前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[JSON数组与JavaScript原生数...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
MySQL
...要作用。近期,随着云原生技术的快速发展,Sqoop也正在适应新的环境变化。例如,Cloudera公司推出了在容器化环境下优化的Sqoop 2.0版本,支持Kubernetes等云平台部署,增强了其在混合云和多云场景下的数据迁移能力。 与此同时,对于大规模数据导入导出性能优化的研究也在不断深入。有研究人员探讨了如何结合Spark或Flink等现代大数据处理框架与Sqoop进行协同工作,以提升数据迁移效率并确保数据一致性。此外,业界也在探索通过引入并发控制策略、改进分区算法等方式来进一步优化Sqoop的工作负载管理。 值得注意的是,虽然Sqoop在关系型数据库与Hadoop之间架起了一座桥梁,但在数据迁移过程中,安全性与合规性问题同样不容忽视。因此,关于Sqoop的数据加密传输、权限管理和审计日志等相关功能的使用与配置教程,成为了许多企业和组织关注的焦点。 总之,在大数据时代背景下,Apache Sqoop的重要性不言而喻,而随着技术进步和行业需求的变化,Sqoop将继续发展和完善,为企业在复杂IT架构下实现高效、安全的数据流动提供有力支持。
2023-04-12 16:50:07
247
素颜如水_t
MySQL
...输出是一个层级结构的数组。具体操作如下: php function getTree($id){ $sql = "SELECT FROM node WHERE parent_id = '$id'"; $result = mysqli_query($conn, $sql); $arr = array(); while($row = mysqli_fetch_assoc($result)){ $arr[] = $row; } foreach($arr as $value){ if($value['child'] > 0){ $arr = array_merge($arr, getTree($value['id'])); } } return $arr; } 以上就是使用递归来处理无限极分类的一个简单示例。这个例子嘛,我们先从某个特定的老爸节点下手,把它的所有小崽子(子节点)都给挖出来。接着呢,对每一个小崽子,如果它们自己还有更下一代的小崽子,那我们就得像孙悟空钻进葫芦娃的肚子里那样,一层层地往里递归调用这个过程,把那些隐藏更深的孙子辈节点也给找全了。最后呢,咱们把这一大家子所有的节点都聚到一块儿,拼成一个完整的、层层分明的家族结构。 然而,递归虽然强大,但也有它的局限性。当数据量大时,递归可能会导致栈溢出,影响程序的执行效率。因此,我们需要寻找其他的解决方案。 五、不使用递归,如何处理无限极分类? 那么,如果不使用递归,我们该如何处理无限极分类呢?答案就是使用非递归的方式,也就是我们常说的迭代法。 迭代法的基本思想是从根节点开始,每次只处理一层数据,直到处理完所有的数据。这种方法压根儿不需要递归调用,所以你完全不用担心什么栈溢出的问题。而且实话跟你说,通常情况下,它的工作效率要比递归高不少! 接下来,我们来看一下如何使用迭代法处理无限极分类。假设我们已经有了一个无限极分类的数据库表,其中包含id、parent_id和name三个字段。我们可以按照以下步骤进行处理: 1. 创建一个空的层级结构数组,用于存储所有的节点; 2. 获取根节点,将其添加到层级结构数组中; 3. 遍历所有的节点,对于每一个节点,如果它还没有被处理过,则对其进行处理,将其添加到层级结构数组中,然后处理它的所有子节点。 具体的代码实现如下: php function getTree($root){ $tree = array(); $queue = array($root); while(count($queue) > 0){ $node = array_shift($queue); $tree[$node['id']] = array( 'id' => $node['id'], 'parent_id' => $node['parent_id'], 'name' => $node['name'], 'children' => array() ); if($node['child'] > 0){ $queue = array_merge($queue, getChildren($conn, $node['id'])); } } return $tree; } function getChildren($conn, $id){ $sql = "SELECT FROM node WHERE parent_id = '$id'"; $result = mysqli_query($conn, $sql); $arr = array(); while($row = mysqli_fetch_assoc($result)){ $arr[] = $row; } return $arr; } 以上就是在非递归的情况下,处理无限极分类的一个简单示例。在举这个例子的时候,我们首先动手整了个空荡荡的层级结构数组出来,接着找准了那个根节点,把它给塞进了这个层级结构数组里头。然后,我们就像在超市排队结账一样,用一个队列来装那些等待被处理的节点。每当轮到一个节点时,我们就把它从队列里拽出来,塞进层级结构数组这个大篮子里,并且仔仔细细地处理它所有的“孩子”——也就是子节点。最后一步,咱们就像玩接龙游戏一样,把已经处理过的节点从队列里拿出来,然后美滋滋地接着处理下一个排着队的节点,就这么一直玩下去,直到队列里一个节点都不剩,就表示大功告成了! 总结来说,无论是使用递归还是非递归,都可以有效地处理无限极分类。但是,不同的方法适用于不同的场景,我们需要根据实际情况选择合适的方法。
2023-08-24 16:14:06
58
星河万里_t
MemCache
...CPU资源: javascript top - 13:34:47 up 1 day, 6:13, 2 users, load average: 0.24, 0.36, 0.41 Tasks: 174 total, 1 running, 173 sleeping, 0 stopped, 0 zombie %Cpu(s): 0.2 us, 0.3 sy, 0.0 ni, 99.5 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st KiB Mem : 16378080 total, 16163528 free, 182704 used, 122848 buff/cache KiB Swap: 0 total, 0 free, 0 used. 2120360 avail Mem PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 3106 root 20 0 1058688 135484 4664 S 45.9 8.3 1:23.79 python memcached_client.py 我们可以看到,PID为31063的Python程序正在占用大量的CPU资源。接着,我们可以使用ps命令进一步了解这个进程的情况: bash ps -p 3106 2. 查看Memcached配置文件 在确认Memcached进程是否异常后,我们需要查看其配置文件,以确定是否存在配置错误导致的高CPU资源消耗。例如,以下是一个默认的Memcached配置文件(/etc/memcached.conf)的一部分: php-template Default MaxItems per key (65536). default_maxbytes 67108864 四、解决Memcached进程占用CPU高的方案 1. 调整Memcached配置 根据Memcached配置不当的原因,我们可以调整相关参数来降低CPU资源消耗。例如,可以减少过期时间、增大最大数据大小等。以下是修改过的配置文件的一部分: php-template Default MaxItems per key (131072). default_maxbytes 134217728 Increase expiration time to reduce CPU usage. default_time_to_live 14400 2. 控制与Memcached的交互频率 对于因大量客户端交互导致的高CPU资源消耗问题,我们可以采取一些措施来限制与Memcached的交互频率。例如,可以在服务器端添加限流机制,防止短时间内产生大量请求。或者,优化客户端代码,减少不必要的网络通信。 3. 提升硬件设备性能 最后,如果其他措施都无法解决问题,我们也可以考虑提升硬件设备性能,如增加CPU核心数量、扩大内存容量等。但这通常不是最佳解决方案,因为这可能会带来更高的成本。 五、结论 总的来说,Memcached进程占用CPU过高是一个常见的问题,其产生的原因是多种多样的。要真正把这个问题给揪出来,咱们得把系统工具和实际操作的经验都使上劲儿,得像钻井工人一样深入挖掘Memcached这家伙的工作内幕和使用门道。只有这样,才能真正找到问题的关键所在,并提出有效的解决方案。 感谢阅读这篇文章,希望对你有所帮助!
