前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[自定义错误提升代码可读性 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Apache Atlas
...事件,包括表名、字段定义、所属数据库等信息。这么做的好处嘛,简直不要太明显!就好比给你的数据加上了一个“出生证”和“护照”,不仅能随时知道它是从哪儿来的、去过哪儿,还能记录下它一路上经历的所有变化。这样一来,管理起来就方便多了,也不用担心数据会“走丢”或者被搞砸啦! 然而,正因如此,Hook的部署显得尤为重要。要是Hook没装好,那Atlas就啥元数据也收不到啦,整个数据治理的工作就得卡在那里干瞪眼了。这也是为什么当我的Hook部署失败时,我会感到特别沮丧的原因。 --- 3. 部署失败 从错误日志中寻找线索 那么,Hook到底为什么会部署失败呢?为了找出答案,我打开了Atlas的日志文件,开始逐行分析那些晦涩难懂的错误信息。说实话,第一次看这些日志的时候,我直接傻眼了,那感觉就跟对着一堆乱码似的,完全摸不着头脑。 不过,经过一番耐心的研究,我发现了一些关键点。比如: - 依赖冲突:有些情况下,Hook可能会因为依赖的某些库版本不兼容而导致加载失败。 - 配置错误:有时候,我们可能在application.properties文件中漏掉了必要的参数设置。 - 权限不足:Hook需要访问目标系统的API接口,但如果权限配置不当,自然会报错。 为了验证我的猜测,我决定先从最简单的配置检查做起。打开atlas-application.properties文件,我仔细核对了以下内容: properties atlas.hook.kafka.enabled=true atlas.hook.kafka.consumer.group=atlas-kafka-group atlas.kafka.bootstrap.servers=localhost:9092 确认无误后,我又检查了Kafka服务是否正常运行,确保Atlas能够连接到它。虽然这一系列操作看起来很基础,但它们往往是排查问题的第一步。 --- 4. 实战演练 动手修复Hook部署失败 接下来,让我们一起动手试试如何修复Hook部署失败吧!首先,我们需要明确一点:问题的根源可能有很多,因此我们需要分步骤逐一排除。 Step 1: 检查依赖关系 假设我们的Hook是基于Hive的,那么首先需要确保Hive的客户端库已经正确添加到了项目中。例如,在Maven项目的pom.xml文件里,我们应该看到类似如下的配置: xml org.apache.hive hive-jdbc 3.1.2 如果版本不对,或者缺少了必要的依赖项,就需要更新或补充。记得每次修改完配置后都要重新构建项目哦! Step 2: 调试日志级别 为了让日志更加详细,帮助我们定位问题,可以在log4j.properties文件中将日志级别调整为DEBUG级别: properties log4j.rootLogger=DEBUG, console 这样做虽然会让日志输出变得冗长,但却能为我们提供更多有用的信息。 Step 3: 手动测试连接 有时候,Hook部署失败并不是代码本身的问题,而是网络或者环境配置出了差错。这时候,我们可以尝试手动测试一下Atlas与目标系统的连接情况。例如,对于Kafka Hook,可以用下面的命令检查是否能正常发送消息: bash kafka-console-producer.sh --broker-list localhost:9092 --topic test-topic 如果这条命令执行失败,那就可以确定是网络或者Kafka服务的问题了。 --- 5. 总结与反思 成长中的点滴收获 经过这次折腾,我对Apache Atlas有了更深的理解,同时也意识到,任何技术工具都不是万能的,都需要我们投入足够的时间和精力去学习和实践。 最后想说的是,尽管Hook部署失败的经历让我一度感到挫败,但它也教会了我很多宝贵的经验。比如: - 不要害怕出错,错误往往是进步的起点; - 日志是排查问题的重要工具,要学会善加利用; - 团队合作很重要,遇到难题时不妨寻求同事的帮助。 希望这篇文章对你有所帮助,如果你也有类似的经历或见解,欢迎随时交流讨论!我们一起探索技术的世界,共同进步!
2025-04-03 16:11:35
61
醉卧沙场
Dubbo
...报错警告”,而且这些错误啊,很多时候都跟你的环境配置脱不了干系,一不小心就中招了。 记得有一次我调试一个Dubbo项目的时候,就遇到了这个问题。我当时在本地测的时候,那叫一个顺风顺水,啥问题都没有,结果一到生产环境,各种错误蹦出来,看得我头都大了,心里直犯嘀咕:这是不是选错了人生路啊?后来才反应过来,哎呀妈呀,原来是生产环境的网络设置跟本地的不一样,这就搞不定啦,服务之间压根连不上话!所以说啊,在解决Dubbo问题的时候,咱们得结合实际情况来分析,不能一概而论。就像穿衣服一样,得看天气、场合啥的,对吧? --- 二、Dubbo报错信息的特点与常见原因 Dubbo的报错信息通常会包含一些关键信息,比如服务名称、接口版本、错误堆栈等。不过啊,这些东西通常不会直接告诉我们哪里出了岔子,得我们自己去刨根问底才行。 比如说,你可能会看到这样的报错: Failed to invoke remote method: sayHello, on 127.0.0.1:20880 看到这个错误,你是不是会觉得很懵?其实这可能是因为你的服务端没有正确启动,或者客户端的配置不对。又或者是网络不通畅,导致客户端无法连接到服务端。 再比如,你可能会遇到这种错误: No provider available for the service com.example.UserService on the consumer 192.168.1.100 use dubbo version 2.7.8 这表明你的消费者(也就是客户端)找不到提供者(也就是服务端)。哎呀,这问题八成是服务注册中心没整利索,要不就是服务提供方压根没成功注册上。 我的建议是,遇到这种问题时,先别急着改代码,而是要冷静下来分析一下,是不是配置文件出了问题。比如说,你是不是忘记在dubbo.properties里填对了服务地址? --- 三、排查报错的具体步骤 接下来,咱们来聊聊怎么排查这些问题。首先,你需要确认服务端是否正常运行。你可以通过以下命令查看服务端的状态: bash netstat -tuln | grep 20880 如果看不到监听的端口,那肯定是服务端没启动成功。 然后,检查服务注册中心是否正常工作。Dubbo支持多种注册中心,比如Zookeeper、Nacos等。如果你用的是Zookeeper,可以试试进入Zookeeper的客户端,看看服务是否已经注册: bash zkCli.sh -server 127.0.0.1:2181 ls /dubbo/com.example.UserService 如果这里看不到服务,那就说明服务注册中心可能有问题。 最后,别忘了检查客户端的配置。客户端的配置文件通常是dubbo-consumer.xml,里面需要填写服务提供者的地址。例如: xml 如果地址写错了,当然就会报错了。 --- 四、代码示例与实际案例分析 下面我给大家举几个具体的例子,让大家更直观地了解Dubbo的报错排查过程。 示例1:服务启动失败 假设你在本地启动服务端时,发现服务一直无法启动,报错如下: Failed to bind URL: dubbo://192.168.1.100:20880/com.example.UserService?anyhost=true&application=demo-provider&dubbo=2.7.8&interface=com.example.UserService&methods=sayHello&pid=12345&side=provider×tamp=123456789 经过检查,你会发现是因为服务端的application.name配置错了。修改后,重新启动服务端,问题就解决了。 示例2:服务找不到 假设你在客户端调用服务时,发现服务找不到,报错如下: No provider available for the service com.example.UserService on the consumer 192.168.1.100 use dubbo version 2.7.8 经过排查,你发现服务注册中心的地址配置错了。正确的配置应该是: xml 示例3:网络不通 假设你在生产环境中,发现客户端和服务端之间的网络不通,报错如下: ConnectException: Connection refused 这时候,你需要检查防火墙设置,确保服务端的端口是开放的。同时,也要检查客户端的网络配置,确保能够访问服务端。 --- 五、总结与感悟 总的来说,Dubbo的报错信息确实有时候让人摸不着头脑,但它并不是不可战胜的。只要你细心排查,结合具体的环境和配置,总能找到问题的根源。 在这个过程中,我学到的东西太多了。比如说啊,别啥都相信默认设置,每一步最好自己动手试一遍,心里才踏实。再比如说,碰到问题的时候,先别忙着去找同事求助,自己多琢磨琢磨,说不定就能找到解决办法了呢!毕竟,编程的乐趣就在于不断解决问题的过程嘛! 最后,我想说的是,Dubbo虽然复杂,但它真的很棒。希望大家都能掌握它,让它成为我们技术生涯中的一把利器!
2025-03-20 16:29:46
67
雪落无痕
Kibana
...说,数据保留策略就是定义数据的生命周期。比如说,“只留最近30天的记录”,或者是“超过一年的就自动清掉”。你可以根据业务需求灵活设置这些规则。 2.2 为什么我们需要它? 想象一下,如果你是一家电商平台的数据分析师,每天都会生成大量的日志文件。这些日志里可能包含了用户的购买记录、浏览行为等重要信息。不过呢,日子一长啊,那些早期的日志就变得没啥分析的意义了,反而是白白占着磁盘空间,挺浪费的。这时候,数据保留策略就能帮你解决这个问题。 再比如,如果你是一家医院的IT管理员,医疗设备产生的监控数据可能每秒都在增加。要是不赶紧把那些旧数据清理掉,系统非但会变得越来越卡,还可能出大问题,甚至直接“翻车”!所以,合理规划数据的生命周期是非常必要的。 --- 3. 如何在Kibana中设置数据保留策略? 接下来,咱们进入正题——具体操作步骤。相信我,这并不复杂,只要跟着我的节奏走,你一定能学会! 3.1 第一步:创建索引模式 首先,我们需要确保你的数据已经被正确地存储到Elasticsearch中,并且可以通过Kibana访问。如果还没有创建索引模式,可以按照以下步骤操作: bash 登录Kibana界面 1. 点击左侧菜单栏中的“Management”。 2. 找到“Stack Management”部分,点击“Index Patterns”。 3. 点击“Create index pattern”按钮。 4. 输入你的索引名称(例如 "logstash-"),然后点击“Next step”。 5. 选择时间字段(通常是@timestamp),点击“Create index pattern”完成配置。 > 思考点:这里的关键在于选择合适的索引名称和时间字段。如果你的时间字段命名不规范,后续可能会导致数据无法正确筛选哦! 3.2 第二步:设置索引生命周期策略 接下来,我们要为索引创建生命周期策略。这是Kibana中最核心的部分,直接决定了数据的保留方式。 示例代码: javascript PUT _ilm/policy/my_policy { "policy": { "phases": { "hot": { "actions": { "rollover": { "max_size": "50gb", "max_age": "30d" } } }, "delete": { "min_age": "1y", "actions": { "delete": {} } } } } } 这段代码的意思是: - 热阶段(Hot Phase):当索引大小达到50GB或者超过30天时,触发滚动操作。 - 删除阶段(Delete Phase):超过1年后,自动删除该索引。 > 小贴士:这里的max_size和max_age可以根据你的实际需求调整。比如,如果你的服务器内存较小,可以将max_size调低一点。 3.3 第三步:将策略应用到索引 设置好生命周期策略后,我们需要将其绑定到具体的索引上。具体步骤如下: bash POST /my-index/_settings { "index.lifecycle.name": "my_policy", "index.lifecycle.rollover_alias": "my_index" } 这段代码的作用是将之前创建的my_policy策略应用到名为my-index的索引上。同时,通过rollover_alias指定滚动索引的别名。 --- 4. 实战案例 数据保留策略的实际效果 为了让大家更直观地理解数据保留策略的效果,我特意准备了一个小案例。假设你是一名电商公司的运维工程师,每天都会收到大量的订单日志,格式如下: json { "order_id": "123456789", "status": "success", "timestamp": "2023-09-01T10:00:00Z" } 现在,你想对这些日志进行生命周期管理,具体要求如下: - 最近3个月的数据需要保留。 - 超过3个月的数据自动归档到冷存储。 - 超过1年的数据完全删除。 实现方案: 1. 创建索引模式,命名为orders-。 2. 定义生命周期策略 javascript PUT _ilm/policy/orders_policy { "policy": { "phases": { "hot": { "actions": { "rollover": { "max_size": "10gb", "max_age": "3m" } } }, "warm": { "actions": { "freeze": {} } }, "delete": { "min_age": "1y", "actions": { "delete": {} } } } } } 3. 将策略绑定到索引 bash POST /orders-/_settings { "index.lifecycle.name": "orders_policy", "index.lifecycle.rollover_alias": "orders" } 运行以上代码后,你会发现: - 每隔3个月,新的订单日志会被滚动到一个新的索引中。 - 超过3个月的旧数据会被冻结,存入冷存储。 - 超过1年的数据会被彻底删除,释放存储空间。 --- 5. 总结与展望 通过今天的分享,相信大家对如何在Kibana中设置数据保留策略有了更深的理解。虽然设置过程看似繁琐,但实际上只需要几步就能搞定。而且啊,要是咱们好好用数据保留这招,不仅能让系统跑得更快、更顺畅,还能帮咱们把那些藏在数据里的宝贝疙瘩给挖出来,多好呀! 最后,我想说的是,技术学习是一个不断探索的过程。如果你在实践中遇到问题,不妨多查阅官方文档或者向社区求助。毕竟,我们每个人都是技术路上的探索者,一起努力才能走得更远! 好了,今天的分享就到这里啦!如果你觉得这篇文章有用,记得点赞支持哦~咱们下次再见!
