前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[显式数据类型检查方法 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
ElasticSearch
...你可能会想到很多实现方法: 比如你的底层数据库用的是sql数据库(比如mysql):你可能会想到在对应字段上使用field1 like '%?%',?即用户输出的关键词 比如你的底层数据库用的是mongo:你可能会想到在对应字段上使用db.collection.find({ "field1": { $regex: /aaa/ } })做查询,aaa即用户输入的关键词 比如你的底层数据库用的是elasticsearch:那厉害了,专业全文搜索神奇,全文搜索或搜索相关的需求使用elasticsearch绝对是最合适的选择 比如你的底层数据库用的是hive、impala、clickhouse等大数据计算引擎:鸟枪换炮,其实用作全文索引和搜索的场景并不合适,你可能依旧会使用sql数据库那样用like做交互 2. 方案选择 调研之后,可能会发现对于数据量相对大一点的搜索场景,在当下流行的数据库或计算引擎中,elasticsearch是其中最合适的解决方案。 无论是sql的like、还是mongo的regex,在线上环境下,数据量较多的情况下,都不是很高效的查询,甚至有的公司的dba会禁止在线上使用类似的查询语法。 与elasticsearch是“亲戚”的,大家还常提到lucene、solr,但是无论从现在的发展趋势还是公司运维人才的储备(不得不说当下的运维人才中,对es熟悉的人才会更多一些),elasticsearch是相对较合适的选择。 一些大数据计算引擎,其实更多的适合OLAP场景。当然也完全可以使用,因为比如clickhouse、starrocks等的查询速度已经发展的非常快。但你会发现在中文分词搜索上,实现起来有一定困扰。 所以,如果你不差机器,首选方案还是elasticsearch。 3. elasticsearch的适用场景 3.1 经典的日志搜索场景 提到elasticsearch不得不提到它的几个好朋友: 一些公司里经常用elasticsearch来收集日志,然后用kibana来展示和分析。 展开来说,举个例子,你的app打印日志打印到了线上日志文件,当app出现故障你需要做定位筛查的时候,可能需要登录线上机器用grep命令各种查看。 但如果你不差机器资源,可以搭建上述架构,app的日志会被收集到elasticsearch中,最终你可以在kibana中查看日志,kibana里面可以很方面的做各种筛查操作。 这个流畅大概是这样的: 3.2 通用搜索场景 但是没有上图的beats、logstash、kibana,elasticsearch可以自己工作吗?完全可以的! elasticsearch也支持单机部署,数据规模不是很大的情况下,表现也是不错的。所以,你也不用担心因为自己机器资源不够而对elasticsearch望而却步。当然,单机部署的情况下,更多的适合自己玩,对于可靠性的要求就不能太苛刻了。 如果你在用宝塔,那你可以在宝塔面板,左侧“软件商店”中直接找到elasticsearch,并“没有痛苦”的安装。 本篇文章主要讨论选型,所以不涉及安装细节。 3.2.1 性能顾虑 上面提到了“表现”,其实性能只是elasticsearch的一个方面,主要你的机器资源足够(机器资源?对,包括你的机器个数,elasticsearch可以非常方便的横向扩展,以及单机的配置,cpu+内存,内存越高越好,elasticsearch比较吃内存!),它一定会给你很好的性能反应。试想,公司里的app打印线上日志的行数其实可比一般业务系统产生的订单数量要大很多很多,elasticsearch都可以常在日志的实时分析,所以如果你要做通用场景,而且机器资源不是问题,这是完全行得通的。 3.2.2 易用性和可玩性 此外,在使用elasticsearch的时候,会有很多的可玩性。这里不引经据典,呈现很多elasticsearch官方文章的列举优秀特性(当然,确实很优秀!)。 这里举几个例子: (1)中文分词:第一章提到的其它引擎几乎很难实现,elasticsearch对分词器的支持是原生的,因为elasticsearch天生就为全文索引而生,elasticsearch的汉语名字就是“弹性搜索”。这家伙可是专门搞搜索的! 有的朋友可能不了解分词器,比如你的一个字段里存储“今天我要吃冰激凌”,在分词器的加持下,es最终会存储为“今天|我|要|吃|冰激凌”,并且使用倒排索引的形式进行存储。当你搜索“冰激凌”的时候,可以很快的反馈回来。 关于elasticsearch的原理,这里不展开说明,分词器和倒排索引是elasticsearch的最基本的概念。如果有不了解的朋友,可以自行百度一下。而且这两个概念,与elasticsearch其实不挂钩,是搜索中的通用概念。 关于倒排索引,其核心表现如下图: 如果你要用mysql、mongo实现中文分词,这......其实挺麻烦的,可能在后面的版本支持中会实现的很好,但在当前的流行版本中,它们对中文分词是不够友好的。 mysql5.7之后支持外挂第三方分词器,支持中文分词。而在数据量较大的情况下,mysql的多机器部署几乎很难实现,elasticsearch可以很容易的水平扩展。 mongo支持西方语言的分词,但不支持中文、日语、汉语等东方语言,你需要在自己的逻辑代码中实现分词器。 ngram分词,你看看效果:依旧是“今天我要吃冰激凌”,ngram二元分词后即将得到结果“今天、天我、我要、要吃、吃冰、冰激、激凌”。这....,那你搜索冰激凌就搜不出来!咋办呢,当然可以使用三元分词。但是更好的解决方案还是中文分词器,但它们原生并不支持的。 (2)自定义排名场景:比如你的搜索“冰激凌”,结果中返回了有10条,这10条应该有你想对它指定的顺序。最简单的就是用默认的得分,但是如果你想人为干预这个得分怎么办? elasticsearch支持function_score功能(可以不用,这个是增强功能),es会在计算最终得分之前回调这个你指定的function_score回调函数,传入原始得分、行的原始数据,你可以在里面做计算,比如查询其它参考表、或查看是否是广告位,以得到新的score返回给用户。 function_scrore的功能不展开描述,是一个在自定义得分场景下十分有用又简单易用的功能!下面是一个使用示例,不仅如此,它是支持自定义函数的,自由度非常高。 (3)文本高亮:你用mysql或mongo也可以实现,比如用户搜索“冰激凌”,你只需要在逻辑代码中对“冰激凌”替换为“<span class='highlight-term'>冰激凌</span>”,然后前端做样式即可。但如果用户搜索了“好吃的冰激凌”咋办呢?还有就是英文大小写的场景,用户搜索"MAIN",那结果及时匹配到了“main”(小写的),这个单词是否应该高亮呢?也许这时候你会用业务代码实现toLowerCase下基于位置下标的匹配。 挺麻烦的吧,elasticsearch,自动可以返回高亮字段!并且可以自由指定高亮的html前后标签。 (4)实在太多了....这家伙天生为索引而生,而且版本还在不断地迭代。不差机器的话,用用吧! 4. 退而求其次 4.1 普通数据库 尽管elasticsearch在搜索场景下,是非常好用的利器!但是它比较消耗机器资源,如果你的数据规模并不大,而且想快速实现功能。你可以使用mysql或mongo来代替,完全没有问题。 技术是为了解决特定业务场景下的问题,结合当前手头的资源,适合自己的才是最好的。也许你搞了一个单机器的elasticsearch,单机器内存只有2G,它的表现并不会比mysql、mongo来的好。 当然,如果你为了使用上边提到的一些优秀的独有的特性,那elasticsearch一定还是最佳选择! 对于mysql(关系型数据库)和mongo(文档数据库)的区别这里不展开描述了,但对于搜索而言,两种都合适。有时候选型也不用很纠结,其实都是差不太多的东西,适合自己的、自己熟悉的、运维起来顺手的,就是最好的。 4.2 普通数据库实现中文分词搜索的原理 尽管mysql在5.7以后支持外挂第三方分词器,mongo在截止目前的版本中也不支持中文分词(你可能会看到一些文章中说可以指定language为chinese,但其实会报错的)。 其实当你选择普通数据库,你就不得不在逻辑代码中自己实现一套索引分词+搜索分词逻辑。 索引分词+搜索分词?为什么分开写,如果你有用过elasticsearch或solr,你会知道,在指定字段的时候,需要指定index分词器和search分词器。 下面以mongo为例做简要说明。 4.2.1 index分词器 意思是当数据“索引”截断如何分词。首先,这里必须要承认,数据之后存储了,才能被查询。在搜索中,这句话可以换成是“数据只有被索引了,才能被搜索”。 这时候请求打过来了,要索引一条数据,其中某字段是“今天我要吃冰激凌”,分词后得到“今天|我|要|吃|冰激凌”,这个就可以入库了。 如果你使用elasticsearch或solr,这个过程是自动的。如果你使用不支持外观分词器的常规数据库,这个过程你就要手动了,并把分词后的结果用空格分开(最好使用空格,因为西方语言的分词规则就是按空格拆分,以及逗号句号),存入数据库的一个待搜索的字段上。 效果如下图: 本站的其它博文中有介绍IKAnalyzer:https://www.52itw.com/java/6268.html 4.2.2 search分词器 当用户的查询请求打过来,用户输入了“好吃的冰激凌”,分词后得到“好吃|冰激凌”(“的”作为停用词stopwords,被自动忽略了,IKAnalyzer可以指定停用词表)。 于是这时候就回去上图的数据库表里面搜索“好吃 冰激凌”(与index分词器结果统一,还是用空格分隔)。 当然,对于mongo而言,你需要事先开启全文索引db.xxx.ensureIndex({content: "text"}),xxx是集合名,content是字段名,text是全文索引的标识。 mongo搜索的时候用这个语法:db.xxx.find( { $text: { $search: "好吃 冰激凌" } },{ score: { $meta: "textScore" } }).sort( { score: { $meta: "textScore" } } ) 4.2.3 索引库和存储库分开 为了减少单表的大小,为了让普通的列表查询、普通筛选可以跑的更快,你可以对原有的数据原封不动的做一张表。 然后对于搜索场景,再单独对需要被搜索的字段单独拎一张表出来! 然后二者之间做增量信号同步或定时差额同步,可能会有延迟,这个就看你能容忍多长时间(悄悄告诉你,elasticsearch也需要指定这个refresh时间,一般是1s到几秒、甚至分钟级。当然,二者的这个时间对饮的底层目的是不一样的)。 这样,搜索的时候先查询搜索库,拿到一个指针id的列表,然后拿到指针id的列表区存储里把数据一次性捞出来。当然,也是支持分页的,你查询搜索库其实也是普通的数据库查询嘛,支持分页参数的。 4.3 存储库和索引库的延伸阅读 很多有名的开源软件也是使用的存储库与索引库分离的技术方案,如apache atlas: apache atlas对于大数据领域的数据资产元数据管理、数据血缘上可谓是专家,也涉及资产搜索的特性,它的实现思路就是:从搜索库中做搜索、拿到key、再去存储库中做查询。 搜索库:上图右下角,可以看到使用的是elasticsearch、solr或lucene,多个选一个 存储库:上图左下角,可以看到使用的是Cassandra、HBase或BerkeleyDB,多个选一个 虽然apache atlas在只有搜索库或只有存储库的时候也可以很好的工作,但只针对于数据量并不大的场景。 搜索库,擅长搜索!存储库,擅长海量存储!搜索库多样化搜索,然后去存储库做点查。 当你的数据达到海量的时候,es+hbase也是一种很好的解决方案,不在这里展开说明了。
2024-01-27 17:49:04
540
admin-tim
Kafka
...这么一送,它现在在大数据圈子里混得那叫一个风生水起,已经成了整个生态里头离不开的重要角色啦! 作为一个开发者,我对Kafka的第一印象是它超级可靠。无论是高吞吐量、低延迟还是容错能力,Kafka都表现得非常出色。大家有没有想过啊,“可靠”这个词到底是怎么来的?为啥说某个东西“靠谱”,我们就觉得它值得信赖呢?今天咱们就来聊聊这个事儿——比如说,你发出去的消息,咋就能保证它不会石沉大海、人间蒸发了呢?这可不是开玩笑的事儿,尤其是在大数据的世界里,丢一个消息可能就意味着丢了一笔订单或者错过了一次重要沟通。所以啊,今天我们就要揭开谜底,跟大家唠唠Kafka是怎么做到让消息“稳如老狗”的! 2. Kafka可靠性背后的秘密武器 Kafka的可靠性主要依赖于以下几个核心概念: 2.1 持久化与日志结构 Kafka将所有数据存储在日志文件中,并通过持久化机制确保数据不会因为服务器宕机而丢失。简单来说,就是把消息写入磁盘而不是内存。 java Properties props = new Properties(); props.put("bootstrap.servers", "localhost:9092"); props.put("acks", "all"); props.put("retries", 0); props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer"); props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); Producer producer = new KafkaProducer<>(props); producer.send(new ProducerRecord<>("my-topic", "my-key", "my-value")); producer.close(); 这段代码展示了如何发送一条消息到Kafka主题。其中acks="all"参数表示生产者会等待所有副本确认收到消息后才认为发送成功。 2.2 分区与副本机制 Kafka通过分区(Partition)来分摊负载,同时通过副本(Replica)机制来提高可用性和容错性。每个分区可以有多个副本,其中一个为主副本,其余为从副本。 java AdminClient adminClient = AdminClient.create(props); ListTopicsOptions options = new ListTopicsOptions(); options.listInternal(true); Set topics = adminClient.listTopics(options).names().get(); System.out.println("Topics: " + topics); 这段代码用于列出Kafka集群中的所有主题及其副本信息。通过这种方式,你可以检查每个主题的副本分布情况。 3. 生产者端的可靠性保障 作为生产者,我们需要确保发送出去的消息能够安全到达Kafka集群。这涉及到一些关键配置: - acks:控制生产者的确认级别。设置为"all"时,意味着必须等待所有副本确认。 - retries:指定重试次数。如果网络抖动导致消息未送达,Kafka会自动重试。 - linger.ms:控制批量发送的时间间隔。默认值为0毫秒,即立即发送。 java Properties props = new Properties(); props.put("bootstrap.servers", "localhost:9092"); props.put("acks", "all"); props.put("retries", 3); props.put("linger.ms", 5); props.put("batch.size", 16384); Producer producer = new KafkaProducer<>(props); for (int i = 0; i < 100; i++) { producer.send(new ProducerRecord<>("my-topic", Integer.toString(i), Integer.toString(i))); } producer.close(); 在这个例子中,我们设置了retries=3和linger.ms=5,这意味着即使遇到短暂的网络问题,Kafka也会尝试最多三次重试,并且会在5毫秒内累积多条消息一起发送。 4. 消费者端的可靠性保障 消费者端同样需要关注可靠性问题。Kafka 有两种消费模式,一个叫 earliest,一个叫 latest。简单来说,earliest 就是从头开始补作业,把之前没看过的消息全都读一遍;而 latest 则是直接从最新的消息开始看,相当于跳过之前的存档,直接进入直播频道。 java Properties props = new Properties(); props.put("bootstrap.servers", "localhost:9092"); props.put("group.id", "test-group"); props.put("enable.auto.commit", "true"); props.put("auto.commit.interval.ms", "1000"); props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); KafkaConsumer consumer = new KafkaConsumer<>(props); consumer.subscribe(Arrays.asList("my-topic")); while (true) { ConsumerRecords records = consumer.poll(Duration.ofMillis(100)); for (ConsumerRecord record : records) { System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value()); } } 这段代码展示了如何订阅一个主题并持续拉取消息。注意这里启用了自动提交功能,这样就不需要手动管理偏移量了。 5. 总结与反思 通过今天的讨论,我相信大家对Kafka的消息可靠性有了更深的理解。Kafka能从一堆消息队列系统里脱颖而出,靠的就是它在设计的时候就脑补了各种“灾难片”场景,比如数据爆炸、服务器宕机啥的,然后还给配齐了神器,专门对付这些麻烦事儿。 然而,正如任何技术一样,Kafka也不是万能的。在实际应用中,我们还需要结合具体的业务需求来调整配置参数。比如说啊,在那种超级忙、好多请求同时涌过来的场景下,就得调整一下每次处理的任务量,别一下子搞太多,慢慢来可能更稳。但要是你干的事特别讲究速度,晚一秒钟都不行的那种,那就得想办法把发东西的时间间隔调短点,越快越好! 总之,Kafka的强大之处在于它允许我们灵活地调整策略以适应不同的工作负载。希望这篇文章能帮助你在实践中更好地利用Kafka的优势!如果你有任何疑问或想法,欢迎随时交流哦~
2025-04-11 16:10:34
96
幽谷听泉
转载文章
