前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Force Logging模式对数据安全...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Go Iris
...服务架构的广泛应用,数据库锁的配置和管理变得越来越重要。例如,Netflix在他们的微服务架构中就广泛使用了各种数据库锁机制来确保数据一致性。Netflix开源的项目如Hystrix和Ribbon,不仅解决了服务间调用的问题,还提供了强大的容错能力和负载均衡能力,进一步增强了系统的稳定性和可靠性。 此外,国内的一些互联网大厂也在积极探索数据库锁的应用。比如阿里云推出的PolarDB数据库,就针对不同的业务场景提供了多种锁机制,包括行级锁和表级锁,以及更加细粒度的锁定策略。这种灵活性使得开发者可以根据实际需求选择最合适的锁类型,从而提高系统的整体性能。 与此同时,关于数据库锁的研究也从未停止。近期,一篇发表在《ACM Transactions on Database Systems》上的论文探讨了如何在分布式数据库中高效实现锁机制,以减少锁竞争和提高并发处理能力。研究者提出了一种基于时间戳的乐观锁方案,该方案能够在不影响性能的前提下,有效解决数据一致性问题。 这些最新的实践和研究成果表明,数据库锁不仅是理论上的一个重要概念,更是现代软件工程中不可或缺的一部分。对于开发者来说,掌握并合理运用数据库锁机制,将极大地提升系统的可靠性和性能。
2025-02-23 16:37:04
76
追梦人
Hadoop
...引言 如果你是一名大数据工程师,那么你肯定对Hadoop这个名字并不陌生。你知道吗,那个叫Hadoop的开源大数据处理工具现在可火啦!不少公司都把它捧在手心里,广泛应用在自家的各种业务场景里头。这玩意儿就像个大数据处理的超级英雄,在企业界混得风生水起的!在Hadoop这个大家族里,有个不可或缺的角色名叫YARN(也就是“又一个资源协调器”这小名儿),它可是肩负重任的大管家,主要负责给各个任务分配资源、调度工作,可重要着呢!在实际工作中,我们常常会碰到一些让人挠头的小插曲,比如那个烦人的“YARN ResourceManager初始化不成功”的问题。这不,本文就要专门来和大家唠唠这个问题,掰开揉碎了详细分析,并且给出解决它的锦囊妙计。 什么是YARN? 首先,我们需要了解一下什么是YARN。简单来说呢,YARN就是个大管家,它在Hadoop2.x这个大家族里担任着资源管理和作业调度的重要角色。你可以把它想象成一个超级调度员,负责统筹协调所有资源的分配和各种任务的执行顺序,可厉害了!它就像个超级接班人,接手了Hadoop1.x那个老版本里MapReduce任务调度员的活儿,而且表现得更出色,不仅能更高效地给各种任务排兵布阵,还把任务管理这块搞得井井有条。在YARN这个大系统里,Resource Manager(RM)可是个举足轻重的角色。你就把它想象成一个超级大管家吧,它的日常工作就是紧盯着整个集群的资源状况,确保一切都在掌握之中。不仅如此,它还兼职了“调度员”的角色,各种类型的请求都会涌向它,然后由它来灵活调配、合理分配给各个部分去执行。 YARN ResourceManager初始化失败的原因 当我们运行一个Hadoop应用时,YARN ResourceManager是最先启动的服务。如果出现“YARN ResourceManager初始化失败”的错误,通常会有很多种原因导致。下面我们就来一一剖析一下。 1. 集群资源不足 当集群的物理资源不足时,例如CPU、内存等硬件资源紧张,就可能导致YARN ResourceManager无法正常初始化。此时需要考虑增加集群资源,例如增加服务器数量,升级硬件设备等。 2. YARN配置文件错误 YARN的运行依赖于一系列的配置文件,包括conf/hadoop-env.sh、core-site.xml、mapred-site.xml、yarn-site.xml等。要是这些配置文件里头有语法错误,或者设置得不太合理,就可能导致YARN ResourceManager启动时栽跟头,初始化失败。此时需要检查并修复配置文件。 3. YARN环境变量设置不当 YARN的运行还需要一些环境变量的支持,例如JAVA_HOME、HADOOP_HOME等。如果这些环境变量设置不当,也会导致YARN ResourceManager初始化失败。此时需要检查并设置正确的环境变量。 4. YARN服务未正确启动 在YARN环境中,还需要启动一些辅助服务,例如NameNode、DataNode、Zookeeper等。如果这些服务未正确启动,也会导致YARN ResourceManager初始化失败。此时需要检查并确保所有服务都已正确启动。 如何解决“YARN ResourceManager初始化失败”? 了解了问题的原因后,接下来就是如何解决问题。根据上述提到的各种可能的原因,我们可以采取以下几种方法进行尝试: 1. 增加集群资源 对于因为集群资源不足而导致的问题,最直接的解决办法就是增加集群资源。这可以通过添加新的服务器,或者升级现有的服务器硬件等方式实现。 2. 修复配置文件 对于因为配置文件错误而导致的问题,我们需要仔细检查所有的配置文件,找出错误的地方并进行修复。同时,咱也得留意一下,改动配置文件这事儿,就像动了机器的小神经,可能会带来些意想不到的“副作用”。所以呢,在动手修改前,最好先做个全面体检——也就是充分测试啦,再给原来的文件留个安全备份,这样心里才更有底嘛。 3. 设置正确的环境变量 对于因为环境变量设置不当而导致的问题,我们需要检查并设置正确的环境变量。如果你不清楚环境变量到底该怎么设置,别担心,这里有两个实用的解决办法。首先呢,你可以翻阅一下Hadoop官方网站的官方文档,那里面通常会有详尽的指导步骤;其次,你也可以尝试在互联网上搜一搜相关的教程或者攻略,网上有很多热心网友分享的经验,总有一款适合你。 4. 启动辅助服务 对于因为辅助服务未正确启动而导致的问题,我们需要检查并确保所有服务都已正确启动。要是服务启动碰到状况了,不妨翻翻相关的文档资料,或者找专业的高手来帮帮忙。 总结 总的来说,解决“YARN ResourceManager初始化失败”这个问题需要我们具备一定的专业知识和技能。但是,只要我们有足够多的耐心和敏锐的观察力,就可以按照上面提到的办法,一步一步地把各种可能性都排查个遍,最后稳稳地找到那个真正能解决问题的好法子。最后,我想说的是,虽然这是一个比较棘手的问题,但我们只要有足够的信心和毅力,就一定能迎刃而解!