2025-04-30 16:26:33
20
风轻云淡
MySQL
...L日志中有大量的这个错误该怎么办? 1. 看到错误日志时的慌乱与冷静 作为一个数据库运维人员,每天面对着各种各样的问题,而当看到MySQL的日志文件里充满了大量的错误信息时,我的第一反应通常是——“天啊!这是什么情况?”尤其是在半夜加班的时候,这种感觉尤其强烈。 不过,作为一名资深的技术人,我很快意识到,慌张解决不了任何问题。咱们先别急着慌,坐下来好好琢磨琢磨这些错误到底是啥意思,到底是咋冒出来的,然后想想接下来该怎么处理才好。于是,我开始仔细阅读日志内容,并尝试重现这些错误。 比如,最近我在维护的一个生产环境下的MySQL服务器上,突然发现日志里出现了大量这样的错误信息: [ERROR] InnoDB: Operating system error number 24 in a file operation. 这让我有点懵,因为我之前从未遇到过类似的错误。所以,我决定深入研究一下这个问题,看看能不能找到解决方案。 --- 2. 错误日志解读 从表面现象到本质原因 首先,我需要弄清楚这个错误到底意味着什么。我翻了翻官方文档,又逛了逛一些社区论坛,感觉这错误八成跟操作系统里的文件操作有关系。具体来说,错误号24在Linux系统中表示“Too many open files”(打开的文件太多)。 这让我立刻联想到,可能是因为MySQL的某些进程打开了过多的文件句柄,导致操作系统限制了它进一步的操作。为了验证这一点,我执行了一个简单的命令来检查当前系统的文件描述符限制: bash ulimit -n 结果显示默认值为1024。这意味着每个进程最多只能同时打开1024个文件。说实话,咱们的MySQL实例现在正忙着应付一大堆同时连进来的需求,还得折腾临时表呢。这么一看,那个限制就跟挠痒痒似的——太不够用了! 接下来,我查看了MySQL的配置文件my.cnf,发现确实没有显式设置文件描述符的上限。于是,我修改了配置文件,将open_files_limit参数调整为更大的值: ini [mysqld] open_files_limit=65535 然后重启了MySQL服务,再次检查日志,果然,错误消失了! --- 3. 实践中的代码调试与优化 当然,仅仅解决问题还不够,我还想进一步优化整个系统的性能。于是,我编写了一些脚本来监控MySQL的运行状态,特别是文件描述符的使用情况。 以下是一个简单的Python脚本,用于统计MySQL当前使用的文件描述符数量: python import psutil import subprocess def get_mysql_open_files(): 获取所有MySQL进程ID mysql_pids = [] result = subprocess.run(['pgrep', 'mysqld'], capture_output=True, text=True) for line in result.stdout.splitlines(): mysql_pids.append(int(line)) total_open_files = 0 for pid in mysql_pids: try: proc = psutil.Process(pid) open_files = len(proc.open_files()) print(f"Process {pid} has opened {open_files} files.") total_open_files += open_files except Exception as e: print(f"Error checking process {pid}: {e}") print(f"Total open files by MySQL processes: {total_open_files}") if __name__ == "__main__": get_mysql_open_files() 运行这个脚本后,我发现某些特定的查询会导致文件描述符迅速增加。经过分析,这些问题主要出现在涉及大文件读写的场景中。所以呢,我觉得咱们开发的小伙伴们得好好捯饬捯饬这些查询语句啦!比如说,能不能少建那些没用的临时表啊?再比如,能不能换个更快的存储引擎啥的?反正就是得让这个程序跑得更顺畅些,别老是卡在那里干瞪眼不是? --- 4. 总结与反思 从问题中学到的东西 回顾这次经历,我深刻体会到,处理数据库问题时,不能仅凭直觉行事,而是要结合实际数据和技术手段,逐步排查问题的根本原因。同时,我也认识到,预防胜于治疗。如果能在日常运维中提前做好监控和预警,就可以避免很多突发状况。 最后,我想分享一点个人感悟:技术之路永无止境,每一次遇到难题都是一次成长的机会。说实话,有时候真的会觉得头大,甚至怀疑自己是不是走错了路。但我觉得啊,这就好比在黑暗里找钥匙,你得不停地摸索、试错才行。只要别轻易放弃,一直在学、一直在练,总有一天你会发现,“!原来它在这儿呢!”就跟我在处理这个MySQL报错的时候似的,最后不光把问题搞定了,还顺带学了不少实用的招儿呢! 如果你也遇到了类似的情况,不妨试试上面提到的方法,也许能帮到你!
2025-04-17 16:17:44
109
山涧溪流_
MemCache
...还会手把手带着你,用代码例子一步一步把问题给解决了!就像有个编程小老师在旁边耐心指导一样,超贴心的!别急着离开,这可是干货满满哦! --- 1. 什么是MemCache?它为什么这么受欢迎? 先简单介绍一下MemCache吧!MemCache是一种高性能的分布式内存对象缓存系统,主要用于减轻数据库的压力,提升应用的响应速度。其实说白了就是这么个事儿——把数据都存到内存里,用的时候直接拿出来,省得每次都要跑去数据库翻箱倒柜找一遍,多麻烦啊! 举个例子,假设你正在做一个电商网站,用户点击商品详情页时,如果每次都要从数据库拉取商品信息,那服务器负载肯定爆表。但如果我们将这些数据缓存在MemCache中,用户访问时直接从内存读取,岂不是快如闪电? 不过呢,事情可没那么简单。MemCache这小子虽然挺能干的,但也不是省油的灯啊!比如说吧,你老是疯狂地去请求数据,结果服务器偏偏不给面子,连个响应都没有,那它就直接给你来个“服务连接超时”的报错,气得你直跺脚。这就像你去餐厅点菜,服务员一直不在,你说能不急吗? --- 2. 服务连接超时到底是个啥? 服务连接超时,简单来说就是你的程序试图与MemCache服务器建立连接,但因为某些原因(比如网络延迟、服务器过载等),连接请求迟迟得不到回应,最终超时失败。这种错误通常会伴随着一条令人沮丧的信息:“连接超时”。 让我分享一个小故事:有一次我在调试一个项目时,发现某个接口总是返回“服务连接超时”,我当时的第一反应是“天啊,是不是MemCache崩了?”于是我赶紧登录服务器检查日志,结果发现MemCache运行正常,只是偶尔响应慢了一点。后来我才意识到,可能是客户端配置的问题。 所以,当遇到这种错误时,不要慌!我们得冷静下来,分析一下可能的原因。 --- 2.1 可能的原因有哪些? 1. 网络问题 MemCache服务器和客户端之间的网络不稳定。 2. MemCache配置不当 比如设置了太短的超时时间。 3. 服务器负载过高 MemCache服务器被太多请求压垮。 4. 客户端代码问题 比如没有正确处理异常情况。 --- 3. 如何解决服务连接超时? 接下来,咱们就从代码层面入手,看看如何优雅地解决这个问题。我会结合实际例子,手把手教你如何避免“服务连接超时”。 --- 3.1 检查网络连接 首先,确保你的MemCache服务器和客户端之间网络通畅。你可以试试用ping命令测试一下: bash ping your-memcache-server 如果网络不通畅,那就得找运维同事帮忙优化网络环境了。不过,如果你确定网络没问题,那就继续往下看。 --- 3.2 调整超时时间 很多时候,“服务连接超时”是因为你设置的超时时间太短了。默认情况下,MemCache的超时时间可能比较保守,你需要根据实际情况调整它。 在Java中,可以这样设置超时时间: java import net.spy.memcached.AddrUtil; import net.spy.memcached.MemcachedClient; public class MemCacheExample { public static void main(String[] args) throws Exception { // 创建MemCache客户端,设置超时时间为5秒 MemcachedClient memcachedClient = new MemcachedClient(AddrUtil.getAddresses("localhost:11211"), 5000); System.out.println("成功连接到MemCache服务器!"); } } 这里的关键是5000,表示超时时间为5秒。你可以根据实际情况调整这个值,比如改成10秒或者20秒。 --- 3.3 使用重试机制 有时候,一次连接失败并不代表MemCache服务器真的挂了。在这种情况下,我们可以加入重试机制,让程序自动尝试重新连接。 下面是一个简单的Python示例: python import time from pymemcache.client.base import Client def connect_to_memcache(): attempts = 3 while attempts > 0: try: client = Client(('localhost', 11211)) print("成功连接到MemCache服务器!") return client except Exception as e: print(f"连接失败,重试中... ({attempts}次机会)") time.sleep(2) attempts -= 1 raise Exception("无法连接到MemCache服务器,请检查配置!") client = connect_to_memcache() 在这个例子中,程序会尝试三次连接MemCache服务器,每次失败后等待两秒钟再重试。如果三次都失败,就抛出异常提示用户。 --- 3.4 监控MemCache状态 最后,建议你定期监控MemCache服务器的状态。你可以通过工具(比如MemAdmin)查看服务器的健康状况,包括内存使用率、连接数等指标。 如果你发现服务器负载过高,可以考虑增加MemCache实例数量,或者优化业务逻辑减少不必要的请求。 --- 4. 总结 服务连接超时不可怕,可怕的是不去面对 好了,到这里,关于“服务连接超时”的问题基本就说完了。虽然MemCache确实容易让人踩坑,但只要我们用心去研究,总能找到解决方案。 最后想说的是,技术这条路没有捷径,遇到问题不要急躁,多思考、多实践才是王道。希望我的分享对你有所帮助,如果你还有什么疑问,欢迎随时来找我讨论!😄 祝大家编码愉快!