2024-01-19 18:02:16
95
醉卧沙场-t
c++
...处理各种数据结构,如数组、向量、列表等。嘿,兄弟!你知道数据结构这玩意儿能帮咱们整理和保管各种信息吧?但是啊,有时候呢,如果我们操作得不当,它也能给我们惹来一堆麻烦,你懂我的意思吗?就像咱们在厨房里做菜,放多了盐或者少放了调料,菜就可能不好吃一样。所以啊,用数据结构的时候可得小心点儿,别让它变成咱们的“小麻烦制造机”!其中之一就是容器大小不足的问题。哎呀,你懂的,就像你去超市购物,东西已经塞满了购物车,再往里塞个大号的西瓜,那购物车肯定要翻车或者搞不好西瓜砸到脚上。程序也一样,如果数据容器已经装得满满的了,你还拼命往里加东西,要么程序就直接罢工,要么就乱七八糟地运行,搞得谁都不开心。为了不让这种尴尬的状况发生,同时给咱们的程序员小伙伴们提供一份贴心的错误提示,C++这门编程语言特地准备了一个叫做 std::length_error 的小工具。它专门用来告诉我们,哎呀,你的容器(就是那个放东西的大盒子)不够大,装不下你想要塞进去的东西啦!这样一来,咱们在写代码的时候,如果遇到了这种情况,就知道是哪里出了问题,然后就可以愉快地修改和解决啦! 为什么需要 std::length_error 想象一下,你正在开发一个应用程序,它需要在用户输入时动态地增加数据容器的大小。哎呀,兄弟,你可得小心点啊!要是你操作不当,特别是像往杯子里倒水那样,已经装满了还拼命加,那可就麻烦大了。程序也是一样,万一你试图在容器已经满满当当的情况下继续塞东西进去,那可就有可能出岔子。可能就是程序突然罢工,或者变得乱七八糟,啥结果都可能出现。所以啊,记得要适时放手,别让东西堆积成山!使用 std::length_error 可以帮助你在这样的情况下优雅地捕获错误,而不是让程序突然停止工作。 实现 std::length_error 在C++中,std::length_error 是 头文件中的一个类模板。这个类通常用来表示操作的长度超过了容器的当前容量。例如,当你尝试访问一个超出范围的数组索引时,或者在向固定大小的数组或容器添加元素时超过了其最大容量,都会触发 std::length_error。 下面是一个简单的示例代码来展示如何使用 std::length_error: cpp include include include int main() { std::vector vec = {1, 2, 3}; // 尝试向已满的容器添加元素 try { vec.push_back(4); // 这里会触发 std::length_error } catch (const std::length_error& e) { std::cout << "Caught std::length_error: " << e.what() << std::endl; } return 0; } 在这个例子中,我们创建了一个包含三个整数的向量,并尝试向其中添加第四个元素。由于向量已经满了,这会导致 std::length_error 被抛出,然后通过 catch 块捕获并打印错误信息。 如何处理 std::length_error 处理 std::length_error 的方式与处理其他异常类型相同。通常,你会在 try-catch 块中放置可能抛出异常的代码,并在 catch 块中处理错误。例如,在上面的例子中,我们捕获了异常并输出了错误信息。 cpp try { vec.push_back(4); } catch (const std::length_error& e) { std::cerr << "Error: " << e.what() << std::endl; // 可能的处理步骤,例如记录日志、通知用户或尝试释放资源 } 结论 std::length_error 提供了一种机制,使得程序员能够在容器大小不足的情况下得到明确的错误信息,而不是让程序意外崩溃。这对于提高代码的健壮性和用户体验至关重要。哎呀,兄弟!咱们得给程序安个保险丝,对吧?这样,当它碰到那些小麻烦,比如电池没电了或者突然停电啥的,它就能聪明地自我修复,而不是直接挂掉。这样一来,咱们的应用就稳如泰山,用户们也不会觉得突然断线啥的,多爽啊! 总之,std::length_error 是C++程序员工具箱中的一个强大工具,用于管理和响应容器大小不足的错误情况。哎呀,兄弟!理解并掌握这种错误处理的方法,能让你的软件不仅稳定得像座大山,还能让用户用起来舒心顺手,就像喝了一口冰凉的可乐,那叫一个爽!这样一来,你的程序不仅能在复杂的世界里稳如泰山,还能让使用者觉得你是个细心周到的好伙伴。别忘了,这可是让你的软件在芸芸众生中脱颖而出的秘诀!
2024-10-03 15:50:22
51
春暖花开
转载文章
...实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 权限信息 · com.android.launcher.permission.INSTALL_SHORTCUT · 完全的网络访问权限 · 控制振动 · 查看网络连接 · 更改系统显示设置 · 开机启动 · 防止手机休眠 · 在其他应用之上显示内容 · 录音 · com.tencent.msf.permission.account.sync · 更改您的音频设置 · 拍摄照片和视频 · 连接WLAN网络和断开连接 · 查看WLAN连接 · 读取手机状态和身份 · 关闭其他应用 · 直接拨打电话号码 · com.android.launcher.permission.READ_SETTINGS · com.android.launcher.permission.UNINSTALL_SHORTCUT · 让应用始终运行 · 修改系统设置 · 发送短信 · 检索正在运行的应用 · com.tencent.permission.VIRUS_SCAN · 查阅敏感日志数据 · 控制闪光灯 · 与蓝牙设备配对 · 访问蓝牙设置 · 发送持久广播 · android.permission.WRITE_OWNER_DATA · android.permission.SYSTEM_OVERLAY_WINDOW · 更改网络连接性 · com.android.launcher.permission.WRITE_SETTINGS · com.android.launcher3.permission.READ_SETTINGS · com.android.launcher3.permission.WRITE_SETTINGS · com.htc.launcher.permission.READ_SETTINGS · com.htc.launcher.permission.WRITE_SETTINGS · com.huawei.launcher3.permission.READ_SETTINGS · com.google.android.launcher.permission.READ_SETTINGS · com.google.android.launcher.permission.WRITE_SETTINGS · 读取日历活动和机密信息 · 添加或修改日历活动,并在所有者不知情的情况下向邀请对象发送电子邮件 · com.sonyericsson.home.permission.BROADCAST_BADGE · com.sec.android.provider.badge.permission.READ · com.sec.android.provider.badge.permission.WRITE · 查找设备上的帐户 · 添加或移除帐户 · 创建帐户并设置密码 · 读取同步设置 · 启用和停用同步 · 停用屏幕锁定 · 允许接收WLAN多播 · com.qq.qcloud.permission.ACCESS_ALBUM_BACKUP_LIST · com.android.vending.BILLING · 关闭其他应用 · 控制近距离通信 · com.tencent.photos.permission.DATA · com.tencent.msf.permission.account.sync · com.tencent.music.data.permission · com.tencent.msf.permission.ACCOUNT_NOTICE · 连接WLAN网络和断开连接 · 完全的网络访问权限 · 查看WLAN连接 · 查看网络连接 · 精确位置(基于GPS和网络) · 大致位置(基于网络) · 拍摄照片和视频 · 读取手机状态和身份 · 防止手机休眠 · com.android.launcher.permission.INSTALL_SHORTCUT · 修改或删除您的USB存储设备中的内容 · 开机启动 · com.tencent.msg.permission.pushnotify · com.tencent.msf.permission.account.sync · 读取您的USB存储设备中的内容 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_30590615/article/details/117615194。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-10 14:42:10
104
转载
Apache Lucene
