在Apache Atlas环境中设置好数据脱敏规则。登录到Atlas的管理界面,找到数据资产管理模块,创建一个新的数据实体(例如,用户表User)。在这里,你可以为每个字段指定脱敏策略。 java // 示例代码片段 DataEntity userEntity = new DataEntity(); userEntity.setName("User"); userEntity.setSchema(new DataSchema.Builder() .addField("userId", DataModel.Type.STRING, new DataMaskingPolicy.Builder() .setMaskType(DataMaskingPolicy.MaskType.PARTIAL) .setMaskCharacter('') .setLength(5) // 显示前5位 .build()) .addField("email", DataModel.Type.STRING, new DataMaskingPolicy.Builder() .setMaskType(DataMaskingPolicy.MaskType.FULL) .build()) .build()); 四、编写脱敏策略 在上述代码中,DataMaskingPolicy类定义了具体的脱敏策略。MaskType枚举允许我们选择全遮盖(FULL)、部分遮盖(PARTIAL)或其他方式。setMaskCharacter()定义了替换字符,setLength(5)则设置了显示的长度。当你想要在某些字段中保留部分真实的细节时,咱们就可以灵活地给这些字段设定一个合适的长度,并选择相应的掩码方式,这样一来,既保护了隐私,又不失实用性,就像是给信息穿上了“马赛克”外套一样。 五、关联数据脱敏策略到实际操作 接下来,我们需要确保在执行SQL查询时能应用这些策略。这通常涉及到配置数据访问层(如JDBC、Spark SQL等),让它们在查询时自动调用Atlas的策略。以下是一个使用Hive SQL的示例: sql -- 原始SQL SELECT userId, email FROM users; -- 添加脱敏处理 SELECT userId.substring(0, 5) as 'maskedUserId', email from users; 六、监控与调整 实施数据脱敏策略后,我们需要监控其效果,确保数据脱敏在实际使用中没有意外影响业务。根据反馈,可能需要调整策略的参数,比如掩码长度或替换字符,以达到最佳的保护效果。 七、总结与最佳实践 Apache Atlas的数据脱敏功能并非一蹴而就,它需要时间和持续的关注。要知道,要想既确保数据安然无恙又不拖慢工作效率,就得先摸清楚你的数据情况,然后量身定制适合的保护策略,并且在实际操作中灵活调整、持续改进这个策略!就像是守护自家宝贝一样,既要看好门,又要让生活照常进行,那就得好好研究怎么把门锁弄得既安全又方便,对吧!记住了啊,数据脱敏可不是一劳永逸的事儿,它更像是个持久战,需要随着业务发展需求的不断演变,还有那些法规要求的时常更新,我们得时刻保持警惕,持续地对它进行改进和调整。 通过这篇文章,你已经掌握了在Apache Atlas中实施数据脱敏策略的基本步骤。但在实际动手干的时候,你可能得瞅瞅具体项目的独特性跟需求,量身打造出你的解决方案才行。听好了,对一家企业来说,数据安全可是它的命根子,而做好数据脱敏这步棋,那就是走向合规这条大道的关键一步阶梯!祝你在数据治理的旅程中顺利!
2024-03-26 11:34:39
470
桃李春风一杯酒-t
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 Java中的元组Tuple 文章目录 Java中的元组Tuple 1. 概念 2. 使用 2.1 依赖Jar包 2.2 基本使用 2.2.1 直接调用 2.2.2 自定义工具类 2.2.3 示例代码 1. 概念 Java中的Tuple是一种数据结构,可存放多个元素,每个元素的数据类型可不同。Tuple与List集合类似,但是不同的是,List集合只能存储一种数据类型,而Tuple可存储多种数据类型。 可能你会说,Object类型的List实际也是可以存储多种类型的啊?但是在创建List的时候,需要指定元素数据类型,也就是只能指定为Object类型,获取的元素类型就是Object,如有需要则要进行强转。而Tuple在创建的时候,则可以直接指定多个元素数据类型。 Tuple具体是怎么的数据结构呢? 元组(tuple)是关系数据库中的基本概念,关系是一张表,表中的每行(即数据库中的每条记录)就是一个元组,每列就是一个属性。 在二维表里,元组也称为行。 以上是百度百科中的"元组"概念,我们将一个元组理解为数据表中的一行,而一行中每个字段的类型是可以不同的。这样我们就可以简单理解Java中的Tuple数据结构了。 2. 使用 2.1 依赖Jar包 Maven坐标如下: <dependency><groupId>org.javatuples</groupId><artifactId>javatuples</artifactId><version>1.2</version></dependency> 引入相关依赖后,可以看出jar包中的结构很简单,其中的类主要是tuple基础类、扩展的一元组、二元组…十元组,以及键值对元组;接口的作用是提供【获取创建各元组时传入参数值】的方法。 2.2 基本使用 2.2.1 直接调用 以下以三元组为例,部分源码如下: package org.javatuples;import java.util.Collection;import java.util.Iterator;import org.javatuples.valueintf.IValue0;import org.javatuples.valueintf.IValue1;import org.javatuples.valueintf.IValue2;/ <p> A tuple of three elements. </p> @since 1.0 @author Daniel Fernández/public final class Triplet<A,B,C> extends Tupleimplements IValue0<A>,IValue1<B>,IValue2<C> {private static final long serialVersionUID = -1877265551599483740L;private static final int SIZE = 3;private final A val0;private final B val1;private final C val2;public static <A,B,C> Triplet<A,B,C> with(final A value0, final B value1, final C value2) {return new Triplet<A,B,C>(value0,value1,value2);} 我们一般调用静态方法with,传入元组数据,创建一个元组。当然了,也可以通过有参构造、数组Array、集合Collection、迭代器Iterator来创建一个元组,直接调用相应方法即可。 但是,我们可能记不住各元组对象的名称(Unit、Pair、Triplet、Quartet、Quintet、Sextet、Septet、Octet、Ennead、Decade),还要背下单词…因此,我们可以自定义一个工具类,提供公共方法,根据传入的参数个数,返回不同的元组对象。 