2025-04-08 15:44:16
88
雪落无痕
转载文章
...强、更高效的方式编写代码,并实现跨平台的高性能计算。 DPC++ (Data Parallel C++) , DPC++是一种基于C++的单源编程语言,是英特尔oneAPI的重要组成部分。通过DPC++,开发者可以使用统一的C++语法编写面向不同硬件架构(如CPU、GPU、FPGA等)的高性能并行代码。这种语言兼容OpenCL和SYCL标准,允许开发者在一个源文件中混合主机代码与设备内核,从而实现跨架构的无缝编程体验。 SYCL , SYCL(Single-source heterogeneous programming model for OpenCL)是由Khronos Group管理的一种开放标准,为C++程序员提供了一个用于异构系统编程的单一源编程模型。SYCL允许开发者在C++代码中直接编写针对不同处理器(如CPU、GPU等)的并行任务,无需学习特定的设备编程语言,增强了代码的可读性和可维护性,同时也简化了多架构程序的设计与实现。 统一共享内存(Unified Shared Memory, USM) , USM是英特尔oneAPI中的一个特性,它提供了一种虚拟化方法来统一CPU和GPU的内存视图,使开发者能够以指针方式在主机和设备之间自由地分配、访问和管理内存。通过USM,程序可以自动处理数据在主机与运算设备之间的迁移,极大地降低了编程复杂度和潜在的数据一致性问题,提高了异构环境下的编程效率。
2023-07-22 10:28:50
322
转载
Go Gin
...口 } 这段代码创建了一个Gin路由,并定义了一个GET请求路径/ping,当客户端访问这个地址时,会返回JSON格式的数据{"message": "pong"}。 个人感悟 刚接触这段代码的时候,我有点被惊到了——这么少的代码竟然能完成如此多的功能!当然,这也得益于Gin的设计理念:尽可能简化开发流程,让程序员专注于业务逻辑而不是框架细节。 --- 三、实时处理的核心 WebSocket支持 既然我们要讨论实时处理,那么就不得不提WebSocket。WebSocket就像是一个永不掉线的“聊天热线”,能让浏览器和服务器一直保持着畅通的联系。跟传统的请求-响应模式不一样,它可以让双方随时自由地“唠嗑”,想发啥就发啥,特别适合那些需要实时互动的应用,比如聊天室里你一言我一语,或者股票行情那种分分钟都在变化的东西,用它简直太合适了! Gin内置了对WebSocket的支持,我们可以直接通过中间件来实现这一功能。下面是一个完整的WebSocket示例: go package main import ( "log" "net/http" "github.com/gin-gonic/gin" "github.com/gorilla/websocket" ) var upgrader = websocket.Upgrader{ ReadBufferSize: 1024, WriteBufferSize: 1024, CheckOrigin: func(r http.Request) bool { return true // 允许跨域 }, } func handleWebSocket(c gin.Context) { ws, err := upgrader.Upgrade(c.Writer, c.Request, nil) if err != nil { log.Println("Failed to upgrade:", err) return } defer ws.Close() for { messageType, msg, err := ws.ReadMessage() if err != nil { log.Println("Error reading message:", err) break } log.Printf("Received: %s\n", string(msg)) err = ws.WriteMessage(messageType, msg) if err != nil { log.Println("Error writing message:", err) break } } } func main() { r := gin.Default() r.GET("/ws", handleWebSocket) r.Run(":8080") } 在这段代码中,我们利用gorilla/websocket包实现了WebSocket升级,并在handleWebSocket函数中处理了消息的读取与发送。你可以试着在浏览器里输入这个地址:ws://localhost:8080/ws,然后用JavaScript发个消息试试,看能不能马上收到服务器的回应。 深入探讨 说实话,刚开始写这部分代码的时候,我还担心WebSocket的兼容性问题。后来发现,只要正确设置了CheckOrigin方法,大多数现代浏览器都能正常工作。这让我更加坚定了对Gin的信心——它虽然简单,但足够强大! --- 四、进阶技巧 并发与性能优化 在实际项目中,我们可能会遇到高并发的情况。为了保证系统的稳定性,我们需要合理地管理线程池和内存分配。Gin提供了一些工具可以帮助我们做到这一点。 例如,我们可以使用sync.Pool来复用对象,减少垃圾回收的压力。下面是一个示例: go package main import ( "sync" "time" "github.com/gin-gonic/gin" ) var pool sync.Pool func init() { pool = &sync.Pool{ New: func() interface{} { return make([]byte, 1024) }, } } func handler(c gin.Context) { data := pool.Get().([]byte) defer pool.Put(data) copy(data, []byte("Hello World!")) time.Sleep(100 time.Millisecond) // 模拟耗时操作 c.String(http.StatusOK, string(data)) } func main() { r := gin.Default() r.GET("/", handler) r.Run(":8080") } 在这个例子中,我们定义了一个sync.Pool来存储临时数据。每次处理请求时,从池中获取缓冲区,处理完毕后再放回池中。这样可以避免频繁的内存分配和释放,从而提升性能。 反思与总结 其实,刚开始学习这段代码的时候,我对sync.Pool的理解还停留在表面。直到后来真正用它解决了性能瓶颈,我才意识到它的价值所在。这也让我明白,优秀的框架只是起点,关键还是要结合实际需求去探索和实践。 --- 五、未来展望 Gin与实时处理的无限可能 Gin的强大之处不仅仅在于它的易用性和灵活性,更在于它为开发者提供了广阔的想象空间。无论是构建大型分布式系统,还是打造小型实验项目,Gin都能胜任。 如果你也想尝试用Gin构建实时处理系统,不妨从一个小目标开始——比如做一个简单的在线聊天室。相信我,当你第一次看到用户实时交流的画面时,那种成就感绝对会让你欲罢不能! 最后的话 写这篇文章的过程,其实也是我自己重新审视Gin的过程。其实这个东西吧,说白了挺简单的,但让我学到了一个本事——用最利索的办法搞定事情。希望能这篇文章也能点醒你,让你在今后的开发路上,慢慢琢磨出属于自己的那套玩法!加油吧,程序员们!
2025-04-07 16:03:11
66
时光倒流
转载文章
...合。当我们面对繁复的代码逻辑和资源管理时,借鉴《金刚经》的理念,可以让我们更加关注事物的本质和联系,从而做出更为简洁高效的设计。 近期,微软.NET 5框架发布了一系列针对数据库访问性能提升的新特性。例如,引入了新的数据访问库“EF Core”,它提供了一种更为高级的ORM(对象关系映射)解决方案,使得开发者能够以声明式方式操作数据库,同时利用延迟加载等技术优化查询性能。此外,.NET 5还增强了对于异步编程的支持,通过async/await关键字,使得数据库操作在高并发场景下能够更好地释放系统资源,提高应用的响应速度和吞吐量。 另一方面,科学与技术伦理的话题也日益受到关注。如同爱因斯坦所言,科学与宗教并非对立,而是相辅相成。在当今AI技术、大数据等前沿领域,科学家们不仅需要严谨的实证精神,也需要从人文关怀角度出发,审视科技发展对社会、道德乃至人类心灵可能带来的影响。比如,在处理用户隐私数据时,遵循GDPR等法规的同时,也要体现出对个体尊严和自由意志的尊重,这正体现了科学与宗教信仰共同作用于现代社会的一面。 因此,对于软件开发者而言,不仅要掌握先进的编程技术和工具,理解并运用如《金刚经》般深邃的哲学理念来指导实践;同时紧跟时代步伐,关注行业动态和技术伦理问题,才能使自己的作品更具前瞻性和社会责任感。
2023-03-18 20:09:36
92
转载
转载文章
...)声明用到的头文件和定义控制器连接句柄。 至此项目新建完成,可进行MFC项目开发。 2.查看PC函数手册,熟悉相关函数接口 (1)PC函数手册也在光盘资料里面,具体路径如下:“光盘资料\8.PC函数\函数库2.1\ZMotion函数库编程手册 V2.1.pdf” (2)链接控制器,获取链接句柄。 ZAux_OpenEth()接口说明: (3)振镜运动接口。 为振镜运动单独封装了一个运动接口,使用movescanabs指令进行运动,采用FORCE_SPEED参数设置运动过程中的速度,运动过程中基本不存在加减速过程,支持us级别的时间控制。 3. MFC开发控制器双振镜运动例程 (1)例程界面如下。 (2) 链接按钮的事件处理函数中调用链接控制器的接口函数ZAux_OpenEth(),与控制器进行链接,链接成功后启动定时器1监控控制器状态。 //网口链接控制器void CSingle_move_Dlg::OnOpen(){char buffer[256]; int32 iresult;//如果已经链接,则先断开链接if(NULL != g_handle){ZAux_Close(g_handle);g_handle = NULL;}//从IP下拉框中选择获取IP地址GetDlgItemText(IDC_IPLIST,buffer,255);buffer[255] = '\0';//开始链接控制器iresult = ZAux_OpenEth(buffer, &g_handle);if(ERR_SUCCESS != iresult){g_handle = NULL;MessageBox(_T("链接失败"));SetWindowText("未链接");return;}//链接成功开启定时器1SetWindowText("已链接");SetTimer( 1, 100, NULL ); } (3)通过定时器监控控制器状态 。 void CSingle_move_Dlg::OnTimer(UINT_PTR nIDEvent) {// TODO: Add your message handler code here and/or call defaultif(NULL == g_handle){MessageBox(_T("链接断开"));return ;}if(1 == nIDEvent){CString string;float position = 0;ZAux_Direct_GetDpos( g_handle,m_nAxis,&position); //获取当前轴位置string.Format("振镜X1轴位置:%.2f", position );GetDlgItem( IDC_CURPOS )->SetWindowText( string );float NowSp = 0;ZAux_Direct_GetVpSpeed( g_handle,m_nAxis,&NowSp); //获取当前轴速度string.Format("振镜X1轴速度:%.2f", NowSp );GetDlgItem( IDC_CURSPEED)->SetWindowText( string );ZAux_Direct_GetDpos(g_handle, m_nAxis+1, &position); //获取当前轴位置string.Format("振镜Y1轴位置:%.2f", position);GetDlgItem(IDC_CURPOS2)->SetWindowText(string);ZAux_Direct_GetVpSpeed(g_handle, m_nAxis+1, &NowSp); //获取当前轴速度string.Format("振镜Y1轴速度:%.2f", NowSp);GetDlgItem(IDC_CURSPEED2)->SetWindowText(string);ZAux_Direct_GetDpos(g_handle, m_nAxis + 2, &position); //获取当前轴位置string.Format("振镜X2轴位置:%.2f", position);GetDlgItem(IDC_CURPOS3)->SetWindowText(string);NowSp = 0;ZAux_Direct_GetVpSpeed(g_handle, m_nAxis + 2, &NowSp); //获取当前轴速度string.Format("振镜X2轴速度:%.2f", NowSp);GetDlgItem(IDC_CURSPEED3)->SetWindowText(string);ZAux_Direct_GetDpos(g_handle, m_nAxis + 3, &position); //获取当前轴位置string.Format("振镜Y2轴位置:%.2f", position);GetDlgItem(IDC_CURPOS4)->SetWindowText(string);ZAux_Direct_GetVpSpeed(g_handle, m_nAxis + 3, &NowSp); //获取当前轴速度string.Format("振镜Y2轴速度:%.2f", NowSp);GetDlgItem(IDC_CURSPEED4)->SetWindowText(string);int status = 0; ZAux_Direct_GetIfIdle(g_handle, m_nAxis,&status); //判断当前轴状态if (status == -1){GetDlgItem( IDC_CURSTATE )->SetWindowText( "当前状态:停 止" );}else{GetDlgItem( IDC_CURSTATE )->SetWindowText( "当前状态:运动中" );} }CDialog::OnTimer(nIDEvent);} (4)通过启动按钮的事件处理函数获取编辑框的移动轨迹,并设置振镜轴参数操作振镜轴运动。 