...,包括文本、XML和JSON,广泛应用于各种应用程序中,以实现快速、精确的搜索功能。在本文中,Lucene是实现模糊搜索的关键组件,其FuzzyQuery允许在用户输入不精确时找到相关文档。 FuzzyQuery , Lucene中的一个高级查询工具,用于处理模糊匹配。它通过计算查询词与索引中的单词之间的Levenshtein距离,即编辑距离,来找到相似度达到预设阈值的文档。FuzzyQuery允许一定程度的错误容忍度,使得搜索结果更加灵活,适合纠正拼写错误或者处理用户输入的不确定性。 Levenshtein距离 , 也称为编辑距离,是一种衡量两个字符串间差异的方法,通过计算从一个字符串转换为另一个字符串所需的最少单字符插入、删除或替换操作次数。在FuzzyQuery中,编辑距离用来确定搜索词与索引中的词汇之间的相似度,从而在模糊搜索中找到匹配项。 编辑距离阈值 , 在使用FuzzyQuery时,用户可以设置的一个参数,用于控制模糊匹配的程度。这个值决定了搜索时允许的最大编辑距离,较高的阈值意味着更容易找到与查询词相似的文档,但可能会引入更多的非精确结果。 BM25 , 一种经典的文本检索模型,它根据文档中关键词的出现频率和文档的整体长度等因素计算文档的相关度。在现代搜索引擎中,与BERT结合使用,可以提供更准确的模糊查询结果,尤其是在处理长尾查询时。 BERT , 双向编码器表示变换器,是一种预训练的深度学习模型,特别擅长理解和生成自然语言文本。在搜索引擎中,BERT可以理解查询的语义,从而提高模糊查询的准确性,超越了基于编辑距离的传统方法。 Transformer-based检索模型 , 这类模型基于Transformer架构,如ANCE和ANCE-R,能够捕捉文档间的全局关系,提供更高质量的搜索结果,尤其在处理复杂的模糊查询时,性能优越。 个性化推荐 , 根据用户的个人历史行为、偏好和上下文信息,为用户提供定制化搜索结果的过程。现代搜索引擎通过结合模糊查询和用户行为分析,提供更符合用户需求的搜索体验。
2024-06-11 10:54:39
497
时光倒流
ZooKeeper
... 行业动态观察:《云原生时代下,ZooKeeper面临的挑战与机遇》——随着云计算和容器化技术的发展,ZooKeeper作为传统的分布式协调服务,在云原生环境下面临着新的挑战和机遇。该篇报道分析了ZooKeeper如何适应快速变化的技术趋势,并与其他新兴的分布式协调工具进行比较,展望未来发展趋势。 5. 开源社区热点:《Apache Curator库在ZooKeeper使用中的重要角色》——Curator是专为ZooKeeper设计的开源Java客户端库,它简化了ZooKeeper的复杂操作,提供了一套高级API以更好地遵循ZooKeeper的设计原则。了解Curator的应用可以加深对ZooKeeper在实际开发中高效利用的理解。 以上延伸阅读内容旨在帮助读者紧跟分布式系统领域的发展步伐,从理论到实践全方位拓展对ZooKeeper设计原则的认知和应用能力。
2024-02-15 10:59:33
31
人生如戏-t
转载文章
...实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 内存管理可以分为三个层次,自底向上分别是: 操作系统内核的内存管理 用户空间lib库的内存管理算法 应用程序从lib库申请内存后,根据应用程序本身的程序特性进行优化, 比如使用引用计数std::shared_ptr,内存池方式等等。 1. 用户空间内存管理 目前大部分用户控件程序使用glibc提供的malloc/free系列函数,而glibc使用的ptmalloc2在性能上远远弱后于google的tcmalloc和facebook的jemalloc。 而且后两者只需要使用LD_PRELOAD环境变量启动程序即可,甚至并不需要重新编译。 1.1 ptmalloc2 malloc是一个C库中的函数,malloc向glibc请求内存空间。glibc初始分配或者通过brk和sbrk或者mmap向内核批发内存,然后“卖”给我们malloc使用。 既然brk、mmap提供了内存分配的功能,直接使用brk、mmap进行内存管理不是更简单吗,为什么需要glibc呢? 因为系统调用,导致程序从用户态陷入内核态,比较消耗资源。为了减少系统调用带来的性能损耗,glibc采用了内存池的设计,增加了一个代理层,每次内存分配,都优先从内存池中寻找,如果内存池中无法提供,再向操作系统申请。 1.2 tcmalloc tcmalloc 是google开发的内存分配算法库,用来替代传统的malloc内存分配函数,它有减少内存碎片,适用于多核,更好的并行性支持等特性。 要使用tcmalloc,只要将tcmalloc通过-ltcmalloc连接到应用程序即可。 也可以使用LD_PRELOAD在不是你自己编译的应用程序中使用:$ LD_PRELOAD="/usr/lib/libtcmalloc.so" 2. 内核空间内存管理 linux操作系统内核,将内存分为一个个页去管理。 2.1 页面管理算法–伙伴系统 在实际应用中,而频繁地申请和释放不同大小的连续页框,必然导致在已分配页框的内存块中分散了许多小块的空闲页框。这样,即使这些页框是空闲的,其他需要分配连续页框的应用也很难得到满足。 为了避免出现这种内存碎片,Linux内核中引入了伙伴系统算法(buddy system)。 2.1.1 Buddy(伙伴的定义) 满足以下三个条件的称为伙伴: 1)两个块大小相同; 2)两个块地址连续; 3)两个块必须是同一个大块中分离出来的; 2.1.2 Buddy算法的分配 假设要申请一个256个页框的块,先从256个页框的链表中查找空闲块,如果没有,就去512个页框的链表中找,找到了则将页框块分为2个256个页框的块,一个分配给应用,另外一个移到256个页框的链表中。如果512个页框的链表中仍没有空闲块,继续向1024个页框的链表查找,如果仍然没有,则返回错误。 2.1.3 Buddy算法的释放 内存的释放是分配的逆过程,也可以看作是伙伴的合并过程。页框块在释放时,会主动将两个连续的页框块合并为一个较大的页框块。 2.2 Slab机制 slab是Linux操作系统的一种内存分配机制。其工作是针对一些经常分配并释放的对象,如进程描述符等,这些对象的大小一般比较小,如果直接采用伙伴系统来进行分配和释放,不仅会造成大量的内碎片,而且处理速度也太慢。 而slab分配器是基于对象进行管理的,相同类型的对象归为一类(如进程描述符就是一类),每当要申请这样一个对象,slab分配器就从一个slab列表中分配一个这样大小的单元出去,而当要释放时,将其重新保存在该列表中,而不是直接返回给伙伴系统,从而避免这些内碎片。slab分配器并不丢弃已分配的对象,而是释放并把它们保存在内存中。当以后又要请求新的对象时,就可以从内存直接获取而不用重复初始化。 2.3 内核中申请内存的函数 2.3.1 __get_free_pages __get_free_pages函数是最原始的内存分配方式,直接从伙伴系统中获取原始页框,返回值为第一个页框的起始地址. 2.3.2 kmem_cache_alloc kmem_cache_create/ kmem_cache_alloc是基于slab分配器的一种内存分配方式,适用于反复分配释放同一大小内存块的场合。首先用kmem_cache_create创建一个高速缓存区域,然后用kmem_cache_alloc从 该高速缓存区域中获取新的内存块。 2.3.3 kmalloc kmalloc是内核中最常用的一种内存分配方式,它通过调用kmem_cache_alloc函数来实现。 kmalloc() 申请的内存位于物理内存映射区域,而且在物理上也是连续的,它们与真实的物理地址只有一个固定的偏移,因为存在较简单的转换关系,所以对申请的内存大小有限制,不能超过128KB。 较常用的flags()有: GFP_ATOMIC —— 不能睡眠; GFP_KERNEL —— 可以睡眠; GFP_DMA —— 给 DMA 控制器分配内存,需要使用该标志。 2.3.4 vmalloc vmalloc() 函数则会在虚拟内存空间给出一块连续的内存区,但这片连续的虚拟内存在物理内存中并不一定连续。由于 vmalloc() 没有保证申请到的是连续的物理内存,因此对申请的内存大小没有限制,如果需要申请较大的内存空间就需要用此函数了。 注意vmalloc和vfree时可以睡眠的,因此不能从中断上下问调用。 一般情况下,内存只有在要被 DMA 访问的时候才需要物理上连续,但为了性能上的考虑,内核中一般使用 kmalloc(),而只有在需要获得大块内存时才使用 vmalloc()。例如,当模块被动态加载到内核当中时,就把模块装载到由 vmalloc() 分配的内存上。 本篇文章为转载内容。原文链接:https://secdev.blog.csdn.net/article/details/109731954。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-26 20:46:17
231
转载
转载文章
...实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 前言 Neighbor2Neighbor属于自监督去噪中算法,通过训练后可以对任意尺寸的图像进行去噪,现在对去噪代码中如何实现任意尺寸图像去噪进行解读。 代码 先贴源码 import torchfrom PIL import Imagefrom torchvision import transformsfrom arch_unet import UNetimport numpy as npdef get_generator():global operation_seed_counter 全局变量 在局部变量可以引用全局变量并修改operation_seed_counter += 1g_cuda_generator = torch.Generator(device="cuda")g_cuda_generator.manual_seed(operation_seed_counter)return g_cuda_generatorclass AugmentNoise(object): 添加噪声的类def __init__(self, style):print(style)if style.startswith('gauss'):self.params = [float(p) / 255.0 for p in style.replace('gauss', '').split('_')]if len(self.params) == 1:self.style = "gauss_fix"elif len(self.params) == 2:self.style = "gauss_range"elif style.startswith('poisson'):self.params = [float(p) for p in style.replace('poisson', '').split('_')]if len(self.params) == 1:self.style = "poisson_fix"elif len(self.params) == 2:self.style = "poisson_range"def add_train_noise(self, x):shape = x.shapeif self.style == "gauss_fix":std = self.params[0]std = std torch.ones((shape[0], 1, 1, 1), device=x.device)noise = torch.cuda.FloatTensor(shape, device=x.device)torch.normal(mean=0.0,std=std,generator=get_generator(),out=noise)return x + noiseelif self.style == "gauss_range":min_std, max_std = self.paramsstd = torch.rand(size=(shape[0], 1, 1, 1),device=x.device) (max_std - min_std) + min_stdnoise = torch.cuda.FloatTensor(shape, device=x.device)torch.normal(mean=0, std=std, generator=get_generator(), out=noise)return x + noiseelif self.style == "poisson_fix":lam = self.params[0]lam = lam torch.ones((shape[0], 1, 1, 1), device=x.device)noised = torch.poisson(lam x, generator=get_generator()) / lamreturn noisedelif self.style == "poisson_range":min_lam, max_lam = self.paramslam = torch.rand(size=(shape[0], 1, 1, 1),device=x.device) (max_lam - min_lam) + min_lamnoised = torch.poisson(lam x, generator=get_generator()) / lamreturn noiseddef add_valid_noise(self, x):shape = x.shapeif self.style == "gauss_fix":std = self.params[0]return np.array(x + np.random.normal(size=shape) std,dtype=np.float32)elif self.style == "gauss_range":min_std, max_std = self.paramsstd = np.random.uniform(low=min_std, high=max_std, size=(1, 1, 1))return np.array(x + np.random.normal(size=shape) std,dtype=np.float32)elif self.style == "poisson_fix":lam = self.params[0]return np.array(np.random.poisson(lam x) / lam, dtype=np.float32)elif self.style == "poisson_range":min_lam, max_lam = self.paramslam = np.random.uniform(low=min_lam, high=max_lam, size=(1, 1, 1))return np.array(np.random.poisson(lam x) / lam, dtype=np.float32)model_path = 'test_dir/unet_gauss25_b4e100r02/2022-03-02-22-24/epoch_model_040.pth' 导入训练的模型文件device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')net = UNet().to(device)net.load_state_dict(torch.load(model_path, map_location=device))net.eval()noise_adder = AugmentNoise(style='gauss25')img = Image.open('validation/Kodak/000014.jpg')im = np.array(img, dtype=np.float32) / 255.0origin255 = im.copy()origin255 = origin255.astype(np.uint8)noisy_im = noise_adder.add_valid_noise(im)H = noisy_im.shape[0]W = noisy_im.shape[1]val_size = (max(H, W) + 31) // 32 32noisy_im = np.pad(noisy_im,[[0, val_size - H], [0, val_size - W], [0, 0]],'reflect')transformer = transforms.Compose([transforms.ToTensor()])noisy_im = transformer(noisy_im)noisy_im = torch.unsqueeze(noisy_im, 0)noisy_im = noisy_im.cuda()with torch.no_grad():prediction = net(noisy_im)prediction = prediction[:, :, :H, :W]prediction = prediction.permute(0, 2, 3, 1)prediction = prediction.cpu().data.clamp(0, 1).numpy()prediction = prediction.squeeze()pred255 = np.clip(prediction 255.0 + 0.5, 0, 255).astype(np.uint8)Image.fromarray(pred255).convert('RGB').save('test1.png') 输入图像 尺寸大小为(408, 310),PIL读入后进行归一化处理。 img = Image.open('validation/Kodak/00001.jpg')print('img', img.size) img (408, 310)im = np.array(img, dtype=np.float32) / 255.0print('im', im.shape) im (310, 408, 3) 先对不规则图像进行填充,要求填充的尺寸是32的倍数,否则输入到网络中会报错。在训练的时候是随机裁剪256256的切片的。 b = torch.rand(1, 3, 255, 255).to('cuda')a = net(b)print(a.shape) 在卷积神经网络中,为了避免因为卷积运算导致输出图像缩小和图像边缘信息丢失,常常采用图像边缘填充技术,即在图像四周边缘填充0,使得卷积运算后图像大小不会缩小,同时也不会丢失边缘和角落的信息。在Python的numpy库中,常常采用numpy.pad()进行填充操作。 val_size = (max(H, W) + 31) // 32 32noisy_im = np.pad(noisy_im,[[0, val_size - H], [0, val_size - W], [0, 0]],'reflect') ‘reflect’, 表示对称填充。 上图转自 http://t.zoukankan.com/shuaishuaidefeizhu-p-14179038.html >>> a = [1, 2, 3, 4, 5]>>> np.pad(a, (2, 3), 'reflect')array([3, 2, 1, 2, 3, 4, 5, 4, 3, 2]) 个人感觉使用reflect操作,而不是之间的填充0是为了在边缘去噪的时候更平滑一些。镜像填充后的图如下: 输入网络后,得到预测结果。最后进行裁剪,得到去噪后的图像。 prediction = prediction[:, :, :H, :W] 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_42948594/article/details/124712116。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-13 14:44:26
128
转载
Apache Solr
...'] json // Grafana仪表盘JSON配置 { "dashboard": { "panels": [ { "type": "graph", "title": "Solr查询响应时间", "targets": [ { "expr": "solr_query_response_time_seconds", "legendFormat": "{ {instance} }" } ] } ] } } 5. 结语 共勉与展望 总的来说,Solr查询性能不稳定是一个复杂的问题,可能涉及多方面的因素。咱们得从内部设置、外部依赖还有监控报警这些方面一起考虑,才能找出个靠谱的解决办法。在这个过程中,我也学到了很多,希望大家能够从中受益。未来,我将继续探索更多关于Solr优化的方法,希望能与大家共同进步! 希望这篇文章对你有所帮助,如果你有任何疑问或想法,欢迎随时交流讨论。
2025-02-08 16:04:27
36
蝶舞花间
Kibana