...al C++”和程序类型“MFC应用程序”。 (3)点击下一步即可。 (4)选择类型为“基于对话框”,下一步或者完成。 (5)找到厂家提供的光盘资料,路径如下(64位库为例)。 A.进入厂商提供的光盘资料找到“8.PC函数”文件夹,并点击进入。 B.选择“函数库2.1”文件夹。 C.选择“Windows平台”文件夹。 D.根据需要选择对应的函数库这里选择64位库。 E.解压C++的压缩包,里面有C++对应的函数库。 F.函数库具体路径如下。 (6)将厂商提供的C++的库文件和相关头文件复制到新建的项目里面。 (7)在项目中添加静态库和相关头文件。 A.先右击项目文件,接着依次选择:“添加”→“现有项”。 B.在弹出的窗口中依次添加静态库和相关头文件。 (8)声明用到的头文件和定义控制器连接句柄。 至此项目新建完成,可进行MFC项目开发。 2.查看PC函数手册,熟悉相关函数接口 (1)PC函数手册也在光盘资料里面,具体路径如下:“光盘资料\8.PC函数\函数库2.1\ZMotion函数库编程手册 V2.1.pdf” (2)链接控制器,获取链接句柄。 ZAux_OpenEth()接口说明: (3)振镜运动接口。 为振镜运动单独封装了一个运动接口,使用movescanabs指令进行运动,采用FORCE_SPEED参数设置运动过程中的速度,运动过程中基本不存在加减速过程,支持us级别的时间控制。 3. MFC开发控制器双振镜运动例程 (1)例程界面如下。 (2) 链接按钮的事件处理函数中调用链接控制器的接口函数ZAux_OpenEth(),与控制器进行链接,链接成功后启动定时器1监控控制器状态。 //网口链接控制器void CSingle_move_Dlg::OnOpen(){char buffer[256]; int32 iresult;//如果已经链接,则先断开链接if(NULL != g_handle){ZAux_Close(g_handle);g_handle = NULL;}//从IP下拉框中选择获取IP地址GetDlgItemText(IDC_IPLIST,buffer,255);buffer[255] = '\0';//开始链接控制器iresult = ZAux_OpenEth(buffer, &g_handle);if(ERR_SUCCESS != iresult){g_handle = NULL;MessageBox(_T("链接失败"));SetWindowText("未链接");return;}//链接成功开启定时器1SetWindowText("已链接");SetTimer( 1, 100, NULL ); } (3)通过定时器监控控制器状态 。 void CSingle_move_Dlg::OnTimer(UINT_PTR nIDEvent) {// TODO: Add your message handler code here and/or call defaultif(NULL == g_handle){MessageBox(_T("链接断开"));return ;}if(1 == nIDEvent){CString string;float position = 0;ZAux_Direct_GetDpos( g_handle,m_nAxis,&position); //获取当前轴位置string.Format("振镜X1轴位置:%.2f", position );GetDlgItem( IDC_CURPOS )->SetWindowText( string );float NowSp = 0;ZAux_Direct_GetVpSpeed( g_handle,m_nAxis,&NowSp); //获取当前轴速度string.Format("振镜X1轴速度:%.2f", NowSp );GetDlgItem( IDC_CURSPEED)->SetWindowText( string );ZAux_Direct_GetDpos(g_handle, m_nAxis+1, &position); //获取当前轴位置string.Format("振镜Y1轴位置:%.2f", position);GetDlgItem(IDC_CURPOS2)->SetWindowText(string);ZAux_Direct_GetVpSpeed(g_handle, m_nAxis+1, &NowSp); //获取当前轴速度string.Format("振镜Y1轴速度:%.2f", NowSp);GetDlgItem(IDC_CURSPEED2)->SetWindowText(string);ZAux_Direct_GetDpos(g_handle, m_nAxis + 2, &position); //获取当前轴位置string.Format("振镜X2轴位置:%.2f", position);GetDlgItem(IDC_CURPOS3)->SetWindowText(string);NowSp = 0;ZAux_Direct_GetVpSpeed(g_handle, m_nAxis + 2, &NowSp); //获取当前轴速度string.Format("振镜X2轴速度:%.2f", NowSp);GetDlgItem(IDC_CURSPEED3)->SetWindowText(string);ZAux_Direct_GetDpos(g_handle, m_nAxis + 3, &position); //获取当前轴位置string.Format("振镜Y2轴位置:%.2f", position);GetDlgItem(IDC_CURPOS4)->SetWindowText(string);ZAux_Direct_GetVpSpeed(g_handle, m_nAxis + 3, &NowSp); //获取当前轴速度string.Format("振镜Y2轴速度:%.2f", NowSp);GetDlgItem(IDC_CURSPEED4)->SetWindowText(string);int status = 0; ZAux_Direct_GetIfIdle(g_handle, m_nAxis,&status); //判断当前轴状态if (status == -1){GetDlgItem( IDC_CURSTATE )->SetWindowText( "当前状态:停 止" );}else{GetDlgItem( IDC_CURSTATE )->SetWindowText( "当前状态:运动中" );} }CDialog::OnTimer(nIDEvent);} (4)通过启动按钮的事件处理函数获取编辑框的移动轨迹,并设置振镜轴参数操作振镜轴运动。 void CSingle_move_Dlg::OnStart() //启动运动{if(NULL == g_handle){MessageBox(_T("链接断开状态"));return ;}UpdateData(true);//刷新参数int status = 0; ZAux_Direct_GetIfIdle(g_handle, m_nAxis,&status); //判断当前轴状态 if (status == 0) //已经在运动中{ return;} //设定轴类型 1-脉冲轴类型 for (int i = 4; i < 8; i++){ZAux_Direct_SetAtype(g_handle, i, m_Atype);ZAux_Direct_SetMerge(g_handle,i,1);//设置脉冲当量ZAux_Direct_SetUnits(g_handle, i, m_units);//设定速度,加减速ZAux_Direct_SetLspeed(g_handle, i, m_lspeed);ZAux_Direct_SetSpeed(g_handle, i, m_speed);ZAux_Direct_SetForceSpeed(g_handle, i, m_speed);ZAux_Direct_SetAccel(g_handle, i, m_acc);ZAux_Direct_SetDecel(g_handle, i, m_dec);//设定S曲线时间 设置为0表示梯形加减速 ZAux_Direct_SetSramp(g_handle, i, m_sramp);}//使用MOVESCANABS运动int axislist[2] = { 4,5 };float dposlist[2] = { 0,0 };ZAux_MoveScanAbs(2, axislist, dposlist);CString str;GetDlgItem(IDC_EDIT_POSX1)->GetWindowText(str);float dbx = atof(str);GetDlgItem(IDC_EDIT_POSY1)->GetWindowText(str);float dby = atof(str);dposlist[0] = dbx;dposlist[1] = dby;ZAux_MoveScanAbs(2, axislist, dposlist);GetDlgItem(IDC_EDIT_POSX2)->GetWindowText(str);dbx = atof(str);GetDlgItem(IDC_EDIT_POSY2)->GetWindowText(str);dby = atof(str);dposlist[0] = dbx;dposlist[1] = dby;ZAux_MoveScanAbs(2, axislist, dposlist);GetDlgItem(IDC_EDIT_POSX3)->GetWindowText(str);dbx = atof(str);GetDlgItem(IDC_EDIT_POSY3)->GetWindowText(str);dby = atof(str);dposlist[0] = dbx;dposlist[1] = dby;ZAux_MoveScanAbs(2, axislist, dposlist);GetDlgItem(IDC_EDIT_POSX4)->GetWindowText(str);dbx = atof(str);GetDlgItem(IDC_EDIT_POSY4)->GetWindowText(str);dby = atof(str);dposlist[0] = dbx;dposlist[1] = dby;ZAux_MoveScanAbs(2, axislist, dposlist);//第二个振镜运动//使用MOVESCANABS运动axislist[0] = 6;axislist[1] = 7;dposlist[0] = 0;dposlist[1] = 0;ZAux_MoveScanAbs(2, axislist, dposlist);GetDlgItem(IDC_EDIT_POSX5)->GetWindowText(str);dbx = atof(str);GetDlgItem(IDC_EDIT_POSY5)->GetWindowText(str);dby = atof(str);dposlist[0] = dbx;dposlist[1] = dby;ZAux_MoveScanAbs(2, axislist, dposlist);GetDlgItem(IDC_EDIT_POSX6)->GetWindowText(str);dbx = atof(str);GetDlgItem(IDC_EDIT_POSY6)->GetWindowText(str);dby = atof(str);dposlist[0] = dbx;dposlist[1] = dby;ZAux_MoveScanAbs(2, axislist, dposlist);GetDlgItem(IDC_EDIT_POSX7)->GetWindowText(str);dbx = atof(str);GetDlgItem(IDC_EDIT_POSY7)->GetWindowText(str);dby = atof(str);dposlist[0] = dbx;dposlist[1] = dby;ZAux_MoveScanAbs(2, axislist, dposlist);GetDlgItem(IDC_EDIT_POSX8)->GetWindowText(str);dbx = atof(str);GetDlgItem(IDC_EDIT_POSY8)->GetWindowText(str);dby = atof(str);dposlist[0] = dbx;dposlist[1] = dby;ZAux_MoveScanAbs(2, axislist, dposlist);UpdateData(false); } (5) 通过断开按钮的事件处理函数来断开与控制卡的连接。 void CSingle_move_Dlg::OnClose() //断开链接{// TODO: Add your control notification handler code hereif(NULL != g_handle){KillTimer(1); //关定时器KillTimer(2);ZAux_Close(g_handle);g_handle = NULL;SetWindowText("未链接");} } (6)通过坐标清零按钮的事件处理函数移动振镜轴回零到中心零点位置,不直接使用dpos=0,修改振镜轴坐标。 void CSingle_move_Dlg::OnZero() //清零坐标{if(NULL == g_handle){MessageBox(_T("链接断开状态"));return ;}// TODO: Add your control notification handler code hereint axislist[2] = { 4,5 };float dposlist[2] = { 0 };ZAux_Direct_MoveAbs(g_handle,2,axislist,dposlist); //设置运动回零点} 三调试与监控 编译运行例程,同时通过ZDevelop软件连接控制器对控制器状态进行监控 。 ZDevelop软件连接控制器监控控制器的状态,查看振镜轴对应参数,并可搭配示波器检测双振镜轨迹。 设置振镜轴运动,首先需要将轴类型配置成21振镜轴类型,并对应配置振镜轴的速度加减速等参数才可操作振镜进行运动。 通过ZDevelop软件的示波器监控双振镜运动运行轨迹。 视频演示。 开放式激光振镜+运动控制器(六)-双振镜运动 本次,正运动技术开放式激光振镜+运动控制器(六):双振镜运动,就分享到这里。 更多精彩内容请关注“正运动小助手”公众号,需要相关开发环境与例程代码,请咨询正运动技术销售工程师:400-089-8936。 本文由正运动技术原创,欢迎大家转载,共同学习,一起提高中国智能制造水平。文章版权归正运动技术所有,如有转载请注明文章来源。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_57350300/article/details/123402200。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-04 17:33:09
339
转载
转载文章
...件管理比较方便,但是数据量大了之后,很难整理.所以建议将这些配置分开 cfg_file=/usr/local/nagios/etc/objects/commands.cfg cfg_file=/usr/local/nagios/etc/objects/contacts.cfg cfg_file=/usr/local/nagios/etc/objects/timeperiods.cfg cfg_file=/usr/local/nagios/etc/objects/templates.cfg cfg_file=/usr/local/nagios/etc/objects/contactgroups.cfg cfg_file=/usr/local/nagios/etc/objects/hosts.cfg cfg_file=/usr/local/nagios/etc/objects/hostgroups.cfg cfg_file=/usr/local/nagios/etc/objects/services.cfg cfg_file=/usr/local/nagios/etc/objects/servicegroups.cfg 改check_external_commands=0为check_external_commands=1.这行的作用是允许在web 界面下执行重启nagios、停止主机/服务检查等操作。 把command_check_interval的值从默认的1 改成command_check_interval=15s(根据自己的情况定这个命令检查时间间隔,不要太长也不要太短)。 2.资源配置文件resource.cfg 资源文件可以保存用户自定义的宏.资源文件的一个主要用处是用于保存一些敏感的配置信息,如系统口令等不能让CGIs 程序模块获取到的东西 3.CGI配置文件cgi.cfg CGI 配置文件包含了一系列的设置,它们会影响CGIs程序模块.还有一些保存在主配置文件之中,因此CGI 程序会知道你是如何配置的Nagios并且在哪里保存了对象定义.最实际的例子就是,如果你想建立一个只有查看报警权限的用户,或者只有查看其中一些服务 器或者服务状态的权限,通过修改cfi.cfg可以灵活的控制web访问端的权限. 4.主机定义文件 定义你要监控的对象,这里定义的“host_name”被应用到其它的所有配置文件中,这个是我们配置Nagios 必须修改的配置文件. [root@test objects] vim hosts.cfg define host{ host_name Nagios-Server ; 设置主机的名字,该名字会出现在hostgroups.cfg 和services.cfg 中。注意,这个名字可以不是该服务器的主机名。 alias Nagios服务器 ; 别名 address 192.168.81.128 ; 主机的IP 地址 check_command check-host-alive ; 检查使用的命令,需要在命令定义文件定义,默认是定义好的。 check_interval 1 ; 检测的时间间隔 retry_interval 1 ; 检测失败后重试的时间间隔 max_check_attempts 3 ; 最大重试次数 check_period 24x7 ; 检测的时段 process_perf_data 0 retain_nonstatus_information 0 contact_groups sagroup ; 需要通知的联系组 notification_interval 30 ; 通知的时间间隔 notification_period 24x7 ; 通知的时间段 notification_options d,u,r ; 通知的选项 w—报警(warning),u—未知(unkown) c—严重(critical),r—从异常情况恢复正常 } define host{ host_name Nagios-Client alias Nagios客户端 address 192.168.81.129 check_command check-host-alive check_interval 1 retry_interval 1 max_check_attempts 3 check_period 24x7 process_perf_data 0 retain_nonstatus_information 0 contact_groups sagroup notification_interval 30 notification_period 24x7 notification_options d,u,r } 5.主机组定义文件 主机组定义文件,可以方便的将相同功能或者在应用上相同的服务器添加到一个主机组里,在WEB 界面可以通过HOST Group 方便的查看该组主机的状态信息. 将刚才定义的两个主机加入到主机组中,针对生产环境就像把所有的MySQL 服务器加到一个MySQL主机组里,将Oracle 服务器加到一个Oracle 主机组里,方便管理和查看,可以配置多个组. [root@test objects] vim hostgroups.cfg define hostgroup { hostgroup_name Nagios-Example ; 主机组名字 alias Nagios 主机组 ; 主机组别名 members Nagios-Server,Nagios-Client ; 主机组成员,用逗号隔开 } 6.服务定义文件 服务定义文件定义你需要监控的对象的服务,比如本例为检测主机是否存活,在后面会讲到如何监控其它服务,比如服务器负载、内存、磁盘等. [root@test objects] vim services.cfg define service { host_name Nagios-Server ; hosts.cfg 定义的主机名称 service_description check-host-alive ; 服务描述 check_period 24x7 ; 检测的时间段 max_check_attempts 3 ; 最大检测次数 normal_check_interval 3 retry_check_interval 2 contact_groups sagroup ; 发生故障通知的联系人组 notification_interval 10 notification_period 24x7 ; 通知的时间段 notification_options w,u,c,r check_command check-host-alive } define service { host_name Nagios-Client service_description check-host-alive check_period 24x7 max_check_attempts 3 normal_check_interval 3 retry_check_interval 2 contact_groups sagroup notification_interval 10 notification_period 24x7 notification_options w,u,c,r check_command check-host-alive } 7.服务组定义文件 和主机组一样,我们可以按需将相同的服务放入一个服务组,这样有规律的分类,便于我们在WEB端查看. [root@test objects] vim servicegroups.cfg define servicegroup{ servicegroup_name Host-Alive ; 组名 alias Host Alive ; 别名设置 members Nagios-Server,check-host-alive,Nagios-Client,check-host-alive } 8.联系人定义文件 定义发生故障时,需要通知的联系人信息.