2.2.2 自定义工具类 package com.superchen.demo.utils;import org.javatuples.Decade;import org.javatuples.Ennead;import org.javatuples.Octet;import org.javatuples.Pair;import org.javatuples.Quartet;import org.javatuples.Quintet;import org.javatuples.Septet;import org.javatuples.Sextet;import org.javatuples.Triplet;import org.javatuples.Unit;/ ClassName: TupleUtils Function: <p> Tuple helper to create numerous items of tuple. the maximum is 10. if you want to create tuple which elements count more than 10, a new class would be a better choice. if you don't want to new a class, just extends the class {@link org.javatuples.Tuple} and do your own implemention. </p> date: 2019/9/2 16:16 @version 1.0.0 @author Chavaer @since JDK 1.8/public class TupleUtils{/ <p>Create a tuple of one element.</p> @param value0 @param <A> @return a tuple of one element/public static <A> Unit<A> with(final A value0) {return Unit.with(value0);}/ <p>Create a tuple of two elements.</p> @param value0 @param value1 @param <A> @param <B> @return a tuple of two elements/public static <A, B> Pair<A, B> with(final A value0, final B value1) {return Pair.with(value0, value1);}/ <p>Create a tuple of three elements.</p> @param value0 @param value1 @param value2 @param <A> @param <B> @param <C> @return a tuple of three elements/public static <A, B, C> Triplet<A, B, C> with(final A value0, final B value1, final C value2) {return Triplet.with(value0, value1, value2);} } 以上的TupleUtils中提供了with的重载方法,调用时根据传入的参数值个数,返回对应的元组对象。 2.2.3 示例代码 若有需求: 现有pojo类Student、Teacher、Programmer,需要存储pojo类的字节码文件、对应数据库表的主键名称、对应数据库表的毕业院校字段名称,传到后层用于组装sql。 可以再定义一个对象类,但是如果还要再添加条件字段的话,又得重新定义…所以我们这里直接使用元组Tuple实现。 public class TupleTest {public static void main(String[] args) {List<Triplet<Class, String, String>> roleList = new ArrayList<Triplet<Class, String, String>>();/三元组,存储数据:对应实体类字节码文件、数据表主键名称、数据表毕业院校字段名称/Triplet<Class, String, String> studentTriplet = TupleUtils.with(Student.class, "sid", "graduate");Triplet<Class, String, String> teacherTriplet = TupleUtils.with(Teacher.class, "tid", "graduate");Triplet<Class, String, String> programmerTriplet = TupleUtils.with(Programmer.class, "id", "graduate");roleList.add(studentTriplet);roleList.add(teacherTriplet);roleList.add(programmerTriplet);for (Triplet<Class, String, String> triplet : roleList) {System.out.println(triplet);} }} 存储数据结构如下: 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_35006663/article/details/100301416。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-17 17:43:51
258
转载
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 2017-08-22 17:25:53 浏览量:3346 win7 64位系统什么样的电脑可以安装呢?我们知道win7分为32位(x86)和64位(x64)两种,其中32位几乎是什么电脑都可以安装,不过win7 64位对电脑配置要求比较高,并不是什么电脑都可以安装,除此之外,即便电脑可以装win7 64位,也并不能保证能流畅运行,下面系统城小编跟大家介绍安装win7 64位需要什么配置的电脑。 2018-04-20 17:15:29 浏览量:7894 电脑都可以装64位系统吗?相信大家都看到,现在新买的电脑都是自带64位系统,这时候就有部分用户产生了疑惑,是不是所有电脑都能装64位系统?其实不然!操作系统分32位和64位,就说明了有些电脑不能装64位,只能装32位,是不是能装64位这个需要看硬件是否支持。下面系统城小编跟大家介绍怎么看电脑能不能装64位系统的方法。 2020-08-14 16:30:00 浏览量:1430 一些朋友在买了小米电脑后,想要装回win7系统,因为win7系统的兼容性和稳定性深受广大网友的喜爱。那么小米笔记本能装win7吗?当然可以,接下来小编就给大家带来小米电脑装win7的教程。 2017-03-05 21:11:22 浏览量:1075 台式电脑是使用比较广泛的机型,尤其是家庭或办公室,台式电脑的硬件配置相对而言会比较强,不过有少数台式机的配置确实很差,很多用户对电脑配置不了解,经常提出“台式电脑能装win7系统吗”、“台式机可以装win7系统吗”之类的问题,其实大部分的台式机安装win7系统毫无压力,下面小编跟大家介绍台式电脑能不能装win7系统以及怎么安装win7系统的方法。 2017-07-27 18:27:21 浏览量:542 u盘和光盘一样都是存储工具,我们都知道光盘是安装系统非常重要的工具,那么U盘可以装系统吗?U盘能用来装系统吗?事实上U盘已经取代光盘成为安装系统最流行的工具,通过大白菜、UltraISO等工具可以将U盘制作成启动盘,然后就可以用U盘给电脑装系统,下面系统城小编跟大家介绍用U盘安装系统的方法。 2018-01-27 16:02:10 浏览量:1469 win7的电脑能不能装win8系统?虽然大部分用户都喜欢win7系统,但是也是有一些人钟爱win8系统。win8是一款具备划时代的操作系统,因为改变了常规的操作方式,大部分操作方式是全新的,追求新颖的用户自然不放过体验的机会。现在问题来了,win7的电脑可不可以装win8系统,据说win8是uefi全新引导?其实只要电脑能装win7,就能装win8下面小编跟大家讲解win7系统可不可以装win8的问题。 2017-11-25 18:15:36 浏览量:2373 能用普通U盘来装系统吗?我们知道光盘是安装系统最传统的工具,普通U盘和光盘一样都是存储工具,那么能将普通U盘制作成装系统的U盘,然后用U盘装系统吗?答案是肯定,因为现在U盘装系统已经取代光盘成为最主流的方法,通过大白菜、ultraiso等工具可以将普通U盘制作成启动U盘。下面系统城小编以装w7系统纯净版为例跟大家介绍普通U盘装系统教程。 2018-02-27 16:42:21 浏览量:3501 3g内存能不能装win7系统?虽然现在内存容量都很大,但那些都是新电脑,老旧电脑内存没有很大,比如大部分老电脑内存都是2G左右。有用户电脑时3g内存,想要装win7系统,那么3g内存能装win7系统吗?64位win7系统也能装?