...型的聚合允许用户编写JavaScript代码来定义自己的聚合逻辑。下面,我们将通过一个简单的示例来展示如何实现一个自定义聚合函数。 示例:计算数据的“活跃天数” 假设我们有一个日志数据集,每条记录代表一次用户操作,我们需要计算用户在某段时间内的活跃天数(即每天至少有一次操作)。 步骤1:定义聚合代码 首先,我们需要编写JavaScript代码来实现我们的逻辑。以下是一个示例: javascript { "aggs": { "active_days": { "scripted_metric": { "init_script": "total_days = 0", "map_script": "if (doc['timestamp'].value > 0) { total_days++; }", "combine_script": "return total_days", "reduce_script": "return sum" } } }, "script_fields": { "timestamp": { "script": { "source": "doc['timestamp'].value", "lang": "painless" } } } } 解释: - init_script:初始化变量total_days为0。 - map_script:当timestamp字段值大于0时,将total_days加1。 - combine_script:返回当前total_days的值。 - reduce_script:用于汇总多个聚合结果,这里使用sum函数将所有total_days值相加。 步骤2:执行聚合 在Kibana中创建一个新的搜索查询,选择_scripted_metric聚合类型,并粘贴上述代码片段。确保数据源正确,然后运行查询以查看结果。 三、实战应用与优化 在实际项目中,自定义聚合函数可以极大地增强数据分析的能力。例如,你可能需要根据业务需求调整map_script中的条件,或者优化init_script和combine_script以提高性能。 实践建议: - 测试与调试:在部署到生产环境前,务必充分测试自定义聚合函数,确保其逻辑正确且性能良好。 - 性能考虑:自定义聚合函数可能会增加查询的复杂度和执行时间,特别是在处理大量数据时。合理设计脚本,避免不必要的计算,以提升效率。 - 可读性:保持代码简洁、注释清晰,方便团队成员理解和维护。 四、结语 自定义数据聚合函数是Kibana强大的功能之一,它赋予了用户无限的创造空间,能够针对特定业务需求进行精细的数据分析。通过本文的探索,相信你已经掌握了基本的实现方法。嘿,兄弟!你得记住,实践就是那最棒的导师。别老是坐在那里空想,多动手做做看,不断试验,然后调整改进。这样啊,你的数据洞察力,那可是能突飞猛进的。就像种花一样,你得浇水、施肥、修剪,它才会开花结果。所以,赶紧去实践吧,让自己的技能开枝散叶!在数据的海洋中航行,自定义聚合函数就是你手中的指南针,引领你发现更多宝藏。
2024-09-16 16:01:07
167
心灵驿站
Apache Solr
...tes实现Solr云原生部署,从而提升系统的稳定性和扩展性。 总之,持续跟进Apache Solr的最新发展动态和技术实践,不仅有助于解决实际运维中的痛点问题,更能确保搜索服务始终处于行业领先水平,满足业务高速发展的需求。
2023-05-31 15:50:32
496
山涧溪流-t
ClickHouse
...y是一款完全托管的云原生数据仓库,它采用了先进的列式存储技术和智能分区功能,使得跨表查询变得更加高效。谷歌还引入了自动化的机器学习模型,帮助企业更好地管理和分析数据。这些创新举措表明,未来数据库系统的发展方向将是智能化、自动化以及更高层次的用户体验。 此外,清华大学计算机系教授李国杰院士曾指出:“未来的数据库系统不仅要满足基本的数据存储和查询需求,还要具备更强的数据处理能力和更高的安全性。”这为我们指明了数据库技术发展的新趋势。无论是ClickHouse、AnalyticDB for MySQL还是BigQuery,都在朝着这个方向迈进。企业和开发者应当密切关注这些前沿技术,以便在未来竞争中占据有利地位。
2025-04-24 16:01:03
23
秋水共长天一色
转载文章
...实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 ↑ 点击上方【计算机视觉联盟】关注我们 最经典的决策树算法有ID3、C4.5、CART,其中ID3算法是最早被提出的,它可以处理离散属性样本的分类,C4.5和CART算法则可以处理更加复杂的分类问题,本文重点介绍ID3算法。 1、决策树基本流程 决策树 (decision tree) 是一类常见的机器学习方法。它是对给定的数据集学到一个模型对新示例进行分类的过程。下图所示为一个流程图的决策树,长方形代表判断模块(decision block),椭圆形代表终止模块(terminating block),表示已经得出结论,可以终止运行。从判断模块引出的左右箭头称作分支(branch),可以达到另一个判断模块或终止模块。 决策过程是基于树结构来进行决策的。如下图,首先检查邮件域名地址,如果地址为myEmployer.com,则将其分类为“无聊时需要阅读的邮件”。否则,则检查邮件内容里是否包含单词“曲棍球”,如果包含则归类为“需要及时处理的朋友邮件”,如果不包含则归类到“无需阅读的垃圾邮件” 流程图形式的决策树 显然,决策过程的最终结论对应了我们所希望的判定结果,例如"需要阅读"或"不需要阅读”。 决策过程中提出的每个判定问题都是对某个属性的"测试",如邮件地址域名为?是否包含“曲棍球”? 每个测试的结果或是导出最终结论,或是导出进一步的判定问题,其考虑范围是在上次决策结果的限定范围之内,例如若邮件地址域名不是myEmployer.com之后再判断是否包含“曲棍球”。 一般的,决策树包含一个根节点、若干个内部节点和若干个叶节点。根节点包含样本全集;叶节点对应于决策结果,例如“无聊时需要阅读的邮件”。其他每个结点则对应于一个属性测试;每个节点包含的样本集合根据属性测试的结果被划分到子结点中。 决策树学习基本算法 显然,决策树的生成是一个递归过程.在决策树基本算法中,有三种情形会导致递归返回: (1)当前结点包含的样本全属于同一类别,无需划分; (2)当前属性集为空,或是所有样本在所有属性上取值相同,无法划分; (3)当前结点包含的样本集合为空,不能划分。 2、划分选择 决策树算法的关键是如何选择最优划分属性。一般而言,随着划分过程不断进行,我们希望决策树的分支结点所包含的样本尽可能属于同一类别,即结点的"纯度" (purity)越来越高。 (1)信息增益 信息熵 "信息熵" (information entropy)是度量样本集合纯度最常用的一种指标,定义为信息的期望。假定当前样本集合 D 中第 k 类样本所占的比例为 ,则 D 的信息熵定义为: H(D)的值越小,则D的纯度越高。信息增益 一般而言,信息增益越大,则意味着使周属性 来进行划分所获得的"纯度提升"越大。因此,我们可用信息增益来进行决策树的划分属性选择,信息增益越大,属性划分越好。 以西瓜书中表 4.1 中的西瓜数据集 2.0 为例,该数据集包含17个训练样例,用以学习一棵能预测设剖开的是不是好瓜的决策树.显然,。 在决策树学习开始时,根结点包含 D 中的所有样例,其中正例占 ,反例占 信息熵计算为: 我们要计算出当前属性集合{色泽,根蒂,敲声,纹理,脐部,触感}中每个属性的信息增益。以属性"色泽"为例,它有 3 个可能的取值: {青绿,乌黑,浅自}。若使用该属性对 D 进行划分,则可得到 3 个子集,分别记为:D1 (色泽=青绿), D2 (色泽2=乌黑), D3 (色泽=浅白)。 子集 D1 包含编号为 {1,4,6,10,13,17} 的 6 个样例,其中正例占 p1=3/6 ,反例占p2=3/6; D2 包含编号为 {2,3,7,8, 9,15} 的 6 个样例,其中正例占 p1=4/6 ,反例占p2=2/6; D3 包含编号为 {5,11,12,14,16} 的 5 个样例,其中正例占 p1=1/5 ,反例占p2=4/5; 根据信息熵公式可以计算出用“色泽”划分之后所获得的3个分支点的信息熵为: 根据信息增益公式计算出属性“色泽”的信息增益为(Ent表示信息熵): 类似的,可以计算出其他属性的信息增益: 显然,属性"纹理"的信息增益最大,于是它被选为划分属性。图 4.3 给出了基于"纹理"对根结点进行划分的结果,各分支结点所包含的样例子集显示在结点中。 然后,决策树学习算法将对每个分支结点做进一步划分。以图 4.3 中第一个分支结点( "纹理=清晰" )为例,该结点包含的样例集合 D 1 中有编号为 {1, 2, 3, 4, 5, 6, 8, 10, 15} 的 9 个样例,可用属性集合为{色泽,根蒂,敲声,脐部 ,触感}。基于 D1计算出各属性的信息增益: "根蒂"、 "脐部"、 "触感" 3 个属性均取得了最大的信息增益,可任选其中之一作为划分属性.类似的,对每个分支结点进行上述操作,最终得到的决策树如圈 4.4 所示。 3、剪枝处理 剪枝 (pruning)是决策树学习算法对付"过拟合"的主要手段。决策树剪枝的基本策略有"预剪枝" (prepruning)和"后剪枝 "(post" pruning) [Quinlan, 1993]。 预剪枝是指在决策树生成过程中,对每个结点在划分前先进行估计,若当前结点的划分不能带来决策树泛化性能提升,则停止划 分并将当前结点标记为叶结点; 后剪枝则是先从训练集生成一棵完整的决策树,然后自底向上地对非叶结点进行考察,若将该结点对应的子树替换为叶结点能带来决策树泛化性能提升,则将该子树替换为叶结点。 往期回顾 ● 带你详细了解机器视觉竞赛—ILSVRC竞赛 ● 到底什么是“机器学习”?机器学习有哪些基本概念?(简单易懂) ● 带你自学Python系列(一):变量和简单数据类型(附思维导图) ● 带你自学Python系列(二):Python列表总结-思维导图 ● 2018年度最强的30个机器学习项目! ● 斯坦福李飞飞高徒Johnson博士论文: 组成式计算机视觉智能(附195页PDF) ● 一文详解计算机视觉的广泛应用:网络压缩、视觉问答、可视化、风格迁移 本篇文章为转载内容。原文链接:https://blog.csdn.net/Sophia_11/article/details/113355312。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-27 21:53:08
284
转载
转载文章