默认安装完成后,该配置文件已经存在,而且该文件不仅定义了联系人,也定义了联系人组,为了条理化的规划,我们把联系人定义放在contacts.cfg文件里,把联系人组放在contactgroups.cfg文件中. [root@test objects] mv contacts.cfg contacts.cfg.bak [root@test objects] vim contacts.cfg define contact{ contact_name maoxian ; 联系人的名字 alias maoxian ; 别名 service_notification_period 24x7 ; 服务报警的时间段 host_notification_period 24x7 ; 主机报警的时间段 service_notification_options w,u,c,r ; 就是在这四种情况下报警。 host_notification_options d,u,r ;同上。 服务报警发消息的命令,在command.cfg 中定义。 service_notification_commands notify-service-by-email 服务报警发消息的命令,在command.cfg 中定义。 host_notification_commands notify-host-by-email email wangyx088@gmail.com ; 定义邮件地址,也就是接收报警邮件地址。 } 9.联系人组定义文件 联系人组定义文件在实际应用中很有好处,我们可以把报警信息分级别,报联系人分级别存放在联系人组里面.例如:当发生一些警告信息的情况下,只发邮件给系统工程师联系人组即可,但是当发生重大问题,比如主机宕机了,可以发给领导联系人组. [root@test objects] vim contactgroups.cfg define contactgroup{ contactgroup_name sagroup ; 组名 alias Nagios Administrators ; 别名 members maoxian ; 联系人组成员 } 10.命令定义文件 commands.cfg 命令定义文件是Nagios中很重要的配置文件,所有在hosts.cfg还是services.cfg使用的命令都必须在命令定义文件中定义才能使用.默认情况下,范例配置文件已经配置好了日常需要使用的命令,所以一般不做修改. 11.时间段定义文件 timeperiods.cfg 我们在检测、通知、报警的时候都需要定义时间段,默认都是使用7x24,这也是默认配置文件里配置好的,如果你需要周六日不做检测,或者在制定的维护时间不做检测,都可以在该时间段定义文件定义好,这样固定维护的时候,就不会为大量的报警邮件或者短信烦恼 [root@test objects] cat timeperiods.cfg |grep -v "^" |grep -v "^$" 可以根据业务需求来更改 12.启动Nagios 1> 修改配置文件所有者 [root@test objects] chown -R nagios:nagios /usr/local/nagios/etc/objects/ 2> 检测配置是否正确 [root@test objects] /usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg 如果配置错误,会给出相应的报错信息,可以根据信息查找,注意,如果配置文件中有不可见字符也可以导致配置错误 3> 重载Nagios [root@test objects] service nagios restart 本文出自 “毛线的linux之路” 博客,请务必保留此出处http://maoxian.blog.51cto.com/4227070/756516 本篇文章为转载内容。原文链接:https://blog.csdn.net/gzh0222/article/details/8549202。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-16 20:48:42
484
转载
Tornado
...比如 API 密钥、数据库密码啥的)的服务。对开发者而言,安全这事得放首位,要是还用那种硬编码或者直接把密钥啥的写进配置文件的老办法,那简直就是在玩火自焚啊!Google Cloud Secret Manager 提供了加密存储、访问控制等功能,简直是保护秘钥的最佳选择之一。 所以,当我把这两者放在一起的时候,脑海里立刻浮现出一个画面:Tornado 快速响应前端请求,而 Secret Manager 在背后默默守护着那些珍贵的秘密。是不是很带感?接下来我们就一步步深入探索它们的合作方式吧! --- 2. 初识Tornado 搭建一个简单的Web服务 既然要玩转 Tornado,咱们得先搭个基础框架才行。好嘞,接下来我就简单搞个小网页服务,就让它回一句暖心的问候就行啦!虽然看起来简单,但这可是后续一切的基础哦! python import tornado.ioloop import tornado.web class MainHandler(tornado.web.RequestHandler): def get(self): self.write("Hello, Tornado!") def make_app(): return tornado.web.Application([ (r"/", MainHandler), ]) if __name__ == "__main__": app = make_app() app.listen(8888) print("Server started at http://localhost:8888") tornado.ioloop.IOLoop.current().start() 这段代码超级简单对不对?我们定义了一个 MainHandler 类继承自 tornado.web.RequestHandler,重写了它的 get 方法,当收到 GET 请求时就会执行这个方法,并向客户端返回 "Hello, Tornado!"。然后呢,就用 make_app 这个函数把路由和这个处理器绑在一起,最后再启动服务器,让它开始监听 8888 端口。 运行后打开浏览器输入 http://localhost:8888,就能看到页面显示 "Hello, Tornado!" 了。是不是特别爽?不过别急着高兴,这只是万里长征的第一步呢! --- 3. 引入Google Cloud Secret Manager:让秘密不再裸奔 现在我们知道如何用 Tornado 做点事情了,但问题是,如果我们的应用程序需要用到一些敏感信息(例如数据库连接字符串),该怎么办呢?直接写在代码里吗?当然不行!这就是为什么我们要引入 Google Cloud Secret Manager。 3.1 安装依赖库 首先需要安装 Google Cloud 的官方 Python SDK: bash pip install google-cloud-secret-manager 3.2 获取Secret Manager中的值 假设我们在 Google Cloud Console 上已经创建了一个名为 my-secret 的密钥,并且它里面保存了我们的数据库密码。我们可以这样从 Secret Manager 中读取这个值: python from google.cloud import secretmanager def access_secret_version(project_id, secret_id, version_id): client = secretmanager.SecretManagerServiceClient() name = f"projects/{project_id}/secrets/{secret_id}/versions/{version_id}" response = client.access_secret_version(name=name) payload = response.payload.data.decode('UTF-8') return payload 使用示例 db_password = access_secret_version("your-project-id", "my-secret", "latest") print(f"Database Password: {db_password}") 这段代码做了什么呢?很简单,它实例化了一个 SecretManagerServiceClient 对象,然后根据提供的项目 ID、密钥名称以及版本号去访问对应的密钥内容。注意这里的 version_id 参数可以设置为 "latest" 来获取最新的版本。 --- 4. 将两者结合起来 构建更安全的应用 那么问题来了,怎么才能让 Tornado 和 Google Cloud Secret Manager 协同工作呢?其实答案很简单——我们可以将从 Secret Manager 获取到的敏感数据注入到 Tornado 的配置对象中,从而在整个应用范围内使用这些信息。 4.1 修改Tornado应用以支持从Secret Manager加载配置 让我们修改之前的 MainHandler 类,让它从 Secret Manager 中加载数据库密码并用于某种操作(比如查询数据库)。为了简化演示,这里我们假设有一个 get_db_password 函数负责完成这项任务: python from google.cloud import secretmanager def get_db_password(): client = secretmanager.SecretManagerServiceClient() name = f"projects/{YOUR_PROJECT_ID}/secrets/my-secret/versions/latest" response = client.access_secret_version(name=name) return response.payload.data.decode('UTF-8') class MainHandler(tornado.web.RequestHandler): def initialize(self, db_password): self.db_password = db_password def get(self): self.write(f"Connected to database with password: {self.db_password}") def make_app(): db_password = get_db_password() return tornado.web.Application([ (r"/", MainHandler, {"db_password": db_password}), ]) 在这个例子中,我们在 make_app 函数中调用了 get_db_password() 来获取数据库密码,并将其传递给 MainHandler 的构造函数作为参数。这样一来,每个 MainHandler 实例都会拥有自己的数据库密码属性。 --- 5. 总结与展望 好了朋友们,今天的分享就到这里啦!通过这篇文章,我们了解了如何利用 Tornado 和 Google Cloud Secret Manager 来构建更加安全可靠的 Web 应用。虽然过程中遇到了不少挑战,但最终的效果还是让我感到非常满意。 未来的话,我还想尝试更多有趣的功能组合,比如结合 Redis 缓存提高性能,或者利用 Pub/Sub 实现消息队列机制。如果你也有类似的想法或者遇到什么问题,欢迎随时跟我交流呀! 最后祝大家 coding愉快,记得保护好自己的秘密哦~ 😊
2025-04-09 15:38:23
44
追梦人
转载文章
...ete 以安全的方法覆写您的机密档案,并且清除因先前使用这个 DoD 相容安全删除程式所删除档案後而释放的可用空间。包括完整的原始程式码。 ShareEnum 扫描网路上档案共用并检视其安全性设定,来关闭安全性漏洞。 Sigcheck 倾印档案版本资讯和验证系统上的影像皆已完成数位签章。 Strings 搜寻 binaryimages 中的 ANSI 和 UNICODE 字串。 Sync 将快取的资料清除至磁碟。 TCPView 作用中的通讯端命令列检视器。 VolumeId 设定 FAT 或 NTFS 磁碟区 ID。 Whois 看看谁拥有一个网际网路位址。 Winobj 最完整的物件管理员命名空间检视器在此。 ZoomIt 供萤幕上缩放和绘图的简报公用程式。 转自:http://www.360doc.com/content/15/0323/06/20545288_457293504.shtml 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_33515088/article/details/80721846。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-22 15:44:41
103
转载
转载文章
...官方文档快速掌握升级方法并充分利用新版本优势(参考来源:Node.js官方网站)。同时,MySQL数据库也在不断迭代更新,MySQL 8.0带来了诸如窗口函数、Caching_sha2_password等安全性和功能性的重大改进,对于提升项目的数据处理效率和安全性具有重要意义(参考来源:MySQL官网博客)。 在云服务和镜像源方面,阿里云、腾讯云等国内服务商也推出了针对deepin系统的加速镜像源服务,用户可根据自身网络状况选择合适的镜像源以提高软件安装和更新的速度(参考来源:阿里云、腾讯云官方文档)。此外,随着Web开发技术的发展,Vue.js、React等前端框架持续火爆,配合Webpack、Vite等现代构建工具,可以更高效地搭建和维护前端项目结构(参考来源:Vue.js、React官网及技术社区文章)。 在办公领域,WPS Office不仅实现了对Linux系统的全面支持,还不断优化跨平台兼容性,并且积极跟进Microsoft Office的新功能,使得国产办公软件在用户体验上逐渐与国际接轨(参考来源:WPS官方公告及媒体报道)。而在浏览器市场,除了Edge浏览器之外,Firefox、Chromium-based浏览器如Chrome和Opera同样提供Linux版,它们之间的性能对比、隐私保护策略以及对Web新技术的支持情况值得深入研究(参考来源:各大浏览器官网及第三方评测报告)。 总之,随着开源生态的繁荣和Linux发行版的普及,关注和掌握deepin系统及其周边软件的最新发展动态,将有助于我们更好地利用这一平台进行高效开发和舒适办公。
2023-11-15 19:14:44
55
转载
Hive
... 大家好啊,我是你的数据工程师小A。嘿,今天咱们来聊个有点“叛逆”的事儿——你知道吗?在Hive里头,有些压缩格式虽然官方文档上明晃晃地写着“不支持”,但其实很多人还在偷偷用,像GZIP和BZIP2这些就挺典型的。这事儿听着是不是还挺有意思?相当于跟官方规矩唱反调嘛!哈哈,我知道这话听着可能有点“疯疯癫癫”的,但说实话,谁还没点被迫走出舒适区的时候呢?比如为了给硬盘腾地方,或者让数据库跑得更快一点,咱总得豁出去折腾折腾吧! 先简单介绍一下背景吧。Hive其实就像是个建在Hadoop上的“数据仓库”,它能帮我们把有条理的数据存到HDFS里,然后用类似SQL的语句去查询和处理这些数据,特别方便!Hive默认支持一些常见的压缩格式,比如Snappy、LZO等。哎呀,你要是想用GZIP或者BZIP2来存表,那可得小心点啊!没准Hive会直接给你整出个错误,连数据都不让你加载。这到底是咋回事儿呢?其实吧,这是因为这两种压缩方式的性格和Hive的理念不太合拍。简单来说,它们的玩法不一样,所以Hive就觉得有点不爽,干脆就不让你这么干了。 那么问题来了:既然Hive不支持它们,为什么我们还要去折腾这些“非主流”压缩格式呢?我的回答是:因为它们可能真的有用!比如,GZIP非常适合用于压缩单个文件,而BZIP2则在某些场景下能提供更高的压缩比。所以说嘛,官方案子虽然说了不让搞,但我们不妨大胆试试,看看这些玩意儿到底能整出啥名堂! --- 二、理论基础 GZIP vs BZIP2 vs Hive的“规则” 在深入讨论具体操作之前,我们得先搞清楚这三个东西之间的差异。嘿,先说个大家可能都知道的小秘密——GZIP可是个超火的压缩“神器”呢!它最大的特点就是又快又好用,压缩文件的速度嗖一下就搞定了,效果也还行,妥妥的性价比之王!而BZIP2则是另一种高级压缩算法,虽然压缩比更高,但速度相对较慢。相比之下,Hive好像更喜欢找那种“全能型选手”,就像Snappy这种,又快又能省资源,简直两全其美! 现在问题来了:既然Hive有自己的偏好,那我们为什么要挑战它的权威呢?答案很简单:现实世界中的需求往往比理想模型复杂得多。比如说啊,有时候我们有一堆小文件,东一个西一个的,看着就头疼,想把它们整整齐齐地打包成一个大文件存起来,这时候用GZIP就很方便啦!但要是你手头的数据量超级大,比如几百万张高清图片那种,而且你还特别在意压缩效果,希望能榨干每一丢丢空间,那BZIP2就更适合你了,它在这方面可是个狠角色! 当然,这一切的前提是我们能够绕过Hive对这些格式的限制。接下来,我们就来看看具体的解决方案。 --- 三、实践篇 如何让Hive接受GZIP和BZIP2? 3.1 GZIP的逆袭之路 让我们从GZIP开始说起。想象一下,你有个文件夹,专门用来存各种日志文件,里面的文件可多啦!不过呢,这些文件都特别小巧,大概就几百KB的样子,像是些小纸条,记录着各种小事。哎呀,要是直接把一堆小文件一股脑儿塞进HDFS里,那可就麻烦了!这么多小文件堆在一起,系统就会变得特别卡,整体性能直线下降,简直像路上突然挤满了慢吞吞的小汽车,堵得不行!要解决这个问题嘛,咱们可以先把文件用GZIP压缩一下,弄个小“压缩包”,然后再把它丢进Hive里头去。 下面是一段示例代码,展示了如何创建一个支持GZIP格式的外部表: sql -- 创建数据库 CREATE DATABASE IF NOT EXISTS log_db; -- 切换到数据库 USE log_db; -- 创建外部表并指定GZIP格式 CREATE EXTERNAL TABLE IF NOT EXISTS logs ( id STRING, timestamp STRING, message STRING ) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS TEXTFILE -- 注意这里使用TEXTFILE而不是默认的SEQUENCEFILE LOCATION '/path/to/gzipped/files'; 看到这里,你可能会问:“为什么这里要用TEXTFILE而不是SEQUENCEFILE?”这是因为Hive默认不支持直接读取GZIP格式的数据,所以我们需要手动调整存储格式。此外,还需要确保你的Hadoop集群已经启用了GZIP解压功能。 3.2 BZIP2的高阶玩法 接下来轮到BZIP2登场了。相比于GZIP,BZIP2的压缩比更高,但它也有一个明显的缺点:解压速度较慢。因此,BZIP2更适合用于那些访问频率较低的大规模静态数据集。 下面这段代码展示了如何创建一个支持BZIP2格式的分区表: sql -- 创建数据库 CREATE DATABASE IF NOT EXISTS archive_db; -- 切换到数据库 USE archive_db; -- 创建分区表并指定BZIP2格式 CREATE TABLE IF NOT EXISTS archives ( file_name STRING, content STRING ) PARTITIONED BY (year INT, month INT) STORED AS RCFILE -- RCFILE支持BZIP2压缩 TBLPROPERTIES ("orc.compress"="BZIP2"); 需要注意的是,在这种情况下,你需要确保Hive的配置文件中启用了BZIP2支持,并且相关的JAR包已经正确安装。 --- 四、实战经验分享 踩过的坑与学到的东西 在这个过程中,我遇到了不少挫折。比如说吧,有次我正打算把一个GZIP文件塞进Hive里,结果系统直接给我整了个报错,说啥解码器找不着。折腾了半天才发现,哎呀,原来是服务器上那个GZIP工具的老版本太不给劲了,跟最新的Hadoop配不上,闹起了脾气!于是,我赶紧联系运维团队升级了相关依赖,这才顺利解决问题。 还有一个教训是关于文件命名规范的。一开始啊,我老是忘了在压缩完的文件后面加“.gz”或者“.bz2”这种后缀名,搞得 Hive 一脸懵逼,根本分不清文件是啥类型的,直接就报错不认账了。后来我才明白,那些后缀名可不只是个摆设啊,它们其实是给文件贴标签的,告诉你这个文件是啥玩意儿,是图片、音乐,还是什么乱七八糟的东西。 --- 五、总结与展望 总的来说,虽然Hive对GZIP和BZIP2的支持有限,但这并不意味着我们不能利用它们的优势。相反,只要掌握了正确的技巧,我们完全可以在这两者之间找到平衡点,满足不同的业务需求。 最后,我想说的是,作为一名数据工程师,我们不应该被工具的限制束缚住手脚。相反,我们应该敢于尝试新事物,勇于突破常规。毕竟,正是这种探索精神,推动着整个行业不断向前发展! 好了,今天的分享就到这里啦。如果你也有类似的经历或者想法,欢迎随时跟我交流哦~再见啦!