关于这个问题,需要使用专门的工具来检测,下面跟系统城小编一起来学习下3g内存能否装win7系统的问题。 2017-01-14 18:19:33 浏览量:2868 很多人处于工作需要会选择上网本,上网本体积小,非常轻薄,是一种微型笔记本电脑,上网本硬件配置一般很低,大部分的上网本默认只能满足日常办公需要,很多人买来上网本默认装的是Linux或xp系统,但是用户比较喜欢win7系统,那么上网本能装win7系统吗?上网本怎么装win7系统?下面系统城小编跟大家介绍上网本装win7系统的方法。 2018-02-22 14:00:59 浏览量:1261 win7 32位系统可以用优盘装64位系统吗?现在电脑硬件越来越强大,32位系统远远不能满足硬件的发挥,现在64位系统是主流,所以不少用户纷纷将32位系统装成64位系统,那么可以用优盘装64位系统吗?必须是可以的,这边以安装win7旗舰版64位为例,教大家win7 32位系统优盘装64位系统方法。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39837139/article/details/119130243。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-16 09:18:56
110
转载
SeaTunnel
...实没把所有可能遇到的异常状况及其代码实例都给列出来。所以呢,我暂时没法给你整一篇专门针对“那些没在清单上的SeaTunnel异常状况”、还带有详细代码操作的技术文章,你懂的哈。但是,我可以尝试模拟咱们平时讨论问题的方式来写一篇关于如何对付SeaTunnel里那些让人头疼的未知异常以及调试的思路的文章,这样一来,我真诚地希望它能帮到你,让你更好地理解和解决这类问题。 SeaTunnel:面对未知异常时的探索与解决之道 1. 引言 在使用SeaTunnel进行大规模数据处理的过程中,我们可能会遭遇一些官方文档未曾详尽列举的异常情况。这些异常就像是海洋中的暗礁,虽然在航行图上没有明确标识,但并不意味着它们不存在。这篇文章的目标呢,就是想和大伙儿一起头脑风暴下,面对这些神出鬼没的未知状况,咱们该咋整,同时啊,我也想趁机给大家伙分享些排查问题、解决问题的小妙招。 2. 遇见未知异常,从何入手? 当SeaTunnel运行时抛出一个未在官方文档中列出的异常信息,比如UnknownError: A sudden surge of data caused pipeline instability(这是一个假设的异常),我们首先要做的是保持冷静,然后按照以下步骤进行: java // 假设SeaTunnel任务配置简化版 Pipeline pipeline = new Pipeline(); pipeline.addSource(new FlinkKafkaSource(...)); pipeline.addTransform(new SomeTransform(...)); pipeline.addSink(new HdfsSink(...)); // 运行并捕获异常 try { SeaTunnelRunner.run(pipeline); } catch (Exception e) { System.out.println("Caught an unexpected error: " + e.getMessage()); // 记录日志、堆栈跟踪等详细信息用于后续分析 } 遇到异常后,首要的是记录下详细的错误信息和堆栈跟踪,这是排查问题的重要线索。 3. 深入挖掘异常背后的原因 - 资源监控:查看SeaTunnel运行期间的系统资源消耗(如CPU、内存、磁盘IO等),确认是否因资源不足导致异常。 - 日志分析:深入研究SeaTunnel生成的日志文件,寻找可能导致异常的行为或事件。 - 数据检查:检查输入数据源是否有异常数据或突发流量,例如上述虚构异常可能是由于数据突然激增造成的数据倾斜问题。 4. 实战演练 通过代码调整解决问题 假设我们发现异常是由数据倾斜引起,可以通过修改transform阶段的代码来尝试均衡数据分布: java class BalancedTransform extends BaseTransform<...> { @Override public DataStream<...> transform(DataStream<...> input) { // 添加数据均衡策略,例如Flink的Rescale操作 return input.rescale(); } } // 更新pipeline配置 pipeline.replaceTransform(oldTransform, new BalancedTransform(...)); 5. 总结与反思 每一次面对未列明的SeaTunnel异常,都是一次深入学习和理解其内部工作原理的机会。尽管具体的代码示例在此处未能给出,但这种解决思路和调试过程本身才是最宝贵的财富。在面对那些未知的挑战时,咱们得拿出实打实的严谨劲儿,就像侦探破案那样,用科学的办法一步步来。这就好比驾驶SeaTunnel这艘大数据处理的大船,在浩瀚的数据海洋里航行,咱得结合实际情况,逐个环节、逐个场景地细细排查问题,同时灵活应变,该调整代码逻辑的时候就大胆修改,配置参数也得拿捏得恰到好处。这样,咱们才能稳稳当当地驾驭好这艘大船,一路乘风破浪前进。 请记住,每个项目都有其独特性,处理异常的关键在于理解和掌握工具的工作原理,以及灵活应用调试技巧。嗯,刚才说的那些呢,其实就是一些通用的处理办法和思考套路,不过具体问题嘛,咱们还得接地气儿,根据实际项目的个性特点和需求来量体裁衣,进行对症下药的分析和解决才行。
2023-09-12 21:14:29
255
海阔天空
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 半自动化批量下载专利全文pdf傻瓜攻略 写在前面 适合人群 使用前提 基本思路 键鼠记录器脚本 前期准备 脚本原理 注意事项 检查下载效果 写在前面 整理专利的时候,在专利引擎上只能一条条的下载,很是烦人。我比较讨厌这种重复性劳动,所以每次碰上都得想想办法怎么自动化操作,虽然上每次研究自动化办法的时间把都足够把活干完了哈哈。可惜的是每次搞完都没有把文档保留下来,下次有点什么事情又得从头开始。因此准备开始写写文档记录一些思路,同时如果能帮到有需要的人就更好了! 适合人群 不会爬虫的都可以来看看!能大概看明白python就够了。 使用前提 python环境配好 有梯子 不排斥键鼠记录器读取键鼠记录 基本思路 现在的专利搜索引擎大概都有批量下载库,如果只要摘要的话直接下载就可以了。但是下载全文的时候,大部分引擎都不支持批量下载,只能一个一个点,还得输验证码。 这里就不得不提到google patent了,这是我目前找到的唯一一个不需要验证码就能下载的专利引擎了(其实主要是还不会用python识别验证码)。那么有了google patent这个神器,就可以用自动办法来进行下载了。我这里使用的是按键精灵,傻瓜式操作。(没用python爬虫的原因是requests不能挂梯子。。。这里我不是很确定是什么问题,希望有大佬指点一下。anyway,主要思路就是用键鼠记录器点点点,我用的是按键精灵,理论上什么记录器都可以。 ps. 听说poxoq能批量下载,但是新版本只能下载前十页,因此我没有尝试,如果能直接下载全文的话请评论区告诉我。 键鼠记录器脚本 前期准备 按格式排好公开号或者申请号,在编辑器中打开; 把google patent搜索页面和文本编辑器分屏显示,便于操作。 脚本原理 以edge浏览器为例,按键精灵双击全选文本中第一行的公开号,ctrl+c复制,鼠标转到网页搜索框,ctrl+v粘贴,点搜索。等搜索完成右键download PDF,选链接另存为并确定,之后点击网页关闭下载栏,一次下载完成。返回编辑器,删除第一行的文本,把第二行提到第一行,完成复位。 这样就形成了完整的一次过程,只要重复运行脚本就可以把所有专利全文下载下来。 注意事项 实际操作中,可能遇到两大问题: 网页反馈问题 这里指的是搜索后没有来到我们想象中的专利页,可能是没有搜索到专利,或该专利google patent没有pdf文档,这时如果脚本还在运行,那么显然就会错误运行。 脚本运行问题 主要要考虑的是命令之间的延时。延时调小确实运行速度会变快,但是如果电脑运行速度不够或者网速/服务器慢了,就会错误执行命令。我的建议是文本操作可以适当删减延时,涉及网页的部分适量增加延时,保证脚本的容错率。 