...实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 接上一篇文章: 重学音视频?认识 MP4 视频(上) 文章的提到的资料都放在知识星球了,后续的内容更新还是以星球为主,也会放出一些干货在公众号的,现在加入星球还是优惠价,后面干货越多,涨价的可能性就越大了。 一个关于音视频领域专业问答的小圈子!! 为了方便大家的检索,我把专栏内容放在网页上了,地址如下: https://glumes.com/player_book/ 如图所示,就能访问专栏啦。 以下就是专栏的内容: 在前文介绍了 MP4 标准的缘由,现在要详细了解一下它的格式。 还是回到这张图: 重点看这里: 第十四部分(ISO/IEC 14496-14):MPEG-4(即MP4)文件格式:定义基于第十二部分的用于存储MPEG-4内容的视频文档格式。 也就是说 MP4 文件格式是定义在 MPEG-4 第 12 部分基础之上的,而第 12 部分的内容描述如下: 第十二部分(ISO/IEC 14496-12):基于ISO的媒体文件格式:定义一个存储媒体内容的文件格式。 所以,要学习 MP4 文件格式,要先了解 第 12 部分的内容,关于 MPEG-4 第 12 部分的文档,我也同步放在知识星球里面了,有需要的可以去下载。 网上关于 MP4 文件格式的文章内容,基本都可以在第 12 部分中找到,可以说它才是学习知识的源头,当做教科书来学肯定没问题。 有官方文档的情况下,会尽量根据文档来学习,而不是盲目的参考网络博客,那样得到的知识体系太零散了。 MP4 文件组成 摘录一段官方文档的内容: 关于 MP4 文件格式,参照文档说明:文件是由一系列叫做 Box 的对象组成的,所有的数据都存储在 Box 中。 官方文档中把这些由对象结构组成的文件叫做 Object-structured File ,算是一个比较广义的概念,但我们就当做 MP4 格式好了,狭义地理解一下,并且这种文件格式必须要包含 File Type 类型的 Box 。 MP4 中的 Box MP4 中的 Box 有很多类型,每个类型中的 Box 代表的含义还不相同,但他们的基础结构还是相同的,继续往下看文档: 每个 Box 是由 Header 和 Data 两部分组成的,Header 中包含了很多标识信息,而 Data 可以是纯数据也可以是其他的子 Box 。 参照文档内容,Header 中包含了 Box 的大小 Size 和类型 Type。 关于 Size 的说明,参考文档: size 字段包含了 Box 和子 Box 的大小,如果 size 为 1 ,说明实际的大小在 largesize 字段中,如果 size 为 0 ,说明这是文件最后一个 Box 了。 关于 Type 的说明,参考文档: type 字段表示该 Box 的类型,标准的 Box 类型都是用四个字母来表示的,如果是用户自定义的类型,就用 uuid 来表示。 另外,要强调一下 Box 的字节序是网络字节序,也就是大端序,关于 Box 结构的伪代码文档中也给出了: 根据伪代码再看 Box 的结构定义就一目了然了。 MP4 中的 FullBox Box 可以说是所有 Box 类型的基类,接下来要了解它的第一个子类 FullBox 。 FullBox 在 Box 的基础上多了 version 和 flags 字段。 其中 version 字段表示 Box 的版本,flags 字段是标志位。 如果 Box 遇到了无法识别的 version 或者 type 字段,就应该跳过或者忽略。 MP4 中更多的 Box MP4 中还有很多类型的 Box ,其实有些 Box 相当重要,甚至面试中还会经常问到,下面从文档中给大家摘录一下所有的 Box 类型。 这些内容在文档中都有,自行下载了,网络的一些资料可能还没有文档全面呢。 后面我们也会继续讲解这些 Box 类型的,以及使用工具来查看 Box 信息,这节就先到这里啦!!! 众所周知,开通了知识星球,邀请了一些在头条、快手等知名IT企业从事过音视频研发的朋友们做专业咨询,涉及的范围比较广,包括 Android/iOS 开发、Camera 开发、视频编辑、在线直播、WebRTC、播放器、OpenGL、C++ 等等,基本上涵盖了音视频工程领域的绝大部分内容。 关于音视频入门如何学习,学习了 FFmpeg 之后又该怎么办,跳槽选择哪个方向比较好,程序员职业软技能等等之类的问题,更是会以行业一线开发人员的角度帮你认真分析,出谋划策。 力求做到有问必答。在知识范围内,认真地对待每一个提问,不一定所有的问题都能答案,但每一个答案都是详细思考过的。 更多开发资料、博客源码、文档教程都会在星球内给出,白菜价即可加入,iOS 用户可以加我微信 ezglumes 拉你进去!!! 一个音视频领域专业问答的小圈子! 加我微信 ezglumes 拉你入技术交流群 推荐阅读: 音视频开发工作经验分享 || 视频版 OpenGL ES 学习资源分享 开通专辑 | 细数那些年写过的技术文章专辑 Android NDK 免费视频在线学习!!! 你想要的音视频开发资料库来了 推荐几个堪称教科书级别的 Android 音视频入门项目 觉得不错,点个在看呗~ 本篇文章为转载内容。原文链接:https://blog.csdn.net/zhying719/article/details/124464016。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-21 17:43:21
437
转载
Dubbo
...务治理与实践 随着云原生时代的到来,微服务架构因其灵活性和可扩展性,在企业级应用开发中占据着越来越重要的地位。Dubbo作为一款成熟且广泛使用的微服务框架,以其强大的RPC(Remote Procedure Call)能力,在微服务领域展现出独特的优势。然而,随着业务的日益复杂化和规模的不断扩大,如何有效地管理和治理Dubbo微服务,成为了企业关注的焦点。 微服务治理的挑战与机遇 在Dubbo生态中,微服务治理面临的主要挑战包括服务发现、负载均衡、故障隔离、版本控制、配置管理、监控与日志收集等。这些挑战不仅考验着架构师的设计能力,也对企业运维团队提出了更高的要求。同时,面对不断变化的业务需求和技术趋势,如何持续优化微服务架构,提升系统的稳定性、可维护性和扩展性,成为了一个新的机遇。 Dubbo微服务治理的最佳实践 1. 服务注册与发现:利用Dubbo的服务注册中心(如Zookeeper、Eureka等),实现服务的动态注册与发现,简化服务间通信,提高系统的可扩展性和容错能力。 2. 负载均衡策略:根据业务需求选择合适的负载均衡算法(如轮询、随机、哈希等),确保服务请求的均匀分布,提高服务的响应速度和资源利用率。 3. 健康检查与故障隔离:通过定期的心跳检测,及时发现服务的健康状态,实现快速的故障隔离,降低系统风险。 4. 版本控制与灰度发布:采用Dubbo的版本控制机制,实现服务的平滑升级,支持灰度发布,减少系统切换带来的风险。 5. 配置管理与动态路由:利用外部配置中心(如Nacos、Consul等)集中管理服务配置,支持动态路由规则,适应快速变化的业务需求。 6. 监控与日志体系:建立全面的监控体系,包括服务调用链路追踪、性能指标监控、日志分析等,实时掌握系统状态,快速定位和解决问题。 案例分析:某大型电商平台的Dubbo微服务治理实践 以某大型电商平台为例,该平台在微服务架构改造过程中,采用了上述一系列治理措施,实现了服务的高效稳定运行。通过引入服务注册中心,实现了服务的自动发现与路由;利用健康检查机制,确保了服务的高可用性;通过配置中心统一管理配置,支持服务的快速迭代与部署;此外,借助监控系统,实现了对服务调用链路的全程跟踪,及时发现并解决性能瓶颈。这一系列实践不仅提高了系统的整体性能,也显著提升了用户体验,为电商平台的快速发展提供了坚实的支撑。 结语 Dubbo微服务治理是一个持续迭代的过程,需要企业根据自身业务特点和市场需求,灵活选择和优化治理策略。通过深入理解Dubbo框架的特性和最新发展动态,结合最佳实践案例,企业可以构建出更加稳定、高效、灵活的微服务体系,满足快速变化的业务需求,实现持续的技术创新和业务增长。
2024-08-03 16:26:04
340
春暖花开
ElasticSearch
...h时应优先考虑采用云原生架构,这样不仅能大幅降低运维成本,还能显著提高系统的容灾能力。 总而言之,无论是技术层面还是管理层面,Elasticsearch的应用都需要我们保持高度的警觉和敏锐的洞察力。正如古语所说:“千里之堤,溃于蚁穴。”只有注重每一个细节,才能真正发挥这项技术的巨大潜力。未来,随着更多创新解决方案的涌现,相信Elasticsearch将在推动数字经济发展的过程中扮演越来越重要的角色。
2025-04-20 16:05:02
63
春暖花开
Etcd
近期,随着云原生技术和微服务架构的普及,越来越多的企业开始关注分布式系统的可靠性和效率。在这方面,Etcd作为一款高性能的分布式键值存储系统,正逐渐成为开发者和运维人员的首选工具。最近的一个典型案例来自某知名电商公司,他们通过引入Etcd实现了跨数据中心的库存同步管理,显著提升了系统的可用性和响应速度。这一成功实践不仅证明了Etcd在高并发场景下的稳定性,也展示了其在大规模分布式系统中的广泛应用前景。 与此同时,Etcd社区也在不断迭代更新,最新版本已支持更多高级特性,例如更高效的压缩算法和更强的安全加密机制。这些改进使得Etcd在面对日益复杂的分布式环境时更具竞争力。值得一提的是,国内某大型云计算服务商近日宣布将全面支持Etcd 3.x系列,并计划在未来几个月内推出基于Etcd的托管服务,为企业用户提供更加便捷的部署和管理体验。 此外,关于分布式事务管理的话题,近期有专家指出,尽管Etcd提供了强大的工具集,但在实际应用中仍需谨慎对待事务的粒度和范围。过细的事务划分可能导致性能瓶颈,而过于粗略的设计则可能引发数据不一致的风险。因此,在设计分布式事务时,需要综合考虑业务逻辑、系统规模以及硬件资源等因素,制定合理的策略。 最后,回顾历史,我们可以发现,无论是早期的ZooKeeper还是如今的Etcd,这类分布式协调服务始终伴随着分布式计算的发展而演进。正如《分布式系统设计》一书中提到的:“分布式系统的设计是一门艺术,它要求我们在灵活性与可靠性之间找到平衡。”未来,随着5G、物联网等新技术的兴起,分布式系统的复杂性将进一步增加,而像Etcd这样的工具无疑将在其中扮演越来越重要的角色。
2025-03-21 15:52:27
54