2024-01-17 21:49:06
568
青山绿水-t
Datax
...,主要功能是实现异构数据源之间的高效同步。它允许用户在不同的数据存储系统之间迁移数据,如从关系型数据库(如 MySQL)迁移到分布式文件系统(如 HDFS),或从 CSV 文件迁移到数据库。DataX 支持多种数据源和数据写入方式,能够保证数据的一致性和完整性。 多线程处理 , 多线程处理是指在同一时间内执行多个任务的能力。在数据同步过程中,多线程处理可以通过同时处理多个数据块或文件来提高处理速度。例如,当需要迁移大量数据时,单线程处理可能需要很长时间,而多线程处理则可以通过同时处理多个数据块来缩短处理时间。在 DataX 中,可以通过配置 JSON 文件中的 channel 参数来指定使用的线程数,从而实现多线程数据同步。 JSON配置文件 , JSON(JavaScript Object Notation)是一种轻量级的数据交换格式,易于人阅读和编写,同时也易于机器解析和生成。在 DataX 中,JSON 配置文件用于定义数据同步任务的参数,包括数据源、目标、字段列表、线程数等。通过修改这个配置文件,用户可以灵活地配置和控制数据同步过程。例如,可以通过调整 channel 参数来改变使用的线程数,从而影响数据同步的速度和效率。
2025-02-09 15:55:03
76
断桥残雪
RocketMQ
...大量CPU资源,从而影响系统的整体性能。 java // 示例:创建大量无用的对象可能导致内存溢出 public class MemoryOverflowExample { public static void main(String[] args) { List list = new ArrayList<>(); while (true) { list.add(new String("Memory is precious!")); } } } 3. RocketMQ与JVM内存管理 在使用RocketMQ的过程中,例如生产者发送消息或消费者消费消息时,如果不合理地管理内存,也可能触发上述问题。比如,你要是突然一股脑儿地发好多好多消息,或者把一大堆消息都堆在那儿不去处理,这就像是给内存施加了巨大的压力。你想啊,内存它也会“吃不消”,于是乎就可能频繁地进行垃圾回收(GC),甚至严重的时候还会“撑爆”,也就是内存溢出啦。 java import org.apache.rocketmq.client.producer.DefaultMQProducer; import org.apache.rocketmq.common.message.Message; public class RocketMQProducerExample { public static void main(String[] args) throws Exception { DefaultMQProducer producer = new DefaultMQProducer("ExampleProducerGroup"); producer.start(); for (int i = 0; i < Integer.MAX_VALUE; i++) { // 这里假设发送海量消息,极端情况下易引发内存溢出 Message msg = new Message("TopicTest", "TagA", ("Hello RocketMQ " + i).getBytes(RemotingHelper.DEFAULT_CHARSET)); producer.send(msg); } producer.shutdown(); } } 4. 针对RocketMQ的内存优化策略 面对这样的挑战,我们可以从以下几个方面着手优化: - 消息批量发送:利用DefaultMQProducer提供的send(batch)接口批量发送消息,减少单次操作创建的对象数,从而降低内存压力。 java List messageList = new ArrayList<>(); for (int i = 0; i < BATCH_SIZE; i++) { Message msg = ...; messageList.add(msg); } SendResult sendResult = producer.send(messageList); - 合理设置JVM参数:根据业务负载调整JVM堆大小(-Xms和-Xmx),并选择合适的GC算法,如G1或者ZGC,它们对于大内存及长时间运行的服务有良好的表现。 - 监控与预警:借助JMX或其他监控工具实时监控JVM内存状态和GC频率,及时发现并解决问题。 - 设计合理的消息消费逻辑:确保消费者能及时消费并释放已处理消息引用,避免消息堆积导致内存持续增长。 5. 结语 总之,我们在享受RocketMQ带来的便捷高效的同时,也需关注其背后可能存在的性能隐患,尤其是JVM内存管理和垃圾回收机制。通过一些实用的优化招数和实际行动,我们完全可以把内存溢出的问题稳稳扼杀在摇篮里,同时还能减少GC(垃圾回收)的频率,这样一来,咱们的系统就能始终保持稳定快速的运行状态,流畅得飞起。这不仅是一场技术的探索,更是对我们作为开发者不断追求卓越精神的体现。在咱们日常的工作里,咱们得换个更接地气儿的方式来看待问题,把每一个小细节都拿捏住,用更巧妙、更精细的招数来化解挑战。大家一起努力,让RocketMQ服务的质量噌噌往上涨,用户体验也得溜溜地提升起来!
2023-05-31 21:40:26
92
半夏微凉
Netty
...器无法正常接收和发送数据。 四、处理Netty服务器的网络中断问题 1. 使用ChannelFuture和FutureListener 在Netty中,我们可以使用ChannelFuture和FutureListener来处理网络中断问题。ChannelFuture是创建了一个用于等待特定I/O操作完成的Future对象。FutureListener是一个接口,可以监听ChannelFuture的状态变化。 例如,我们可以使用以下代码来监听一个ChannelFuture的状态变化: java channelFuture.addListener(new FutureListener() { @Override public void operationComplete(ChannelFuture future) throws Exception { if (future.isSuccess()) { // 连接成功 } else { // 连接失败 } } }); 2. 使用心跳检测机制 除了监听ChannelFuture的状态变化外,我们还可以使用心跳检测机制来检查网络是否中断。实际上,我们可以这样理解:在用户的设备上(也就是客户端),我们设定一个任务,定期给服务器发送个“招呼”——这就是所谓的心跳包。就像朋友之间互相确认对方是否还在一样,如果服务器在一段时间内没有回应这个“招呼”,那我们就推测可能是网络连接断开了,简单来说就是网络出小差了。 例如,我们可以使用以下代码来发送心跳包: java // 创建心跳包 ByteBuf heartbeat = Unpooled.buffer(); heartbeat.writeInt(HeartbeatMessage.HEARTBEAT); heartbeat.writerIndex(heartbeat.readableBytes()); // 发送心跳包 channel.writeAndFlush(heartbeat); 3. 使用重连机制 当网络中断后,我们需要尽快重新建立连接。为了实现这个功能,我们可以使用重连机制。换句话说,一旦网络突然掉线了,我们立马麻溜地开始尝试建立一个新的连接,并且持续密切关注着新的连接状态有没有啥变化。 例如,我们可以使用以下代码来重新建立连接: java // 重试次数 int retryCount = 0; while (retryCount < maxRetryCount) { try { // 创建新的连接 Bootstrap bootstrap = new Bootstrap(); ChannelFuture channelFuture = bootstrap.group(eventLoopGroup).channel(NioServerSocketChannel.class) .option(ChannelOption.SO_BACKLOG, backlog) .childHandler(new ServerInitializer()) .connect(new InetSocketAddress(host, port)).sync(); // 监听新的连接状态变化 channelFuture.addListener(new FutureListener() { @Override public void operationComplete(ChannelFuture future) throws Exception { if (future.isSuccess()) { // 新的连接建立成功 return; } // 新的连接建立失败,继续重试 if (future.cause() instanceof ConnectException || future.cause() instanceof UnknownHostException) { retryCount++; System.out.println("Failed to connect to server, will retry in " + retryDelay + "ms"); Thread.sleep(retryDelay); continue; } } }); // 连接建立成功,返回 return channelFuture.channel(); } catch (InterruptedException e) { Thread.currentThread().interrupt(); } } 五、总结 在网络中断问题上,我们可以通过监听ChannelFuture的状态变化、使用心跳检测机制和重连机制来处理。这些方法各有各的好和不足,不过总的来说,甭管怎样,它们都能在关键时刻派上用场,就是在网络突然断开的时候,帮我们快速重新连上线,确保服务器稳稳当当地运行起来,一点儿不影响正常工作。 以上就是关于如何处理Netty服务器的网络中断问题的文章,希望能对你有所帮助。
2023-02-27 09:57:28
137
梦幻星空-t
Mongo
...面向文档的NoSQL数据库系统,它使用JSON-like格式(称为BSON)来存储数据,并以灵活的数据模型而著称。在处理非结构化和半结构化数据时,MongoDB能够提供高性能且高度可扩展的解决方案,适用于现代Web应用、实时分析、内容管理系统等多种场景。 NoSQL数据库 , NoSQL(Not Only SQL)是一种不同于传统关系型数据库管理系统的新型数据库类型,它不依赖于固定的表结构和SQL查询语言进行数据操作。MongoDB作为NoSQL数据库的一种,其设计目标在于实现大规模分布式数据存储,支持水平扩展以及高并发读写等需求,尤其适合应对海量数据和复杂数据结构的应用场景。 查询构建器 , 查询构建器是MongoDB Studio提供的一个图形化工具,用户可以通过直观的界面而非直接编写命令或查询语句来构建针对MongoDB数据库的查询条件。例如,在MongoDB Studio中,查询构建器允许用户通过拖拽字段、选择操作符并输入值等方式,生成复杂的查询表达式,从而找到满足特定条件的数据库记录。 数据建模与设计 , 在MongoDB中,数据建模与设计是指根据业务需求规划和定义数据库集合的文档结构的过程。在MongoDB Studio中,数据建模功能允许用户通过可视化界面创建和编辑集合的文档模式,如指定字段名称、数据类型、是否为必填项以及额外约束条件等,从而确保数据的一致性和完整性。例如,在文章示例中,通过MongoDB Studio的数据建模功能可以创建包含username、email、password等字段的新用户文档结构。