由此可以看出来这个脚本还是离不开人的,在跑的时候还是需要盯着点,如果有错误可以及时处理。 检查下载效果 看了上面的注意事项,想必你也知道这个脚本不太靠谱。那么解决这个问题的方法就是负反馈。下载完了检查一遍就好了。 由于google patent下载的文件是以公开号命名的,所以对照要下载的和已下载的公开号就能看出哪些专利没有下载成功。 我这里写了一个python小脚本。 import pandas as pdimport os读取待下载专利的公开号,地址修改成你自己存放的位置df = pd.read_excel("target.xlsx",header= 0, usecols= "B").drop_duplicates()取前11位作为对比(以中国专利作为参考)PublicNumber_tgt = list(map(lambda x: x[0:11],df["公开(公告)号"].to_list()))读取已下载专利的公开号,地址修改成你自己存放的位置filelist=os.listdir(r'C:\Users\mornthx\Desktop\专利全文')取前11位作为对比PublicNumber_dl = list(map(lambda x: x[0:11],filelist))比较两者差值diff = set(PublicNumber_tgt).difference(set(PublicNumber_dl))print(diff) 没下载的专利具体问题具体解决就好了。 希望能帮到大家! 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_38688347/article/details/124000919。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-21 12:55:28
275
转载
Javascript
...E候选信息,并发送给服务器或者其他浏览器。 3. 信令交换 通过WebSocket等网络传输机制,浏览器之间进行信令交换,协商并创建出一个可用于数据传输的安全连接。 四、如何利用WebRTC实现点对点通信 下面,我们通过一个简单的例子来说明如何利用WebRTC实现点对点通信。 首先,在HTML文件中添加以下代码: html 然后,在JavaScript文件中添加以下代码: javascript // 获取本地视频 const localStream = await navigator.mediaDevices.getUserMedia({ audio: true, video: true }); // 创建RTC对讲机 const pc = new RTCPeerConnection(); // 添加媒体流 pc.addTransceiver('audio'); pc.addTransceiver('video'); // 获取远程视频容器 const remoteVideo = document.getElementById('remoteVideo'); // 将本地视频流添加到远程视频容器 pc.getSenders().forEach((sender) => { sender.track.id = 'localVideo'; remoteVideo.srcObject = sender.track; }); // 接收媒体流 pc.ontrack = (event) => { event.streams.forEach((stream) => { stream.getTracks().forEach((track) => { track.id = 'remoteVideo'; const videoElement = document.createElement('video'); videoElement.srcObject = track; document.body.appendChild(videoElement); }); }); }; // 连接到其他客户端 function connect(otherUserURL) { // 创建新的RTCPeerConnection对象 const otherPC = new RTCPeerConnection(); // 设置回调函数,处理ICE候选信息和数据通道 otherPC.onicecandidate = (event) => { if (!event.candidate) return; pc.addIceCandidate(event.candidate); }; otherPC.ondatachannel = (event) => { event.channel.binaryType = 'arraybuffer'; channel.send('hello'); }; // 发送offer const offerOptions = { offerToReceiveAudio: true, offerToReceiveVideo: true }; pc.createOffer(offerOptions).then((offer) => { offer.sdp = SDPUtils.replaceBUNDLE_ID(offer.sdp, otherUserURL); offer.sdp = SDPUtils.replaceICE_UFRAG_AND_FINGERPRINT(offer.sdp, otherUserURL); offer.sdp = SDPUtils.replaceICEServers(offer.sdp, iceServers); return otherPC.setRemoteDescription(new RTCSessionDescription(offer)); }).then(() => { return otherPC.createAnswer(); }).then((answer) => { answer.sdp = SDPUtils.replaceBUNDLE_ID(answer.sdp, otherUserURL); answer.sdp = SDPUtils.replaceICE_UFRAG_AND_FINGERPRINT(answer.sdp, otherUserURL); answer.sdp = SDPUtils.replaceICEServers(answer.sdp, iceServers); return pc.setRemoteDescription(new RTCSessionDescription(answer)); }).catch((err) => { console.error(err.stack || err); }); } 在这个例子中,我们首先通过getUserMedia API获取用户的实时音频和视频流,然后创建一个新的RTCPeerConnection对象,并将媒体流添加到这个对象中。 接着,我们设置了回调函数,处理ICE候选信息和数据通道。当你收到ICE候选信息的时候,我们就把它塞到本地的那个RTCPeerConnection对象里头;而一旦收到数据通道的消息,我们就会把它的binaryType调成'arraybuffer'模式,然后就可以在通道里畅所欲言,发送各种消息啦。 最后,我们调用connect函数,与其他客户端建立连接。在connect函数里头,我们捣鼓出了一个崭新的RTCPeerConnection对象,就像组装一台小机器一样。然后呢,我们还给这个小家伙绑定了几个“小帮手”——回调函数,用来专门处理ICE候选信息和数据通道这些重要的任务,让它们能够实时报告状况,确保连接过程顺畅无阻。然后呢,我们给对方发个offer,就像递出一份邀请函那样。等对方接收到后,他们会回传一个answer,这就好比他们给出了接受邀请的答复。我们就把这个answer,当作是我们本地RTCPeerConnection对象的远程“地图”,这样一来,连接就算顺利完成啦! 五、结论 WebRTC技术为我们提供了一种方便、快捷、安全的点对点通信方式,大大提高了应用的交互性和实时性。当然啦,这只是个入门级的小例子,实际上的运用场景可能会复杂不少。不过别担心,只要咱们把WebRTC的核心原理和使用技巧都整明白了,就能根据自身需求灵活施展拳脚,开发出更多既有趣又有用的应用程序,保证让你玩得飞起! 未来,随着5G、物联网等技术的发展,WebRTC将会发挥更大的作用,成为更多应用场景的首选方案。让我们一起期待这个充满可能的新时代吧!