2025-04-19 16:20:43
45
翡翠梦境
Apache Lucene
...牛的!在处理海量文本数据的时候,无论是建立索引还是进行搜索,它都能玩得飞起,简直就像是个搜索界的超级英雄!它的效率高,用起来又非常灵活,想怎么调整都行,真是让人大呼过瘾。然而,即便是如此强大的工具,也并非没有挑战。本文将深入探讨一个常见的错误——org.apache.lucene.analysis.TokenStream$EOFException: End of stream,并尝试通过实例代码来揭示其背后的原因与解决之道。 第一部分:理解 TokenStream 和 EOFException TokenStream 是 Lucene 提供的一个抽象类,它负责将输入的文本分割成一系列可处理的令牌(tokens),这些令牌是构成文本的基本单位,例如单词、符号等。当 TokenStream 遇到文件末尾(EOF),即无法获取更多令牌时,就会抛出 EOFException。 示例代码:创建 TokenStream 并处理 EOFException 首先,我们编写一段简单的代码来生成一个 TokenStream,并观察如何处理可能出现的 EOFException。 java import org.apache.lucene.analysis.standard.StandardAnalyzer; import org.apache.lucene.analysis.tokenattributes.CharTermAttribute; import org.apache.lucene.analysis.tokenattributes.OffsetAttribute; import org.apache.lucene.document.Document; import org.apache.lucene.index.DirectoryReader; import org.apache.lucene.index.IndexReader; import org.apache.lucene.index.IndexWriter; import org.apache.lucene.index.IndexWriterConfig; import org.apache.lucene.search.IndexSearcher; import org.apache.lucene.store.Directory; import org.apache.lucene.store.RAMDirectory; import org.apache.lucene.util.Version; import java.io.IOException; public class TokenStreamDemo { public static void main(String[] args) throws IOException { // 创建 RAMDirectory 实例 Directory directory = new RAMDirectory(); // 初始化 IndexWriterConfig IndexWriterConfig config = new IndexWriterConfig(Version.LATEST, new StandardAnalyzer()); // 创建 IndexWriter 并初始化索引 IndexWriter writer = new IndexWriter(directory, config); // 添加文档至索引 Document doc = new Document(); doc.add(new TextField("content", "这是一个测试文档,用于演示 Lucene 的 TokenStream 功能。", Field.Store.YES, Field.Index.ANALYZED)); writer.addDocument(doc); // 关闭 IndexWriter writer.close(); // 创建 IndexReader IndexReader reader = DirectoryReader.open(directory); // 使用 IndexSearcher 查找文档 IndexSearcher searcher = new IndexSearcher(reader); // 获取 TokenStream 对象 org.apache.lucene.search.IndexSearcher.SearchContext context = searcher.createSearchContext(); org.apache.lucene.analysis.standard.StandardAnalyzer analyzer = new org.apache.lucene.analysis.standard.StandardAnalyzer(Version.LATEST); org.apache.lucene.analysis.TokenStream tokenStream = analyzer.tokenStream("content", context.reader().getTermVector(0, 0).getPayload().toString()); // 检查是否有异常抛出 while (tokenStream.incrementToken()) { System.out.println("Token: " + tokenStream.getAttribute(CharTermAttribute.class).toString()); } // 关闭 TokenStream 和 IndexReader tokenStream.end(); reader.close(); } } 在这段代码中,我们首先创建了一个 RAMDirectory,并使用它来构建一个索引。接着,我们添加了一个包含测试文本的文档到索引中。之后,我们创建了 IndexSearcher 来搜索文档,并使用 StandardAnalyzer 来创建 TokenStream。在循环中,我们逐个输出令牌,直到遇到 EOFException,这通常意味着已经到达了文本的末尾。 第二部分:深入分析 EOFException 的原因与解决策略 在实际应用中,EOFException 通常意味着 TokenStream 已经到达了文本的结尾,这可能是由于以下原因: - 文本过短:如果输入的文本长度不足以产生足够的令牌,TokenStream 可能会过早地报告结束。 - 解析问题:在复杂的文本结构下,解析器可能未能正确地分割文本,导致部分文本未被识别为有效的令牌。 为了应对这种情况,我们可以采取以下策略: - 增加文本长度:确保输入的文本足够长,以生成多个令牌。 - 优化解析器配置:根据特定的应用场景调整分析器的配置,例如使用不同的分词器(如 CJKAnalyzer)来适应不同语言的需求。 - 错误处理机制:在代码中加入适当的错误处理逻辑,以便在遇到 EOFException 时进行相应的处理,例如记录日志、提示用户重新输入更长的文本等。 结语:拥抱挑战,驾驭全文检索 面对 org.apache.lucene.analysis.TokenStream$EOFException: End of stream 这样的挑战,我们的目标不仅仅是解决问题,更是通过这样的经历深化对 Lucene 工作原理的理解。哎呀,你猜怎么着?咱们在敲代码、调参数的过程中,不仅技术越来越溜,还能在处理那些乱七八糟的数据时,感觉自己就像个数据处理的小能手,得心应手的呢!就像是在厨房里,熟练地翻炒各种食材,做出来的菜品色香味俱全,让人赞不绝口。编程也是一样,每一次的实践和调试,都是在给我们的技能加料,让我们的作品越来越美味,越来越有营养!嘿!兄弟,听好了,每次遇到难题都像是在给咱的成长加个buff,咱们得一起揭开全文检索的神秘面纱,掌控技术的大棒,让用户体验到最棒、最快的搜索服务,让每一次敲击键盘都能带来惊喜! --- 以上内容不仅涵盖了理论解释与代码实现,还穿插了人类在面对技术难题时的思考与探讨,旨在提供一种更加贴近实际应用、充满情感与主观色彩的技术解读方式。
2024-07-25 00:52:37
393
青山绿水
NodeJS
...年来,随着物联网和大数据技术的飞速发展,实时监控系统的需求日益增长。特别是在工业制造领域,企业需要对生产线上的各种参数进行实时监测,以确保产品质量和生产效率。例如,某知名汽车制造商近期宣布在其全球多个工厂部署基于 Node.js 和 WebSocket 的实时监控平台,该平台不仅能够实时采集生产设备的运行数据,还能通过智能算法预测潜在故障,从而大幅降低维护成本并提高生产稳定性。 此外,在医疗健康行业,类似的实时监控解决方案也开始崭露头角。一家专注于远程医疗的初创公司最近推出了一款基于 Node.js 的健康管理应用,用户可以通过佩戴智能手环等设备,将心率、血压等生理指标实时上传至云端,医生则可随时随地查看患者的健康状况并提供个性化建议。这一创新模式不仅改善了医疗服务的可及性,也为慢性病管理带来了新的可能性。 值得注意的是,随着《个人信息保护法》等相关法律法规的出台,企业在开发此类实时监控系统时必须格外注意数据安全与隐私保护。一方面,企业需要严格遵守数据收集、存储和传输的相关规定;另一方面,还需加强技术手段,如加密通信、匿名化处理等,以防止敏感信息泄露。正如某网络安全专家所言:“技术本身没有善恶之分,关键在于如何正确使用。”因此,在追求技术创新的同时,企业应当始终将合规性和安全性放在首位,确保技术进步真正造福于社会。 总之,Node.js 和 WebSocket 技术的应用前景十分广阔,但同时也面临着诸多挑战。只有不断探索新技术、新方法,同时坚守法律底线和社会责任,才能让这一技术更好地服务于各行各业的发展需求。
2025-05-06 16:24:48
79
清风徐来
转载文章
...同步的基本原理和操作方法后,我们不妨关注一下近期关于网络时间同步技术的实际应用与最新进展。随着5G、物联网(IoT)以及分布式计算的飞速发展,时间同步的精度和稳定性显得尤为重要。例如,2023年国际电信联盟(ITU)发布了一份报告,强调了下一代网络中的精准时间同步需求,并指出了NTP协议及其增强版Precision Time Protocol (PTP)在实现微秒甚至纳秒级时间同步中的关键作用。 同时,在数据中心和云环境中,Google等科技巨头正在研究和部署新型的时间同步技术,如White Rabbit,这是一种基于光纤传输的亚纳秒级精确时钟同步方案,能够有效提升大规模集群环境下的时间同步性能。 另外,针对网络安全领域,由于不准确的时间同步可能导致诸如证书验证失效等问题,全球各地的网络安全专家正呼吁加强对NTP服务器的安全管理,以防止恶意攻击者通过篡改ntp服务来影响系统时间进而发动攻击。最近的一项案例显示,某大型企业因为未妥善配置NTP服务,导致其内部网络出现了严重的时间偏差,引发了数据同步混乱和安全隐患。 综上所述,时间同步技术不仅关乎计算机系统的正常运行,也对新兴技术的发展及网络安全防护起着至关重要的作用。无论是从技术研发前沿还是日常运维实践,深入理解并正确运用NTP及其他高精度时间同步协议都是不可或缺的一环。
2023-03-01 12:56:47
113
转载
Hadoop
...之一,用于存储大规模数据集。它将一个大文件分割成多个小块,并将这些小块分散存储在不同服务器上,确保即使部分服务器发生故障,数据也不会丢失,同时支持并行处理数据。 网络延迟 , 指数据在网络中传输所需的时间间隔,通常以毫秒为单位衡量。在HDFS环境中,若数据节点分布于地理位置相距较远的数据中心,则数据传输过程中会出现较大的网络延迟,进而导致读取速度下降。文章提到可以通过检查代码执行时间和优化副本策略来诊断是否存在网络延迟问题。 数据本地性 , 指的是数据被请求时,其所在的存储节点与发起请求的客户端之间的距离关系。理想状态下,数据应尽可能存储在靠近客户端的位置,以减少跨节点的数据传输开销。文章中提到可以通过调整副本策略来改善数据本地性,例如设置dfs.replication参数,使文件副本更集中于特定节点,从而提高读取效率。
2025-05-04 16:24:39
105
月影清风
转载文章
... / 表示 IP 数据包异常 / NIDS_WARN_TCP, / 表示 TCP 数据包异常 / NIDS_WARN_UDP, / 表示 UDP 数据包异常 / NIDS_WARN_SCAN / 表示有扫描攻击发生 / }; enum { NIDS_WARN_UNDEFINED = 0, / 表示未定义 / NIDS_WARN_IP_OVERSIZED, / 表示 IP 数据包超长 / NIDS_WARN_IP_INVLIST, / 表示无效的碎片队列 / NIDS_WARN_IP_OVERLAP, / 表示发生重叠 / NIDS_WARN_IP_HDR, / 表示无效 IP首部 ,IP 数据包发生异常 / NIDS_WARN_IP_SRR, / 表示源路由 IP数据包 / NIDS_WARN_TCP_TOOMUCH, / 表示 TCP 数据个数太多 , 因为在Libnids 中在同一时刻捕获的TCP 个数最大值为 TCP 连接参数的哈西表长度的 3/4/ NIDS_WARN_TCP_HDR, / 表示无效 TCP首部 ,TCP 数据包发生异常 / NIDS_WARN_TCP_BIGQUEUE, / 表示 TCP 接受的队列数据过多 / NIDS_WARN_TCP_BADFLAGS / 表示错误标记 / }; /Libnids 状态描述的是连接的逻辑状态, 真正的 TCP 连接状态有 11种 . TCP_ESTABLISHED TCP 连接建立 , 开始传输数据 TCP_SYN_SEND 主动打开 TCP_SYN_RECV 接受 SYN TCP_FIN_WAIT1 TCP_FIN_WAIT2 TCP_TIME_WAIT TCP_CLOSE TCP_CLOSE_WAIT TCP_LAST_ACK TCP_LISTEN TCP_CLOSING / define NIDS_JUST_EST 1 / 表示 TCP 连接建立 , 在此状态下就可以决定是否对此TCP 连接进行数据分析 , 可以决定是否捕获 TCP客户端接收的数据 ,TCP 服务端接收的数据 ,TCP 客户端接收的紧急数据或者TCP 客户端接收的紧急数据 / define NIDS_DATA 2 / 表示接收数据的状态 ,在这个状态可以判断是否有新的数据到达 ,如果有就可以把数据存储起来 , 可以在这个状态之中来分析 TCP 传输的数据 , 此数据就存储在half_stream 数据接口的缓存之中/ define NIDS_CLOSE 3 / 表示 TCP 连接正常关闭 / define NIDS_RESET 4 / 表是 TCP 连接被重置关闭 / define NIDS_TIMED_OUT 5 / 表示由于超时 TCP连接被关闭 / define NIDS_EXITING 6 / 表示 Libnids正在退出 , 在这个状态下可以最后一次使用存储在 half_stream 数据结构中的缓存数据 / / 校验和 / define NIDS_DO_CHKSUM 0 / 表示告诉 Libnids要计算校验和 / define NIDS_DONT_CHKSUM 1 / 表示告诉 Libnids不要计算校验和 / struct tuple4 / 描述一个地址端口对 , 它表示发送发IP 和端口以及接收方 IP 和端口 , 适用 TCP,UDP/ { u_short source; / 源 IP 地址的端口号/ u_short dest; / 目的 IP 地址的端口号/ u_int saddr; / 源 IP 地址 / u_int daddr; / 目的 IP 地址 / }; struct half_stream / 描述在 TCP 连接中一端的所有信息, 可以是客户端 , 也可以是服务端 / { char state; / 表示套接字的状态 , 也就是TCP 的状态 / char collect; / 可以表示有数据到达 , 此数据存放在data 成员中 , 也可以表示不存储此数据到 data中 , 此数据忽略 . 如果大于0 就存储 , 否则就忽略 / char collect_urg; / 可以表示有紧急数据到达 , 此数据就存放在urgdata 中 , 也可以表示不存储此数据到 urgdata中 , 此速数据忽略 . 如果大于0 就存储 , 否则就忽略 / char data; / 用户存储正常接受到的数据 / int offset; / 表示存储在 data 中数据的第一个字节的偏移量/ int count; / 表示从 TCP 连接开始已经存储到data 中的数据的字节数 / int count_new; / 有多少新的数据存储到 data 中, 如果为 0, 则表示没有新的数据到达 / int bufsize; int rmem_alloc; int urg_count; / 用来存储紧急数据 / u_int acked; u_int seq; u_int ack_seq; u_int first_data_seq; u_char urgdata; //存储紧急数据 u_char count_new_urg; / 表示有新的紧急数据到达 , 如果为0 表示没有新的紧急数据 / u_char urg_seen; //新的urg数据,不是以前重复的数据 u_int urg_ptr;/指向urg在流中的位置/ u_short window; u_char ts_on; u_char wscale_on; u_int curr_ts; u_int wscale; struct skbuff list; struct skbuff listtail; }; struct tcp_stream / 描述一个 TCP 连接的所有信息/ { struct tuple4 addr; char nids_state; struct lurker_node listeners; struct half_stream client; / 表示客户端信息 / struct half_stream server; / 表示服务端信息 / struct tcp_stream next_node; struct tcp_stream prev_node; int hash_index; struct tcp_stream next_time; struct tcp_stream prev_time; int read; struct tcp_stream next_free; }; struct nids_prm / 描述了 Libnids 的一些全局参数信息/ { int n_tcp_streams; / 表示哈西表大小 , 此哈西表用来存放tcp_stream 数据结构 , 默认值 1040.在同一时刻 Libnids 捕获的 TCP 数据包的最大个数必须是此参数值的3/4/ int n_hosts; / 表示哈西表的大小 , 此哈西表用来存储IP 碎片信息的 , 默认值为 256/ char device; / 表示网络接口 ,Libnids 将在此网络接口上捕获数据, 默认值为 NULL. 这样 Libnids将使用 pcap_lookupdev来查找可以用的网络接口 . 如果其值为 all, 表示捕获所有网络接口的数据/ char filename; / 表示用来存储网络数据的捕获文件 , 此文件的类型必须与 Libpcap 类型一致 , 如果设置了文件, 与此同时就应该设置 device 为 NULL,默认值为 NULL/ int sk_buff_size; / 表示的是数据接口 sk_buff 的大小 .sk_buff 是Linux 内核中一个重要的数据结构, 是用来进行数据包排队操作的 , 默认值为 168/ int dev_addon; / 表示在数据结构 sk_buff 中用于网络接口上信息的字节数. 如果是 -1( 默认值 ),那么 Libnids 会根据不同的网络接口进行修正 / void (syslog) (); / 是一个函数指针 , 默认值为nids_syslog() 函数 . 在 syslog函数中可以检测入侵攻击 , 如网络扫描攻击 , 也可以检测一些异常情况, 如无效 TCP 标记 / int syslog_level; / 表示日志等级 , 默认值是LOG_ALERT/ int scan_num_hosts; / 表示一个哈西表的大小 ,( 此哈西表用来存储端口扫描信息) 表示 Libnids 将要检测的同时扫描的端口数据 . 如果其值为 0,Libnids将不提供端口扫描功能 . 默认值 256/ int scan_delay; / 表示在扫描检测中 , 俩端口扫描的间隔时间, 以毫秒来计算 , 缺省值为 3000/ int scan_num_ports; / 表示相同源地址必须扫描的 TCP 端口数目 , 默认值为10/ void (no_mem) (char ); / 是一个函数指针 , 当Libnids 发生内存溢出时被调用/ int (ip_filter) (); / 是一个函数指针 , 此函数可以用来分析IP 数据包 , 当有 IP 数据包到达时 , 此函数就被调用. 如果此函数返回非零值 , 此数据包就被处理 ;如果返回零 , 此 IP 数据包就被丢弃. 默认值为 nids_ip_filter 函数 , 总是返回 1./ char pcap_filter; / 表示过滤规则 , 即Libpcap 的过滤规则 , 默认值为 NULL,表示捕获所有数据包 . 