2024-02-25 11:28:38
70
幽谷听泉-t
Tomcat
...程”)想用一些共同的数据(比如一个共享的记事本),但是它没拿到这个数据的“钥匙”。这就像是你想去拿别人的书包里的东西,但是你手上没钥匙开不了包,结果就乱了套了。这种时候,电脑就得小心处理,防止出现混乱或者错误的结果。 三、示例代码分析 为了更好地理解这个异常,让我们通过一个简单的示例来演示它可能出现的情况: java import java.util.concurrent.locks.ReentrantLock; public class LockDemo { private static final ReentrantLock lock = new ReentrantLock(); private static int counter = 0; public static void main(String[] args) { // 锁住资源 lock.lock(); try { System.out.println("开始操作..."); // 这里是你的业务逻辑 doSomething(); } finally { lock.unlock(); // 不要忘记解锁 } } private static void doSomething() { synchronized (LockDemo.class) { // 锁定当前类的对象 counter++; System.out.println("计数器值:" + counter); } } } 这段代码展示了如何正确地使用锁来保护共享资源。哎呀,兄弟!你要是不小心在没锁门的情况下闯进了别人的私人空间,那肯定得吃大亏啊!就像这样,在编程的世界里,如果你不巧在没锁定的情况下就去碰那些受保护的资源,那可就等着被系统给你来个“非法监视状态异常”吧!这可不是闹着玩的,得小心点! 错误示例: java import java.util.concurrent.locks.ReentrantLock; public class LockDemoError { private static final ReentrantLock lock = new ReentrantLock(); private static int counter = 0; public static void main(String[] args) { System.out.println("开始操作..."); // 这里尝试访问受保护的资源,但没有锁定 doSomething(); } private static void doSomething() { synchronized (LockDemoError.class) { counter++; System.out.println("计数器值:" + counter); } } } 运行上述错误示例,将会抛出 java.lang.IllegalMonitorStateException 异常,因为 doSomething() 方法在没有获取锁的情况下直接访问了共享资源。 四、预防与解决策略 为了避免这类异常,确保所有对共享资源的操作都遵循以下原则: 1. 始终锁定 在访问任何共享资源之前,务必先获得相应的锁。 2. 正确释放锁 在完成操作后,无论成功与否,都应确保释放锁。 3. 避免死锁 检查锁的顺序和持有锁的时间,防止出现死锁情况。 五、总结 java.lang.IllegalMonitorStateException 异常提醒我们在多线程编程中注意锁的使用,确保每次操作都处于安全的监视器状态。通过正确的锁管理实践,我们可以有效预防这类异常,并提高应用程序的稳定性和性能。哎呀,亲!在咱们做程序开发的时候,多线程编程那可是个大功臣!要想让咱们的系统跑得又快又稳,学好这个技术,不断摸索最佳实践,那简直就是必须的嘛!这不光能让程序运行效率翻倍,还能确保系统稳定,用户用起来也舒心。所以啊,小伙伴们,咱们得勤于学习,多加实践,让自己的技能库再添一把火,打造出既高效又可靠的神级系统!
2024-08-07 16:07:16
54
岁月如歌
转载文章
...们已经知道如何去创建数据库属性对象。让我们创建一个简单的starter,这个starter会创建另外一个CommandLineRunner,然后收集Repository的实例并且打印所有的实例。 4.2.1代码实现 1.首先我们创建一人新文件夹db-count-starter在项目根目录下。 2.在文件夹db-count-starter下创建一份settings.grale文件,添加以下内容。 include 'db-count-starter' 3.在db-count-starter文件夹下创建build.gradle的文件,然后添加如下的代码。 apply plugin: 'java' repositories { mavenCentral() maven { url "https://repo.spring.io/snapshot" } maven { url "https://repo.spring.io/milestone" } } d ependencies { compile("org.springframework.boot:spring-boot:1.2.3.RELEASE") compile("org.springframework.data:spring-data-commons:1.9.2.RELEASE") } 4.接着,我们在fb-count-starter下创建这个目录结构src/main/java/org/test/bookpubstarter/dbcount 5.在新创建的文件下面,让我们添加实现接口CommandLineRunner文件,名称叫做DbCountRunner.java. public class DbCountRunner implements CommandLineRunner { protected final Log logger = LogFactory.getLog(getClass()); private Collection<CrudRepository> repositories; public DbCountRunner(Collection<CrudRepository> repositories) { this.repositories = repositories; } @Override public void run(String... args) throws Exception { repositories.forEach(crudRepository -> logger.info(String.format( "%s has %s entries", getRepositoryName(crudRepository.getClass()), crudRepository.count()))); } private static String getRepositoryName(Class crudRepositoryClass) { for (Class repositoryInterface : crudRepositoryClass.getInterfaces()) { if (repositoryInterface.getName().startsWith( "org.test.bookpub.repository")) { return repositoryInterface.getSimpleName(); } } return "UnknownRepository"; } } 6.我们创建一个DbCountAutoConfiguration.java来实现DbCountRunner。 @Configuration public class DbCountAutoConfiguration { @Bean public DbCountRunner dbCountRunner(Collection<CrudRepository> repositories) { return new DbCountRunner(repositories); } } 7.我们需要告诉Spring Boot我们新创建的JAR包含自动装配的类。我们需要在db-count-starter/src/main下创建resources/META-INF文件夹。 8.在resources/META-INF下创建spring.factories文件,添加如下内容。 org.springframework.boot.autoconfigure.EnableAutoConfiguration=org.test .bookpubstarter.dbcount.DbCountAutoConfiguration 9.在主项目的build.gradle下添加如下代码 compile project(':db-count-starter') 10.启动项目,你将会看到控制台的信息下: 2020-04-05 INFO org.test.bookpub.StartupRunner : Welcome to the Book Catalog System! 2020-04-05 INFO o.t.b.dbcount.DbCountRunner : AuthorRepository has 1 entries 2020-04-05 INFO o.t.b.dbcount.DbCountRunner : PublisherRepository has 1 entries 2020-04-05 INFO o.t.b.dbcount.DbCountRunner : BookRepository has 1 entries 2020-04-05 INFO o.t.b.dbcount.DbCountRunner :ReviewerRepository has 0 entries 2020-04-05 INFO org.test.bookpub.BookPubApplication : Started BookPubApplication in 8.528 seconds (JVM running for 9.002) 2020-04-05 INFO org.test.bookpub.StartupRunner : Number of books: 1 4.2.2代码说明 因为Spring Boot的starter是分隔的,独立的包,仅仅是添加更多的类到我们已经存在的项目资源中,而不会控制更多。为了独立技术,我们的选择很少,创建分开的配置在我们项目中或创建完全分开的项目。更好的方法是通过创建项目文件夹去转换们的项目到Gradel Multi-Project Build和子项目依赖于根目录到build.gradle。Gradle实际是创建JAR的包,但是我们不需要放入到任何地方,仅仅通过compile project(‘:db-count-starter’)来包含。 Spring Boot Auto-Configuration Starter并没有做什么,而是Spring Java Configuration类注释了@Configuration和代表性的spring.factories文件在META-INF的文件夹下。 