void CSingle_move_Dlg::OnStart() //启动运动{if(NULL == g_handle){MessageBox(_T("链接断开状态"));return ;}UpdateData(true);//刷新参数int status = 0; ZAux_Direct_GetIfIdle(g_handle, m_nAxis,&status); //判断当前轴状态 if (status == 0) //已经在运动中{ return;} //设定轴类型 1-脉冲轴类型 for (int i = 4; i < 8; i++){ZAux_Direct_SetAtype(g_handle, i, m_Atype);ZAux_Direct_SetMerge(g_handle,i,1);//设置脉冲当量ZAux_Direct_SetUnits(g_handle, i, m_units);//设定速度,加减速ZAux_Direct_SetLspeed(g_handle, i, m_lspeed);ZAux_Direct_SetSpeed(g_handle, i, m_speed);ZAux_Direct_SetForceSpeed(g_handle, i, m_speed);ZAux_Direct_SetAccel(g_handle, i, m_acc);ZAux_Direct_SetDecel(g_handle, i, m_dec);//设定S曲线时间 设置为0表示梯形加减速 ZAux_Direct_SetSramp(g_handle, i, m_sramp);}//使用MOVESCANABS运动int axislist[2] = { 4,5 };float dposlist[2] = { 0,0 };ZAux_MoveScanAbs(2, axislist, dposlist);CString str;GetDlgItem(IDC_EDIT_POSX1)->GetWindowText(str);float dbx = atof(str);GetDlgItem(IDC_EDIT_POSY1)->GetWindowText(str);float dby = atof(str);dposlist[0] = dbx;dposlist[1] = dby;ZAux_MoveScanAbs(2, axislist, dposlist);GetDlgItem(IDC_EDIT_POSX2)->GetWindowText(str);dbx = atof(str);GetDlgItem(IDC_EDIT_POSY2)->GetWindowText(str);dby = atof(str);dposlist[0] = dbx;dposlist[1] = dby;ZAux_MoveScanAbs(2, axislist, dposlist);GetDlgItem(IDC_EDIT_POSX3)->GetWindowText(str);dbx = atof(str);GetDlgItem(IDC_EDIT_POSY3)->GetWindowText(str);dby = atof(str);dposlist[0] = dbx;dposlist[1] = dby;ZAux_MoveScanAbs(2, axislist, dposlist);GetDlgItem(IDC_EDIT_POSX4)->GetWindowText(str);dbx = atof(str);GetDlgItem(IDC_EDIT_POSY4)->GetWindowText(str);dby = atof(str);dposlist[0] = dbx;dposlist[1] = dby;ZAux_MoveScanAbs(2, axislist, dposlist);//第二个振镜运动//使用MOVESCANABS运动axislist[0] = 6;axislist[1] = 7;dposlist[0] = 0;dposlist[1] = 0;ZAux_MoveScanAbs(2, axislist, dposlist);GetDlgItem(IDC_EDIT_POSX5)->GetWindowText(str);dbx = atof(str);GetDlgItem(IDC_EDIT_POSY5)->GetWindowText(str);dby = atof(str);dposlist[0] = dbx;dposlist[1] = dby;ZAux_MoveScanAbs(2, axislist, dposlist);GetDlgItem(IDC_EDIT_POSX6)->GetWindowText(str);dbx = atof(str);GetDlgItem(IDC_EDIT_POSY6)->GetWindowText(str);dby = atof(str);dposlist[0] = dbx;dposlist[1] = dby;ZAux_MoveScanAbs(2, axislist, dposlist);GetDlgItem(IDC_EDIT_POSX7)->GetWindowText(str);dbx = atof(str);GetDlgItem(IDC_EDIT_POSY7)->GetWindowText(str);dby = atof(str);dposlist[0] = dbx;dposlist[1] = dby;ZAux_MoveScanAbs(2, axislist, dposlist);GetDlgItem(IDC_EDIT_POSX8)->GetWindowText(str);dbx = atof(str);GetDlgItem(IDC_EDIT_POSY8)->GetWindowText(str);dby = atof(str);dposlist[0] = dbx;dposlist[1] = dby;ZAux_MoveScanAbs(2, axislist, dposlist);UpdateData(false); } (5) 通过断开按钮的事件处理函数来断开与控制卡的连接。 void CSingle_move_Dlg::OnClose() //断开链接{// TODO: Add your control notification handler code hereif(NULL != g_handle){KillTimer(1); //关定时器KillTimer(2);ZAux_Close(g_handle);g_handle = NULL;SetWindowText("未链接");} } (6)通过坐标清零按钮的事件处理函数移动振镜轴回零到中心零点位置,不直接使用dpos=0,修改振镜轴坐标。 void CSingle_move_Dlg::OnZero() //清零坐标{if(NULL == g_handle){MessageBox(_T("链接断开状态"));return ;}// TODO: Add your control notification handler code hereint axislist[2] = { 4,5 };float dposlist[2] = { 0 };ZAux_Direct_MoveAbs(g_handle,2,axislist,dposlist); //设置运动回零点} 三调试与监控 编译运行例程,同时通过ZDevelop软件连接控制器对控制器状态进行监控 。 ZDevelop软件连接控制器监控控制器的状态,查看振镜轴对应参数,并可搭配示波器检测双振镜轨迹。 设置振镜轴运动,首先需要将轴类型配置成21振镜轴类型,并对应配置振镜轴的速度加减速等参数才可操作振镜进行运动。 通过ZDevelop软件的示波器监控双振镜运动运行轨迹。 视频演示。 开放式激光振镜+运动控制器(六)-双振镜运动 本次,正运动技术开放式激光振镜+运动控制器(六):双振镜运动,就分享到这里。 更多精彩内容请关注“正运动小助手”公众号,需要相关开发环境与例程代码,请咨询正运动技术销售工程师:400-089-8936。 本文由正运动技术原创,欢迎大家转载,共同学习,一起提高中国智能制造水平。文章版权归正运动技术所有,如有转载请注明文章来源。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_57350300/article/details/123402200。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-04 17:33:09
340
转载
转载文章
...使用的编译器大多会对代码做一定程度的优化,CPU也会对执行指令做一些优化调整,目的是提高代码的执行效率,但这样的优化,有时候会带来不期望的结果。如例: void foo_update( foo new_fp ){spin_lock(&foo_mutex);foo old_fp = gbl_foo;new_fp-》a = 1;new_fp-》b = ‘b’;new_fp-》c = 100;gbl_foo = new_fp;spin_unlock(&foo_mutex);synchronize_rcu();kfee(old_fp);} 这段代码中,我们期望的是6,7,8行的代码在第10行代码之前执行。但优化后的代码并不会对执行顺序做出保证。在这种情形下,一个读线程很可能读到 new_fp,但new_fp的成员赋值还没执行完成。单独线程执行dosomething(fp-》a, fp-》b , fp-》c ) 的 这个时候,就有不确定的参数传入到dosomething,极有可能造成不期望的结果,甚至程序崩溃。可以通过优化屏障来解决该问题,RCU机制对优化屏障做了包装,提供了专用的API来解决该问题。这时候,第十行不再是直接的指针赋值,而应该改为 : rcu_assign_pointer(gbl_foo,new_fp);rcu_assign_pointer的实现比较简单,如下:define rcu_assign_pointer(p, v) \__rcu_assign_pointer((p), (v), __rcu)define __rcu_assign_pointer(p, v, space) \do { \smp_wmb(); \(p) = (typeof(v) __force space )(v); \} while (0) 我们可以看到它的实现只是在赋值之前加了优化屏障 smp_wmb来确保代码的执行顺序。另外就是宏中用到的__rcu,只是作为编译过程的检测条件来使用的。 在DEC Alpha CPU机器上还有一种更强悍的优化,如下所示: void foo_read(void){rcu_read_lock();foo fp = gbl_foo;if ( fp != NULL )dosomething(fp-》a, fp-》b ,fp-》c);rcu_read_unlock();} 第六行的 fp-》a,fp-》b,fp-》c会在第3行还没执行的时候就预先判断运行,当他和foo_update同时运行的时候,可能导致传入dosomething的一部分属于旧的gbl_foo,而另外的属于新的。这样会导致运行结果的错误。为了避免该类问题,RCU还是提供了宏来解决该问题: define rcu_dereference(p) rcu_dereference_check(p, 0)define rcu_dereference_check(p, c) \__rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)define __rcu_dereference_check(p, c, space) \({ \typeof(p) _________p1 = (typeof(p)__force )ACCESS_ONCE(p); \rcu_lockdep_assert(c, “suspicious rcu_dereference_check()” \usage”); \rcu_dereference_sparse(p, space); \smp_read_barrier_depends(); \(typeof(p) __force __kernel )(_________p1)); \})staTIc inline int rcu_read_lock_held(void){if (!debug_lockdep_rcu_enabled())return 1;if (rcu_is_cpu_idle())return 0;if (!rcu_lockdep_current_cpu_online())return 0;return lock_is_held(&rcu_lock_map);} 这段代码中加入了调试信息,去除调试信息,可以是以下的形式(其实这也是旧版本中的代码): define rcu_dereference(p) ({ \typeof(p) _________p1 = p; \smp_read_barrier_depends(); \(_________p1); \}) 在赋值后加入优化屏障smp_read_barrier_depends()。我们之前的第四行代码改为 foo fp = rcu_dereference(gbl_foo);,就可以防止上述问题。 数据读取的完整性 还是通过例子来说明这个问题: 如图我们在原list中加入一个节点new到A之前,所要做的第一步是将new的指针指向A节点,第二步才是将Head的指针指向new。这样做的目的是当插入操作完成第一步的时候,对于链表的读取并不产生影响,而执行完第二步的时候,读线程如果读到new节点,也可以继续遍历链表。如果把这个过程反过来,第一步head指向new,而这时一个线程读到new,由于new的指针指向的是Null,这样将导致读线程无法读取到A,B等后续节点。从以上过程中,可以看出RCU并不保证读线程读取到new节点。如果该节点对程序产生影响,那么就需要外部调用来做相应的调整。如在文件系统中,通过RCU定位后,如果查找不到相应节点,就会进行其它形式的查找,相关内容等分析到文件系统的时候再进行叙述。 我们再看一下删除一个节点的例子: 如图我们希望删除B,这时候要做的就是将A的指针指向C,保持B的指针,然后删除程序将进入宽限期检测。由于B的内容并没有变更,读到B的线程仍然可以继续读取B的后续节点。B不能立即销毁,它必须等待宽限期结束后,才能进行相应销毁操作。由于A的节点已经指向了C,当宽限期开始之后所有的后续读操作通过A找到的是C,而B已经隐藏了,后续的读线程都不会读到它。这样就确保宽限期过后,删除B并不对系统造成影响。 小结 RCU的原理并不复杂,应用也很简单。但代码的实现确并不是那么容易,难点都集中在了宽限期的检测上,后续分析源代码的时候,我们可以看到一些极富技巧的实现方式。 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_50662680/article/details/128449401。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-25 09:31:10
106
转载
转载文章
...处理404、403等错误。 1.实现绑定本机机器的1024端口作为ReageWeb服务提供网页服务的端口。(避免与机器上装有web服务器产生端口冲突) 2.实现get获取网页方式。 3.实现index.html作为网站的首页面 作者:Reage blog:http://blog.csdn.net/rentiansheng / include<stdio.h> include<stdlib.h> include<string.h> include<sys/types.h> include<sys/socket.h> include<sys/un.h> include<netinet/in.h> include<arpa/inet.h> include<fcntl.h> include<string.h> include<sys/stat.h> include<signal.h> defineMAX1024 intres_socket; voidapp_exit(); / @description:开始服务端监听 @parameter ip:web服务器的地址 port:web服务器的端口 @result:成功返回创建socket套接字标识,错误返回-1 / intsocket_listen(charip,unsignedshortintport){ intres_socket;//返回值 intres,on; structsockaddr_inaddress; structin_addrin_ip; res=res_socket=socket(AF_INET,SOCK_STREAM,0); setsockopt(res_socket,SOL_SOCKET,SO_REUSEADDR,&on,sizeof(on)); memset(&address,0,sizeof(address)); address.sin_family=AF_INET; address.sin_port=htons(port); address.sin_addr.s_addr=htonl(INADDR_ANY);//inet_addr("127.0.0.1"); res=bind(res_socket,(structsockaddr)&address,sizeof(address)); if(res){printf("portisused,nottorepeatbind\n");exit(101);}; res=listen(res_socket,5); if(res){printf("listenportiserror;\n");exit(102);}; returnres_socket; } / @description:向客户端发送网页头文件的信息 @parameter conn_socket:套接字描述符。 status:http协议的返回状态码。 @s_status:http协议的状态码的含义 @filetype:向客户端发送的文件类型 / voidsend_http_head(intconn_socket,intstatus,chars_status,charfiletype){ charbuf[MAX]; memset(buf,0,MAX); sprintf(buf,"HTTP/1.0%d%s\r\n",status,s_status); sprintf(buf,"%sServer:ReageWebServer\r\n",buf); sprintf(buf,"%sContent-Type:%s\r\n\r\n",buf,filetype); write(conn_socket,buf,strlen(buf)); } / @description:向客户端发送错误页面信息 @parameter conn_socket:套接字描述符。 status:http协议的返回状态码。 @s_status:http协议的状态码的含义 @filetype:向客户端发送的文件类型 @msg:错误页面信息内容 / voidsend_page_error(intconn_socket,intstatus,chars_status,charmsg){ charbuf[MAX]; sprintf(buf,"<html><head></head><body><h1>%s</h1><hr>ReageWebServer0.01</body></head>",msg); send_http_head(conn_socket,status,s_status,"text/html"); write(conn_socket,buf,strlen(buf)); } / @description:向客户端发送文件 @parameter conn_socket:套接字描述符。 @file:要发送文件路径 / intsend_html(intconn_socket,charfile){ intf; charbuf[MAX]; inttmp; structstatfile_s; //如果file为空,表示发送默认主页。主页暂时固定 if(0==strlen(file)){ strcpy(file,"index.html"); } //如果获取文件状态失败,表示文件不存的,发送404页面,暂时404页面内容固定。 if(stat(file,&file_s)){ send_page_error(conn_socket,404,"Notfound","Notfound<br/>Reagedoesnotimplementthismothod\n"); return0; } //如果不是文件或者无读权限,发送无法读取文件 if(!(S_ISREG(file_s.st_mode))||!(S_IRUSR&file_s.st_mode)){ send_page_error(conn_socket,403,"Forbidden","Forbidden<br/>Reagecouldn'treadthefile\n"); return0; } //发送头文件,现在只提供html页面 send_http_head(conn_socket,200,"OK","text/html"); f=open(file,O_RDONLY); if(0>f){ //打开文件失败,发送404页面,其实感觉发送5xx也可以的,服务器内部错误 send_page_error(conn_socket,404,"Notfound","Notfound<br/>Reagecouldn'treadthefile\n"); return0; } buf[MAX-1]=0;//将文件内容缓冲区最后的位设置位结束标志。 //发送文件的内容 while((tmp=read(f,buf,MAX-1))&&EOF!=tmp){ write(conn_socket,buf,strlen(buf)); } } / @description:提取url中可用的信息。访问的网页和数据访问方式 @parameter: conn_socket:与客户端链接的套接字 uri:要处理的url,注意不是浏览器中的url,而是浏览器发送的http请求 @resutl: / intdo_uri(intconn_socket,charuri){ charp; p=strchr(uri,'?'); if(p){p=0;p++;} send_html(conn_socket,uri); } voidulog(charmsg){} voidprint(charmsg){ ulog(msg); printf(msg); } intmain(intargc,charargv[]){ intconn_socket; inttmp; intline; structsockaddr_inclient_addr; charbuf[MAX]; intlen=sizeof(client_addr); charmethod[100],uri[MAX],version[100]; charpwd[1024]; res_socket=socket_listen("127.0.0.1",1024); //当按ctrl+c结束程序时调用,使用app_exit函数处理退出过程 signal(SIGINT,app_exit); while(1){ conn_socket=accept(res_socket,(structsockaddr)&client_addr,&len); printf("reage\n"); line=0; //从客户端获取请求信息 while(0==(tmp=read(conn_socket,buf,MAX-1))||tmp!=EOF){ buf[MAX-1]=0; break;//我只使用了第一行的请求信息,所以丢弃其他的信息 } //send_http_head(conn_socket,200,"text/html"); sscanf(buf,"%s%s%s",method,uri,version); //目前只处理get请求 if(!strcasecmp(method,"get")) //send_html(conn_socket,"h.html"); do_uri(conn_socket,uri+1); close(conn_socket); } } voidapp_exit(){ //回复ctrl+c组合键的默认行为 signal(SIGINT,SIG_DFL); //关闭服务端链接、释放服务端ip和端口 close(res_socket); printf("\n"); exit(0); } ====================================================================== 本篇文章为转载内容。原文链接:https://blog.csdn.net/iteye_9368/article/details/82520401。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-30 18:31:58
92
转载
NodeJS
...接下来,我们随便写点代码让这个项目动起来。比如新建一个index.js文件,内容如下: javascript // index.js const http = require('http'); const hostname = '127.0.0.1'; const port = 3000; const server = http.createServer((req, res) => { res.statusCode = 200; res.setHeader('Content-Type', 'text/plain'); res.end('Hello World\n'); }); server.listen(port, hostname, () => { console.log(Server running at http://${hostname}:${port}/); }); 现在你可以直接运行它看看效果: bash node index.js 打开浏览器访问http://127.0.0.1:3000/,你会看到“Hello World”。不错,我们的基础项目已经搭建好了! --- 4. 第一步 编写Dockerfile 接下来我们要做的就是给这个项目添加Docker的支持。为此,我们需要创建一个特殊的文件叫Dockerfile。这个名字是固定的,不能改哦。 进入项目根目录,创建一个空文件名为Dockerfile,然后在里面输入以下内容: dockerfile 使用官方的Node.js镜像作为基础镜像 FROM node:16-alpine 设置工作目录 WORKDIR /app 将当前目录下的所有文件复制到容器中的/app目录 COPY . /app 安装项目依赖 RUN npm install 暴露端口 EXPOSE 3000 启动应用 CMD ["node", "index.js"] 这段代码看起来有点复杂,但其实逻辑很简单: 1. FROM node:16-alpine 告诉Docker从官方的Node.js 16版本的Alpine镜像开始构建。 2. WORKDIR /app 指定容器内的工作目录为/app。 3. COPY . /app 把当前项目的文件拷贝到容器的/app目录下。 4. RUN npm install 在容器内执行npm install命令,安装项目的依赖。 5. EXPOSE 3000 声明应用监听的端口号。 6. CMD ["node", "index.js"]:定义容器启动时默认执行的命令。 保存完Dockerfile后,我们可以试着构建镜像了。 --- 5. 构建并运行Docker镜像 在项目根目录下运行以下命令来构建镜像: bash docker build -t my-node-app . 这里的. 表示当前目录,my-node-app是我们给镜像起的名字。构建完成后,可以用以下命令查看是否成功生成了镜像: bash docker images 输出应该类似这样: REPOSITORY TAG IMAGE ID CREATED SIZE my-node-app latest abcdef123456 2 minutes ago 150MB 接着,我们可以启动容器试试看: bash docker run -d -p 3000:3000 my-node-app 参数解释: - -d:以后台模式运行容器。 - -p 3000:3000:将主机的3000端口映射到容器的3000端口。 - my-node-app:使用的镜像名称。 启动成功后,访问http://localhost:3000/,你会发现依然可以看到“Hello World”!这说明我们的Docker化部署已经初步完成了。 --- 6. 进阶 多阶段构建优化镜像大小 虽然上面的方法可行,但生成的镜像体积有点大(大约150MB左右)。有没有办法让它更小呢?答案是有!这就是Docker的“多阶段构建”。 修改后的Dockerfile如下: dockerfile 第一阶段:构建阶段 FROM node:16-alpine AS builder WORKDIR /app COPY package.json ./ RUN npm install COPY . . RUN npm run build 假设你有一个build脚本 第二阶段:运行阶段 FROM node:16-alpine WORKDIR /app COPY --from=builder /app/dist ./dist 假设build后的文件存放在dist目录下 COPY package.json ./ RUN npm install --production EXPOSE 3000 CMD ["node", "dist/index.js"] 这里的关键在于“--from=builder”,它允许我们在第二个阶段复用第一个阶段的结果。这样就能让开发工具和测试依赖 stays 在它们该待的地方,而不是一股脑全塞进最终的镜像里,这样一来镜像就能瘦成一道闪电啦! --- 7. 总结与展望 写到这里,我相信你已经对如何用Docker部署Node.js应用有了基本的认识。虽然过程中可能会遇到各种问题,但每一次尝试都是成长的机会。记得多查阅官方文档,多动手实践,这样才能真正掌握这项技能。 未来,随着云计算和微服务架构的普及,容器化将成为每个开发者必备的技能之一。所以,别犹豫啦,赶紧去试试呗!要是你有什么不懂的,或者想聊聊自己的经历,就尽管来找我聊天,咱们一起唠唠~咱们一起进步! 最后,祝大家都能早日成为Docker高手!😄
2025-05-03 16:15:16
43
海阔天空
DorisDB
...得静止。查询返回一个错误信息,告诉你“写入失败”。这不仅让你感到沮丧,还可能影响了业务流程的连续性。 原因分析:写入失败可能是由多种因素引起的,包括但不限于网络延迟、资源限制(如磁盘空间不足)、事务冲突、以及数据库配置问题等。理解这些原因有助于我们对症下药。 第二章:案例研究:网络延迟引发的写入失败 场景还原:假设你正使用Python的dorisdb库进行数据插入操作。代码如下: python from dorisdb import DorisDBClient client = DorisDBClient(host='your_host', port=your_port, database='your_db') cursor = client.cursor() 插入数据 cursor.execute("INSERT INTO your_table (column1, column2) VALUES ('value1', 'value2')") 问题浮现:执行上述代码后,你收到了“写入失败”的消息,同时发现网络连接偶尔会中断。 解决方案:首先,检查网络连接稳定性。确保你的服务器与DorisDB实例之间的网络畅通无阻。其次,优化SQL语句的执行效率,减少网络传输的数据量。例如,可以考虑批量插入数据,而不是逐条插入。 第三章:资源限制:磁盘空间不足的挑战 场景还原:你的DorisDB实例运行在一个资源有限的环境中,某天,当你试图插入大量数据时,系统提示磁盘空间不足。 问题浮现:尽管你已经确保了网络连接稳定,但写入仍然失败。 解决方案:增加磁盘空间是显而易见的解决方法,但这需要时间和成本。哎呀,兄弟,你得知道,咱们手头的空间那可是个大问题啊!要是想在短时间内搞定它,我这儿有个小妙招给你。首先,咱们得做个大扫除,把那些用不上的数据扔掉。就像家里大扫除一样,那些过时的文件、照片啥的,该删就删,别让它占着地方。其次呢,咱们可以用更牛逼的压缩工具,比如ZIP或者RAR,它们能把文件压缩得更小,让硬盘喘口气。这样一来,不仅空间大了,还能节省点资源,挺划算的嘛!试试看,说不定你会发现自己的设备运行起来比以前流畅多了!嘿,兄弟!你听说过 DorisDB 的分片和分布式功能吗?这玩意儿超级厉害!它就像个大仓库,能把咱们的数据均匀地摆放在多个小仓库里(那些就是节点),这样不仅能让数据更高效地存储起来,还能让我们的系统跑得更快,用起来更顺畅。试试看,保管让你爱不释手! 第四章:事务冲突与并发控制 场景还原:在高并发环境下,多个用户同时尝试插入数据到同一表中,导致了写入失败。 问题浮现:即使网络连接稳定,磁盘空间充足,事务冲突仍可能导致写入失败。 解决方案:引入适当的并发控制机制是关键。在DorisDB中,可以通过设置合理的锁策略来避免或减少事务冲突。例如,使用行级锁或表级锁,根据具体需求选择最合适的锁模式。哎呀,兄弟,咱们在优化程序的时候,得注意一点,别搞那些没必要的同时进行的操作,这样能大大提升系统的稳定性。就像是做饭,你要是同时炒好几个菜,肯定得忙得团团转,而且容易出错。所以啊,咱们得一个个来,稳扎稳打,这样才能让系统跑得又快又稳! 结语:从困惑到解决的旅程 面对“写入失败”,我们需要冷静分析,从不同的角度寻找问题所在。哎呀,你知道嘛,不管是网速慢了点、硬件不够给力、操作过程中卡壳了,还是设置哪里没对劲,这些事儿啊,都有各自的小妙招来解决。就像是遇到堵车了,你得找找是哪段路的问题,然后对症下药,说不定就是换个路线或者等等红绿灯,就能顺畅起来呢!哎呀,你知道不?咱们要是能持续地学习和动手做,那咱处理问题的能力就能慢慢上个新台阶。就像给水管通了塞子,数据的流动就更顺畅了。这样一来,咱们的业务跑起来也快多了,就像是有了个贴身保镖,保护着业务高效运转呢!嘿!听好了,每回遇到难题都不是白来的,那可是让你升级打怪的好机会!咱们就一起手牵手,勇闯数据的汪洋大海,去发现那些藏在暗处的新世界吧!别怕,有我在你身边,咱俩一起探险,一起成长!