可以在此设置过滤规则 , 只捕获感兴趣的开发包/ int promisc; / 表示网卡模式 , 如果是非零, 就把此网卡设置为混杂模式 ; 否则 , 设为非混杂模式 . 默认值为1/ int one_loop_less; / 初始值为 0/ int pcap_timeout; / 表示捕获数据返回的时间 , 以毫秒计算. 实际上它表示的就是 Libpcap 函数中的 pcap_open_live函数的 timeout 参数 , 默认值 1024/ }; / 返回值 : 调用成功返回 1,失败返回 0 参 数 : 无 功 能 : 对 Libnids 初始化, 这是所有设计基于 Libnids 的程序最开始调用的函数 . 它的主要内容包括打开网络接口 , 打开文件 , 编译过滤规则 , 判断网络链路层类型, 进行必要的初始化工作 / int nids_init (void); / 返回值 : 无 参 数 : 回调函数名字 功 能 : 注册一个能够检测所有 IP 数据包的回调函数, 包括 IP 碎片 .e.g nids_register_ip_frag(ip_frag_function); void ip_frag_function(struct ip a_packet,int len) a_packet 表示接收的IP 数据包 len 表示接收的数据包长度 此回调函数可以检测所有的IP 数据包 , 包括 IP 碎片 / void nids_register_ip_frag (void ()); // / 返回值 : 无 参 数 : 回调函数名字 功 能 : 注册一个回调函数 , 此回调函数可以接收正常的IP 数据包 .e.g nids_register_ip_frag(ip_frag_function); void ip_frag_function(struct ip a_packet) a_packet 表示接收的IP 数据包 此回调函数可以接收正常的IP 数据包 , 并在此函数中对捕获数到的 IP数据包进行分析 . / void nids_register_ip (void ()); // / 返回值 : 无 参 数 : 回调函数 功 能 : 注册一个 TCP 连接的回调函数. 回调函数的类型定义如下 : void tcp_callback(struct tcp_stream ns,void param) ns 表示一个TCP 连接的所有信息 , param 表示要传递的参数信息 , 可以指向一个 TCP连接的私有数据 此回调函数接收的TCP 数据存放在 half_stream 的缓存中 , 应该马上取出来 ,一旦此回调函数返回 , 此数据缓存中存储的数据就不存在 了 .half_stream 成员 offset描述了被丢弃的数据字节数 . 如果不想马上取出来 , 而是等到存储一定数量的数据之后再取出来, 那么可 以使用函数nids_discard(struct tcp_stream ns, int num_bytes)来处理 . 这样回调函数返回时 ,Libnids 将丢弃缓存数据之前 的 num_bytes 字节的数据 .如果不调用 nids_discard()函数 , 那么缓存数据的字节应该为 count_new 字节 . 一般情况下, 缓存中的数据 应该是count-offset 字节 / void nids_register_tcp (void ()); / 返回值 : 无 参 数 : 回调函数 功 能 : 注册一个分析 UDP 协议的回调函数, 回调函数的类型定义如下 : void udp_callback(struct tuple4 addr,char buf,int len,struct ip iph) addr 表示地址端口信息buf 表示 UDP 协议负载的数据内容 len表是 UDP 负载数据的长度 iph 表示一个IP 数据包 , 包括 IP 首部 ,UDP 首部以及UDP 负载内容 / void nids_register_udp (void ()); / 返回值 : 无 参 数 : 表示一个 TCP 连接 功 能 : 终止 TCP 连接 . 它实际上是调用 Libnet的函数进行构造数据包 , 然后发送出去 / void nids_killtcp (struct tcp_stream ); / 返回值 : 无 参 数 : 参数 1 一个 TCP 连接 参数 2 个数 功 能 : 丢弃参数 2 字节 TCP 数据 , 用于存储更多的数据 / void nids_discard (struct tcp_stream , int); / 返回值 : 无 参 数 : 无 功 能 : 运行 Libnids, 进入循环捕获数据包状态. 它实际上是调用 Libpcap 函数 pcap_loop()来循环捕获数据包 / void nids_run (void); / 返回值 : 调用成功返回文件描述符 ,失败返回 -1 参 数 : 无 功 能 : 获得文件描述符号 / int nids_getfd (void); / 返回值 : 调用成功返回个数 ,失败返回负数 参 数 : 表示捕获数据包的个数 功 能 : 调用 Libpcap 中的捕获数据包函数pcap_dispatch() / int nids_dispatch (int); / 返回值 : 调用成功返回 1,失败返回 0 参 数 : 无 功 能 : 调用 Libpcap 中的捕获数据包函数pcap_next() / int nids_next (void); extern struct nids_prm nids_params; /libnids.c定以了一个全部变量 , 其定义和初始值在 nids_params/ extern char nids_warnings[]; extern char nids_errbuf[]; extern struct pcap_pkthdr nids_last_pcap_header; struct nids_chksum_ctl { / 描述的是计算校验和 , 用于决定是否计算校验和/ u_int netaddr; / 表示地址 / u_int mask; / 表示掩码 / u_int action; / 表示动作 , 如果是NIDS_DO_CHKSUM, 表示计算校验和; 如果是 NIDS_DONT_CHKSUM, 表示不计算校验和 / u_int reserved; / 保留未用 / }; / 返回值 : 无 参 数 : 参数 1 表示 nids_chksum_ctl 列表 参数 2 表示列表中的个数 功 能 : 决定是否计算校验和 . 它是根据数据结构nids_chksum_ctl 中的action 进行决定的 , 如果所要计算的对象不在列表中 , 则必须都要计算校验和 / extern void nids_register_chksum_ctl(struct nids_chksum_ctl , int); endif / _NIDS_NIDS_H / 本篇文章为转载内容。原文链接:https://blog.csdn.net/xieqb/article/details/7681968。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-08 17:36:31
309
转载
Docker
...rdPress,传统方法可能是手动下载PHP、MySQL、Nginx等一堆软件,再逐一配置。而如果你用Docker,只需要一条命令就能搞定: bash docker run --name wordpress -d -p 80:80 \ -v /path/to/wordpress:/var/www/html \ -e WORDPRESS_DB_HOST=db \ -e WORDPRESS_DB_USER=root \ -e WORDPRESS_DB_PASSWORD=yourpassword \ wordpress 这段代码的意思是:启动一个名为wordpress的容器,并将本地目录/path/to/wordpress挂载到容器内的/var/www/html路径下,同时设置数据库连接信息。是不是比传统的安装方式简洁多了? 不过,单独使用Docker虽然强大,但对于不熟悉命令行的人来说还是有点门槛。这时候就需要一些辅助工具来帮助我们更好地管理和调度容器了。 --- 3. Portainer 可视化管理Docker的好帮手 Portainer绝对是我最近发现的一颗“宝藏”。它的界面非常直观,几乎不需要学习成本。不管是想看看现有的容器啥情况,还是想启动新的容器,甚至连网络和卷的管理,都只需要动动鼠标拖一拖、点一点就行啦! 比如,如果你想快速创建一个新的MySQL容器,只需要打开Portainer的Web界面,点击“Add Container”,然后填写几个基本信息即可: yaml image: mysql:5.7 name: my-mysql ports: - "3306:3306" volumes: - /data/mysql:/var/lib/mysql environment: MYSQL_ROOT_PASSWORD: rootpassword 这段YAML配置文件描述了一个MySQL容器的基本参数。Portainer会自动帮你解析并生成对应的Docker命令。是不是超方便? 另外,Portainer还有一个特别棒的功能——实时监控。你打开页面就能看到每个“小房子”(就是容器)里用掉的CPU和内存情况,而且还能像穿越空间一样,去访问别的机器上跑着的那些“小房子”(Docker实例)。这种功能对于运维人员来说简直是福音! --- 4. Rancher 企业级的容器编排利器 如果你是一个团队协作的开发者,或者正在运营一个大规模的服务集群,那么Rancher可能是你的最佳选择。它不仅仅是一个Docker管理工具,更是一个完整的容器编排平台。 Rancher的核心优势在于它的“多集群管理”能力。想象一下,你的公司有好几台服务器,分别放在地球上的不同角落,有的在美国,有的在欧洲,还有的在中国。每台服务器上都跑着各种各样的服务,比如网站、数据库啥的。这时候,Rancher就派上用场了!它就像一个超级贴心的小管家,让你不用到处切换界面,在一个地方就能轻松搞定所有服务器和服务的管理工作,省时又省力! 举个例子,如果你想在Rancher中添加一个新的节点,只需要几步操作即可完成: 1. 登录Rancher控制台。 2. 点击“Add Cluster”按钮。 3. 输入目标节点的信息(IP地址、SSH密钥等)。 4. 等待几分钟,Rancher会自动为你安装必要的组件。 一旦节点加入成功,你就可以直接在这个界面上部署应用了。比如,用Kubernetes部署一个Redis集群: bash kubectl create deployment redis --image=redis:alpine kubectl expose deployment redis --type=LoadBalancer --port=6379 虽然这条命令看起来很简单,但它背后实际上涉及到了复杂的调度逻辑和网络配置。而Rancher把这些复杂的事情封装得很好,让我们可以专注于业务本身。 --- 5. Traefik 反向代理与负载均衡的最佳拍档 最后要介绍的是Traefik,这是一个轻量级的反向代理工具,专门用来处理HTTP请求的转发和负载均衡。它最厉害的地方啊,就是能跟Docker完美地融为一体,还能根据容器上的标签,自动调整路由规则呢! 比如说,你有两个服务分别监听在8080和8081端口,现在想通过一个域名访问它们。只需要给这两个容器加上相应的标签: yaml labels: - "traefik.enable=true" - "traefik.http.routers.service1.rule=Host(service1.example.com)" - "traefik.http.services.service1.loadbalancer.server.port=8080" - "traefik.http.routers.service2.rule=Host(service2.example.com)" - "traefik.http.services.service2.loadbalancer.server.port=8081" 这样一来,当用户访问service1.example.com时,Traefik会自动将请求转发到监听8080端口的容器;而访问service2.example.com则会指向8081端口。这种方式不仅高效,还极大地减少了配置的工作量。 --- 6. 总结 找到最适合自己的工具 好了,到这里咱们已经聊了不少关于服务器管理工具的话题。从Docker到Portainer,再到Rancher和Traefik,每一种工具都有其独特的优势和适用场景。 我的建议是,先根据自己的需求确定重点。要是你只想弄个小玩意儿,图个省事儿快点搞起来,那用Docker配个Portainer就完全够用了。但要是你们团队一起干活儿,或者要做大范围的部署,那Rancher这种专业的“老司机工具”就得安排上啦! 当然啦,技术的世界永远没有绝对的答案。其实啊,很多时候你会发现,最适合你的工具不一定是最火的那个,而是那个最合你心意、用起来最顺手的。就像穿鞋一样,别人觉得好看的根本不合脚,而那双不起眼的小众款却让你走得又稳又舒服!所以啊,在用这些工具的时候,别光顾着看,得多动手试试,边用边记下自己的感受和想法,这样你才能真的搞懂它们到底有啥门道! 好了,今天的分享就到这里啦!如果你还有什么问题或者想法,欢迎随时留言交流哦~咱们下次再见啦!
2025-04-16 16:05:13
98
月影清风_
ZooKeeper
...冲空间。其实嘛,这个方法也不是啥灵丹妙药,毕竟咱们手头的硬件资源就那么多,要是傻乎乎地把队列弄得太长,说不定反而会惹出别的麻烦,比如让系统跑得更卡之类的。 代码示例: properties zookeeper.commitlog.capacity=10485760 上面这段配置文件的内容表示将队列大小调整为10MB。你可以根据实际情况进行调整。 2. 优化客户端逻辑 很多时候,CommitQueueFullException并不是因为服务器的问题,而是客户端的请求模式不合理造成的。比如说,你是否可以合并多个小请求为一个大请求?或者是否可以采用批量操作的方式减少请求次数? 举个例子,假设你在做一个日志采集系统,每天需要向ZooKeeper写入成千上万个临时节点。与其每次都往一个节点里写东西,不如一口气往多个节点里写,这样能大大减少你发出的请求次数,省事儿又高效! 代码示例: java List nodesToCreate = Arrays.asList("/node1", "/node2", "/node3"); List createdNodes = zk.create("/batch/", new byte[0], ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL, nodesToCreate.size()); System.out.println("Created nodes: " + createdNodes); 在这段代码中,我们一次性创建了三个临时节点,而不是分别调用三次create()方法。这样的做法不仅减少了请求次数,还提高了效率。 3. 增加服务器资源 如果以上两种方法都不能解决问题,那么可能就需要考虑升级服务器硬件了。比如增加内存、提升CPU性能,甚至更换更快的磁盘。当然,这通常是最后的选择,因为它涉及到成本和技术难度。 4. 使用异步API ZooKeeper提供了同步和异步两种API,其中异步API可以在一定程度上缓解CommitQueueFullException的问题。异步API可酷了!你提交个请求,它立马给你返回结果,根本不用傻等那个响应回来。这样一来啊,就相当于给任务队列放了个假,压力小了很多呢! 代码示例: java import org.apache.zookeeper.AsyncCallback.StringCallback; public class AsyncExample implements StringCallback { @Override public void processResult(int rc, String path, Object ctx, String name) { if (rc == 0) { System.out.println("Node created successfully at path: " + name); } else { System.err.println("Failed to create node with error code: " + rc); } } public static void main(String[] args) throws Exception { ZooKeeper zk = new ZooKeeper("localhost:2181", 5000, null); zk.createAsync("/asyncTest", "data".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT, new AsyncExample(), null); } } 在这段代码中,我们使用了createAsync()方法来异步创建节点。相比于同步版本,这种方式不会阻塞主线程,从而降低了队列满的风险。 --- 四、总结与展望 通过今天的探讨,我相信大家都对CommitQueueFullException有了更深刻的理解。嘿,别被这个错误吓到!其实啊,它也没那么可怕。只要你找到对的方法,保证分分钟搞定,就跟玩儿似的! 回顾整个过程,我觉得最重要的是要保持冷静和耐心。遇到技术难题的时候啊,别慌!先搞清楚它到底是个啥问题,就像剥洋葱一样,一层层搞明白本质。接着呢,就一步一步地去找解决的办法,慢慢来,总能找到出路的!就像攀登一座高山一样,每一步都需要脚踏实地。 最后,我想鼓励大家多动手实践。理论固然重要,但真正的成长来自于不断的尝试和失败。希望大家能够在实际项目中运用今天学到的知识,创造出更加优秀的应用! 好了,今天的分享就到这里啦!如果你还有什么疑问或者想法,欢迎随时交流哦~
2025-03-16 15:37:44
11
林中小径
转载文章
...里我添加了一个比较的方法供之后判断输入的分类名是否包含在这些分类里面。 接下来我们在分析分类面的展示情况,以美女分类页面为例(●´∀`●),最下边有分页,如果只获取这个页面的图片并不能获取所有美女图,我们还需要点击每一个分页,从分页中获取所有的图片。通过分析发现,第一页的链接是在原有链接基础上拼接“/index.htm”,从第二页之后拼接的是“/index_页号.htm”。 这样我们只需要获取总页数在依次遍历拼接就可以了,现在的问题是如何获取总页数,我一开始的想法是获取分页中“共167页”这个标签后再只保留数字就可以个,但发现运行后获取不到该元素节点,经过排查了解到这个标签是通过js生成的,于是我转换了思路,通过获取最后一个页号来得到一共分了多少页 Document root_doc = Jsoup.connect("http://www.netbian.com/" + kind + "/").get();Elements els = root_doc.select("main .page a");//这里els.eq(els.size() - 2的原因是后边确定按钮用的是a标签要去掉,再去掉一个“下一页”标签Integer page = Integer.parseInt(els.eq(els.size() - 2).text()); 分类页中图片所在的标签结构为: 分类页面下的图片不是我们想要的,我们想要的是点击进去详细页的高清大图,所以需要获取a标签的链接,再从这个链接中获取真正想要的图片。 详细页中图片所在的标签结构为: 二、代码实现 到这里分类页分析的差不多了,我们通过代码来进行获取图片。首先导入Jsoup的jar包:jsoup-1.12.1.jar,如果采用Maven请导入下边的依赖。 <dependency><groupId>org.jsoup</groupId><artifactId>jsoup</artifactId><version>1.12.1</version></dependency> 在utils创建JsoupPic类,并添加getPic方法,代码如下: public static void getPic(String kind) throws Exception {//get请求方式进行请求Document root_doc = Jsoup.connect("http://www.netbian.com/" + kind + "/").get();//获取分页标签,用于获取总页数Elements els = root_doc.select("main .page a");Integer page = Integer.parseInt(els.eq(els.size() - 2).text());for (int i = 1; i < page; i++) {Document document = null;//这里判断的是当前页号是否为1,如果为1就不拼页号,否则拼上对应的页号if (i == 1) {document = Jsoup.connect("http://www.netbian.com/" + kind + "/index.htm").get();} else {document = Jsoup.connect("http://www.netbian.com/" + kind + "/index_" + i + ".htm").get();}//获取每个分页链接里面a标签的链接,进入链接页面获取当前图拼的大尺寸图片Elements elements = document.select("main .list li a");for (Element element : elements) {String href = element.attr("href");String picUrl = "http://www.netbian.com" + href;Document document1 = Jsoup.connect(picUrl).get();Elements elements1 = document1.select(".endpage .pic p a img");//获取所有图片的链接System.out.println(elements1);} }} 在分类页中有一个隐藏的问题图片: 正常的图片链接都是以“/”开头,以“.htm”结尾,而每个分类下的第三张图片的链接都是“http://pic.netbian.com/”,如果不过滤的话会报如下错误: 所以这里必须要判断一下: Elements elements = document.select("main .list li a");for (Element element : elements) {String href = element.attr("href");//判断是否是以“/”开头if (href.startsWith("/")) {String picUrl = "http://www.netbian.com" + href;Document document1 = Jsoup.connect(picUrl).get();Elements elements1 = document1.select(".endpage .pic p a img");System.out.println(elements1);} } 到这里,页面就已经分析好了,问题基本上已经解决了,接下来我们需要将图片存到我们的系统里,这里我将图片保存到我的电脑桌面上,并按照分类来存储图片。 首先是要获取桌面路径,在utils包下创建Download类,添加getDesktop方法,代码如下: public static File getDesktop(){FileSystemView fsv = FileSystemView.getFileSystemView();File path=fsv.getHomeDirectory(); return path;} 接着我们再该类中添加下载图片的方法: //urlPath为网络图片的路径,savePath为要保存的本地路径(这里指定为桌面下的images文件夹)public static void download(String urlPath,String savePath) throws Exception {// 构造URLURL url = new URL(urlPath);// 打开连接URLConnection con = url.openConnection();//设置请求超时为5scon.setConnectTimeout(51000);// 输入流InputStream is = con.getInputStream();// 1K的数据缓冲byte[] bs = new byte[1024];// 读取到的数据长度int len;// 输出的文件流File sf=new File(savePath);int randomNo=(int)(Math.random()1000000);String filename=urlPath.substring(urlPath.lastIndexOf("/")+1,urlPath.length());//获取服务器上图片的名称filename=new java.text.SimpleDateFormat("yyyy-MM-dd-HH-mm-ss").format(new Date())+randomNo+filename;//时间+随机数防止重复OutputStream os = new FileOutputStream(sf.getPath()+"\\"+filename);// 开始读取while ((len = is.read(bs)) != -1) {os.write(bs, 0, len);}// 完毕,关闭所有链接os.close();is.close();} 写好后,我们再完善一下JsouPic中的getPic方法。 public static void getPic(String kind) throws Exception {//get请求方式进行请求Document root_doc = Jsoup.connect("http://www.netbian.com/" + kind + "/").get();//获取分页标签,用于获取总页数Elements els = root_doc.select("main .page a");Integer page = Integer.parseInt(els.eq(els.size() - 2).text());for (int i = 1; i < page; i++) {Document document = null;//这里判断的是当前页号是否为1,如果为1就不拼页号,否则拼上对应的页号if (i == 1) {document = Jsoup.connect("http://www.netbian.com/" + kind + "/index.htm").get();} else {document = Jsoup.connect("http://www.netbian.com/" + kind + "/index_" + i + ".htm").get();}File desktop = Download.getDesktop();Download.checkPath(desktop.getPath() + "\\images\\" + kind);//获取每个分页链接里面a标签的链接,进入链接页面获取当前图拼的大尺寸图片Elements elements = document.select("main .list li a");for (Element element : elements) {String href = element.attr("href");if (href.startsWith("/")) {String picUrl = "http://www.netbian.com" + href;Document document1 = Jsoup.connect(picUrl).get();Elements elements1 = document1.select(".endpage .pic p a img");Download.download(elements1.attr("src"), desktop.getPath() + "\\images\\" + kind);} }} } 在Download类中,我添加了checkPath方法,用于判断目录是否存在,不存在就创建一个。 public static void checkPath(String savePath) throws Exception {File file = new File(savePath);if (!file.exists()){file.mkdirs();} } 最后在mainapp包内创建PullPic类,并添加主方法。 package com.asahi.mainapp;import com.asahi.common.Kind;import com.asahi.common.PrintLog;import com.asahi.utils.JsoupPic;import java.util.Scanner;public class PullPic {public static void main(String[] args) throws Exception {new PullPic().downloadPic();}public void downloadPic() throws Exception {System.out.println("启动程序>>\n请输入所爬取的分类:");Scanner scanner = new Scanner(System.in);String kind = scanner.next();while(!Kind.contains(kind)){System.out.println("分类不存在,请重新输入:");kind = scanner.next();}System.out.println("分类输入正确!");System.out.println("开始下载>>");JsoupPic.getPic(kind);} } 三、成果展示 最终的运行结果如下: 最终的代码已上传到我的github中,点击“我的github”进行查看。 在学习Java爬虫的过程中,我收获了很多,一开始做的时候确实遇到了很多困难,这次写的获取图片也是最基础的,还可以继续深入。本来我想写一个通过多线程来获取图片来着,也尝试着去写了一下,越写越跑偏,暂时先放着不处理吧,等以后有时间再来弄,我想问题应该不大,只是考虑的东西有很多。希望大家多多指点不足,有哪些需要改进的地方,我也好多学习学习๑乛◡乛๑。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_39693281/article/details/108463868。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-12 10:26:04
131
转载
Ruby
...何确保不同任务之间的数据隔离性和一致性。 在国内,阿里巴巴集团也在积极布局并发编程相关的技术研究。阿里云推出了基于Go语言的高性能微服务框架“MOSN”,该框架支持大规模分布式系统的构建,特别适合处理高并发场景下的请求分发和负载均衡。MOSN的设计理念强调模块化和可扩展性,使得开发者能够轻松应对复杂的业务逻辑。不过,随着越来越多的企业采用类似的架构,如何有效管理线程池大小、避免死锁等问题成为了新的关注焦点。 此外,近期一篇发表在《ACM Transactions on Programming Languages and Systems》上的论文引起了广泛关注。这篇论文探讨了现代编程语言在并发模型设计上的差异,并提出了一种新型的“乐观并发控制”算法。该算法通过预测线程间的冲突概率,动态调整同步策略,从而在一定程度上减少了锁的使用频率。这一方法不仅提升了程序的执行效率,还降低了开发者的维护成本。 从哲学角度来看,无论是技术层面还是理论层面,人类对于并发编程的追求始终未曾停歇。正如古希腊哲学家赫拉克利特所言:“人不能两次踏进同一条河流。”同样,在并发编程的世界里,每一次尝试都是一次全新的探索,而每一次成功都离不开对失败教训的深刻反思。未来,随着量子计算等前沿科技的发展,我们或许将迎来一场关于并发编程范式的革命,而这无疑将为软件工程领域带来前所未有的机遇与挑战。
2025-04-25 16:14:17
33
凌波微步
转载文章
...算法,它结合深度学习方法提升了在复杂场景中的重定位精度和鲁棒性。 同时,在自动驾驶领域,Waymo等公司在其无人驾驶车辆上广泛采用了基于视觉惯性导航的技术,并不断优化以提高实时定位和姿态估计的准确性。例如,一篇发布于《Nature》子刊《Machine Intelligence》上的文章揭示了他们如何将VIO与高精地图信息深度融合,以应对城市道路中的各种挑战。 此外,对于学术界和工业界来说,开源项目如OpenVINS、OKVIS以及本文提及的VINS-Fusion等持续迭代更新,不仅推动了VIO技术的发展,也为广大研究者提供了宝贵的实验平台。这些项目通过融合多传感器数据,实现了在无人机、机器人以及其他移动设备上的高效稳定定位导航。 总的来说,随着硬件性能的提升和算法优化的深化,视觉惯性里程计正逐渐成为自主导航系统中不可或缺的核心组件。在未来,我们期待看到更多创新性的研究成果和技术突破,进一步提升VIO在复杂环境下的适用性和可靠性。
2023-09-13 20:38:56
311
转载
Kafka
...台,可以用来处理实时数据流。它的核心是消息队列,但又不仅仅是简单的消息队列。它不仅传输速度快、反应还超灵敏,而且特别皮实,出点小问题也不带怕的。这么能打的表现,让它在大数据圈子里简直成了明星!不过,要想用好Kafka,你得先搞清楚它的命名规范和组织结构。接下来,我会结合自己的理解和实践,给大家分享一些干货。 --- 2. 命名规范 让Kafka的世界井然有序 2.1 主题(Topic):Kafka世界的基石 首先,我们来聊聊主题(Topic)。在Kafka里面呢,主题就好比是一个文件夹,所有的消息啊,就像文件一样,一股脑儿地塞进这个文件夹里头。每一个主题都有一个唯一的名称,这个名字就是它的标识符。比如说嘛,你可以建个叫user_events的话题分区,专门用来存用户干的事儿,点啥、买啥、逛哪儿,都往里丢,方便又清晰! java // 创建一个Kafka主题 kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 3 --topic user_events 这里的关键点在于,主题的名字要尽量简单明了,避免使用特殊字符或者空格。哎呀,这就好比你给文件夹起个特别绕口的名字,结果自己都记不住路径了,Kafka也是一样!它会根据主题的名字创建对应的文件夹结构,但要是主题名太复杂,搞不好就会在找东西的时候迷路,路径解析起来就容易出岔子啦。而且啊,主题的名字最好起得通俗易懂一点,让大伙儿一眼扫过去就明白这是干啥用的。 2.2 分区(Partition):主题的分身术 接着说分区(Partition)。每个主题都可以被划分为多个分区,每个分区就是一个日志文件。分区的作用是什么呢?它可以提高并发性和扩展性。比如说,你有个主题叫orders(订单),你可以把它分成5个区(分区)。这样一来,不同的小伙伴就能一起开工,各自处理这些区里的数据啦! java // 查看主题的分区信息 kafka-topics.sh --describe --zookeeper localhost:2181 --topic orders 分区的数量决定了并发的上限。所以,在设计主题时,你需要仔细权衡分区数量。太多的话,管理起来麻烦;太少的话,可能无法充分利用资源。我一般会根据预计的消息量来决定分区的数量。比如说,如果一秒能收到几千条消息,那分区设成10到20个就挺合适的。毕竟分区太多太少了都不好,得根据实际情况来调,不然可能会卡壳或者资源浪费啊! 2.3 消费者组(Consumer Group):团队协作的秘密武器 最后,我们来说消费者组(Consumer Group)。消费者组是一组消费者的集合,它们共同消费同一个主题的消息。每个消费者组都有一个唯一的名称,这个名字同样非常重要。 java // 创建一个消费者组 kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic user_events --group my_consumer_group 消费者组的设计理念是为了实现负载均衡和故障恢复。比如说,如果有两个小伙伴在一个小组里,系统就会帮他们自动分配任务(也就是主题的分区),这样大家就不会抢来抢去,重复干同样的活儿啦!而且呢,要是有个消费者挂掉了或者出问题了,其他的消费者就会顶上来,接手它负责的那些分区,接着干活儿,完全不受影响。 --- 3. 组织结构 Kafka的大脑与四肢 3.1 集群(Cluster):Kafka的心脏 Kafka集群是由多个Broker组成的,Broker是Kafka的核心组件,负责存储和转发消息。一个Broker就是一个节点,多个Broker协同工作,形成一个分布式的系统。 java // 启动Kafka Broker nohup kafka-server-start.sh config/server.properties & Broker的数量决定了系统的容错能力和性能。其实啊,通常咱们都会建议弄三个Broker,为啥呢?就怕万一有个家伙“罢工”了,比如突然挂掉或者出问题,别的还能顶上,整个系统就不耽误干活啦!不过,Broker的数量也不能太多,否则会增加管理和维护的成本。 3.2 Zookeeper:Kafka的大脑 Zookeeper是Kafka的协调器,它负责管理集群的状态和配置。没有Zookeeper,Kafka就无法正常运作。比如说啊,新添了个Broker(也就是那个消息中转站),Zookeeper就会赶紧告诉其他Broker:“嘿,快看看这位新伙伴,更新一下你们的状态吧!”还有呢,要是某个分区的老大换了(Leader切换了),Zookeeper也会在一旁默默记好这笔账,生怕漏掉啥重要信息似的。 java // 启动Zookeeper nohup zookeeper-server-start.sh config/zookeeper.properties & 虽然Zookeeper很重要,但它也有一定的局限性。比如,它可能会成为单点故障,影响整个系统的稳定性。因此,近年来Kafka也在尝试去掉对Zookeeper的依赖,开发了自己的内部协调机制。 3.3 日志(Log):Kafka的四肢 日志是Kafka存储消息的地方,每个分区对应一个日志文件。嘿,这个日志设计可太聪明了!它用的是顺序写入的方法,就像一条直线往前跑,根本不用左顾右盼,写起来那叫一个快,效率直接拉满! java // 查看日志路径 cat config/server.properties | grep log.dirs 日志的大小可以通过参数log.segment.bytes来控制。默认值是1GB,你可以根据实际情况调整。要是日志文件太大了,查个东西就像在大海捞针一样慢吞吞的;但要是弄得太小吧,又老得换新的日志文件,麻烦得很,还费劲。 --- 4. 实战演练 从零搭建一个Kafka环境 说了这么多理论,咱们来实际操作一下吧!假设我们要搭建一个简单的Kafka环境,用来收集用户的登录日志。 4.1 安装Kafka和Zookeeper 首先,我们需要安装Kafka和Zookeeper。可以从官网下载最新的二进制包,解压后按照文档配置即可。 bash 下载Kafka wget https://downloads.apache.org/kafka/3.4.0/kafka_2.13-3.4.0.tgz 解压 tar -xzf kafka_2.13-3.4.0.tgz 4.2 创建主题和消费者 接下来,我们创建一个名为login_logs的主题,并启动一个消费者来监听消息。 bash 创建主题 bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 3 --topic login_logs 启动消费者 bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic login_logs --from-beginning 4.3 生产消息 最后,我们可以编写一个简单的Java程序来生产消息。 java import org.apache.kafka.clients.producer.KafkaProducer; import org.apache.kafka.clients.producer.ProducerRecord; import java.util.Properties; public class KafkaProducerExample { public static void main(String[] args) { Properties props = new Properties(); props.put("bootstrap.servers", "localhost:9092"); props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer"); props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); KafkaProducer producer = new KafkaProducer<>(props); for (int i = 0; i < 10; i++) { producer.send(new ProducerRecord<>("login_logs", "key" + i, "value" + i)); } producer.close(); } } 这段代码会向login_logs主题发送10条消息,每条消息都有一个唯一的键和值。 --- 5. 总结 Kafka的魅力在于细节 好了,到这里咱们的Kafka之旅就告一段落了。通过这篇文章,我希望大家能更好地理解Kafka的命名规范和组织结构。Kafka为啥这么牛?因为它在设计的时候真是把每个小细节都琢磨得特别透。就像给主题起名字吧,分个区啦,还有消费者组怎么配合干活儿,这些地方都能看出人家确实是下了一番功夫的,真不是随便凑合出来的! 当然,Kafka的学习之路还有很多内容需要探索,比如监控、调优、安全等等。其实我觉得啊,只要你把命名的规矩弄明白了,东西该怎么放也心里有数了,那你就算是走上正轨啦,成功嘛,它就已经在向你招手啦!加油吧,朋友们! --- 希望这篇文章对你有所帮助,如果有任何疑问,欢迎随时交流哦!