2023-12-18 14:38:05
316
昨夜星辰昨夜风_t
NodeJS
...可厉害了,它就像是在服务器后端装上了一台涡轮发动机——Chrome V8引擎,专门用来跑JavaScript程序。这样一来,我们就能轻松愉快地在服务端搭建出各种实时应用,速度快得飞起,体验超级流畅!跟那些传统的后端语言,比如 PHP、Java 和 Ruby 不一样,Node.js 可厉害了,人家采用单线程模式,也就是说,所有的请求都由一条线程来处理,别看就一条线,但人家在处理并发请求时的身手可灵活了,性能杠杠滴! Node.js 提供了一个丰富的包管理器 npm,使得我们可以轻松地获取并安装各种第三方模块。另外,你知道吗,Node.js 社区那可是个百宝箱啊,里面装满了各种实用的框架和工具。就像Express.js、Koa.js这些服务端框架,还有Gulp.js、Webpack.js这些自动化构建工具,真是应有尽有。它们的存在,就是为了让我们能够更轻松、更快速地搭建起自己的应用程序,简直像是给开发者们插上了翅膀一样,特别给力! 在本篇文章中,我们将探讨如何使用 Node.js 进行云服务开发。首先,咱们得先摸清楚 Node.js 在云服务这个领域里头是怎么被用起来的,接下来再给大家伙儿逐一介绍一下时下热门的云服务提供商,还会附带上他们在 Node.js 开发这块的一些实用教程,让大家能更好地掌握上手。 一、Node.js 在云服务中的应用场景 1. 实时通信应用 Node.js 的事件驱动和非阻塞 I/O 模型使其非常适合实时通信应用。比如,我们完全可以借助 Socket.IO 这个神器,搭建出像实时聊天室、在线一起编辑文档这些超级实用的应用程序。就像是你和朋友们能即时聊天的小天地,或者大家一起同时修改同一份文档的神奇工具,这些都是 Socket.IO 能帮我们实现的好玩又强大的功能。 2. 后端服务 由于 Node.js 具有高并发性和异步编程的能力,因此它可以作为后端服务的核心引擎。比如,咱们可以拿 Express.js 这个框架来搭建一个飞快的 RESTful API,要不就用 Koa.js 来整一个更轻巧灵活的服务器,随你喜欢。 3. 数据库中间件 Node.js 可以作为数据库中间件,与数据库交互并实现数据的读取、存储和更新等功能。比如,我们可以拿起 Mongoose ORM 这个工具箱,它能帮我们牵线搭桥连上 MongoDB 数据库。然后,我们就能够借助它提供的查询语句,像玩魔术一样对数据进行各种操作,插入、删除、修改,随心所欲。 二、常用的云服务提供商及其 Node.js 开发教程 1. AWS AWS 提供了一系列的云服务,包括计算、存储、数据库、安全等等。在 AWS 上,我们可以使用 Lambda 函数来实现无服务器架构,使用 EC2 或 ECS 来部署 Node.js 应用程序。此外,AWS 还提供了丰富的 SDK 和 CLI 工具,方便我们在本地开发和调试应用程序。 2. Google Cloud Platform (GCP) GCP 提供了类似的云服务,包括 Compute Engine、App Engine、Cloud Functions、Cloud SQL 等等。在 GCP(Google Cloud Platform)这个平台上,咱们完全可以利用 Node.js 这门技术来开发应用程序,然后把它们稳稳地部署到 App Engine 上。这样一来,咱们就能更轻松、更方便地管理自家的应用程序,同时还能对它进行全方位的监控,确保一切运行得妥妥当当的。就像是在自家后院种菜一样,从播种(开发)到上架(部署),再到日常照料(管理和监控),全都在掌控之中。 3. Azure Azure 是微软提供的云服务平台,支持多种编程语言和技术栈。在 Azure 上,我们可以使用 Function App 来部署 Node.js 函数,并使用 App Service 来部署完整的 Node.js 应用程序。另外,Azure还准备了一整套超级实用的DevOps工具和服务,这对我们来说可真是个大宝贝,能够帮我们在管理和发布应用程序时更加得心应手,轻松高效。 接下来,我们将详细介绍如何使用 Node.js 在 AWS Lambda 上构建无服务器应用程序。 三、在 AWS Lambda 上使用 Node.js 构建无服务器应用程序 AWS Lambda 是一种无服务器计算服务,可以让开发者无需关心服务器的操作系统、虚拟机配置等问题,只需要专注于编写和上传代码即可。在Lambda这个平台上,咱们能够用Node.js来编写函数,就像变魔术一样把函数和触发器手牵手连起来,这样一来,就能轻松实现自动执行的酷炫效果啦! 以下是使用 Node.js 在 AWS Lambda 上构建无服务器应用程序的基本步骤: Step 1: 创建 AWS 帐户并登录 AWS 控制台 Step 2: 安装 AWS CLI 工具 Step 3: 创建 Lambda 函数 Step 4: 编写 Lambda 函数 Step 5: 配置 Lambda 函数触发器 Step 6: 测试 Lambda 函数 Step 7: 将 Lambda 函数部署到生产环境
2024-01-24 17:58:24
147
青春印记-t
转载文章
...种高效的、基于C/S架构的跨进程通信方式。在Android Framework层,Binder作为Android核心服务与应用程序之间的桥梁,实现了系统服务与应用之间以及应用之间的数据交换和方法调用。通过内存映射技术和引用计数管理,Binder能够高效地实现一次数据拷贝,同时确保了进程间通信的安全性。在文章中提到,Binder拥有定向制导功能,可以通过查找特定的Binder实体服务,实现跨进程或线程间的唤起与交互。 MessageQueue , MessageQueue在Android中是一个消息队列,负责存储待处理的消息(封装为Message对象)。每个启动了Looper的线程都会关联一个MessageQueue,其内部采用先进先出(FIFO)的原则对消息进行排序。主线程中的MessageQueue接收来自各种源(如触摸事件、UI刷新请求、Handler发送的消息等)的消息,并由该线程的Looper不断循环检查和处理这些消息。当MessageQueue中有新的Message到来时,Looper会将消息取出并传递给对应的Handler进行处理,这样就实现了异步消息处理机制,保证了Android应用的流畅运行及各组件间的正确同步。
2023-11-15 10:35:50
218
转载
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 本文内容为海贼王全集的分章节目录介绍,还有本人在观看时候记录的精彩打斗剧集,可以方便大家直接定位想看的章节和精彩内容, 源文件已经上传到我的资源中,有需要的可以去看看, 我主页中的思维导图中内容大多从我的笔记中整理而来,相应技巧可在笔记中查找原题, 有兴趣的可以去 我的主页 了解更多计算机学科和考研的精品思维导图整理 本文可以转载,但请注明来处,觉得整理的不错的小伙伴可以点赞关注支持一下哦! 博客中思维导图的高清PDF版本,可关注公众号 一起学计算机 点击 资源获取 获得 目录 0.精彩打斗剧集 0.剧场版 1.东海冒险篇1-60 2.阿拉巴斯坦篇61-130 3.TV原创篇131-143 4.空岛篇144-195 5.海军要塞G8196-206 6.长链岛篇207-226 7.司法岛篇227-325 8.旗帜猎人篇326-336 9.恐怖三桅帆船篇337-383 10.香波地群岛篇384-407 11.女儿岛篇408-421 12.海底监狱篇422-456 13.大事件篇457-504 14.新世界前篇505-516 15.鱼人岛篇517-574 16.Z的野心篇575-578 17.庞克哈萨德篇579-628 18.德雷斯罗萨篇629-746 19.银之要塞篇747-750 20.佐乌篇751-782 21.托特兰篇783-877 22.世界会议篇878-889 23.