当应用启动时,Spring Boot使用SpringFactoriesLoader,这个类是Spring Core中的,目的是为了获得Spring Java Configuration,这些配置给了org.springframework.boot.autoconfigure.EnableAutoConfiguration。这样之下,这些调用会收集spring.factories文件下的所有jar包或其它调用的路径和成分到应用的上下文的配置中。除此之了EnableAutoConfiguration,我们可以定义其它的关键接口使用,这些可以自动初始化在启动期间与如下的调用相似: org.springframework.context.ApplicationContextInitializer org.springframework.context.ApplicationListener org.springframework.boot.SpringApplicationRunListener org.springframework.boot.env.PropertySourceLoader org.springframework.boot.autoconfigure.template.TemplateAvailabilityProvider org.springframework.test.contex.TestExecutionListener 具有讽刺的是,Spring Boot Starter并不需要依赖Spring Boot的包,因为它编译时间上的依赖。如果我们看DbCountAutoConfiguation类,我们不会看到任何来自org.springframework.book的包。这仅仅的原因是我们的DbCountRunner实现了接口org.sprigframework.boot.CommandLineRunner. 本篇文章为转载内容。原文链接:https://blog.csdn.net/owen_william/article/details/107867328。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-10 20:49:04
270
转载
Dubbo
...境中的各种请求路径和数据流动情况。用它就像是给你的系统搭建了一个超级详细的导航地图,让你能一眼看清楚每个请求走过了哪些地方。接下来,我们将通过几个步骤来演示如何在Dubbo项目中集成Zipkin。 2.1 添加依赖 首先,我们需要向项目的pom.xml文件中添加Zipkin客户端的依赖。这步超级重要,因为得靠它让我们的Dubbo服务乖乖地把追踪信息发给Zipkin服务器,不然出了问题我们可找不到北啊。 xml io.zipkin.java zipkin-reporter-brave 2.7.5 2.2 配置Dubbo服务端 然后,在Dubbo服务端配置文件(如application.properties)中加入必要的配置项,让其知道如何连接到Zipkin服务器。 properties dubbo.application.qos-enable=false dubbo.registry.address=multicast://224.5.6.7:1234 指定Zipkin服务器地址 spring.zipkin.base-url=http://localhost:9411/ 使用Brave作为追踪库 brave.sampler.probability=1.0 这里,spring.zipkin.base-url指定了Zipkin服务器的URL,而brave.sampler.probability=1.0则表示所有请求都会被追踪。 2.3 编写服务接口与实现 假设我们有一个简单的服务接口,用于处理用户订单: java public interface OrderService { String placeOrder(String userId); } 服务实现类如下: java @Service("orderService") public class OrderServiceImpl implements OrderService { @Override public String placeOrder(String userId) { // 模拟业务逻辑 System.out.println("Order placed for user: " + userId); return "Your order has been successfully placed!"; } } 2.4 启动服务并测试 完成上述配置后,启动Dubbo服务端。你可以试试调用placeOrder这个方法,然后看看在Zipkin的界面上有没有出现相应的追踪记录。 3. 深入探讨 从Dubbo到Jaeger的转变 虽然Zipkin是一个优秀的解决方案,但在某些场景下,你可能会发现它无法满足你的需求。例如,如果你需要更高级别的数据采样策略或是对追踪数据有更高的控制权。这时,Jaeger就成为一个不错的选择。Jaeger是Uber开源的分布式追踪系统,它提供了更多的定制选项和更好的性能表现。 将Dubbo与Jaeger集成的过程与Zipkin类似,主要区别在于依赖库的选择和一些配置细节。这里就不详细展开,但你可以按照类似的思路去尝试。 4. 结语 持续优化与未来展望 集成分布式追踪系统无疑为我们的Dubbo服务增添了一双“慧眼”,使我们能够在复杂多变的分布式环境中更加从容不迫。然而,这只是一个开始。随着技术日新月异,咱们得不停地充电,学些新工具新技能,才能跟上这变化的脚步嘛。别忘了时不时地检查和调整你的追踪方法,确保它们跟得上你生意的发展步伐。 希望这篇文章能为你提供一些有价值的启示,让你在Dubbo与分布式追踪系统的世界里游刃有余。记住,每一次挑战都是成长的机会,勇敢地迎接它们吧!
2024-11-16 16:11:57
55
山涧溪流
转载文章
...y代理作为Istio数据平面的核心组件,其通过异步非阻塞模型以及智能的超时与重试机制,在保障性能的同时,有效避免了因第三方服务响应慢而导致的系统级雪崩效应。 此外,阿里巴巴集团在其内部大规模微服务实践中,也深入研究并优化了RPC框架Dubbo的超时控制机制,并结合Hystrix等开源库实现了服务降级和熔断功能,为高并发场景下的服务稳定性提供了有力保障。这些最新的技术动态和实践经验都为我们理解和优化微服务架构中的超时中断机制提供了宝贵的参考依据。 同时,对于分布式系统设计原则的探究也不能忽视,例如《微服务设计模式》一书中提出的“Circuit Breaker”(断路器模式),就详细阐述了如何利用超时中断等手段在系统出现故障时快速隔离问题服务,防止故障蔓延,确保整体系统的可用性。此类理论研究与实操经验相结合,有助于我们不断优化和完善微服务架构中的各类关键组件,以适应日趋复杂的业务需求和技术挑战。
2023-10-05 16:28:16
84
转载
转载文章
...全球1.4亿余条专利数据,还可实现批量下载专利全文,大大提升了专利研究工作的效率。 同时,学术界也在探索更先进的自然语言处理(NLP)和计算机视觉(CV)技术在专利信息抽取和自动识别验证码方面的应用。例如,有研究人员利用深度学习模型对专利网站的验证码进行智能识别,并结合自动化脚本实现高效、无误的批量下载。这一进展预示着未来可能实现完全自动化的专利全文下载解决方案。 此外,针对专利数据的合法合规使用,国家知识产权局近期发布了新版《专利信息公共服务体系建设方案》,强调将加强专利数据开放共享和安全保障,鼓励社会各界充分利用专利信息资源,推动技术创新与产业发展。 综上所述,无论是从实际应用工具的更新迭代,还是前沿科技的研究突破,都显示了专利全文批量下载领域的快速发展与创新实践。对于广大需要频繁查阅和分析专利全文的专业人士来说,关注这些动态不仅能提升工作效率,还能更好地适应知识产权保护环境的变化,从而在各自的领域中取得竞争优势。
2023-11-21 12:55:28
275
转载
Dubbo
...少网络延迟:通过减少数据包大小、优化编码方式、使用缓存机制等方式降低网络传输的开销。 - 选择合适的网络协议:根据实际应用场景选择HTTP、TCP或其他协议,HTTP可能在某些场景下提供更好的性能和稳定性。 2. 缓存机制 - 服务缓存:利用Dubbo的本地缓存或第三方缓存如Redis,减少对远程服务的访问频率,提高响应速度。 - 结果缓存:对于经常重复计算的结果,可以考虑将其缓存起来,避免重复计算带来的性能损耗。 3. 负载均衡策略 - 动态调整:根据服务的负载情况,动态调整路由规则,优先将请求分发给负载较低的服务实例。 - 健康检查:定期检查服务实例的健康状态,剔除不可用的服务,确保请求始终被转发到健康的服务上。 4. 参数优化 - 调优配置:合理设置Dubbo的相关参数,如超时时间、重试次数、序列化方式等,以适应不同的业务需求。 - 并发控制:通过合理的线程池配置和异步调用机制,有效管理并发请求,避免资源瓶颈。 四、实战案例 案例一:服务缓存实现 java // 配置本地缓存 @Reference private MyService myService; public void doSomething() { // 获取缓存,若无则从远程调用获取并缓存 String result = cache.get("myKey", () -> myService.doSomething()); System.out.println("Cache hit/miss: " + (result != null ? "hit" : "miss")); } 案例二:动态负载均衡 java // 创建负载均衡器实例 LoadBalance loadBalance = new RoundRobinLoadBalance(); // 配置服务列表 List serviceUrls = Arrays.asList("service1://localhost:8080", "service2://localhost:8081"); // 动态选择服务实例 String targetUrl = loadBalance.choose(serviceUrls); MyService myService = new RpcReference(targetUrl); 五、总结与展望 通过上述的实践分享,我们可以看到,Dubbo的性能优化并非一蹴而就,而是需要在实际项目中不断探索和调整。哎呀,兄弟,这事儿啊,关键就是得会玩转Dubbo的各种酷炫功能,然后结合你手头的业务场景,好好打磨打磨那些参数,让它发挥出最佳状态。就像是调酒师调鸡尾酒,得看人下菜,看场景定参数,这样才能让产品既符合大众口味,又能彰显个性特色。哎呀,你猜怎么着?Dubbo这个大宝贝儿,它一直在努力学习新技能,提升自己呢!就像咱们人一样,技术更新换代快,它得跟上节奏,对吧?所以,未来的它呀,肯定能给咱们带来更多简单好用,性能超棒的功能!这不就是咱们开发小能手的梦想嘛——搭建一个既稳当又高效的分布式系统?想想都让人激动呢! 结语 在分布式系统构建的过程中,性能优化是一个持续的过程,需要开发者具备深入的理解和技术敏感度。嘿!小伙伴们,如果你是Dubbo的忠实用户或者是打算加入Dubbo大家庭的新手,这篇文章可是为你量身打造的!我们在这里分享了一些实用的技巧和深刻的理解,希望能激发你的灵感,让你在使用Dubbo的过程中更得心应手,共同创造分布式系统那片美丽的天空。快来一起探索,一起成长吧!