2025-04-05 15:38:52
96
彩虹之上
转载文章
...底是不是指向B,这种方法效率太低,可以优化为一个对象一个对象地移动(这里涉及JVM如何识别对象,以及如何区分指针和立即数),但效率还是太低。 ·借助额外的数据结构描述这种引用关系,例如使用类似位图(bitmap)的方法,记录A和B的内存块之间的引用关系,用一个位来描述一个字,假设在32位机器上(一个字为32位),需要32KB(32KB×32=1M)的空间来描述一个分区。那么我们就可以在这个对象ObjA所在分区A里面添加一个额外的指针,这个指针指向另外一个分区B的位图,如果我们可以把对象ObjA和指针关系进行映射,那么当访问ObjA的时候,顺便访问这个额外的指针,从这个指针指向的位图就能找到被ObjA引用的分区B对应的内存块。通常我们只需要判定位图里面对应的位是否有1,有的话则认为发生了引用。 class CardTable: public CHeapObj<mtGC> {friend class VMStructs;public:typedef uint8_t CardValue;// All code generators assume that the size of a card table entry is one byte.// They need to be updated to reflect any change to this.// This code can typically be found by searching for the byte_map_base() method.STATIC_ASSERT(sizeof(CardValue) == 1);protected:// The declaration order of these const fields is important; see the// constructor before changing.const MemRegion _whole_heap; // the region covered by the card tableconst size_t _page_size; // page size used when mapping _byte_mapsize_t _byte_map_size; // in bytesCardValue _byte_map; // the card marking arrayCardValue _byte_map_base;// Some barrier sets create tables whose elements correspond to parts of// the heap; the CardTableBarrierSet is an example. Such barrier sets will// normally reserve space for such tables, and commit parts of the table// "covering" parts of the heap that are committed. At most one covered// region per generation is needed.static constexpr int max_covered_regions = 2;// The covered regions should be in address order.MemRegion _covered[max_covered_regions];// The last card is a guard card; never committed.MemRegion _guard_region;inline size_t compute_byte_map_size(size_t num_bytes);enum CardValues {clean_card = (CardValue)-1,dirty_card = 0,CT_MR_BS_last_reserved = 1};// a word's worth (row) of clean card valuesstatic const intptr_t clean_card_row = (intptr_t)(-1);// CardTable entry sizestatic uint _card_shift;static uint _card_size;static uint _card_size_in_words;size_t last_valid_index() const {return cards_required(_whole_heap.word_size()) - 1;}private:void initialize_covered_region(void region0_start, void region1_start);MemRegion committed_for(const MemRegion mr) const;public:CardTable(MemRegion whole_heap);virtual ~CardTable() = default;void initialize(void region0_start, void region1_start);// Barrier set functions.// Initialization utilities; covered_words is the size of the covered region// in, um, words.inline size_t cards_required(size_t covered_words) const {assert(is_aligned(covered_words, _card_size_in_words), "precondition");return covered_words / _card_size_in_words;}// Dirty the bytes corresponding to "mr" (not all of which must be// covered.)void dirty_MemRegion(MemRegion mr);// Clear (to clean_card) the bytes entirely contained within "mr" (not// all of which must be covered.)void clear_MemRegion(MemRegion mr);// Return true if "p" is at the start of a card.bool is_card_aligned(HeapWord p) {CardValue pcard = byte_for(p);return (addr_for(pcard) == p);}// Mapping from address to card marking array entryCardValue byte_for(const void p) const {assert(_whole_heap.contains(p),"Attempt to access p = " PTR_FORMAT " out of bounds of "" card marking array's _whole_heap = [" PTR_FORMAT "," PTR_FORMAT ")",p2i(p), p2i(_whole_heap.start()), p2i(_whole_heap.end()));CardValue result = &_byte_map_base[uintptr_t(p) >> _card_shift];assert(result >= _byte_map && result < _byte_map + _byte_map_size,"out of bounds accessor for card marking array");return result;}// The card table byte one after the card marking array// entry for argument address. Typically used for higher bounds// for loops iterating through the card table.CardValue byte_after(const void p) const {return byte_for(p) + 1;}void invalidate(MemRegion mr);// Provide read-only access to the card table array.const CardValue byte_for_const(const void p) const {return byte_for(p);}const CardValue byte_after_const(const void p) const {return byte_after(p);}// Mapping from card marking array entry to address of first wordHeapWord addr_for(const CardValue p) const {assert(p >= _byte_map && p < _byte_map + _byte_map_size,"out of bounds access to card marking array. p: " PTR_FORMAT" _byte_map: " PTR_FORMAT " _byte_map + _byte_map_size: " PTR_FORMAT,p2i(p), p2i(_byte_map), p2i(_byte_map + _byte_map_size));// As _byte_map_base may be "negative" (the card table has been allocated before// the heap in memory), do not use pointer_delta() to avoid the assertion failure.size_t delta = p - _byte_map_base;HeapWord result = (HeapWord) (delta << _card_shift);assert(_whole_heap.contains(result),"Returning result = " PTR_FORMAT " out of bounds of "" card marking array's _whole_heap = [" PTR_FORMAT "," PTR_FORMAT ")",p2i(result), p2i(_whole_heap.start()), p2i(_whole_heap.end()));return result;}// Mapping from address to card marking array index.size_t index_for(void p) {assert(_whole_heap.contains(p),"Attempt to access p = " PTR_FORMAT " out of bounds of "" card marking array's _whole_heap = [" PTR_FORMAT "," PTR_FORMAT ")",p2i(p), p2i(_whole_heap.start()), p2i(_whole_heap.end()));return byte_for(p) - _byte_map;}CardValue byte_for_index(const size_t card_index) const {return _byte_map + card_index;}// Resize one of the regions covered by the remembered set.void resize_covered_region(MemRegion new_region);// Card-table-RemSet-specific things.static uintx ct_max_alignment_constraint();static uint card_shift() {return _card_shift;}static uint card_size() {return _card_size;}static uint card_size_in_words() {return _card_size_in_words;}static constexpr CardValue clean_card_val() { return clean_card; }static constexpr CardValue dirty_card_val() { return dirty_card; }static intptr_t clean_card_row_val() { return clean_card_row; }// Initialize card sizestatic void initialize_card_size();// Card marking array base (adjusted for heap low boundary)// This would be the 0th element of _byte_map, if the heap started at 0x0.// But since the heap starts at some higher address, this points to somewhere// before the beginning of the actual _byte_map.CardValue byte_map_base() const { return _byte_map_base; }virtual bool is_in_young(const void p) const = 0;}; class G1CardTable : public CardTable {friend class VMStructs;friend class G1CardTableChangedListener;G1CardTableChangedListener _listener;public:enum G1CardValues {g1_young_gen = CT_MR_BS_last_reserved << 1,// During evacuation we use the card table to consolidate the cards we need to// scan for roots onto the card table from the various sources. Further it is// used to record already completely scanned cards to avoid re-scanning them// when incrementally evacuating the old gen regions of a collection set.// This means that already scanned cards should be preserved.//// The merge at the start of each evacuation round simply sets cards to dirty// that are clean; scanned cards are set to 0x1.//// This means that the LSB determines what to do with the card during evacuation// given the following possible values://// 11111111 - clean, do not scan// 00000001 - already scanned, do not scan// 00000000 - dirty, needs to be scanned.//g1_card_already_scanned = 0x1};static const size_t WordAllClean = SIZE_MAX;static const size_t WordAllDirty = 0;STATIC_ASSERT(BitsPerByte == 8);static const size_t WordAlreadyScanned = (SIZE_MAX / 255) g1_card_already_scanned;G1CardTable(MemRegion whole_heap): CardTable(whole_heap), _listener() {_listener.set_card_table(this);}static CardValue g1_young_card_val() { return g1_young_gen; }static CardValue g1_scanned_card_val() { return g1_card_already_scanned; }void verify_g1_young_region(MemRegion mr) PRODUCT_RETURN;void g1_mark_as_young(const MemRegion& mr);size_t index_for_cardvalue(CardValue const p) const {return pointer_delta(p, _byte_map, sizeof(CardValue));}// Mark the given card as Dirty if it is Clean. Returns whether the card was// Clean before this operation. This result may be inaccurate as it does not// perform the dirtying atomically.inline bool mark_clean_as_dirty(CardValue card);// Change Clean cards in a (large) area on the card table as Dirty, preserving// already scanned cards. Assumes that most cards in that area are Clean.inline void mark_range_dirty(size_t start_card_index, size_t num_cards);// Change the given range of dirty cards to "which". All of these cards must be Dirty.inline void change_dirty_cards_to(CardValue start_card, CardValue end_card, CardValue which);inline uint region_idx_for(CardValue p);static size_t compute_size(size_t mem_region_size_in_words) {size_t number_of_slots = (mem_region_size_in_words / _card_size_in_words);return ReservedSpace::allocation_align_size_up(number_of_slots);}// Returns how many bytes of the heap a single byte of the Card Table corresponds to.static size_t heap_map_factor() { return _card_size; }void initialize(G1RegionToSpaceMapper mapper);bool is_in_young(const void p) const override;}; 以位为粒度的位图能准确描述每一个字的引用关系,但是一个位通常包含的信息太少,只能描述2个状态:引用还是未引用。实际应用中JVM在垃圾回收的时候需要更多的状态,如果增加至一个字节来描述状态,则位图需要256KB的空间,这个数字太大,开销占了25%。所以一个可能的做法位图不再描述一个字,而是一个区域,JVM选择512字节为单位,即用一个字节描述512字节的引用关系。选择一个区域除了空间利用率的问题之外,实际上还有现实的意义。我们知道Java对象实际上不是一个字能描述的(有一个参数可以控制对象最小对齐的大小,默认是8字节,实际上Java在JVM中还有一些附加信息,所以对齐后最小的Java对象是16字节),很多Java对象可能是几十个字节或者几百个字节,所以用一个字节描述一个区域是有意义的。但是我没有找到512的来源,为什么512效果最好?没有相应的数据来支持这个数字,而且这个值不可以配置,不能修改,但是有理由相信512字节的区域是为了节约内存额外开销。按照这个值,1MB的内存只需要2KB的额外空间就能描述引用关系。这又带来另一个问题,就是512字节里面的内存可能被引用多次,所以这是一个粗略的关系描述,那么在使用的时候需要遍历这512字节。 再举一个例子,假设有两个对象B、C都在这512字节的区域内。为了方便处理,记录对象引用关系的时候,都使用对象的起始位置,然后用这个地址和512对齐,因此B和C对象的卡表指针都指向这一个卡表的位置。那么对于引用处理也有可有两种处理方法:·处理的时候会以堆分区为处理单位,遍历整个堆分区,在遍历的时候,每次都会以对象大小为步长,结合卡表,如果该卡表中对应的位置被设置,则说明对象和其他分区的对象发生了引用。具体内容在后文中介绍Refine的时候还会详细介绍。·处理的时候借助于额外的数据结构,找到真正对象的位置,而不需要从头开始遍历。在后文的并发标记处理时就使用了这种方法,用于找到第一个对象的起始位置。在G1除了512字节粒度的卡表之外,还有bitMap,例如使用bitMap可以描述一个分区对另外一个分区的引用情况。在JVM中bitMap使用非常多,例如还可以描述内存的分配情况。 在G1除了512字节粒度的卡表之外,还有bitMap,例如使用bitMap可以描述一个分区对另外一个分区的引用情况。在JVM中bitMap使用非常多,例如还可以描述内存的分配情况。G1在混合收集算法中用到了并发标记。在并发标记的时候使用了bitMap来描述对象的分配情况。例如1MB的分区可以用16KB(16KB×ObjectAlignmentInBytes×8=1MB)来描述,即16KB额外的空间。其中ObjectAlignmentInBytes是8字节,指的是对象对齐,第二个8是指一个字节有8位。即每一个位可以描述64位。例如一个对象长度对齐之后为24字节,理论上它占用3个位来描述这个24字节已被使用了,实际上并不需要,在标记的时候只需要标记这3个位中的第一个位,再结合堆分区对象的大小信息就能准确找出。其最主要的目的是为了效率,标记一个位和标记3个位相比能节约不少时间,如果对象很大,则更划算。这些都是源码的实现细节,大家在阅读源码时需要细细斟酌。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_16500963/article/details/132133125。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-16 20:37:50
247
转载
转载文章
...定 JDBC 事务的数据源、全局作业和/或触发器侦听器、插件、线程池,以及更多)配置 Quartz,但它根本没有与应用程序服务器的上下文或引用集成在一起。结果就是作业不能访问 Web 服务器的内部函数;例如,在使用 WebSphere 应用服务器时,由 Quartz 调度的作业并不能影响服务器的动态缓存和数据源。 二、java中实现定时任务分类 从实现的技术上来分类,目前主要有三种技术(或者说有三种产品): Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务。使用这种方式可以让你的程序按照某一个频度执行,但不能在指定时间运行。一般用的较少,这篇文章将不做详细介绍。 使用Quartz,这是一个功能比较强大的的调度器,可以让你的程序在指定时间执行,也可以按照某一个频度执行,配置起来稍显复杂,稍后会详细介绍。 Spring3.0以后自带的task,可以将它看成一个轻量级的Quartz,而且使用起来比Quartz简单许多,稍后会介绍。 从作业类的继承方式来讲,可以分为两类: 作业类需要继承自特定的作业类基类,如Quartz中需要继承自org.springframework.scheduling.quartz.QuartzJobBean;java.util.Timer中需要继承自java.util.TimerTask。 作业类即普通的java类,不需要继承自任何基类。 注:个人推荐使用第二种方式,因为这样所以的类都是普通类,不需要事先区别对待。 从任务调度的触发时机来分,这里主要是针对作业使用的触发器,主要有以下两种: 每隔指定时间则触发一次,在Quartz中对应的触发器为:org.springframework.scheduling.quartz.SimpleTriggerBean 每到指定时间则触发一次,在Quartz中对应的调度器为:org.springframework.scheduling.quartz.CronTriggerBean 注:并非每种任务都可以使用这两种触发器,如java.util.TimerTask任务就只能使用第一种。Quartz和spring task都可以支持这两种触发条件。 三、Quartz与Spring的集成 第一种,作业类继承自特定的基类:org.springframework.scheduling.quartz.QuartzJobBean。 第一步:定义作业类 Java代码 import org.quartz.JobExecutionContext; import org.quartz.JobExecutionException; import org.springframework.scheduling.quartz.QuartzJobBean; public class Job1 extends QuartzJobBean { private int timeout; private static int i = 0; //调度工厂实例化后,经过timeout时间开始执行调度 public void setTimeout(int timeout) { this.timeout = timeout; } / 要调度的具体任务 / @Override protected void executeInternal(JobExecutionContext context) throws JobExecutionException { System.out.println("定时任务执行中…"); } } 第二步:spring配置文件中配置作业类JobDetailBean Xml代码 <bean name="job1" class="org.springframework.scheduling.quartz.JobDetailBean"> <property name="jobClass" value="com.gy.Job1" /> <property name="jobDataAsMap"> <map> <entry key="timeout" value="0" /> </map> </property> </bean> 说明:org.springframework.scheduling.quartz.JobDetailBean有两个属性,jobClass属性即我们在java代码中定义的任务类,jobDataAsMap属性即该任务类中需要注入的属性值。 第三步:配置作业调度的触发方式(触发器) Quartz的作业触发器有两种,分别是 org.springframework.scheduling.quartz.SimpleTriggerBean org.springframework.scheduling.quartz.CronTriggerBean 第一种SimpleTriggerBean,只支持按照一定频度调用任务,如每隔30分钟运行一次。 配置方式如下: Xml代码 <bean id="simpleTrigger" class="org.springframework.scheduling.quartz.SimpleTriggerBean"> <property name="jobDetail" ref="job1" /> <property name="startDelay" value="0" /><!-- 调度工厂实例化后,经过0秒开始执行调度 --> <property name="repeatInterval" value="2000" /><!-- 每2秒调度一次 --> </bean> 第二种CronTriggerBean,支持到指定时间运行一次,如每天12:00运行一次等。 配置方式如下: Xml代码 <bean id="cronTrigger" class="org.springframework.scheduling.quartz.CronTriggerBean"> <property name="jobDetail" ref="job1" /> <!—每天12:00运行一次 --> <property name="cronExpression" value="0 0 12 ?" /> </bean> 关于cronExpression表达式的语法参见附录。 第四步:配置调度工厂 Xml代码 <bean class="org.springframework.scheduling.quartz.SchedulerFactoryBean"> <property name="triggers"> <list> <ref bean="cronTrigger" /> </list> </property> </bean> 说明:该参数指定的就是之前配置的触发器的名字。 第五步:启动你的应用即可,即将工程部署至tomcat或其他容器。 第二种,作业类不继承特定基类。 