前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[自动化任务]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...ows操作系统的底层任务,如模拟用户输入、控制窗口、处理文件和目录等。在本文中,作者利用win32api模块中的mouse_event和keybd_event函数实现了对鼠标点击、移动以及键盘按键的模拟操作,这对于自动化测试、脚本编写以及需要自动交互的应用场景尤为实用。 用户界面自动化(UI Automation) , 用户界面自动化是一种软件测试方法和技术,旨在通过编写脚本或程序代替人工操作,实现对应用程序用户界面的各种元素(如按钮、文本框、菜单等)进行自动化的点击、输入、验证等交互行为。在本文中,作者通过Python win32api模块模拟键盘和鼠标事件,从而实现在Windows环境下对用户界面的自动化控制,这是用户界面自动化的一种具体实践形式,常用于提高测试效率、减少重复工作并确保软件功能稳定可靠。
2023-06-07 19:00:58
54
转载
MemCache
...服务专注于完成特定的任务。这种架构允许团队独立开发、部署和扩展服务,提高了系统的灵活性和可维护性。在云原生环境中,微服务架构特别受欢迎,因为它能够更好地适应动态资源管理和弹性需求。 名词 , 云原生。 解释 , 云原生(Cloud Native)是指设计和构建在云基础设施上运行的应用程序,充分利用云服务的特性和优势。云原生应用通常具有高度的可扩展性、容错能力和自动化运维能力。这些应用往往采用微服务架构、容器化部署(如Docker)、持续集成/持续部署(CI/CD)流程、服务网格等技术,以实现快速迭代、高效交付和低成本运营。云原生技术使企业能够在云平台上构建、部署和管理现代应用程序和服务。
2024-09-02 15:38:39
38
人生如戏
Mahout
...布式计算是一种将计算任务分解并分配给多个计算节点进行并行处理的技术。在文中,分布式计算是Mahout运行的基础,通过Hadoop等框架,Mahout能够在多台计算机之间分配和执行任务,提高数据处理的效率和规模,适用于处理大规模数据集。 名词 , 机器学习。 解释 , 机器学习是一门研究如何使计算机自动从数据中学习规律,无需明确编程的学科。在文章中,机器学习通过Mahout实现,用于处理和分析实时数据流,提取有价值的信息,支持实时决策制定。它包括监督学习、无监督学习、强化学习等多种方法,能自动优化模型参数,提高分析的准确性和效率。
2024-09-06 16:26:39
59
月影清风
Sqoop
...p来完成一些数据迁移任务。哈哈,Sqoop这个名字一听就觉得挺酷的,对不?它就像个超级厉害的“中间人”,一边连着Hadoop那个大数据的世界,另一边又搭在传统的数据库上,两边都能玩得转! 说到Sqoop,它的主要功能就是从关系型数据库中抽取数据并导入到Hadoop生态系统中,或者反过来把Hadoop中的数据导出到关系型数据库里。对我来说,这简直就是个救星啊!毕竟我天天都要跟一堆 structured data(结构化数据)打交道,没有它,我的日子能过得下去才怪呢! 不过呢,事情并没有想象中那么顺利。话说有一次我用 Sqoop 做数据迁移的时候,发现了个让人挠头的问题——只要碰到某些特别的数据处理任务,作业就突然“罢工”了,也不知道是啥原因。这事儿可把我给整郁闷了,我都觉得自己的水平挺过关的了,没想到被一个看起来超简单的题目给绊住了,真是有点糗啊! 示例代码: bash sqoop import \ --connect jdbc:mysql://localhost:3306/mydatabase \ --username root \ --password mypassword \ --table employees \ --target-dir /user/hadoop/employees 这段代码看起来挺正常的,但我后来发现,当表中的数据量过大或者存在一些复杂的约束条件时,Sqoop就表现得不太友好。 --- 二、Sqoop作业失败的背后 接下来,让我们一起深入探讨一下这个问题。说实话,刚开始接触Sqoop那会儿,我对它是怎么工作的压根儿没弄明白,稀里糊涂的。我以为只要配置好连接信息,然后指定源表和目标路径就行了。但实际上,Sqoop并不是这么简单的工具。 当我第一次遇到作业失败的情况时,内心是崩溃的。屏幕上显示的错误信息密密麻麻,但仔细一看,其实都是些常见的问题。打个比方啊,Sqoop这家伙一碰到一些特别的符号,比如空格或者换行符,就容易“翻车”,直接给你整出点问题来。还有呢,有时候因为网络卡了一下,延迟太高,Sqoop就跟服务器说拜拜了,连接就这么断了,挺烦人的。 有一次,我在尝试将一张包含大量JSON字段的表导出到HDFS时,Sqoop直接报错了。我当时就在心里嘀咕:“为啥别的工具处理起来轻轻松松的事儿,到Sqoop这儿就变得这么棘手呢?”后来,我一咬牙,开始翻遍各种资料,想着一定要找出个解决办法来。 思考与尝试: 经过一番研究,我发现Sqoop默认情况下并不会对数据进行深度解析,这意味着如果数据本身存在问题,Sqoop可能无法正确处理。所以,为了验证这个假设,我又做了一次测试。 bash sqoop import \ --connect jdbc:mysql://localhost:3306/mydatabase \ --username root \ --password mypassword \ --table problematic_table \ --fields-terminated-by '\t' \ --lines-terminated-by '\n' 这次我特意指定了分隔符和换行符,希望能避免之前遇到的那些麻烦。嘿,没想到这次作业居然被我搞定了!中间经历了不少波折,不过好在最后算是弄懂了个中奥秘,也算没白费功夫。 --- 三、透明性的重要性 Sqoop到底懂不懂我的需求? 说到Sqoop的透明性,我觉得这是一个非常重要的概念。所谓的透明性嘛,简单来说,就是Sqoop能不能明白咱们的心思,然后老老实实地按咱们想的去干活儿,不添乱、不出错!显然,在我遇到的这些问题中,Sqoop的表现并不能让人满意。 举个例子来说,假设你有一个包含多列的大表,其中某些列的数据类型比较复杂(例如数组、嵌套对象等)。在这种情况下,Sqoop可能会因为无法正确识别这些数据类型而失败。更糟糕的是,它并不会给出明确的提示,而是默默地报错,让你一头雾水。 为了更好地应对这种情况,我在后续的工作中加入了更多的调试步骤。比如说啊,你可以先用describe这个命令去看看表的结构,确保所有的字段都乖乖地被正确识别了;接着呢,再用--check-column这个选项去瞅一眼,看看有没有重复的记录藏在里面。这样一来,虽然增加了工作量,但至少能减少不必要的麻烦。 示例代码: bash sqoop job --create my_job \ -- import \ --connect jdbc:mysql://localhost:3306/mydatabase \ --username root \ --password mypassword \ --table employees \ --check-column id \ --incremental append \ --last-value 0 这段代码展示了如何创建一个增量作业,用于定期更新目标目录中的数据。通过这种方式,可以有效避免一次性加载过多数据带来的性能瓶颈。 --- 四、总结与展望 与Sqoop共舞 总的来说,尽管Sqoop在某些场景下表现得不尽人意,但它依然是一个强大的工具。通过不断学习和实践,我相信自己能够更加熟练地驾驭它。未来的计划里,我特别想试试一些更酷的功能,比如说用Sqoop直接搞出Avro文件,或者把Spark整进来做分布式计算,感觉会超级带劲! 最后,我想说的是,技术这条路从来都不是一帆风顺的。遇到困难并不可怕,可怕的是我们因此放弃努力。正如那句话所说:“失败乃成功之母。”只要保持好奇心和求知欲,总有一天我们会找到属于自己的答案。 如果你也有类似的经历,欢迎随时交流!我们一起进步,一起成长! --- 希望这篇文章对你有所帮助,如果有任何疑问或者想要了解更多细节,请随时告诉我哦!