2024-10-07 15:51:26
124
醉卧沙场
Tornado
...性能确实吊炸天,而且代码写起来也挺优雅。 然后是 Google Cloud Secret Manager,这是一个专门用来存储敏感信息(比如 API 密钥、数据库密码啥的)的服务。对开发者而言,安全这事得放首位,要是还用那种硬编码或者直接把密钥啥的写进配置文件的老办法,那简直就是在玩火自焚啊!Google Cloud Secret Manager 提供了加密存储、访问控制等功能,简直是保护秘钥的最佳选择之一。 所以,当我把这两者放在一起的时候,脑海里立刻浮现出一个画面:Tornado 快速响应前端请求,而 Secret Manager 在背后默默守护着那些珍贵的秘密。是不是很带感?接下来我们就一步步深入探索它们的合作方式吧! --- 2. 初识Tornado 搭建一个简单的Web服务 既然要玩转 Tornado,咱们得先搭个基础框架才行。好嘞,接下来我就简单搞个小网页服务,就让它回一句暖心的问候就行啦!虽然看起来简单,但这可是后续一切的基础哦! python import tornado.ioloop import tornado.web class MainHandler(tornado.web.RequestHandler): def get(self): self.write("Hello, Tornado!") def make_app(): return tornado.web.Application([ (r"/", MainHandler), ]) if __name__ == "__main__": app = make_app() app.listen(8888) print("Server started at http://localhost:8888") tornado.ioloop.IOLoop.current().start() 这段代码超级简单对不对?我们定义了一个 MainHandler 类继承自 tornado.web.RequestHandler,重写了它的 get 方法,当收到 GET 请求时就会执行这个方法,并向客户端返回 "Hello, Tornado!"。然后呢,就用 make_app 这个函数把路由和这个处理器绑在一起,最后再启动服务器,让它开始监听 8888 端口。 运行后打开浏览器输入 http://localhost:8888,就能看到页面显示 "Hello, Tornado!" 了。是不是特别爽?不过别急着高兴,这只是万里长征的第一步呢! --- 3. 引入Google Cloud Secret Manager:让秘密不再裸奔 现在我们知道如何用 Tornado 做点事情了,但问题是,如果我们的应用程序需要用到一些敏感信息(例如数据库连接字符串),该怎么办呢?直接写在代码里吗?当然不行!这就是为什么我们要引入 Google Cloud Secret Manager。 3.1 安装依赖库 首先需要安装 Google Cloud 的官方 Python SDK: bash pip install google-cloud-secret-manager 3.2 获取Secret Manager中的值 假设我们在 Google Cloud Console 上已经创建了一个名为 my-secret 的密钥,并且它里面保存了我们的数据库密码。我们可以这样从 Secret Manager 中读取这个值: python from google.cloud import secretmanager def access_secret_version(project_id, secret_id, version_id): client = secretmanager.SecretManagerServiceClient() name = f"projects/{project_id}/secrets/{secret_id}/versions/{version_id}" response = client.access_secret_version(name=name) payload = response.payload.data.decode('UTF-8') return payload 使用示例 db_password = access_secret_version("your-project-id", "my-secret", "latest") print(f"Database Password: {db_password}") 这段代码做了什么呢?很简单,它实例化了一个 SecretManagerServiceClient 对象,然后根据提供的项目 ID、密钥名称以及版本号去访问对应的密钥内容。注意这里的 version_id 参数可以设置为 "latest" 来获取最新的版本。 --- 4. 将两者结合起来 构建更安全的应用 那么问题来了,怎么才能让 Tornado 和 Google Cloud Secret Manager 协同工作呢?其实答案很简单——我们可以将从 Secret Manager 获取到的敏感数据注入到 Tornado 的配置对象中,从而在整个应用范围内使用这些信息。 4.1 修改Tornado应用以支持从Secret Manager加载配置 让我们修改之前的 MainHandler 类,让它从 Secret Manager 中加载数据库密码并用于某种操作(比如查询数据库)。为了简化演示,这里我们假设有一个 get_db_password 函数负责完成这项任务: python from google.cloud import secretmanager def get_db_password(): client = secretmanager.SecretManagerServiceClient() name = f"projects/{YOUR_PROJECT_ID}/secrets/my-secret/versions/latest" response = client.access_secret_version(name=name) return response.payload.data.decode('UTF-8') class MainHandler(tornado.web.RequestHandler): def initialize(self, db_password): self.db_password = db_password def get(self): self.write(f"Connected to database with password: {self.db_password}") def make_app(): db_password = get_db_password() return tornado.web.Application([ (r"/", MainHandler, {"db_password": db_password}), ]) 在这个例子中,我们在 make_app 函数中调用了 get_db_password() 来获取数据库密码,并将其传递给 MainHandler 的构造函数作为参数。这样一来,每个 MainHandler 实例都会拥有自己的数据库密码属性。 --- 5. 总结与展望 好了朋友们,今天的分享就到这里啦!通过这篇文章,我们了解了如何利用 Tornado 和 Google Cloud Secret Manager 来构建更加安全可靠的 Web 应用。虽然过程中遇到了不少挑战,但最终的效果还是让我感到非常满意。 未来的话,我还想尝试更多有趣的功能组合,比如结合 Redis 缓存提高性能,或者利用 Pub/Sub 实现消息队列机制。如果你也有类似的想法或者遇到什么问题,欢迎随时跟我交流呀! 最后祝大家 coding愉快,记得保护好自己的秘密哦~ 😊
2025-04-09 15:38:23
44
追梦人
ZooKeeper
...没关系,让我用一段伪代码来帮你理清思路: python def acquire_lock(zookeeper_client, lock_path): 创建一个临时顺序节点 node = zookeeper_client.create(lock_path + "/lock-", ephemeral=True, sequence=True) 获取所有子节点并排序 children = sorted(zookeeper_client.get_children(lock_path)) 检查自己是否是最小的节点 if node.endswith(children[0]): print("I got the lock!") return True 如果不是,就监听前一个节点的变化 predecessor = children[children.index(node) - 1] zookeeper_client.wait_for_event(lock_path + "/" + predecessor) 当前节点变成了最小节点时再次尝试获取锁 return acquire_lock(zookeeper_client, lock_path) 这段代码展示了如何通过递归的方式来不断尝试获取锁。其实吧,表面上看这事不复杂,但真要弄好还挺讲究的。比如说,怎么在出错的时候不慌不忙地重试,而不是乱成一锅粥;还有啊,怎么才能防止那些烦人的死锁情况,不然程序一卡住就头疼了。这些问题都需要我们在实际开发过程中仔细考虑。 --- 四、可重用性的秘密武器 到这里,你可能会问:“既然每次获取锁都要重新创建一个新的节点,那怎么才能让锁变得可重用呢?”答案就在于ZooKeeper的“临时节点”特性。 还记得我说过临时节点会在客户端断开连接时自动删除吗?这就意味着我们可以设计一种模式,在客户端成功获取锁之后,保持与ZooKeeper的长连接状态。只要连接一直保持,锁就不会丢失,其他客户端也无法抢占它。等到任务完成或者需要释放锁的时候,再主动删除对应的节点即可。 为了更好地理解这一点,让我们看一个具体的例子。假设我们现在有一个任务队列系统,每个任务都需要加锁才能执行。以下是一个简化版的Python实现: python import time from kazoo.client import KazooClient zk = KazooClient(hosts='localhost:2181') zk.start() def process_task(task_id): lock_path = "/task_lock" lock_node = None try: 尝试获取锁 while not lock_node: lock_node = zk.create(lock_path + "/task-", ephemeral=True, sequence=True) print(f"Processing task {task_id}") time.sleep(5) 模拟任务耗时 finally: 确保无论如何都要释放锁 if lock_node: zk.delete(lock_node) process_task(1) process_task(2) 在这个例子中,我们定义了一个process_task函数来模拟处理任务的过程。每次调用该函数时,它都会尝试获取锁,并在任务完成后自动释放锁。你说的那个锁啊,因为它是个临时节点嘛,所以哪怕程序突然挂了或者被强制关闭了,这个锁自己就会乖乖消失,这样系统就不会乱套,挺靠谱的! --- 五、总结与展望 好了,到这里我们已经大致了解了ZooKeeper是如何实现分布式锁的可重用性的。其实吧,咱们从最开始琢磨分布式锁是干啥用的,然后一路研究它是怎么工作的、里面那些技术细节到底是啥,到现在为止,我觉得大家对这个话题应该已经搞得挺明白了,甚至可以说是心里有谱了! 当然啦,ZooKeeper的应用远不止于此。它还可以用来实现配置中心、Leader选举等功能。未来如果有机会的话,我很乐意继续跟大家分享更多关于它的精彩内容!如果你有任何疑问或者想法,也欢迎随时留言交流哦~编程之路漫漫,我们一起加油吧!
2025-05-16 16:15:57
82
百转千回
Javascript
...咱们聊聊一个很有趣的错误——AbortError。这个错误名听着就带感啊,“Abort”一翻译就是“终止”,所以 AbortError 就是当你正在干某件事的时候,突然跟它说:“停!别再往下走了!”然后它就乖乖停住了,还不忘甩给你一句话:“哎哟喂,是你让我停的,我现在就是 AbortError 啊!””是不是感觉特别符合逻辑? 其实AbortError是JavaScript中的一个常见错误类型,特别是在处理异步操作的时候。比如fetch请求、文件上传下载、定时器这些地方都可能遇到它。它就像是一个警报器,告诉你某件事中途被中断了。 举个简单的例子: javascript const controller = new AbortController(); const signal = controller.signal; setTimeout(() => { console.log('定时器触发了!'); }, 3000); controller.abort(); // 中断定时器 console.log(signal.reason); // 输出 "AbortError: The operation was aborted." 在这个例子中,我们创建了一个AbortController实例,并通过调用它的abort()方法来中断定时器。嘿,瞧瞧最后一行输出啊!这告诉我们出问题了,是个“AbortError”,简单说就是有某个操作被强行中断啦。 --- 二、AbortError的实际应用场景 说到AbortError的应用场景,我觉得最典型的就是网络请求了。你有没有过这样的经历?比如你在网页上点了个下载按钮,想看个大图或者视频啥的。刚点完没多久,就觉得“这速度也太磨叽了吧!再等下去我都快睡着了”,然后一狠心就直接取消了操作。哎呀,这就像是服务器那边正拼了命地给你打包数据呢,结果你这边的浏览器直接甩出一句:“兄弟,不用忙活了,我不等了!””这就是AbortError发挥作用的地方。 让我们来看一段代码: javascript async function fetchData() { const controller = new AbortController(); const signal = controller.signal; try { const response = await fetch('https://example.com/large-file', { signal }); console.log('数据已成功获取'); } catch (error) { if (error.name === 'AbortError') { console.log('请求被用户取消'); } else { console.error('发生了其他错误:', error); } } // 取消请求 controller.abort(); } fetchData(); 在这段代码里,我们使用AbortController来管理一个网络请求。如果用户决定取消请求,我们就调用controller.abort(),这时fetch函数会抛出一个AbortError。嘿嘿,简单来说呢,就是咱们逮住这个错误,看看它是不是个“AbortError”,如果是的话,就用一种超优雅的方式把它处理了,不搞什么大惊小怪的。 --- 三、AbortError与其他错误的区别 说到错误,难免要和其他错误比较一番。比如说嘛,就有人会好奇地问:“AbortError跟一般的错误到底有啥不一样呀?”说实话呢,这个问题我也琢磨了好久好久,头都快想大了! 首先,AbortError是一种特殊的错误类型,专门用于表示操作被人为中断的情况。其实很多小错误啊,就是程序员自己不小心搞出来的,像打字打错了变量名,或者一激动让数组越界了之类的,都是挺常见的乌龙事件。简单来说呢,这俩的区别就是——AbortError就像是个“计划内”的小插曲,咱们事先知道它可能会发生,也能提前做好准备去应对;但普通的错误嘛,就好比是突然从天而降的小麻烦,压根儿没得防备,让人措手不及! 举个例子: javascript function divide(a, b) { if (b === 0) { throw new Error('除数不能为零'); } return a / b; } try { console.log(divide(10, 0)); // 抛出普通错误 } catch (error) { console.error(error.message); // 输出 "除数不能为零" } 在这个例子中,divide函数因为传入了非法参数(即分母为0)而抛出了一个普通错误。而如果我们换成AbortError呢? javascript const controller = new AbortController(); function process() { setTimeout(() => { console.log('处理完成'); }, 5000); } process(); controller.abort(); // 中断处理 这里虽然也有中断操作的意思,但并没有抛出任何错误。这就像是说,AbortError不会自己偷偷跑出来捣乱,得咱们主动去点那个abort()按钮才行。就好比你得自己动手去按开关,灯才不会自己亮起来一样。 --- 四、深入探讨AbortError的优缺点 说到优点嘛,我觉得AbortError最大的好处就是它让我们的代码更加健壮和可控。比如说啊,在面对一堆同时涌来的请求时, AbortError 就像一个神奇的开关,能帮我们把那些没用的请求一键关掉,这样就不会白白浪费资源啦!对了,它还能帮咱们更贴心地照顾用户体验呢!比如说,当用户等得花儿都快谢了,就给个机会让他们干脆放弃这事儿,省得干着急。 但是呢,凡事都有两面性。AbortError也有它的局限性。首先,它只适用于那些支持AbortSignal接口的操作,比如fetch、XMLHttpRequest之类。如果你尝试在一个不支持AbortSignal的操作上使用它,那就会直接报错。另外啊,要是随便乱用 AbortError 可不好,比如说老是取消请求的话,系统可能就会被折腾得够呛,负担越来越重,你说是不是? 说到这里,我想起了之前开发的一个项目,当时为了优化性能,我给每个API请求都加了AbortController,结果发现有时候会导致页面加载速度反而变慢了。后来经过反复调试,我才意识到,频繁地取消请求其实是得不偿失的。所以啊,大家在使用AbortError的时候一定要权衡利弊,不能盲目追求“安全”。 --- 五、总结与展望 总的来说,AbortError是一个非常实用且有趣的错误类型。它不仅能让我们更轻松地搞定那些乱七八糟的异步任务,还能让代码变得更好懂、更靠谱!不过,就像任何工具一样,它也需要我们在实践中不断摸索和完善。 未来,随着前端开发越来越复杂,我相信AbortError会有更多的应用场景。不管是应对一大堆同时进行的任务,还是让咱们跟软件互动的时候更顺畅、更开心,它都绝对是我们离不开的得力助手!所以,各位小伙伴,不妨多尝试用它来解决实际问题,说不定哪天你会发现一个全新的解决方案呢! 好了,今天的分享就到这里啦。希望能给大家打开一点思路,也期待大家在评论区畅所欲言,分享你的想法!最后,祝大家coding愉快,早日成为编程界的高手!