2024-07-25 00:34:28
411
百转千回
转载文章
...SQL代码进行复杂的数据统计分析并将结果导入MySQL数据库后,进一步的延伸阅读可以关注以下内容: 近年来,随着大数据技术的快速发展,Apache Spark作为一款高效、通用的大数据处理引擎,其在实时流处理、机器学习、SQL查询等方面展现出了强大的性能。据Databricks公司(Spark的主要贡献者)最新发布的博客,Apache Spark 3.2版本引入了一系列优化和新特性,比如对动态分区剪枝的改进、对Catalyst查询优化器的增强以及对Structured Streaming功能的扩展,这些都将为数据分析工作者提供更加强大且易用的工具。 与此同时,跨系统数据迁移与整合也是现代企业数据架构中的关键环节。近期,业界领先的云服务商如AWS、阿里云等相继推出了基于Spark的无缝数据集成服务,支持从Hadoop、MySQL等多种数据源到目标数据库的高效迁移,同时强化了数据转换、清洗以及合规性检查等功能,使得在整个数据生命周期管理中,数据工程师能够更加便捷地实现异构数据源之间的同步与融合。 此外,针对电商领域的数据分析实战,可参考某电商平台公开的年度报告,了解其如何运用Spark SQL结合各类大数据技术挖掘用户行为模式、预测销售趋势,并依据地区、时间等维度精细化运营策略,从而提升整体业务表现。这将有助于读者对照实际案例,深化对文中所述统计分析方法在实际场景中的应用理解。 综上所述,紧跟大数据技术和应用的发展趋势,持续探索Spark SQL在数据处理及跨系统迁移方面的最佳实践,结合行业实例深入解析,将助力我们更好地应对日益增长的数据挑战,为企业决策提供强有力的数据支撑。
2023-09-01 10:55:33
320
转载
转载文章
...常用代码/方法/库/数据结构/常见错误/经典思想 思维导图整理 C++ 知识点 清华大学郑莉版 东南大学软件工程初试906 思维导图整理 计算机网络 王道考研 经典5层结构 中英对照 框架 思维导图整理 算法分析与设计 北大慕课课程 知识点 思维导图整理 数据结构 王道考研 知识点 经典题型 思维导图整理 人工智能导论 王万良慕课课程 知识点 思维导图整理 红黑树 一张导图解决红黑树全部插入和删除问题 包含详细操作原理 情况对比 各种常见排序算法的时间/空间复杂度 是否稳定 算法选取的情况 改进 思维导图整理 人工智能课件 算法分析课件 Python课件 数值分析课件 机器学习课件 图像处理课件 考研相关科目 知识点 思维导图整理 考研经验--东南大学软件学院软件工程 东南大学 软件工程 906 数据结构 C++ 历年真题 思维导图整理 东南大学 软件工程 复试3门科目历年真题 思维导图整理 高等数学 做题技巧 易错点 知识点(张宇,汤家凤)思维导图整理 考研 线性代数 惯用思维 做题技巧 易错点 (张宇,汤家凤)思维导图整理 高等数学 中值定理 一张思维导图解决中值定理所有题型 考研思修 知识点 做题技巧 同类比较 重要会议 1800易错题 思维导图整理 考研近代史 知识点 做题技巧 同类比较 重要会议 1800易错题 思维导图整理 考研马原 知识点 做题技巧 同类比较 重要会议 1800易错题 思维导图整理 考研数学课程笔记 考研英语课程笔记 考研英语单词词根词缀记忆 考研政治课程笔记 Python相关技术 知识点 思维导图整理 Numpy常见用法全部OneNote笔记 全部笔记思维导图整理 Pandas常见用法全部OneNote笔记 全部笔记思维导图整理 Matplotlib常见用法全部OneNote笔记 全部笔记思维导图整理 PyTorch常见用法全部OneNote笔记 全部笔记思维导图整理 Scikit-Learn常见用法全部OneNote笔记 全部笔记思维导图整理 Java相关技术/ssm框架全部笔记 Spring springmvc Mybatis jsp 科技相关 小米手机 小米 红米 历代手机型号大全 发布时间 发布价格 常见手机品牌的各种系列划分及其特点 历代CPU和GPU的性能情况和常见后缀的含义 思维导图整理 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_43959833/article/details/115670535。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-12 18:13:21
742
转载
Scala
...程特性,如高阶函数、模式匹配和局部值等。Scala被广泛用于大数据处理、Web应用程序开发、服务器端脚本编写等领域,尤其在Apache Spark生态系统中扮演核心角色。 名词 , 类型alias(别名)。 解释 , 在Scala中,类型alias(别名)是一种简化语法的方式,允许开发者为现有的类型定义一个更具描述性的别名。通过使用type关键字,开发者可以指定一个名称来代表特定的类型,这有助于减少代码中的冗余类型信息,提高代码的可读性和可维护性。例如,可以将List Int 类型的列表命名为IntegerList,在后续的代码中便可以用IntegerList代替List Int ,使得代码表达更加直观。 名词 , 微服务架构。 解释 , 微服务架构是一种将单一应用程序构建为一组小服务的技术方法,每个服务运行在自己的进程中,提供独立的业务功能。这种架构强调服务的松耦合,允许各个服务独立部署、扩展和更新,提高了系统的灵活性和可维护性。在采用微服务架构的系统中,不同类型的服务可以针对特定任务进行优化,降低了复杂度并促进了团队协作。微服务架构通常配合API网关、配置中心、服务注册中心等组件使用,以协调各个服务之间的通信和管理。
2024-09-03 15:49:39
85
山涧溪流
Kylin
...以完成整体任务。在大数据分析领域,分布式架构能够有效处理海量数据,提高数据处理速度和系统的扩展性。Kylin正是利用分布式架构特性,支持大规模数据集的存储和处理,适用于大数据环境。 名词 , 多维分析。 解释 , 多维分析是一种数据分析方法,它允许用户从多个维度(如时间、地区、产品类别等)来探索和理解数据。在Kylin中,多维分析通过创建多维数据集(Cube)实现,使得用户能够以直观的方式进行复杂的数据查询和分析,从而发现数据背后的深层次关系和模式。这种分析方法特别适用于商业智能和决策支持系统。 名词 , 实时性。 解释 , 实时性指的是系统响应用户请求的速度,即数据的获取、处理和反馈时间。在大数据分析和预测中,实时性至关重要,因为它能够确保决策者在第一时间获取最新信息,以便迅速做出反应。Kylin通过其实时更新和历史数据分析能力,支持在线学习与决策,使用户能够根据最新的数据动态调整预测模型,提高预测的时效性和准确性。
2024-10-01 16:11:58
131
星辰大海
Kafka
... Kafka副本同步数据的复制策略 引言:为什么要讨论这个问题? 嗨,大家好!今天我们要聊的是Apache Kafka这个分布式流处理平台中的一个重要概念——副本同步的数据复制策略。我为啥要挑这个话题呢?其实是因为我自己在学Kafka和用Kafka的时候,发现不管是新手还是有些经验的老手,都对副本同步和数据复制这些事一头雾水,挺让人头疼的。这不仅仅是因为里面藏着一堆复杂的技巧行头,更是因为它直接关系到系统能不能稳稳当当跑得快。所以呢,我打算通过这篇文章跟大家分享一下我的心得和经验,希望能帮到大家,让大家更容易搞懂这部分内容。 1. 什么是副本同步? 在深入讨论之前,我们先要明白副本同步是什么意思。简单说,副本同步就像是Kafka为了确保消息不会丢,像快递一样在集群里的各个节点间多送几份,这样即使一个地方出了问题,别的地方还能顶上。这样做可以确保即使某个节点发生故障,其他节点仍然可以提供服务。这是Kafka架构设计中非常重要的一部分。 1.1 副本的概念 在Kafka中,一个主题(Topic)可以被划分为多个分区(Partition),而每个分区可以拥有多个副本。副本分为领导者副本(Leader Replica)和追随者副本(Follower Replica)。想象一下,领导者副本就像是个大忙人,既要处理所有的读写请求,还得不停地给其他小伙伴分配任务。而那些追随者副本呢,就像是一群勤勤恳恳的小弟,只能等着老大分活儿给他们,然后照着做,保持和老大的一致。 2. 数据复制策略 接下来,让我们来看看Kafka是如何实现这些副本之间的数据同步的。Kafka的数据复制策略主要依赖于一种叫做“拉取”(Pull-based)的机制。