2025-03-22 15:39:31
93
风中飘零
转载文章
...时,Docker 会自动执行该目录下所有扩展名为 .sh、.sql 和 .sql.gz 的文件。这个机制允许用户在容器启动过程中自定义数据库初始化脚本,用以填充数据或执行其他数据库初始化任务。
2023-05-29 17:31:06
101
转载
转载文章
...c -> 打开任务管理器 Ctrl + Shift -> 在提供了多个键盘布局时切换键盘布局 Ctrl + 空格键 -> 打开或关闭中文输入法编辑器 (IME) 二、alt、shift相关 Alt + Tab -> 在打开的应用之间切换 Alt + F4 -> 关闭活动项,或者退出活动应用 Shift + F10 -> 显示选定项的快捷菜单 Shift 加任意箭头键 -> 在窗口中或桌面上选择多个项目,或者在文档中选择文本 Shift + Delete -> 无需先将选定项移动到“回收站”,直接将其删除 三、win(windows徽标的简称)相关 win + L -> 锁定电脑 win + D -> 显示和隐藏桌面 win + E -> 打开“文件资源管理器” win + I -> 打开“设置” win + M -> 最小化所有窗口 win + Shift + M -> 将最小化的窗口还原到桌面 win + P -> 选择演示显示模式 win + K -> 打开“连接”快速操作 win + L -> 锁定电脑或切换帐户 win + Tab -> 打开“任务视图” win + R -> 打开运行窗口 四、其他快捷键 End -> 显示活动窗口的底端 Home -> 显示活动窗口的顶端 F11 -> 最大化或最小化活动窗口 五、运行窗口快捷命令 先输入win+ R 本小结转载地址:https://blog.csdn.net/qq_42402854/article/details/93162387 1.calc:启动计算器 2.appwiz.cpl:程序和功能 3.certmgr.msc:证书管理实用程序 4.charmap:启动字符映射表 5.chkdsk.exe:Chkdsk磁盘检查(管理员身份运行命令提示符) 6.cleanmgr: 打开磁盘清理工具 7.cliconfg:SQL SERVER 客户端网络实用工具 8.cmstp:连接管理器配置文件安装程序 9.cmd:CMD命令提示符 10.自动关机命令 Shutdown -s -t 600:表示600秒后自动关机 shutdown -a :可取消定时关机 Shutdown -r -t 600:表示600秒后自动重启 rundll32 user32.dll,LockWorkStation:表示锁定计算机 11.colorcpl:颜色管理,配置显示器和打印机等中的色彩 12.CompMgmtLauncher:计算机管理 13.compmgmt.msc:计算机管理 14.credwiz:备份或还原储存的用户名和密码 15.comexp.msc:打开系统组件服务 16.control:控制面版 17.dcomcnfg:打开系统组件服务 18.Dccw:显示颜色校准 19.devmgmt.msc:设备管理器 20.desk.cpl:屏幕分辨率 21.dfrgui:优化驱动器 Windows 7→dfrg.msc:磁盘碎片整理程序 22.dialer:电话拨号程序 23.diskmgmt.msc:磁盘管理 24.dvdplay:DVD播放器 25.dxdiag:检查DirectX信息 26.eudcedit:造字程序 27.eventvwr:事件查看器 28.explorer:打开资源管理器 29.Firewall.cpl:Windows防火墙 30.FXSCOVER:传真封面编辑器 31.fsmgmt.msc:共享文件夹管理器 32.gpedit.msc:组策略 33.hdwwiz.cpl:设备管理器 34.inetcpl.cpl:Internet属性 35.intl.cpl:区域 36.iexpress:木马捆绑工具,系统自带 37.joy.cpl:游戏控制器 38.logoff:注销命令 39.lusrmgr.msc:本地用户和组 40.lpksetup:语言包安装/删除向导,安装向导会提示下载语言包 41.lusrmgr.msc:本机用户和组 42.main.cpl:鼠标属性 43.mmsys.cpl:声音 44.magnify:放大镜实用程序 45.mem.exe:显示内存使用情况(如果直接运行无效,可以先管理员身份运行命令提示符,在命令提示符里输入mem.exe>d:a.txt 即可打开d盘查看a.txt,里面的就是内存使用情况了。当然什么盘什么文件名可自己决定。) 