和之国篇890-至今 我的更多精彩文章链接, 欢迎查看 经典动漫全集目录 精彩剧集 海贼王 动漫 全集目录 分章节 精彩打斗剧集 思维导图整理 火影忍者 动漫 全集目录 分章节 精彩打斗剧集 思维导图整理 死神 动漫 全集目录 分章节 精彩打斗剧集 思维导图整理 计算机专业知识 思维导图整理 Python 北理工慕课课程 知识点 常用代码/方法/库/数据结构/常见错误/经典思想 思维导图整理 C++ 知识点 清华大学郑莉版 东南大学软件工程初试906 思维导图整理 计算机网络 王道考研 经典5层结构 中英对照 框架 思维导图整理 算法分析与设计 北大慕课课程 知识点 思维导图整理 数据结构 王道考研 知识点 经典题型 思维导图整理 人工智能导论 王万良慕课课程 知识点 思维导图整理 红黑树 一张导图解决红黑树全部插入和删除问题 包含详细操作原理 情况对比 各种常见排序算法的时间/空间复杂度 是否稳定 算法选取的情况 改进 思维导图整理 人工智能课件 算法分析课件 Python课件 数值分析课件 机器学习课件 图像处理课件 考研相关科目 知识点 思维导图整理 考研经验--东南大学软件学院软件工程 东南大学 软件工程 906 数据结构 C++ 历年真题 思维导图整理 东南大学 软件工程 复试3门科目历年真题 思维导图整理 高等数学 做题技巧 易错点 知识点(张宇,汤家凤)思维导图整理 考研 线性代数 惯用思维 做题技巧 易错点 (张宇,汤家凤)思维导图整理 高等数学 中值定理 一张思维导图解决中值定理所有题型 考研思修 知识点 做题技巧 同类比较 重要会议 1800易错题 思维导图整理 考研近代史 知识点 做题技巧 同类比较 重要会议 1800易错题 思维导图整理 考研马原 知识点 做题技巧 同类比较 重要会议 1800易错题 思维导图整理 考研数学课程笔记 考研英语课程笔记 考研英语单词词根词缀记忆 考研政治课程笔记 Python相关技术 知识点 思维导图整理 Numpy常见用法全部OneNote笔记 全部笔记思维导图整理 Pandas常见用法全部OneNote笔记 全部笔记思维导图整理 Matplotlib常见用法全部OneNote笔记 全部笔记思维导图整理 PyTorch常见用法全部OneNote笔记 全部笔记思维导图整理 Scikit-Learn常见用法全部OneNote笔记 全部笔记思维导图整理 Java相关技术/ssm框架全部笔记 Spring springmvc Mybatis jsp 科技相关 小米手机 小米 红米 历代手机型号大全 发布时间 发布价格 常见手机品牌的各种系列划分及其特点 历代CPU和GPU的性能情况和常见后缀的含义 思维导图整理 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_43959833/article/details/115670535。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-12 18:13:21
742
转载
Kylin
...询需求。 - 分布式架构:支持大规模数据集的存储和处理,适合于大数据环境。 - 多维分析:提供SQL-like查询接口,易于理解和使用。 - 实时性:提供实时更新和历史数据的分析能力。 三、构建多模型分析框架 在Kylin中实现多模型分析,主要步骤包括数据加载、模型训练、预测结果生成以及结果展示。以下是一个简单的示例流程: 1. 数据加载 将原始数据导入Kylin,创建Cube(多维数据集)。 python from pykylin.client import KylinClient client = KylinClient('http://your_kylin_server', 'username', 'password') cube_name = 'my_cube' model = client.get_cube(cube_name) 2. 模型训练 Kylin支持多种预测模型,如线性回归、决策树等。哎呀,咱们就拿线性回归做个例子,就像用个魔法棒一样,这魔法棒就是Python里的Scikit-learn库。咱们得先找个好点的地方,比如说数据集,然后咱们就拿着这个魔法棒在数据集上挥一挥,让它学习一下规律,最后啊,咱们就能得到一个模型了。这模型就好比是咱们的助手,能帮咱们预测或者解释一些事情。怎么样,听起来是不是有点像在玩游戏? python from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split 假设df是包含特征和目标变量的数据框 X = df.drop('target', axis=1) y = df['target'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = LinearRegression() model.fit(X_train, y_train) 3. 预测结果生成 将训练好的模型应用于Kylin Cube中的数据,生成预测结果。 python 生成预测值 predictions = model.predict(X_test) 将预测结果存储回Kylin Cube model.save_predictions(predictions) 4. 结果展示 通过Kylin的Web界面查看和分析预测结果。 四、案例分析 假设我们正在对一个电商平台的数据进行分析,目标是预测用户的购买行为。嘿!你听说过Kylin这个家伙吗?这家伙可是个数据分析的大拿!我们能用它来玩转各种模型,就像是线性回归、决策树和随机森林这些小伙伴。咱们一起看看,它们在预测用户会不会买东西这件事上,谁的本领最厉害!这可是一场精彩绝伦的模型大比拼呢! python 创建多个模型实例 models = [LinearRegression(), DecisionTreeClassifier(), RandomForestClassifier()] 训练模型并比较性能 for model in models: model.fit(X_train, y_train) score = model.score(X_test, y_test) print(f"Model: {model.__class__.__name__}, Score: {score}") 五、结论 通过上述步骤,我们不仅能够在Kylin中实现多模型的数据分析和预测,还能根据实际业务需求灵活选择和优化模型。哎呀,Kylin这玩意儿可真牛!它在处理大数据分析这块儿,简直就是得心应手的利器,灵活又强大,用起来那叫一个顺手,简直就是数据分析界的扛把子啊!哎呀,随着咱手里的数据越来越多,做事儿也越来越复杂了,这时候,学会在Kylin这个工具里搭建和优化各种数据分析模型,就变得超级关键啦!就像是厨房里,你会做各种菜,每道菜的配料和做法都不一样,对吧?在Kylin这里也是一样,得会根据不同的需求,灵活地组合和优化模型,让数据分析既快又准,效率爆棚!这不仅能让咱们的工作事半功倍,还能解锁更多创新的分析思路,是不是想想都觉得挺酷的呢? --- 请注意,上述代码示例为简化版本,实际应用时可能需要根据具体数据集和业务需求进行调整。
2024-10-01 16:11:58
132
星辰大海
转载文章
...兴趣偏好,提供个性化服务(时效性和针对性)。 总的来说,随着科技的发展,数理统计与概率论在解决实际问题时展现出越来越强的生命力,不仅在基础科学研究中扮演核心角色,也在诸多前沿技术领域,如生物信息学、机器学习、以及互联网服务等领域提供了坚实的理论支撑。读者可以进一步关注相关领域的学术期刊、会议论文及业界报告,以及时获取最新的理论突破与实践成果。
2024-02-26 12:45:04
518
转载