Spring能够支持这种方式,归功于两个类: org.springframework.scheduling.timer.MethodInvokingTimerTaskFactoryBean org.springframework.scheduling.quartz.MethodInvokingJobDetailFactoryBean 这两个类分别对应spring支持的两种实现任务调度的方式,即前文提到到java自带的timer task方式和Quartz方式。这里我只写MethodInvokingJobDetailFactoryBean的用法,使用该类的好处是,我们的任务类不再需要继承自任何类,而是普通的pojo。 第一步:编写任务类 Java代码 public class Job2 { public void doJob2() { System.out.println("不继承QuartzJobBean方式-调度进行中..."); } } 可以看出,这就是一个普通的类,并且有一个方法。 第二步:配置作业类 Xml代码 <bean id="job2" class="org.springframework.scheduling.quartz.MethodInvokingJobDetailFactoryBean"> <property name="targetObject"> <bean class="com.gy.Job2" /> </property> <property name="targetMethod" value="doJob2" /> <property name="concurrent" value="false" /><!-- 作业不并发调度 --> </bean> 说明:这一步是关键步骤,声明一个MethodInvokingJobDetailFactoryBean,有两个关键属性:targetObject指定任务类,targetMethod指定运行的方法。往下的步骤就与方法一相同了,为了完整,同样贴出。 第三步:配置作业调度的触发方式(触发器) Quartz的作业触发器有两种,分别是 org.springframework.scheduling.quartz.SimpleTriggerBean org.springframework.scheduling.quartz.CronTriggerBean 第一种SimpleTriggerBean,只支持按照一定频度调用任务,如每隔30分钟运行一次。 配置方式如下: Xml代码 <bean id="simpleTrigger" class="org.springframework.scheduling.quartz.SimpleTriggerBean"> <property name="jobDetail" ref="job2" /> <property name="startDelay" value="0" /><!-- 调度工厂实例化后,经过0秒开始执行调度 --> <property name="repeatInterval" value="2000" /><!-- 每2秒调度一次 --> </bean> 第二种CronTriggerBean,支持到指定时间运行一次,如每天12:00运行一次等。 配置方式如下: Xml代码 <bean id="cronTrigger" class="org.springframework.scheduling.quartz.CronTriggerBean"> <property name="jobDetail" ref="job2" /> <!—每天12:00运行一次 --> <property name="cronExpression" value="0 0 12 ?" /> </bean> 以上两种调度方式根据实际情况,任选一种即可。 第四步:配置调度工厂 Xml代码 <bean class="org.springframework.scheduling.quartz.SchedulerFactoryBean"> <property name="triggers"> <list> <ref bean="cronTrigger" /> </list> </property> </bean> 说明:该参数指定的就是之前配置的触发器的名字。 第五步:启动你的应用即可,即将工程部署至tomcat或其他容器。 到此,spring中Quartz的基本配置就介绍完了,当然了,使用之前,要导入相应的spring的包与Quartz的包,这些就不消多说了。 其实可以看出Quartz的配置看上去还是挺复杂的,没有办法,因为Quartz其实是个重量级的工具,如果我们只是想简单的执行几个简单的定时任务,有没有更简单的工具,有! 四、Spring-Task 上节介绍了在Spring 中使用Quartz,本文介绍Spring3.0以后自主开发的定时任务工具,spring task,可以将它比作一个轻量级的Quartz,而且使用起来很简单,除spring相关的包外不需要额外的包,而且支持注解和配置文件两种 形式,下面将分别介绍这两种方式。 第一种:配置文件方式 第一步:编写作业类 即普通的pojo,如下: Java代码 import org.springframework.stereotype.Service; @Service public class TaskJob { public void job1() { System.out.println(“任务进行中。。。”); } } 第二步:在spring配置文件头中添加命名空间及描述 Xml代码 <beans xmlns="http://www.springframework.org/schema/beans" xmlns:task="http://www.springframework.org/schema/task" 。。。。。。 xsi:schemaLocation="http://www.springframework.org/schema/task http://www.springframework.org/schema/task/spring-task-3.0.xsd"> 第三步:spring配置文件中设置具体的任务 Xml代码 <task:scheduled-tasks> <task:scheduled ref="taskJob" method="job1" cron="0 ?"/> </task:scheduled-tasks> <context:component-scan base-package=" com.gy.mytask " /> 说明:ref参数指定的即任务类,method指定的即需要运行的方法,cron及cronExpression表达式,具体写法这里不介绍了,详情见上篇文章附录。 <context:component-scan base-package="com.gy.mytask" />这个配置不消多说了,spring扫描注解用的。 到这里配置就完成了,是不是很简单。 第二种:使用注解形式 也许我们不想每写一个任务类还要在xml文件中配置下,我们可以使用注解@Scheduled,我们看看源文件中该注解的定义: Java代码 @Target({java.lang.annotation.ElementType.METHOD, java.lang.annotation.ElementType.ANNOTATION_TYPE}) @Retention(RetentionPolicy.RUNTIME) @Documented public @interface Scheduled { public abstract String cron(); public abstract long fixedDelay(); public abstract long fixedRate(); } 可以看出该注解有三个方法或者叫参数,分别表示的意思是: cron:指定cron表达式 fixedDelay:官方文档解释:An interval-based trigger where the interval is measured from the completion time of the previous task. The time unit value is measured in milliseconds.即表示从上一个任务完成开始到下一个任务开始的间隔,单位是毫秒。 fixedRate:官方文档解释:An interval-based trigger where the interval is measured from the start time of the previous task. The time unit value is measured in milliseconds.即从上一个任务开始到下一个任务开始的间隔,单位是毫秒。 下面我来配置一下。 第一步:编写pojo Java代码 import org.springframework.scheduling.annotation.Scheduled; import org.springframework.stereotype.Component; @Component(“taskJob”) public class TaskJob { @Scheduled(cron = "0 0 3 ?") public void job1() { System.out.println(“任务进行中。。。”); } } 第二步:添加task相关的配置: Xml代码 <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:aop="http://www.springframework.org/schema/aop" xmlns:context="http://www.springframework.org/schema/context" xmlns:tx="http://www.springframework.org/schema/tx" xmlns:task="http://www.springframework.org/schema/task" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-3.0.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/jdbc/spring-jdbc-3.0.xsd http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-3.0.xsd http://www.springframework.org/schema/task http://www.springframework.org/schema/task/spring-task-3.0.xsd" default-lazy-init="false"> <context:annotation-config /> <!—spring扫描注解的配置 --> <context:component-scan base-package="com.gy.mytask" /> <!—开启这个配置,spring才能识别@Scheduled注解 --> <task:annotation-driven scheduler="qbScheduler" mode="proxy"/> <task:scheduler id="qbScheduler" pool-size="10"/> 说明:理论上只需要加上<task:annotation-driven />这句配置就可以了,这些参数都不是必须的。 Ok配置完毕,当然spring task还有很多参数,我就不一一解释了,具体参考xsd文档http://www.springframework.org/schema/task/spring-task-3.0.xsd。 附录: cronExpression的配置说明,具体使用以及参数请百度google 字段 允许值 允许的特殊字符 秒 0-59 , - / 分 0-59 , - / 小时 0-23 , - / 日期 1-31 , - ? / L W C 月份 1-12 或者 JAN-DEC , - / 星期 1-7 或者 SUN-SAT , - ? / L C 年(可选) 留空, 1970-2099 , - / - 区间 通配符 ? 你不想设置那个字段 下面只例出几个式子 CRON表达式 含义 "0 0 12 ?" 每天中午十二点触发 "0 15 10 ? " 每天早上10:15触发 "0 15 10 ?" 每天早上10:15触发 "0 15 10 ? " 每天早上10:15触发 "0 15 10 ? 2005" 2005年的每天早上10:15触发 "0 14 ?" 每天从下午2点开始到2点59分每分钟一次触发 "0 0/5 14 ?" 每天从下午2点开始到2:55分结束每5分钟一次触发 "0 0/5 14,18 ?" 每天的下午2点至2:55和6点至6点55分两个时间段内每5分钟一次触发 "0 0-5 14 ?" 每天14:00至14:05每分钟一次触发 "0 10,44 14 ? 3 WED" 三月的每周三的14:10和14:44触发 "0 15 10 ? MON-FRI" 每个周一、周二、周三、周四、周五的10:15触发 Cron 表达式包括以下 7 个字段: 秒 分 小时 月内日期 月 周内日期 年(可选字段) 特殊字符 Cron 触发器利用一系列特殊字符,如下所示: 反斜线(/)字符表示增量值。例如,在秒字段中“5/15”代表从第 5 秒开始,每 15 秒一次。 问号(?)字符和字母 L 字符只有在月内日期和周内日期字段中可用。问号表示这个字段不包含具体值。所以,如果指定月内日期,可以在周内日期字段中插入“?”,表示周内日期值无关紧要。字母 L 字符是 last 的缩写。放在月内日期字段中,表示安排在当月最后一天执行。在周内日期字段中,如果“L”单独存在,就等于“7”,否则代表当月内周内日期的最后一个实例。所以“0L”表示安排在当月的最后一个星期日执行。 在月内日期字段中的字母(W)字符把执行安排在最靠近指定值的工作日。把“1W”放在月内日期字段中,表示把执行安排在当月的第一个工作日内。 井号()字符为给定月份指定具体的工作日实例。把“MON2”放在周内日期字段中,表示把任务安排在当月的第二个星期一。 星号()字符是通配字符,表示该字段可以接受任何可能的值。 字段 允许值 允许的特殊字符 秒 0-59 , - / 分 0-59 , - / 小时 0-23 , - / 日期 1-31 , - ? / L W C 月份 1-12 或者 JAN-DEC , - / 星期 1-7 或者 SUN-SAT , - ? / L C 年(可选) 留空, 1970-2099 , - / 表达式意义 "0 0 12 ?" 每天中午12点触发 "0 15 10 ? " 每天上午10:15触发 "0 15 10 ?" 每天上午10:15触发 "0 15 10 ? " 每天上午10:15触发 "0 15 10 ? 2005" 2005年的每天上午10:15触发 "0 14 ?" 在每天下午2点到下午2:59期间的每1分钟触发 "0 0/5 14 ?" 在每天下午2点到下午2:55期间的每5分钟触发 "0 0/5 14,18 ?" 在每天下午2点到2:55期间和下午6点到6:55期间的每5分钟触发 "0 0-5 14 ?" 在每天下午2点到下午2:05期间的每1分钟触发 "0 10,44 14 ? 3 WED" 每年三月的星期三的下午2:10和2:44触发 "0 15 10 ? MON-FRI" 周一至周五的上午10:15触发 "0 15 10 15 ?" 每月15日上午10:15触发 "0 15 10 L ?" 每月最后一日的上午10:15触发 "0 15 10 ? 6L" 每月的最后一个星期五上午10:15触发 "0 15 10 ? 6L 2002-2005" 2002年至2005年的每月的最后一个星期五上午10:15触发 "0 15 10 ? 63" 每月的第三个星期五上午10:15触发 每天早上6点 0 6 每两个小时 0 /2 晚上11点到早上8点之间每两个小时,早上八点 0 23-7/2,8 每个月的4号和每个礼拜的礼拜一到礼拜三的早上11点 0 11 4 1-3 1月1日早上4点 0 4 1 1 本篇文章为转载内容。原文链接:https://zhanghaiyang.blog.csdn.net/article/details/51397459。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-27 18:50:19
345
转载
转载文章
...置 8 2.2.2 数据库配置 8 3系统分析 11 3.1 可行性分析 11 3.1.1 技术可行性 11 3.1.2 操作可行性 11 3.1.3 经济可行性 11 3.1.4 法律可行性 11 3.2 腕表交易系统功能需求分析 11 3.3 数据库需求分析 12 4系统设计 13 4.1 系统功能模块设计 13 4.2系统流程设计 13 4.2.1 系统开发流程 13 4.2.2 用户登录流程 14 4.2.3 系统操作流程 15 4.2.4 添加信息流程 15 4.2.5 修改信息流程 16 4.2.6 删除信息流程 16 4.3系统用例分析 17 4.3.1 管理员用例图 17 4.3.2 用户用例图 18 4.4 数据库设计 19 4.4.1 tb_Ware(商品信息表) 19 4.4.2 tb_manager(管理员信息表) 19 4.4.3 tb_sub(订单生成表) 19 4.4.4 tb_Link(超级链接表) 20 4.4.5 tb_Affiche(公告信息表) 20 4.3 用SSM连接数据库 20 5系统实现 22 5.1 前台部分 22 5.1.1 前台总体框架 22 5.1.2 商城首页 22 5.1.3 产品详情页 23 5.1.4 评价 23 5.2 后台部分 24 5.2.1 后台主页 24 5.2.2 后台评价管理 25 5.2.3 商品管理 25 5.2.4 商品修改 26 5.2.5 分类管理 26 5.2.6 订单管理 27 5.2.7 腕表购物车管理 27 6系统测试 28 6.1系统测试的意义 28 6.2性能测试 29 6.3测试分析 29 总 结 30 致 谢 31 参考文献 31 3系统分析 3.1 可行性分析 腕表交易系统主要目标是实现网上展示腕表交易系统信息,购买腕表产品。在确定了目标后,我们从以下四方面对能否实现本系统目标进行可行性分析。 3.1.1 技术可行性 腕表交易系统主要采用Java技术,基于B/S结构,MYSQL数据库,主要包括前端应用程序的开发以及后台数据库的建立和维护两个方面。对于应用程序的开发要求具备功能要完备、使用应简单等特点,而对于数据库的建立和维护则要求建立一个数据完整性强、数据安全性好、数据稳定性高的库。腕表交易系统的开发技术具有很高可行性,且开发人员掌握了一定的开发技术,所以系统的开发具有可行性。 3.1.2 操作可行性 腕表交易系统的登录界面简单易于操作,采用常见的界面窗口来登录界面,通过电脑进行访问操作,会员只要平时使用过电脑都能进行访问操作。此系统的开发采用PHP语言开发,基于B/S结构,这些开发环境使系统更加完善。本系统具有易操作、易管理、交互性好的特点,在操作上是非常简单的。因此本系统可以进行开发。 3.1.3 经济可行性 腕表交易系统是基于B/S模式,采用MYSQL数据库储存数据,所要求的硬件和软件环境,市场上都很容易购买,程序开发主要是管理系统的开发和维护。所以程序在开发人力、财力上要求不高,而且此系统不是很复杂,开发周期短,在经济方面具有较高的可行性。 3.1.4 法律可行性 此腕表交易系统是自己设计的管理系统,具有很大的实际意义。开发环境软件和使用的数据库都是开源代码,因此对这个系统进行开发与普通的系统软件设计存在很大不同,没有侵权等问题,在法律上完全具有可行性。 综上所述,腕表交易系统在技术、经济、操作和法律上都具有很高的可行性,开发此程序是很必要的。 3.2 腕表交易系统功能需求分析 此基于SSM的腕表交易系统分前台功能和后台功能: 1)前台部分由用户使用,主要包括用户注册,腕表购物车管理,订单管理,个人资料管理,留言板管理 2)后台部分由管理员使用,主要包括管理员身份验证,商品管理,处理订单,用户信息管理,连接信息管理 3.3 数据库需求分析 数据库的设计通常是以一个已经存在的数据库管理系统为基础的,常用的数据库管理系统有MYSQL,SQL,Oracle等。我采用了Mysql数据库管理系统,建立的数据库名为db_business。 整个系统功能需要以下数据项: 用户:用户id、用户名称、登录密码、用户真实姓名、性别、邮箱地址、联系地址、联系电话、密码问题、答案、注册时间。 留言:主题id、作者姓名、Email、主题名称、留言内容、发布时间。 商品:商品id、名称、价格、图片路径、类型、简要介绍、存储地址、上传人姓名、发布时间、是否推荐。 订单:订单号、用户名、真实姓名、订购日期、Email、地址、邮编、付款方式、联系方式、运送方式、订单核对、其他。 管理员:管理员id、管理员名称、管理员密码。 公告:公告内容、公告时间。 4系统设计 4.1 系统功能模块设计 功能结构图如下: 图9 功能模块设计图 从图中可以看出,网上腕表交易系统可以分为前台和后台两个部分,前台部分由用户使用,主要包括用户注册,生成订单,腕表购物车管理,查看腕表购物车,查看留言,订购产品,订单查询和发布留言7个模块;本文转载自http://www.biyezuopin.vip/onews.asp?id=11975后台部分由管理员使用,主要包括管理员身份验证,商品管理,处理订单,用户信息管理,连接信息管理5个模块。 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"><html><head><base href="<%=basePath%>"/><title>腕表商城</title><meta http-equiv="pragma" content="no-cache"><meta http-equiv="cache-control" content="no-cache"><meta http-equiv="expires" content="0"> <meta http-equiv="keywords" content="keyword1,keyword2,keyword3"><meta http-equiv="description" content="This is my page"><meta name="viewport" content="width=device-width, initial-scale=1"><!-- Favicon --><link rel="shortcut icon" type="image/x-icon" href="img/favicon.png"><link rel="stylesheet" type="text/css" href="<%=basePath%>home/css/font-awesome.min.css" /><link rel="stylesheet" type="text/css" href="<%=basePath%>home/css/bootstrap.css" /><link rel="stylesheet" type="text/css" href="<%=basePath%>home/css/style.css"><link rel="stylesheet" type="text/css" href="<%=basePath%>home/css/magnific-popup.css"><link rel="stylesheet" type="text/css" href="<%=basePath%>home/css/owl.carousel.css"><script type="text/javascript">function getprofenlei(){ var html = ""; $.ajax({url: "leixing.action?list&page=0&rows=30",type: "POST",async: false, contentType: "application/x-www-form-urlencoded;charset=UTF-8",success: function (data) { $.each(data.rows, function (i, val) { html += ' <li ><a href="home/search.jsp?fenlei='+val.id+'" >'+val.a1+' </a></li>';})} }); $("fenlei").html(html);}function gettop1(){var html = "";$.ajax({url: "leixing.action?list&page=0&rows=10",type: "POST",async: false,success: function (data) {var total='';//<div class="tab-pane active" id="nArrivals">// <div class="nArrivals owl-carousel" id="top1">$.each(data.rows, function (i, valmm) { html+='<div class="nArrivals owl-carousel" id="'+valmm.id+'">';$.ajax({url: "shangpin.action?list&page=0&rows=10",type: "POST",async: false,data: { fenlei:valmm.id },success: function (data) { $.each(data.rows, function (i, val) { html+='<div class="product-grid">'+'<div class="item">'+' <div class="product-thumb">'+' <div class="image product-imageblock"> <a href="home/details.jsp?ids='+val.id+'"> <img data-name="product_image" style="width:223px;height:285px;" src="<%=basePath%>'+val.tupian1+'" alt="iPod Classic" title="iPod Classic" class="img-responsive"> <img style="width:223px;height:285px;" src="<%=basePath%>'+val.tupian1+'" alt="iPod Classic" title="iPod Classic" class="img-responsive"> </a> </div>'+' <div class="caption product-detail text-left">'+' <h6 data-name="product_name" class="product-name mt_20"><a href="home/details.jsp?ids='+val.id+'" title="Casual Shirt With Ruffle Hem">'+val.biaoti+'</a></h6>'+' <div class="rating"> <span class="fa fa-stack"><i class="fa fa-star-o fa-stack-1x"></i><i class="fa fa-star fa-stack-1x"></i></span> <span class="fa fa-stack"><i class="fa fa-star-o fa-stack-1x"></i><i class="fa fa-star fa-stack-1x"></i></span> <span class="fa fa-stack"><i class="fa fa-star-o fa-stack-1x"></i><i class="fa fa-star fa-stack-1x"></i></span> <span class="fa fa-stack"><i class="fa fa-star-o fa-stack-1x"></i><i class="fa fa-star fa-stack-1x"></i></span> <span class="fa fa-stack"><i class="fa fa-star-o fa-stack-1x"></i><i class="fa fa-star fa-stack-x"></i></span> </div>'+'<span class="price"><span class="amount"><span class="currencySymbol">$</span>'+val.jiage+'</span>'+'</span>'+'<div class="button-group text-center">'+' <div class="wishlist"><a href="home/details.jsp?ids='+val.id+'"><span>wishlist</span></a></div>'+'<div class="quickview"><a href="home/details.jsp?ids='+val.id+'"><span>Quick View</span></a></div>'+'<div class="compare"><a href="home/details.jsp?ids='+val.id+'"><span>Compare</span></a></div>'+'<div class="add-to-cart"><a href="home/details.jsp?ids='+val.id+'"><span>Add to cart</span></a></div>'+'</div>'+'</div>'+'</div>'+'</div>'+' </div>'; })html+='</div>'; } })}) $("nArrivals").html(html); } }); 本篇文章为转载内容。原文链接:https://blog.csdn.net/newlw/article/details/127608579。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-21 18:24:50
67
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
uniq file.txt
- 移除连续重复行。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"