这就意味着那些小弟们得主动去找老大,打听最新的消息。 2.1 拉取机制的优势 采用拉取机制有几个好处: - 灵活性:追随者可以根据自身情况灵活调整同步频率。 - 容错性:如果追随者副本暂时不可用,不会影响到领导者副本和其他追随者副本的工作。 - 负载均衡:领导者副本不需要承担过多的压力,因为所有的读取操作都是由追随者完成的。 2.2 实现示例 让我们来看一下如何在Kafka中配置和实现这种数据复制策略。首先,我们需要定义一个主题,并指定其副本的数量: python from kafka.admin import KafkaAdminClient, NewTopic admin_client = KafkaAdminClient(bootstrap_servers='localhost:9092') topic_list = [NewTopic(name="example_topic", num_partitions=3, replication_factor=3)] admin_client.create_topics(new_topics=topic_list) 这段代码创建了一个名为example_topic的主题,它有三个分区,并且每个分区都有三个副本。 3. 副本同步的实际应用 现在我们已经了解了副本同步的基本原理,那么它在实际应用中是如何工作的呢? 3.1 故障恢复 当一个领导者副本出现故障时,Kafka会自动选举出一个新的领导者。这时候,新上任的大佬会继续搞定读写请求,而之前的小弟们就得重新变回小弟,开始跟新大佬取经,同步最新的消息。 3.2 负载均衡 在集群中,不同的分区可能会有不同的领导者副本。这就相当于把消息的收发任务分给了不同的小伙伴,这样大家就不会挤在一个地方排队了,活儿就干得更顺溜了。 3.3 实际案例分析 假设有一个电商网站使用Kafka来处理订单数据。要是其中一个分区的大佬挂了,系统就会自动转而听命于另一个健健康康的大佬。虽然在这个过程中可能会出现一会儿数据卡顿的情况,但总的来说,这并不会拖慢整个系统的进度。 4. 总结与展望 通过上面的讨论,我们可以看到副本同步和数据复制策略对于提高Kafka系统的稳定性和可靠性有多么重要。当然,这只是Kafka众多功能中的一个小部分,但它确实是一个非常关键的部分。以后啊,随着技术不断进步,咱们可能会见到更多新颖的数据复制方法,这样就能让Kafka跑得更快更稳了。 最后,我想说的是,学习技术就像是探险一样,充满了挑战但也同样充满乐趣。希望大家能够享受这个过程,不断探索和进步! --- 以上就是我对Kafka副本同步数据复制策略的一些理解和分享。希望对你有所帮助!如果有任何问题或想法,欢迎随时交流讨论。
2024-10-19 16:26:57
57
诗和远方
Java
...,还增强了金融系统的安全性。然而,随之而来的还有对隐私保护和监管合规的挑战,如何平衡创新与风险控制成为了亟待解决的问题。 此外,气候变化依然是当今世界面临的最大挑战之一。联合国政府间气候变化专门委员会(IPCC)最新发布的报告显示,全球变暖的速度比预期更快,极端天气事件频发。面对这一严峻形势,各国纷纷采取行动。欧盟提出了雄心勃勃的绿色新政计划,旨在到2050年实现碳中和目标。美国则重新加入了《巴黎协定》,并承诺在未来十年内大幅削减温室气体排放。科学家们呼吁全球合作,共同应对气候危机,否则后果将不堪设想。 这些热点话题不仅反映了科技进步带来的机遇,同时也揭示了人类社会必须面对的复杂问题。无论是数学、金融还是环境科学,每一个领域的进步都离不开跨学科的合作与创新思维。正如文章所提到的,学习编程就像掌握一门新语言,而掌握这些前沿知识则是适应未来社会的基础。让我们保持好奇心,不断探索未知的世界吧!
2025-03-17 15:54:40
64
林中小径
转载文章
...于计算,再将其转换为对数似然函数形式: \ln p(\mathcal{D}|\theta)=\sum_{n=1}^N\ln p(x_n|\theta) lnp(D|θ)=∑n=1Nlnp(xn|θ) 我们不妨以伯努利分布为例,利用最大似然估计的方式计算其分布的参数(pp ),伯努利分布其概率密度函数(pdf)为: f_X(x)=p^x(1-p)^{1-x}=\left \{ \begin{array}{ll} p,&\mathrm{x=1},\\ q\equiv1-p ,&\mathrm{x=0},\\ 0,&\mathrm{otherwise} \end{array} \right. fX(x)=px(1−p)1−x=⎧⎩⎨⎪⎪p,q≡1−p,0,x=1,x=0,otherwise 整个样本集的对数似然函数为: \ln p(\mathcal{D}|\theta)=\sum_{n=1}^N\ln p(x_n|\theta)=\sum_{n=1}^N\ln (\theta^{x_n}(1-\theta)^{1-x_n})=\sum_{n=1}^Nx_n\ln\theta+(1-x_n)\ln(1-\theta) lnp(D|θ)=∑n=1Nlnp(xn|θ)=∑n=1Nln(θxn(1−θ)1−xn)=∑n=1Nxnlnθ+(1−xn)ln(1−θ) 等式两边对\thetaθ 求导: \frac{\partial \ln(\mathcal{D}|\theta)}{\partial \theta}=\frac{\sum_{n=1}^Nx_n}{\theta}-\frac{N}{1-\theta}+\frac{\sum_{n=1}^Nx_n}{1-\theta} ∂ln(D|θ)∂θ=∑Nn=1xnθ−N1−θ+∑Nn=1xn1−θ 令其为0,得: θml=∑Nn=1xnN Beta分布 f(μ|a,b)=Γ(a+b)Γ(a)Γ(b)μa−1(1−μ)b−1=1B(a,b)μa−1(1−μ)b−1 Beta 分布的峰值在a−1b+a−2 处取得。其中Γ(x)≡∫∞0ux−1e−udu 有如下性质: Γ(x+1)=xΓ(x)Γ(1)=1andΓ(n+1)=n! 我们来看当先验分布为 Beta 分布时的后验分布: p(θ)=1B(a,b)θa−1(1−θ)b−1p(X|θ)=(nk)θk(1−θ)n−kp(θ|X)=1B(a+k,b+n−k)θa+k−1(1−θ)b+n−k−1 对应于python中的math.gamma()及matlab中的gamma()函数(matlab中beta(a, b)=gamma(a)gamma(b)/gamma(a+b))。 条件概率(conditional probability) P(X|Y) 读作: P of X given Y ,下划线读作given X :所关心事件 Y :条件(观察到的,已发生的事件),conditional 条件概率的计算 仍然从样本空间(sample space)的角度出发。此时我们需要定义新的样本空间(给定条件之下的样本空间)。所以,所谓条件(conditional),本质是对样本空间的进一步收缩,或者叫求其子空间。 比如一个人答题,有A,B,C,D 四个选项,在答题者对题目一无所知的情况下,他答对的概率自然就是 14 ,而是如果具备一定的知识,排除了 A,C 两个错误选项,此时他答对的概率简单计算就增加到了 12 。 本质是样本空间从S={A,B,C,D} ,变为了S′={B,D} 。 新样本空间下P(A|排除A/C)=0,P(C|排除A/C)=0 ,归纳出来,也即某实验结果(outcome,oi )与某条件Y 不相交,则: P(oi|Y)=0 最后我们得到条件概率的计算公式: P(oi|Y)=P(oi)P(o1)+P(o2)+⋯+P(on)=P(oi)P(Y)Y={o1,o2,…,on} 考虑某事件X={o1,o2,q1,q2} ,已知条件Y={o1,o2,o3} 发生了,则: P(X|Y)=P(o1|Y)+P(o2|Y)+0+0=P(o1)P(Y)+P(o2)P(Y)=P(X∩Y)P(Y) 条件概率与贝叶斯公式 条件概率: P(X|Y)=P(X∩Y)P(Y) 贝叶斯公式: P(X|Y)=P(X)P(Y|X)P(Y) 其实是可从条件概率推导贝叶斯公式的: P(A|B)=P(B|A)=P(A|B)P(B)===P(B|A)=P(A∩B)P(B)P(A∩B)P(A)P(A∩B)P(B)P(B)P(A∩B)P(A)P(B|A)P(A|B)P(B)P(A) 证明:P(B,p|D)=P(B|p,D)P(p|D) P(B,p|D)====P(B,p,D)P(D)P(B|p,D)P(p,D)P(D)P(B|p,D)P(p,D)P(D)P(B|p,D)P(p|D) References [1] 概率质量函数 本篇文章为转载内容。原文链接:https://blog.csdn.net/lanchunhui/article/details/49799405。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-02-26 12:45:04