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 一、最新活动 1.安卓巴士诚招版主 http://www.apkbus.com/android-48399-1-1.html 2.积分商城好礼兑换 http://www.apkbus.com/plugin.php?id=auction 3.新浪官博之【创业者大会送票】活动 http://e.weibo.com/2975543812/zqr1yeSCe 4.安卓巴士项目小组 http://www.apkbus.com/group.php?gid=3 二、视频教程汇总 1.老罗Android开发视频教程 http://www.apkbus.com/Android-246-1.html 2. mars安卓开发视频教程 http://www.apkbus.com/Android-248-1.html 3.ios开发视频教程 http://iphone.apkbus.com/ 三、论坛经典内容汇总 1.美女象棋源码 http://www.apkbus.com/android-106605-1-1.html 2.Adnroid 安全卫士源码 http://www.apkbus.com/android-83653-1-1.html 3.百度地图SDK for Android 2.1版下载 http://www.apkbus.com/android-105237-1-1.html 4.eclipse不自定弹出提示(alt+/快捷键失效) http://www.apkbus.com/android-104663-1-1.html 5.Android即时通信系统的实现 http://www.apkbus.com/android-104564-1-1.html 6.Android编程14个很有用的代码片段 http://www.apkbus.com/android-104070-1-1.html 7.音乐播放器频谱绘制 http://www.apkbus.com/android-98147-1-1.html 8.Android开发手册(离线版)与(在线版)谭东编写 http://www.apkbus.com/android-97714-1-1.html 9.Sqlite+listview 的实例 http://www.apkbus.com/android-96910-1-1.html 10.iReader,QQ阅读书架效果的实现(附源码) http://www.apkbus.com/android-99130-1-1.html 11.Android 对话框(Dialog)大全 http://www.apkbus.com/android-98097-1-1.html 12.九宫格密码解锁(修正版) http://www.apkbus.com/android-97699-1-1.html 13.Android Chart图开源库AChartEngine教程 http://www.apkbus.com/android-94575-1-1.html 14.基于Socket的Android手机视频实时传输 http://www.apkbus.com/android-91517-1-1.html 15. 喷泉粒子系统源码 http://www.apkbus.com/android-106463-1-1.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/m_3251388/article/details/8888970。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-15 17:53:42
322
转载
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 最近在工作当中遇到一个问题 有个页面需要添加一个浏览历史记录功能 具体来说就是要记录下用户在此网站的点击历史 并把它们降序排列出来(只显示前6个浏览历史而且不能重复) 由于以前对javascript了解不够深入 一时间手足无措 后来经过两位高手同事的指点(对这两位同事的敬仰犹如滔滔江水连绵不绝...) 恍然大悟 豁然开朗 成功地完成了此功能的添加 首先来介绍一下javascript中关于此功能的一些对象和方法: 1. window.event对象: event代表事件的状态,例如触发event对象的元素、鼠标的位置及状态、按下的键等等。 event对象只在事件发生的过程中才有效。 2. event.srcElement: 表示该事件的发生源 通俗一点说也就是该事件被触发的地方 3. srcElement.parentNode: 表示该事件发生源的父结点 4. srcElement.tagName: 表示事件发生源的标签名 5. toUpperCase(): 大写化相应字符串的方法 基本上就是这些属性和方法,可能对于刚刚接触javascript的朋友们或者以前很少使用此类功能的朋友来说, 这些对象有些陌生,不过没关系,了解以后发现其实并不难,和javascript验证表单之类的并没有太多的不同。 下面就结合程序给大家一步一步讲解(程序难免有不合理之处,希望大家多多指正,共同进步): 第一部分:javascript纪录浏览动作 复制内容到剪贴板 代码: function glog(evt) //定义纪录鼠标点击动作的函数 { evt=evt?evt:window.event;var srcElem=(evt.target)?evt.target:evt.srcElement; try { while(srcElem.parentNode&&srcElem!=srcElem.parentNode) //以上这个语句判断鼠标动作是否发生在有效区域,防止用户的无效点击也被纪录下来 { if(srcElem.tagName&&srcElem.tagName.toUpperCase()=="A")//判断用户点击的对象是否属于链接 { linkname=srcElem.innerHTML; //取出事件发生源的名称,也就是和之间的文字,也就是链接名称哈 address=srcElem.href+"_www.achome.cn_"; //取出事件发生源的href值,也就是该链接的地址 wlink=linkname+"+"+address; //将链接名称和链接地址整合到一个变量当中 old_info=getCookie("history_info"); //从Cookies中取出以前纪录的浏览历史,该函数后面有声明 //以下程序开始判断新的浏览动作是否和已有的前6个历史重复,如果不重复则写入cookies var insert=true; if(old_info==null) //判断cookie是否为空 { insert=true; } else { var old_link=old_info.split("_www.achome.cn_"); for(var j=0;j<=5;j++) { if(old_link[j].indexOf(linkname)!=-1) insert=false; if(old_link[j]=="null") break; } } if(insert) { wlink+=getCookie("history_info"); setCookie("history_info",wlink); //写入cookie,该函数后面有声明 history_show().reload(); break; } } srcElem = srcElem.parentNode; } } catch(e){} return true; } document.