凌波微步
Hadoop
...加以下参数: javascript export HADOOP_CONF_DIR=/path/to/hadoop/conf export HADOOP_HOME=/path/to/hadoop 3. 配置NiFi数据源 接下来,我们需要配置NiFi的数据源,使其能够连接到Hadoop集群中的HDFS文件系统。在NiFi的用户界面里,我们可以亲自操刀,动手新建一个数据源,而且,你可以酷炫地选择“HDFS”作为这个新数据源的小马甲,也就是它的类型啦!然后,我们需要输入HDFS的地址、用户名、密码等信息。 4. 创建数据处理流程 最后,我们可以创建一个新的数据处理流程,使Apache NiFi能够读取HDFS中的数据,并对其进行处理和转发。我们可以在NiFi的UI界面中创建新的流程节点,并将它们连接起来。例如,我们可以使用“GetFile”节点来读取HDFS中的数据,使用“TransformJSON”节点来处理数据,使用“PutFile”节点来将处理后的数据保存到其他位置。 三、Apache Beam简介 Apache Beam是一个开源的统一编程模型,它可以用于构建批处理和实时数据处理应用程序。这个东西的好处在于,你可以在各种不同的数据平台上跑同一套代码,这样一来,开发者们就能把更多的精力放在数据处理的核心逻辑上,而不是纠结于那些底层的繁琐细节啦。 四、Hadoop与Apache Beam集成 为了使Hadoop与Apache Beam进行集成,我们需要使用Apache Beam SDK,并将其添加到Hadoop集群中。具体步骤如下: 1. 安装Apache Beam SDK 我们可以从Apache Beam的官方网站下载最新的稳定版本,并按照官方提供的指导手册进行安装。在安装这玩意儿的时候,我们得先调好几个基础配置,就好比Beam的通讯端口、验证登录的方式这些小细节。 2. 将Apache Beam SDK添加到Hadoop集群中 为了让Apache Beam能够访问Hadoop集群中的数据,我们需要配置Beam的环境变量。首先,我们需要确定Hadoop集群的位置,然后在Beam的环境中添加以下参数: javascript export HADOOP_CONF_DIR=/path/to/hadoop/conf export HADOOP_HOME=/path/to/hadoop 3. 编写数据处理代码 接下来,我们可以编写数据处理代码,并使用Apache Beam SDK来运行它。以下是使用Apache Beam SDK处理HDFS中的数据的一个简单示例: java public class HadoopWordCount { public static void main(String[] args) throws Exception { Pipeline p = Pipeline.create(); String input = "gs://dataflow-samples/shakespeare/kinglear.txt"; TextIO.Read read = TextIO.read().from(input); PCollection words = p | read; PCollection> wordCounts = words.apply( MapElements.into(TypeDescriptors.KVs(TypeDescriptors.strings(), TypeDescriptors.longs())) .via((String element) -> KV.of(element, 1)) ); wordCounts.apply(Write.to("gs://my-bucket/output")); p.run(); } } 在这个示例中,我们首先创建了一个名为“p”的Pipeline对象,并指定要处理的数据源。然后,我们使用“TextIO.Read”方法从数据源中读取数据,并将其转换为PCollection类型。接下来,我们要用一个叫“KV.of”的小技巧,把每一条数据都变个身,变成一个个键值对。这个键呢,就是咱们平常说的单词,而对应的值呢,就是一个简简单单的1。就像是给每个单词贴上了一个标记“已出现,记1次”。最后,我们将处理后的数据保存到Google Cloud Storage中的指定位置。 五、结论 总的来说,Hadoop与Apache NiFi和Apache Beam的集成都是非常容易的。只需要按照上述步骤进行操作,并编写相应的数据处理代码即可。而且,你知道吗,Apache NiFi和Apache Beam都超级贴心地提供了灵活度爆棚的API接口,这就意味着我们完全可以按照自己的小心思,随心所欲定制咱们的数据处理流程,就像DIY一样自由自在!相信过不了多久,Hadoop和ETL工具的牵手合作将会在大数据处理圈儿掀起一股强劲风潮,成为大伙儿公认的关键趋势。
2023-06-17 13:12:22
582
繁华落尽-t
Beego
... 2. JWT(JSON Web Token)认证 - JWT允许你在不依赖于服务器端会话的情况下验证用户身份,非常适合微服务架构。 - 示例代码: go package main import ( "github.com/astaxie/beego" "github.com/dgrijalva/jwt-go" "net/http" "time" ) var jwtSecret = []byte("your_secret_key") type Claims struct { Username string json:"username" jwt.StandardClaims } func loginHandler(c beego.Context) { username := c.Input().Get("username") password := c.Input().Get("password") // 这里应该有验证用户名和密码的逻辑 token := jwt.NewWithClaims(jwt.SigningMethodHS256, Claims{ Username: username, StandardClaims: jwt.StandardClaims{ ExpiresAt: time.Now().Add(time.Hour 72).Unix(), }, }) tokenString, err := token.SignedString(jwtSecret) if err != nil { c.Ctx.ResponseWriter.WriteHeader(http.StatusInternalServerError) return } c.Data[http.StatusOK] = []byte(tokenString) } func authMiddleware() beego.ControllerFunc { return func(c beego.Controller) { tokenString := c.Ctx.Request.Header.Get("Authorization") token, err := jwt.ParseWithClaims(tokenString, &Claims{}, func(token jwt.Token) (interface{}, error) { return jwtSecret, nil }) if claims, ok := token.Claims.(Claims); ok && token.Valid { // 将用户信息存储在session或者全局变量中 c.SetSession("user", claims.Username) c.Next() } else { c.Ctx.ResponseWriter.WriteHeader(http.StatusUnauthorized) } } } 3. 中间件与拦截器 - 利用Beego的中间件机制,我们可以为特定路由添加权限检查逻辑,从而避免重复编写相同的权限校验代码。 - 示例代码: go func AuthRequiredMiddleware() beego.ControllerFunc { return func(c beego.Controller) { if !c.GetSession("user").(string) { c.Redirect("/login", 302) return } c.Next() } } func init() { beego.InsertFilter("/admin/", beego.BeforeRouter, AuthRequiredMiddleware) } 四、实际应用案例分析 让我们来看一个具体的例子,假设我们正在开发一款在线教育平台,需要对不同类型的用户(学生、教师、管理员)提供不同的访问权限。例如,只有管理员才能删除课程,而学生只能查看课程内容。 1. 定义用户类型 - 我们可以通过枚举类型来表示不同的用户角色。 - 示例代码: go type UserRole int const ( Student UserRole = iota Teacher Admin ) 2. 实现权限验证逻辑 - 在每个需要权限验证的操作之前,我们都需要先判断当前登录用户是否具有相应的权限。 - 示例代码: go func deleteCourse(c beego.Controller) { if userRole := c.GetSession("role"); userRole != Admin { c.Ctx.ResponseWriter.WriteHeader(http.StatusForbidden) return } // 执行删除操作... } 五、总结与展望 通过上述讨论,我们已经了解了如何在Beego框架下实现基本的用户权限管理系统。当然,实际应用中还需要考虑更多细节,比如异常处理、日志记录等。另外,随着业务越做越大,你可能得考虑引入一些更复杂的权限管理系统了,比如可以根据不同情况灵活调整的权限分配,或者可以精细到每个小细节的权限控制。这样能让你的系统管理起来更灵活,也更安全。 最后,我想说的是,无论采用哪种方法,最重要的是始终保持对安全性的高度警惕,并不断学习最新的安全知识和技术。希望这篇文章能对你有所帮助! --- 希望这样的风格和内容符合您的期待,如果有任何具体需求或想要进一步探讨的部分,请随时告诉我!