518
转载
Java
...a中的位与字节:一场数据存储的小冒险 大家好呀!今天咱们来聊聊Java中一个看似简单但其实挺有趣的话题——位(bit)和字节(byte)。嘿,看到这个标题,估计不少人心里都在嘀咕:“哎哟,不就是二进制嘛,谁还不知道啊!”但说实话,这玩意儿在Java里到底是怎么运作的,真要想搞明白,可没那么容易!所以,咱们今天就一起来剥开它的神秘面纱吧! --- 一、什么是位?什么是字节? 首先,让我们从最基础的概念说起。你知道吗,在计算机的世界里,所有的东西都是由0和1组成的。而每一个0或者1就是一个“位”。你可以这么想啊,要是把电脑当成一座超级酷的城市,那这些“位”就是这座城市里最小的小积木,就像那种搭房子用的砖块一样,没有它们,整个城市可就建不起来啦!一块砖头虽然很小,但如果堆在一起,就能盖起高楼大厦。 那么,什么是字节呢?简单来说,8个连续的位就构成了一个字节。换句话说,一个字节可以表示256种不同的状态(因为2的八次方等于256)。哎,为啥是256种啊?其实很好理解嘛!你就想,就像开关一样,每一位要么是“开”(1),要么是“关”(0),一共8个这样的开关。第一个开关有两种状态,第二个也两种,第三个还是两种……一直到第八个都是两种。这么多乘起来嘛,2×2×2×2×2×2×2×2,最后不就等于256啦!这就像玩拼搭积木,每块积木都有两种选择——放还是不放,搭来搭去就能搭出256种不同的样子了。 举个例子吧: java // 定义一个字节变量并赋值 byte myByte = 255; // 这个值用二进制表示就是11111111 System.out.println("The value of myByte is: " + myByte); 在这个例子中,我们创建了一个byte类型的变量myByte,并给它赋值为255。注意哦,byte类型只能存储-128到127之间的整数,超出范围会报错。不过这里我们用的是正数,所以没问题啦! --- 二、位运算 玩转二进制的艺术 接下来,咱们要进入更深入的内容了——位运算。所谓位运算,就是直接对数据的每一位进行操作的一种方式。哇,是不是感觉超酷?其实呢,在编程里这种操作特别常见,特别是在弄图像啦、搞加密算法的时候,简直就像是家常便饭一样! Java提供了几种基本的位运算符,包括按位与(&)、按位或(|)、按位异或(^),以及取反(~)等。为了让大家更好理解,我先举几个例子: java public class BitwiseExample { public static void main(String[] args) { int a = 60; // 二进制表示为 00111100 int b = 13; // 二进制表示为 00001101 System.out.println("a & b = " + (a & b)); // 按位与的结果是 00001100,即12 System.out.println("a | b = " + (a | b)); // 按位或的结果是 00111101,即61 System.out.println("a ^ b = " + (a ^ b)); // 按位异或的结果是 00110001,即49 System.out.println("~a = " + (~a)); // 取反的结果是 11000011,即-61 } } 这段代码展示了如何使用各种位运算符。你看啊,其实这些运算就是挨个儿对比两个数字的二进制位,然后按照一定的规则,把对比的结果拼成一个新的二进制串。就跟咱们玩搭积木似的,只不过这里用的是0和1这两块“积木”! --- 三、位操作的实际应用 说了这么多理论知识,你可能会问:“这些东西到底有什么用?”别急,让我告诉你一些真实的场景吧!比如在网络编程中,我们需要处理IP地址时,经常需要用到位移操作来提取特定部分的信息;再比如在游戏开发中,为了优化性能,程序员常常会利用位运算来进行快速的逻辑判断。 下面是一个简单的例子,展示如何用位运算来判断一个数是否是偶数: java public class EvenOrOdd { public static void main(String[] args) { int num = 10; if ((num & 1) == 0) { System.out.println(num + " is even."); } else { System.out.println(num + " is odd."); } } } 这里我们通过num & 1来检查最低位是否为0。如果是0,则表示该数是偶数;否则就是奇数。这种方法比传统的模运算效率更高哦! --- 四、总结与感悟 好了朋友们,今天的旅程就要结束了。嘿,咱们回头看看一路走来的情况吧!最开始就是从那些小小的位和字节开始的,然后慢慢学到了各种位运算的小窍门。到现在,你们应该对Java里的位操作有点儿感觉了吧?哈哈,说真的,学编程这事吧,就跟你去探险似的,每往前踏出一步,都像是打开了一扇新世界的大门,有困难也有乐趣,是不是特别带劲儿? 最后我想说的是,不要害怕面对复杂的问题,也不要急于求成。就像是摆弄那些二进制的0和1,刚开始可能觉得特别无聊,像在数蚂蚁似的。可一旦你摸透了门道,就会发现这里面其实超级有意思,就像解开了一种只有少数人才懂的神秘密码一样!希望你们都能在这条路上越走越远,成为优秀的程序员! 好了,今天的分享就到这里啦,谢谢大家听讲!如果你有任何问题或者想法,欢迎随时留言交流哦~ 😊
2025-05-15 15:52:47
99
星河万里
MySQL
...,我们经常需要对一些数据进行分类,例如商品分类、用户等级等。其中,无限极分类是一种非常常用的数据分类方式,它可以用来表示一种层次结构,如商品分类中的父类、子类等。然而,在处理这种数据时,我们常常会遇到一个问题:如何快速、有效地将无限极分类转换为层级结构呢? 二、为什么要使用无限极分类? 首先,我们需要了解一下什么是无限极分类。无限极分类就像一棵大树,它的构造挺有趣。在这样的树形结构中,每一个小节点都有一个自己的‘老爹’节点,而这个‘老爹’呢,它还可能是其他许多小节点的‘老爹’。这样的构造方式,其实就像家谱一样,可以展示出各种级别的层次关系。比如说在商品分类里,就有爷爷辈的大类别、爸爸辈的中类别、儿子辈的小类别,甚至还有孙子辈的更细分的类别呢! 其次,无限极分类的优点在于它可以方便地进行扩展。假如我们想要新增一个类别,就像在家族树上添个新枝丫一样简单,你只需要在它的“老爸”类别下加一个新的“小子类别”,这样一来,数据的一致性和完整性就能轻轻松松地保持住啦! 三、什么是递归? 那么,如何使用递归来处理无限极分类呢?这就需要用到递归的概念。递归啊,就是那种函数自己调用自己的神奇操作。你想象一下,这个函数有点像一个超级有耐心的小助手,一遍又一遍地做着同一件事情,但每次做的时候都比上次更进一步。通过这种自我迭代的过程,我们竟然能解开很多看起来超级复杂、让人挠头的问题呢! 在处理无限极分类时,我们可以使用递归的方式,从根节点开始,一层一层地遍历下去,直到找到所有的叶子节点。然后,我们可以根据每层的节点,构建出相应的层级结构。 四、如何使用递归来处理无限极分类? 接下来,我们来看一下如何使用递归来处理无限极分类。假设我们有一个无限极分类的数据库表,其中包含id、parent_id和name三个字段。喏,你听我说哈,id呢,就相当于每个小节点的身份证号,是独一无二的。而parent_id呢,顾名思义,就是每个小节点它爹——父节点的身份证号啦。至于name嘛,简单易懂,那就是给每个小节点起的专属昵称哈! 我们可以定义一个函数,输入参数是一个父节点的id,输出是一个层级结构的数组。具体操作如下: php function getTree($id){ $sql = "SELECT FROM node WHERE parent_id = '$id'"; $result = mysqli_query($conn, $sql); $arr = array(); while($row = mysqli_fetch_assoc($result)){ $arr[] = $row; } foreach($arr as $value){ if($value['child'] > 0){ $arr = array_merge($arr, getTree($value['id'])); } } return $arr; } 以上就是使用递归来处理无限极分类的一个简单示例。