2025-03-27 16:22:54
107
月影清风
转载文章
...没问题了, 共享也是可读写的,盘符的格式是一样的,单机可以运行 mpirun -np 2 -localonly c:/ .exe 有结果 Zhihui Du <duzh@tsinghua.edu.cn> wrote: 安装mpich后应该有一个新的mpi进程在运行,用mpiconfig应该能够列出其他的机器才行, 还有这些计算结点的网络配置应该在一个子网内,另外共享的权限是否是任何用户可以读 写?你用mpirun -localonly -np x abc方式是否可以运行? ------------------------------ Dr. Zhihui Du Department of Computer Science and Technology Tsinghua University. Beijing, 100084, P.R. China Phone:86-10-62782530 Fax:86-10-62771138 http://hpclab.cs.tsinghua.edu.cn/~duzh ----- Original Message ----- From: zhyi To: Zhihui Du Sent: Saturday, October 30, 2004 5:55 PM Subject: Re: 请教mpi 我是严格按照mpich的要求进行的, 1。使用管理员权限在两机器上新建同一个名称的用户及相同的口令 2。分别在上面的两用户里安装mpich,然后mpiregister ,用户名和口令同 3。同一名称的盘符共享 4。mpiconfig,显示了对方的mpich 的版本号,说明已找到。 5。运行mpi程序 这样还是没有用,我们这边在windows系统下进行的很少有人成功过 我们都在网上问这个问题 Zhihui Du <duzh@tsinghua.edu.cn> wrote: 如果仅仅是自己做实验用,就可以不要考虑太多的安全问题,把MPI程序所在的盘共享出来 让其他的机器都可以访问,按照MPICH自己的设置,你可以运行MPIREGISTER程序先注册一 下用户名和口令。 ------------------------------ Dr. Zhihui Du Department of Computer Science and Technology Tsinghua University. Beijing, 100084, P.R. China Phone:86-10-62782530 Fax:86-10-62771138 http://hpclab.cs.tsinghua.edu.cn/~duzh ----- Original Message ----- From: zhyi To: duzh@tirc.cs.tsinghua.edu.cn Sent: Friday, October 29, 2004 9:26 PM Subject: 请教mpi 都老师: 你好! 我是南京大学系学生,现在正在用mpi进行数值并行编程, 是在windows系统下,同实验室的两台机器,总是显示登陆失败 不知怎么设置的。两台机器用的是同一用户名和相同密码,同样的注册。 希望能得到您的指点。 此致 -- ※ 来源:.南京大学小百合站 http://bbs.nju.edu.cn [FROM: 172.16.78.68] -- ※ 转寄:.南京大学小百合站 bbs.nju.edu.cn.[FROM: 202.120.20.14] -- ※ 转寄:.南京大学小百合站 bbs.nju.edu.cn.[FROM: 202.120.20.14] 一、预备工作 0. 二、下载 1. 下载mpich 三、安装 2. 用具有管理权限的帐户登陆计算机 3. 执行mpich.nt.1.2.5.exe,选择所有缺省安装 4. 在每台计算机上均执行上述过程2、3 四、配置 5. 运行配置工具 start->programs->MPICH->mpd->MPICH Configuration tool 6. 加入已经安装mpich的主机 7.点击 [Apply] 保存 8 点击 [OK] 退出 五、测试 9. 打开MSDEV工作空间文件 MPICH/SDK/examples/nt/examples.dsw 10. 编译调试该cpi 项目 11. 拷贝MPICH/SDK/examples/nt/basic/Debug/cpi.exe 到每一台机器某一共享目录。 如: c:/temp/cpi.exe 注意:确保每台机器均有同样的共享目录,并且可以互相访问!! 12. 打开命令窗口,改变当前路径到 c:/temp 下(与前相同) 13. 执行命令 MPICH/mpd/bin/mpirun.exe -np 4 cpi 本篇文章为转载内容。原文链接:https://blog.csdn.net/yangdelong/article/details/3946113。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-09 11:52:38
114
转载
转载文章
...ment error错误,执行下列命令后再重新在控制台打开图标 sudo apt-get install -y libcanberra 如果还不行,执行 sudo vmware-modconfig --console --install-all 看看还缺什么 12. 安装百度网盘 官网下载Linux版本的软件:百度网盘 客户端下载 deepin的软件包格式为deb。安装: sudo dpkg -i baidunetdisk_3.5.0_amd64.deb 最新版本 sudo dpkg -i baidunetdisk_4.17.7_amd64.deb 如果报错,执行 sudo apt-get -f install 13. 安装WPS 官网下载Linux版本的软件:WPS Office 2019 for Linux-支持多版本下载_WPS官方网站 deepin的软件包格式为deb。安装: sudo dpkg -i wps-office_11.1.0.10702_amd64.deb 最新版本 sudo dpkg -i wps-office_11.1.0.11691_amd64.deb 如果报错执行 sudo apt-get -f install wps有可能会报缺字体,缺的字体如下,双击安装 百度网盘 请输入提取码 提取码:lexo 14. 安装VS Code 官网下载Linux版本的软件:Visual Studio Code - Code Editing. Redefined deepin的软件包格式为deb。安装: sudo dpkg -i code_1.61.1-1634175470_amd64.deb 最新版本 sudo dpkg -i code_1.76.0-1677667493_amd64.deb 如果报错执行 sudo apt-get -f install 15. 安装微信、QQ、迅雷 微信 sudo apt-get install -y com.qq.weixin.deepin QQ sudo apt-get install -y com.qq.im.deepin 迅雷 sudo apt-get install -y com.xunlei.download 16. 安装视频播放器 sudo apt-get -y install smplayer sudo apt-get -y install vlc 17. 安装SSH工具electerm 下载electerm的deb版本 deepin的软件包格式为deb。安装: https://github.com/electerm/electerm/releases/download/v1.25.16/electerm-1.25.16-linux-amd64.deb sudo dpkg -i electerm-1.25.16-linux-amd64.deb 18.安装FTP/SFTP工具FileZilla sudo apt-get -y install filezilla 19. 安装edge浏览器 下载edge浏览器 deepin的软件包格式为deb。安装: 下载 Microsoft Edge sudo apt-get -y install fonts-liberation sudo apt-get -y install libu2f-udev sudo dpkg -i microsoft-edge-beta_95.0.1020.30-1_amd64.deb 最新版本 sudo dpkg -i microsoft-edge-stable_110.0.1587.63-1_amd64.deb 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_42173947/article/details/119973703。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-15 19:14:44
55
转载
转载文章
...配置文件里,args代码段提供了容器所需的参数。-mem-total 150Mi告诉容器尝试申请150M 的内存。 创建Pod: kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/memory-request-limit.yaml --namespace=mem-example 验证Pod的容器是否正常运行: kubectl get pod memory-demo --namespace=mem-example 查看Pod的详细信息: kubectl get pod memory-demo --output=yaml --namespace=mem-example 这个输出显示了Pod里的容器申请了100M的内存和200M的内存限制。 ...resources:limits:memory: 200Mirequests:memory: 100Mi... 启动proxy以便我们可以访问Heapster服务: kubectl proxy 在另外一个命令行窗口,从Heapster服务获取内存使用情况: curl http://localhost:8001/api/v1/proxy/namespaces/kube-system/services/heapster/api/v1/model/namespaces/mem-example/pods/memory-demo/metrics/memory/usage 这个输出显示了Pod正在使用162,900,000字节的内存,大概就是150M。这很明显超过了申请 的100M,但是还没达到200M的限制。 {"timestamp": "2017-06-20T18:54:00Z","value": 162856960} 删除Pod: kubectl delete pod memory-demo --namespace=mem-example 超出容器的内存限制 只要节点有足够的内存资源,那容器就可以使用超过其申请的内存,但是不允许容器使用超过其限制的 资源。如果容器分配了超过限制的内存,这个容器将会被优先结束。如果容器持续使用超过限制的内存, 这个容器就会被终结。如果一个结束的容器允许重启,kubelet就会重启他,但是会出现其他类型的运行错误。 本实验,我们创建一个Pod尝试分配超过其限制的内存,下面的这个Pod的配置文档,它申请50M的内存, 内存限制设置为100M。 memory-request-limit-2.yaml apiVersion: v1kind: Podmetadata:name: memory-demo-2spec:containers:- name: memory-demo-2-ctrimage: vish/stressresources:requests:memory: 50Milimits:memory: "100Mi"args:- -mem-total- 250Mi- -mem-alloc-size- 10Mi- -mem-alloc-sleep- 1s 在配置文件里的args段里,可以看到容器尝试分配250M的内存,超过了限制的100M。 创建Pod: kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/memory-request-limit-2.yaml --namespace=mem-example 查看Pod的详细信息: kubectl get pod memory-demo-2 --namespace=mem-example 这时候,容器可能会运行,也可能会被杀掉。如果容器还没被杀掉,重复之前的命令直至 你看到这个容器被杀掉: NAME READY STATUS RESTARTS AGEmemory-demo-2 0/1 OOMKilled 1 24s 查看容器更详细的信息: kubectl get pod memory-demo-2 --output=yaml --namespace=mem-example 这个输出显示了容器被杀掉因为超出了内存限制。 lastState:terminated:containerID: docker://65183c1877aaec2e8427bc95609cc52677a454b56fcb24340dbd22917c23b10fexitCode: 137finishedAt: 2017-06-20T20:52:19Zreason: OOMKilledstartedAt: null 本实验里的容器可以自动重启,因此kubelet会再去启动它。输入多几次这个命令看看它是怎么 被杀掉又被启动的: kubectl get pod memory-demo-2 --namespace=mem-example 这个输出显示了容器被杀掉,被启动,又被杀掉,又被启动的过程: stevepe@sperry-1:~/steveperry-53.github.io$ kubectl get pod memory-demo-2 --namespace=mem-exampleNAME READY STATUS RESTARTS AGEmemory-demo-2 0/1 OOMKilled 1 37sstevepe@sperry-1:~/steveperry-53.github.io$ kubectl get pod memory-demo-2 --namespace=mem-exampleNAME READY STATUS RESTARTS AGEmemory-demo-2 1/1 Running 2 40s 查看Pod的历史详细信息: kubectl describe pod memory-demo-2 --namespace=mem-example 这个输出显示了Pod一直重复着被杀掉又被启动的过程: ... Normal Created Created container with id 66a3a20aa7980e61be4922780bf9d24d1a1d8b7395c09861225b0eba1b1f8511... Warning BackOff Back-off restarting failed container 查看集群里节点的详细信息: kubectl describe nodes 输出里面记录了容器被杀掉是因为一个超出内存的状况出现: Warning OOMKilling Memory cgroup out of memory: Kill process 4481 (stress) score 1994 or sacrifice child 删除Pod: kubectl delete pod memory-demo-2 --namespace=mem-example 配置超出节点能力范围的内存申请 内存的申请和限制是针对容器本身的,但是认为Pod也有容器的申请和限制是一个很有帮助的想法。 