οnclick=glog;//使每一次页面的点击动作都执行glog函数 第2部分:Cookies的相关函数 复制内容到剪贴板 代码: //cookie的相关函数 //读取cookie中指定的内容 function getCookieVal (offset) { var endstr = document.cookie.indexOf (";", offset); if (endstr == -1) endstr = document.cookie.length; return unescape(document.cookie.substring(offset, endstr)); } function getCookie (name) { var arg = name + "="; var alen = arg.length; var clen = document.cookie.length; var i = 0; while (i < clen) { var j = i + alen; if (document.cookie.substring(i, j) == arg) return getCookieVal (j); i = document.cookie.indexOf(" ", i) + 1; if (i == 0) break; } return null; } //将浏览动作写入cookie function setCookie (name, value) { var exp = new Date(); exp.setTime (exp.getTime()+3600000000); document.cookie = name + "=" + value + "; expires=" + exp.toGMTString(); } 第3部分:页面显示函数 复制内容到剪贴板 代码: function history_show() { var history_info=getCookie("history_info"); //取出cookie中的历史记录 var content=""; //定义一个显示变量 if(history_info!=null) { history_arg=history_info.split("_www.achome.cn_"); var i; for(i=0;i<=5;i++) { if(history_arg[i]!="null") { var wlink=history_arg[i].split("+"); content+=("↑"+""+wlink[0]+" "); } document.getElementById("history").innerHTML=content; } } else {document.getElementById("history").innerHTML="对不起,您没有任何浏览纪录";} } 代码差不多就是这些了 就为大家分析到这里 还有不足之处还请大家多多指教 下面可以运行代码查看效果 查看效果 //cookie的相关函数 function getCookieVal (offset) { var endstr = document.cookie.indexOf (";", offset); if (endstr == -1) endstr = document.cookie.length; return unescape(document.cookie.substring(offset, endstr)); } function getCookie (name) { var arg = name + "="; var alen = arg.length; var clen = document.cookie.length; var i = 0; while (i < clen) { var j = i + alen; if (document.cookie.substring(i, j) == arg) return getCookieVal (j); i = document.cookie.indexOf(" ", i) + 1; if (i == 0) break; } return null; } function setCookie (name, value) { var exp = new Date(); exp.setTime (exp.getTime()+3600000000); document.cookie = name + "=" + value + "; expires=" + exp.toGMTString(); } function glog(evt) { evt=evt?evt:window.event;var srcElem=(evt.target)?evt.target:evt.srcElement; try { while(srcElem.parentNode&&srcElem!=srcElem.parentNode) { if(srcElem.tagName&&srcElem.tagName.toUpperCase()=="A") { linkname=srcElem.innerHTML; address=srcElem.href+"_www.achome.cn_"; wlink=linkname+"+"+address; old_info=getCookie("history_info"); var insert=true; if(old_info==null) //判断cookie是否为空 { insert=true; } else { var old_link=old_info.split("_www.achome.cn_"); for(var j=0;j<=5;j++) { if(old_link[j].indexOf(linkname)!=-1) insert=false; if(old_link[j]=="null") break; } } / if(insert) //如果符合条件则重新写入数据 { wlink+=getCookie("history_info"); setCookie("history_info",wlink); history_show().reload(); break; } } srcElem = srcElem.parentNode; } } catch(e){} return true; } document.οnclick=glog; function history_show() { var history_info=getCookie("history_info"); var content=""; if(history_info!=null) { history_arg=history_info.split("_www.achome.cn_"); var i; for(i=0;i<=5;i++) { if(history_arg[i]!="null") { var wlink=history_arg[i].split("+"); content+=("↑"+""+wlink[0]+" "); } document.getElementById("history").innerHTML=content; } } else {document.getElementById("history").innerHTML="对不起,您没有任何浏览纪录";} } // JavaScript Document 浏览历史排行(只显示6个最近访问站点并且没有重复的站点出现) history_show(); 点击链接: 网站1 网站2 网站3 网站4 网站5 网站6 网站7 网站8 网站9 如果有其他疑问请登陆www.achome.cn与我联系 提示:您可以先修改部分代码再运行 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_30611227/article/details/117818020。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-30 21:14:40
49
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
ps aux | grep keyword
- 查看含有特定关键词的进程详情。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"