2024-10-31 16:13:08
166
初心未变
转载文章
...实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 目录 1.调整桌面的图标大小 2.怎么把我的电脑放到桌面上win10 3.分屏 4.磁盘清理大法 5.hiberfil.sys&swapfile.sys 6.windows中的休眠与睡眠 7.WPS中如何不做拼写检查 8.EV视频相关方法 9.WINDOW自带剪辑方法 10.快捷键大全 11.B站上传合集 12.查看WIN电脑配置 1.调整桌面的图标大小 搜索注册表,在运行里键入regedit就可以进入了,修改计算机\HKEY_CURRENT_USER\Control Panel\Desktop\WindowMetrics中的IconSpacing,IconVerticalSpacing等值可以进行调整,之后重启电脑使得修改生效即可. 2.怎么把我的电脑放到桌面上win10 引用别人的链接:win10中如何把我的电脑放到桌面上 3.分屏 分屏的方法 4.磁盘清理大法 C:\Users\HP\AppData--占的空间很大 C:\Users\HP\AppData\Roaming\Code --大 C:\Users\HP\AppData\Roaming\Code\User\workspaceStorage ---大! C:\Users\HP\AppData\Roaming\Code\User\workspaceStorage\281c5e08bf4f59f783a3aa64953fdc77\ms-vscode.cpptools ---大!! C:\Users\HP\AppData\Roaming--文件夹能删除吗 C:\Users\HP\Documents\Tencent Files D:\014-电子书\017-杂乱下载C盘\腾讯\5723\Image--腾讯聊天的图 C:\Users\HP\AppData\Local\Microsoft---6G 5.hiberfil.sys&swapfile.sys 可参考的相关hiberfi.sys和swapfile.sys的链接 今天HP1号的C盘满了,昨天还有5G的,今天只有2G了,发现了这两个文件.hiberfil.sys有3.12G,swapfile.sys256M. 经查,“hiberfil.sys”是系统休眠文件,其大小和物理内存一样大,这里我要解释下两个名字,计算机的休眠(hibernate)与睡眠(sleep),我们常用的是sleep功能, 即电脑放置一段时间, 进入低耗状态, 工作态度保存在内存里, 恢复时1-2秒就可以恢复原状态.这个功能是实用的, 也是最常用的. hibernate是把工作状态即所有内存中的数据,写入到硬盘(这就是hiberfil.sys文件),然后关闭系统,在下次启动开机时,将保持的数据写回内存,虽然需要花费些时间,但好处就是你正在进行中的工作,都会被保存起来,就算断电以后也不回消失,这也就是为什么经常有人说几个月不用关机的原因,当然休眠并不是必须的,完全看你这个需求了,如果确实有需要也不用care这点硬盘啦。有网友说--这个文件大小的描述错误,hiberfil.sys的大小并≠内存大小,因为该文件貌似是压缩过。我的内存是8G,这个.hiberfil.sys有3.12G,这样看这个网友说的对的. hiberfi.sys的链接 首先分清SLEEP睡眠和HIBERNATE休眠两个概念. 我们常用的是SLEEP睡眠功能, 也就是电脑经过一定时间后, 进入低功耗状态, 工作态度保存在内存里, 恢复时1-2秒就可以恢复原状态.这个功能是实用的, 也是最常用的. 而休眠是把工作状态即所有内存信息写入硬盘,如有2-4G内存,即要写入2-4G的文件到硬盘,然后才能关机,开机恢复要读取2-4G的文件到内存,才能恢复原界面.而大文件的读写要花大量 的时间,已经不亚于正常开机了,所以现在休眠功能很不实用(针对1G以上内存). 休眠的HIBERFIL.SYS这个文件就是用来休眠时保存内存状态用的.会占用C盘等同内存容量的空间(以2G内存为例,这个文件也为2G),所以完全可以删掉而不影响大家使用.还会大大节省C盘空间的占用。 操作: 以管理员运行CMD, 打以下命令: POWERCFG -H OFF 即自动删除该文件. 大家看处理前后C盘空间的变化就知道了. 怎么以管理员运行: 在“所有程序”->“附件”->“命令提示符”上右键,选“以管理员运行” 如果本身是以管理员身份登录,直接运行cmd即可。 我做的测试: 文件位置C:\hiberfil.sys “pagefile.sys”是页面交换文件(即虚拟内存),这个文件不能删除,不过可以改变其大小和存放位置. 6.windows中的休眠与睡眠 windows中的休眠与睡眠 7.WPS中如何不做拼写检查 WPS中如何不做拼写检查 8.EV视频相关方法 如何利用EV视频剪辑软件合并视频 EV剪辑怎么给视频添加字幕 9.WINDOW自带剪辑方法 WIN10自带剪辑视频的方法 10.快捷键大全 快捷键大全 11.B站上传合集 B站上传合集 12.查看WIN电脑配置 13.windows远程桌面链接 win+Rmstsc 14.word中的边框和底纹如何应用于文字,段落和页面 word中边框和底纹——应用于文字、段落、页面分别如何设置? 本篇文章为转载内容。原文链接:https://blog.csdn.net/Edidaughter/article/details/111231562。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-01 13:02:11
116
转载
Material UI
...式呢,那就可以传一串数组,想选几个选几个,自由得很! - onValueChange: 这个属性很重要,它是一个回调函数,每当用户选择了一个新的Chip时,都会触发这个函数,你可以在这里处理业务逻辑。 - variant: 可以设置Chip的样式,比如“filled”(填充型)或者“outlined”(边框型),具体看你喜欢哪种风格。 - color: 设置Chip的颜色,比如“primary”、“secondary”之类的,挺简单的。 让我举个例子吧,比如你想做一个音乐类型的筛选器,代码可以这样写: jsx import React from 'react'; import { Chip, ChipGroup } from '@mui/material'; export default function MusicTypeFilter() { const [selectedTypes, setSelectedTypes] = React.useState([]); const handleTypeChange = (event, newValues) => { setSelectedTypes(newValues); console.log('Selected types:', newValues); }; return ( value={selectedTypes} onChange={handleTypeChange} variant="outlined" color="primary" aria-label="music type filter" > ); } 这段代码创建了一个音乐类型筛选器,用户可以选择多个类型。每次选择后,handleTypeChange函数会被调用,并且打印出当前选中的类型。是不是超简单? --- 3. 单选模式 vs 多选模式 说到ChipGroup,肯定要提到它的两种模式——单选模式和多选模式。这就跟点菜一样啊!单选模式就像你只能从菜单上挑一道菜,不能多点;多选模式呢,就好比你想吃啥就点啥,爱点几个点几个,随便你开心!这听起来很基础对吧?但其实这里面有很多细节需要注意。 比如说,如果你用的是单选模式,那么每次点击一个新的Chip时,其他所有Chip的状态都会自动取消掉。这是Material UI默认的行为,但有时候你可能不想要这种效果。比如你做的是一个问卷调查,用户可以选择“非常同意”、“同意”、“中立”等选项,但你希望他们能同时勾选多个答案怎么办呢? 解决办法也很简单,只需要给ChipGroup设置multiple属性为true就行啦!比如下面这段代码: jsx multiple value={['同意', '中立']} onChange={(event, newValues) => { console.log('Selected values:', newValues); } } > 在这个例子中,用户可以同时选择“同意”和“中立”,而不是只能选一个。是不是感觉特别灵活? --- 4. ChipGroup的高级玩法 最后,咱们来说点更酷的东西!你知道吗,ChipGroup其实还有很多隐藏技能,只要你稍微动点脑筋,就能让它变得更强大。 比如说,你想让某些Chip一开始就被选中,该怎么办?很简单,只要在初始化的时候把它们的值放到value属性里就行啦!比如: jsx const [selectedTypes, setSelectedTypes] = React.useState(['摇滚', '流行']); 再比如,你想给某个Chip加上特殊的图标或者颜色,也可以通过自定义Chip来实现。比如: jsx label="摇滚" icon={} color="error" /> 还有哦,有时候你可能会遇到一些动态数据,比如从后台获取的一组选项。这种情况下,你可以用循环来生成ChipGroup的内容,代码如下: jsx const musicTypes = ['摇滚', '爵士', '流行', '古典']; return ( value={selectedTypes} onChange={handleTypeChange} > {musicTypes.map((type) => ( ))} ); 看到没?是不是特别方便?这种灵活性真的让人爱不释手! --- 5. 总结与反思 好了,到这里咱们就差不多聊完了ChipGroup的所有知识点啦!其实吧,我觉得这个组件真的挺实用的,无论是做前端还是后端,都能帮我们省去很多麻烦事。对啊,刚开始接触的时候确实会有点迷糊,感觉云里雾里的。不过别担心,多试着上手操作个几次,慢慢你就明白了,其实一点都不难! 话说回来,我觉得学习任何技术都得抱着一种探索的心态,不能死记硬背。嘿嘿,说到ChipGroup,我当初也是被它折腾了好一阵子呢!各种属性啊、方法啊,全都得自己动手试一遍,慢慢摸索才知道咋用。就像吃 unfamiliar 的菜一样,一开始啥都不懂,只能一个劲儿地尝,最后才找到门道!所以说啊,大家要是用的时候碰到啥难题,别急着抓头发,先去瞅瞅官方文档呗,说不定就有答案了。实在不行,就自己动手试试,有时候动手一做,豁然开朗的感觉就来了! 总之呢,希望大家都能用好这个组件,把它变成自己的得力助手!如果有啥疑问或者更好的玩法,欢迎随时交流哦~ 😊
2025-05-09 16:08:24
89
月下独酌
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
pgrep process_pattern
- 根据进程名模式搜索进程ID。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"