Pod申请的内存就是Pod里容器申请的内存总和,类似的,Pod的内存限制就是Pod里所有容器的 内存限制的总和。 Pod的调度策略是基于请求的,只有当节点满足Pod的内存申请时,才会将Pod调度到合适的节点上。 在这个实验里,我们创建一个申请超大内存的Pod,超过了集群里任何一个节点的可用内存资源。 这个容器申请了1000G的内存,这个应该会超过你集群里能提供的数量。 memory-request-limit-3.yaml apiVersion: v1kind: Podmetadata:name: memory-demo-3spec:containers:- name: memory-demo-3-ctrimage: vish/stressresources:limits:memory: "1000Gi"requests:memory: "1000Gi"args:- -mem-total- 150Mi- -mem-alloc-size- 10Mi- -mem-alloc-sleep- 1s 创建Pod: kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/memory-request-limit-3.yaml --namespace=mem-example 查看Pod的状态: kubectl get pod memory-demo-3 --namespace=mem-example 输出显示Pod的状态是Pending,因为Pod不会被调度到任何节点,所有它会一直保持在Pending状态下。 kubectl get pod memory-demo-3 --namespace=mem-exampleNAME READY STATUS RESTARTS AGEmemory-demo-3 0/1 Pending 0 25s 查看Pod的详细信息包括事件记录 kubectl describe pod memory-demo-3 --namespace=mem-example 这个输出显示容器不会被调度因为节点上没有足够的内存: Events:... Reason Message------ -------... FailedScheduling No nodes are available that match all of the following predicates:: Insufficient memory (3). 内存单位 内存资源是以字节为单位的,可以表示为纯整数或者固定的十进制数字,后缀可以是E, P, T, G, M, K, Ei, Pi, Ti, Gi, Mi, Ki.比如,下面几种写法表示相同的数值:alue: 128974848, 129e6, 129M , 123Mi 删除Pod: kubectl delete pod memory-demo-3 --namespace=mem-example 如果不配置内存限制 如果不给容器配置内存限制,那下面的任意一种情况可能会出现: 容器使用内存资源没有上限,容器可以使用当前节点上所有可用的内存资源。 容器所运行的命名空间有默认内存限制,容器会自动继承默认的限制。集群管理员可以使用这个文档 LimitRange来配置默认的内存限制。 内存申请和限制的原因 通过配置容器的内存申请和限制,你可以更加有效充分的使用集群里内存资源。配置较少的内存申请, 可以让Pod跟任意被调度。设置超过内存申请的限制,可以达到以下效果: Pod可以在负载高峰时更加充分利用内存。 可以将Pod的内存使用限制在比较合理的范围。 清理 删除命名空间,这会顺便删除命名空间里的Pod。 kubectl delete namespace mem-example 译者:NickSu86 原文链接 本篇文章为转载内容。原文链接:https://blog.csdn.net/Aria_Miazzy/article/details/99694937。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-23 12:14:07
499
转载
Apache Lucene
...f stream 错误谈起 引言:文本检索的魔法与挑战 在浩瀚的互联网海洋中,如何快速准确地定位到用户所需的那片信息岛屿?这就是全文检索引擎如 Apache Lucene 所承担的使命。哎呀,Lucene这玩意儿,那可是真挺牛的!在处理海量文本数据的时候,无论是建立索引还是进行搜索,它都能玩得飞起,简直就像是个搜索界的超级英雄!它的效率高,用起来又非常灵活,想怎么调整都行,真是让人大呼过瘾。然而,即便是如此强大的工具,也并非没有挑战。本文将深入探讨一个常见的错误——org.apache.lucene.analysis.TokenStream$EOFException: End of stream,并尝试通过实例代码来揭示其背后的原因与解决之道。 第一部分:理解 TokenStream 和 EOFException TokenStream 是 Lucene 提供的一个抽象类,它负责将输入的文本分割成一系列可处理的令牌(tokens),这些令牌是构成文本的基本单位,例如单词、符号等。当 TokenStream 遇到文件末尾(EOF),即无法获取更多令牌时,就会抛出 EOFException。 示例代码:创建 TokenStream 并处理 EOFException 首先,我们编写一段简单的代码来生成一个 TokenStream,并观察如何处理可能出现的 EOFException。 java import org.apache.lucene.analysis.standard.StandardAnalyzer; import org.apache.lucene.analysis.tokenattributes.CharTermAttribute; import org.apache.lucene.analysis.tokenattributes.OffsetAttribute; import org.apache.lucene.document.Document; import org.apache.lucene.index.DirectoryReader; import org.apache.lucene.index.IndexReader; import org.apache.lucene.index.IndexWriter; import org.apache.lucene.index.IndexWriterConfig; import org.apache.lucene.search.IndexSearcher; import org.apache.lucene.store.Directory; import org.apache.lucene.store.RAMDirectory; import org.apache.lucene.util.Version; import java.io.IOException; public class TokenStreamDemo { public static void main(String[] args) throws IOException { // 创建 RAMDirectory 实例 Directory directory = new RAMDirectory(); // 初始化 IndexWriterConfig IndexWriterConfig config = new IndexWriterConfig(Version.LATEST, new StandardAnalyzer()); // 创建 IndexWriter 并初始化索引 IndexWriter writer = new IndexWriter(directory, config); // 添加文档至索引 Document doc = new Document(); doc.add(new TextField("content", "这是一个测试文档,用于演示 Lucene 的 TokenStream 功能。", Field.Store.YES, Field.Index.ANALYZED)); writer.addDocument(doc); // 关闭 IndexWriter writer.close(); // 创建 IndexReader IndexReader reader = DirectoryReader.open(directory); // 使用 IndexSearcher 查找文档 IndexSearcher searcher = new IndexSearcher(reader); // 获取 TokenStream 对象 org.apache.lucene.search.IndexSearcher.SearchContext context = searcher.createSearchContext(); org.apache.lucene.analysis.standard.StandardAnalyzer analyzer = new org.apache.lucene.analysis.standard.StandardAnalyzer(Version.LATEST); org.apache.lucene.analysis.TokenStream tokenStream = analyzer.tokenStream("content", context.reader().getTermVector(0, 0).getPayload().toString()); // 检查是否有异常抛出 while (tokenStream.incrementToken()) { System.out.println("Token: " + tokenStream.getAttribute(CharTermAttribute.class).toString()); } // 关闭 TokenStream 和 IndexReader tokenStream.end(); reader.close(); } } 在这段代码中,我们首先创建了一个 RAMDirectory,并使用它来构建一个索引。接着,我们添加了一个包含测试文本的文档到索引中。之后,我们创建了 IndexSearcher 来搜索文档,并使用 StandardAnalyzer 来创建 TokenStream。在循环中,我们逐个输出令牌,直到遇到 EOFException,这通常意味着已经到达了文本的末尾。 第二部分:深入分析 EOFException 的原因与解决策略 在实际应用中,EOFException 通常意味着 TokenStream 已经到达了文本的结尾,这可能是由于以下原因: - 文本过短:如果输入的文本长度不足以产生足够的令牌,TokenStream 可能会过早地报告结束。 - 解析问题:在复杂的文本结构下,解析器可能未能正确地分割文本,导致部分文本未被识别为有效的令牌。 为了应对这种情况,我们可以采取以下策略: - 增加文本长度:确保输入的文本足够长,以生成多个令牌。 - 优化解析器配置:根据特定的应用场景调整分析器的配置,例如使用不同的分词器(如 CJKAnalyzer)来适应不同语言的需求。 - 错误处理机制:在代码中加入适当的错误处理逻辑,以便在遇到 EOFException 时进行相应的处理,例如记录日志、提示用户重新输入更长的文本等。 结语:拥抱挑战,驾驭全文检索 面对 org.apache.lucene.analysis.TokenStream$EOFException: End of stream 这样的挑战,我们的目标不仅仅是解决问题,更是通过这样的经历深化对 Lucene 工作原理的理解。哎呀,你猜怎么着?咱们在敲代码、调参数的过程中,不仅技术越来越溜,还能在处理那些乱七八糟的数据时,感觉自己就像个数据处理的小能手,得心应手的呢!就像是在厨房里,熟练地翻炒各种食材,做出来的菜品色香味俱全,让人赞不绝口。编程也是一样,每一次的实践和调试,都是在给我们的技能加料,让我们的作品越来越美味,越来越有营养!嘿!兄弟,听好了,每次遇到难题都像是在给咱的成长加个buff,咱们得一起揭开全文检索的神秘面纱,掌控技术的大棒,让用户体验到最棒、最快的搜索服务,让每一次敲击键盘都能带来惊喜! --- 以上内容不仅涵盖了理论解释与代码实现,还穿插了人类在面对技术难题时的思考与探讨,旨在提供一种更加贴近实际应用、充满情感与主观色彩的技术解读方式。
2024-07-25 00:52:37
393
青山绿水
Hadoop
...户也可以根据实际需求自定义副本策略,比如指定所有副本都位于同一机架内,或者按照特定规则分配副本位置,从而满足不同的业务场景需求。
2025-03-26 16:15:40
98
冬日暖阳
NodeJS
...应”模式的弊端,显著提升了数据更新的效率和用户体验。 Express , Express 是一个简洁而灵活的 Node.js Web 应用框架,提供一系列强大的特性来开发 Web 和移动应用程序。它有助于简化 HTTP 服务的搭建过程,提供路由定义、中间件支持以及模板引擎集成等功能。在本文中,Express 被用来快速搭建一个 HTTP 服务,为 WebSocket 提供基础的服务器支持,并通过 app.get() 方法处理根路径的请求,返回一个简单的 HTML 页面作为客户端入口。 进度条 , 进度条是一种常见的用户界面元素,通常用于表示某个操作的完成百分比或当前状态。在本文中,进度条被用来直观地展示从服务器接收到的监控数据,例如 CPU 使用率、内存占用和磁盘使用率。当客户端接收到 WebSocket 推送的随机生成的监控数据后,JavaScript 代码会解析数据并将对应的值设置为进度条的当前值,从而动态更新页面上的可视化效果,让用户能够清晰地了解系统的实时运行状况。
2025-05-06 16:24:48
81
清风徐来
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
netstat -tulpn
- 显示所有活动的网络连接、监听端口以及关联的进程。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"