这个例子嘛,我们先从某个特定的老爸节点下手,把它的所有小崽子(子节点)都给挖出来。接着呢,对每一个小崽子,如果它们自己还有更下一代的小崽子,那我们就得像孙悟空钻进葫芦娃的肚子里那样,一层层地往里递归调用这个过程,把那些隐藏更深的孙子辈节点也给找全了。最后呢,咱们把这一大家子所有的节点都聚到一块儿,拼成一个完整的、层层分明的家族结构。 然而,递归虽然强大,但也有它的局限性。当数据量大时,递归可能会导致栈溢出,影响程序的执行效率。因此,我们需要寻找其他的解决方案。 五、不使用递归,如何处理无限极分类? 那么,如果不使用递归,我们该如何处理无限极分类呢?答案就是使用非递归的方式,也就是我们常说的迭代法。 迭代法的基本思想是从根节点开始,每次只处理一层数据,直到处理完所有的数据。这种方法压根儿不需要递归调用,所以你完全不用担心什么栈溢出的问题。而且实话跟你说,通常情况下,它的工作效率要比递归高不少! 接下来,我们来看一下如何使用迭代法处理无限极分类。假设我们已经有了一个无限极分类的数据库表,其中包含id、parent_id和name三个字段。我们可以按照以下步骤进行处理: 1. 创建一个空的层级结构数组,用于存储所有的节点; 2. 获取根节点,将其添加到层级结构数组中; 3. 遍历所有的节点,对于每一个节点,如果它还没有被处理过,则对其进行处理,将其添加到层级结构数组中,然后处理它的所有子节点。 具体的代码实现如下: php function getTree($root){ $tree = array(); $queue = array($root); while(count($queue) > 0){ $node = array_shift($queue); $tree[$node['id']] = array( 'id' => $node['id'], 'parent_id' => $node['parent_id'], 'name' => $node['name'], 'children' => array() ); if($node['child'] > 0){ $queue = array_merge($queue, getChildren($conn, $node['id'])); } } return $tree; } function getChildren($conn, $id){ $sql = "SELECT FROM node WHERE parent_id = '$id'"; $result = mysqli_query($conn, $sql); $arr = array(); while($row = mysqli_fetch_assoc($result)){ $arr[] = $row; } return $arr; } 以上就是在非递归的情况下,处理无限极分类的一个简单示例。在举这个例子的时候,我们首先动手整了个空荡荡的层级结构数组出来,接着找准了那个根节点,把它给塞进了这个层级结构数组里头。然后,我们就像在超市排队结账一样,用一个队列来装那些等待被处理的节点。每当轮到一个节点时,我们就把它从队列里拽出来,塞进层级结构数组这个大篮子里,并且仔仔细细地处理它所有的“孩子”——也就是子节点。最后一步,咱们就像玩接龙游戏一样,把已经处理过的节点从队列里拿出来,然后美滋滋地接着处理下一个排着队的节点,就这么一直玩下去,直到队列里一个节点都不剩,就表示大功告成了! 总结来说,无论是使用递归还是非递归,都可以有效地处理无限极分类。但是,不同的方法适用于不同的场景,我们需要根据实际情况选择合适的方法。
2023-08-24 16:14:06
59
星河万里_t
Impala
Impala与大数据量处理挑战:深度解析与实例探讨 1. 引言 在当今的大数据世界里,Impala作为一款基于Hadoop的开源MPP(大规模并行处理)SQL查询引擎,因其对HDFS和HBase的支持以及高效的交互式查询能力而广受青睐。然而,在面对大数据量的处理场景时,Impala的表现并不总是尽如人意。在这篇文章里,我们要好好掰扯一下Impala在对付海量数据时可能遇到的那些头疼问题。咱不仅会通过实际的代码实例,抽丝剥茧地找出问题背后的秘密,还会带着咱们作为探索者的人性化视角和情感化的思考过程,一起走进这场大数据的冒险之旅。 2. Impala的基本原理与优势 首先,让我们回顾一下Impala的设计理念。你知道Impala吗?这家伙可厉害了,它采用了超级酷炫的分布式架构设计,可以直接从HDFS或者HBase这些大数据仓库里拽出数据来用,完全不需要像传统那样繁琐地进行ETL数据清洗和转化过程。这样一来,你就能享受到飞一般的速度和超低的查询延迟,轻轻松松实现SQL查询啦!这全靠它那个聪明绝顶的查询优化器和咱们亲手用C++编写的执行引擎,让你能够瞬间对海量数据进行各种复杂的分析操作,就像在现实生活中实时互动一样流畅。 sql -- 示例:使用Impala查询HDFS上的表数据 USE my_database; SELECT FROM large_table WHERE column_a = 'value'; 3. Impala在大数据量下的性能瓶颈 然而,尽管Impala具有诸多优点,但在处理超大数据集时,它却可能面临以下挑战: - 内存资源限制:Impala在处理大量数据时严重依赖内存。当Impala Daemon的内存不够用,无法承载更多的工作负载时,就可能会引发频繁的磁盘数据交换(I/O操作),这样一来,查询速度可就要大打折扣啦,明显慢下来不少。例如,如果一个大型JOIN操作无法完全装入内存,就可能引发此类问题。 sql -- 示例:假设两个大表join操作超出内存限制 SELECT a., b. FROM large_table_a AS a JOIN large_table_b AS b ON a.key = b.key; - 分区策略与数据分布:Impala的性能也受到表分区策略的影响。假如数据分布得不够均匀,或者咱们分区的方法没整对,就很可能让部分节点“压力山大”,这样一来,整体查询速度也跟着“掉链子”啦。 - 并发查询管理:在高并发查询环境下,Impala的资源调度机制也可能成为制约因素。特别是在处理海量数据的时候,大量的同时请求可能会把集群资源挤得够呛,这样一来,查询响应的速度就难免会受到拖累了。 4. 针对性优化措施与思考 面对以上挑战,我们可以采取如下策略来改善Impala处理大数据的能力: - 合理配置硬件资源:根据实际业务需求,为Impala集群增加更多的内存资源,确保其能够有效应对大数据量的查询任务。 - 优化分区策略:对于大数据表,采用合适的分区策略(如范围分区、哈希分区等),保证数据在集群中的均衡分布,减少热点问题。 - 调整并发控制参数:根据集群规模和业务特性,合理设置Impala的并发查询参数(如impalad.memory.limit、query.max-runtime等),以平衡系统资源分配。 - 数据预处理与缓存:对于经常访问的热数据,可以考虑进行适当的预处理和缓存,减轻Impala的在线处理压力。 综上所述,虽然Impala在处理大数据量时存在一定的局限性,但通过深入了解其内在工作机制,结合实际业务需求进行有针对性的优化,我们完全可以将其打造成高效的数据查询利器。在这个过程中,我们实实在在地感受到了人类智慧在挑战技术极限时的那股冲劲儿,同时,也亲眼目睹了科技与挑战之间一场永不停歇、像打乒乓球一样的精彩博弈。 结语 技术的发展总是在不断解决问题的过程中前行,Impala在大数据处理领域的挑战同样推动着我们在实践中去挖掘其潜力,寻求更优解。今后,随着软硬件技术的不断升级和突破,我们完全可以满怀信心地期待,Impala会在处理大数据这个大难题上更上一层楼,为大家带来更加惊艳、无可挑剔的服务体验。
2023-11-16 09:10:53
784
雪落无痕
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
dig +short myip.opendns.com @resolver4.opendns.com
- 获取公网IP地址。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"