46.MdSched:Windows内存诊断程序 47.mmc:打开控制台 48.mobsync:同步命令 49.mplayer2:简易widnows media player 50.Msconfig.exe:系统配置实用程序 51.msdt:微软支持诊断工具 52.msinfo32:系统信息 53.mspaint:画图 54.Msra:Windows远程协助 55.mstsc:远程桌面连接 56.NAPCLCFG.MSC:客户端配置 57.ncpa.cpl:网络连接 58.narrator:屏幕“讲述人” 59.Netplwiz:高级用户帐户控制面板,设置登陆安全相关的选项 60.netstat : an(TC)命令检查接口 61.notepad:打开记事本 62.Nslookup:IP地址侦测器 63.odbcad32:ODBC数据源管理器 64.OptionalFeatures:打开“打开或关闭Windows功能”对话框 65.osk:打开屏幕键盘 66.perfmon.msc:计算机性能监测器 67.perfmon:计算机性能监测器 68.PowerShell:提供强大远程处理能力 69.printmanagement.msc:打印管理 70.powercfg.cpl:电源选项 71.psr:问题步骤记录器 72.Rasphone:网络连接 73.Recdisc:创建系统修复光盘 74.Resmon:资源监视器 75.Rstrui:系统还原 76.regedit.exe:注册表 77.regedt32:注册表编辑器 78.rsop.msc:组策略结果集 79.sdclt:备份状态与配置,就是查看系统是否已备份 80.secpol.msc:本地安全策略 81.services.msc:本地服务设置 82.sfc /scannow:扫描错误并复原/windows文件保护 83.sfc.exe:系统文件检查器 84.shrpubw:创建共享文件夹 85.sigverif:文件签名验证程序 86.slui:Windows激活,查看系统激活信息 87.slmgr.vbs -dlv :显示详细的许可证信息 88.snippingtool:截图工具,支持无规则截图 89.soundrecorder:录音机,没有录音时间的限制 90.StikyNot:便笺 91.sysdm.cpl:系统属性 92.sysedit:系统配置编辑器 93.syskey:系统加密,一旦加密就不能解开,保护系统的双重密码 94.taskmgr:任务管理器(旧版) 95.TM任务管理器(新版) 96.taskschd.msc:任务计划程序 97.timedate.cpl:日期和时间 98.UserAccountControlSettings用户账户控制设置 99.utilman:辅助工具管理器 100.wf.msc:高级安全Windows防火墙 101.WFS:Windows传真和扫描 102.wiaacmgr:扫描仪和照相机向导 103.winver:关于Windows 104.wmimgmt.msc:打开windows管理体系结构(WMI) 105.write:写字板 106.wscui.cpl:操作中心 107.wuapp:Windows更新 108.wscript:windows脚本宿主设置 六、小结 键盘快捷键会大大提高使用效率,让你在外行面前显得更酷。持续更新中…感谢点赞,评论与转发,谢谢! 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_44168588/article/details/121208530。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-01 13:38:26
91
转载
转载文章
...”支撑百万订单运营到自动化运维,并筹备同城异地容灾体系。 3)规模期(2015年至2017年):2015年7至8月,日均订单量从200万翻倍,以往积压的问题都暴露出来,技术架构面临大考验,坚定了架构上云的方案,团队扩展至1000人,架构要承载数百万量级业务时,出现峰值成本、灾备切换、IDC远程运维等种种挑战,全面战略转型采用“IDC+云计算”的混合云架构。在2016年12月25日圣诞节日订单量迎来前所未有的900万单,因此在技术架构上探索多活部署等创新性研发。 为什么选择架构转型上云?据饿了么CTO张雪峰先生所说,技术架构从IDC经典模式发展至混合云模式,主要原因是三个关键因素让管理层下定决心上云: 1) 脉冲计算:从技术架构配套业务发展分析,网络订餐业务具有明显的“脉冲计算”特征,在每日上午10:00至13:00、晚间16:00至19:00业务高峰值出现,而其他时间则业务量很低,暑假是业务高峰季,2016年5.17大促,饿了么第一次做“秒杀”,一秒订单15000笔,巨大的波峰波谷计算差异,引发了自建数据中心容量不可调和的两难处境,如果大规模投入服务器满足6小时的高峰业务量,则其余18个小时的业务低谷计算资源闲置,若满足平均业务量,则无法跟上业务快速发展节奏,落后于竞争对手;搞电商大促时,计算资源投入巨大,大促之后计算峰值下降,采用自建机房利用率仅10%,所以技术团队摸索出用云计算扛营销大促峰值的新模式,采用混合云架构满足 “潮汐业务”峰值计算,阿里云海量云计算资源弹性随需满足巨大的脉冲计算力缺口,这与每年“双11” 淘宝引入阿里云形成全球最大混合云架构具有异曲同工的创新价值。 2) 数据量爆炸:伴随饿了么近五年业务量呈几何级数的爆发式发展,数据量增速更加令人吃惊,是业务量增速的5倍,每日增量数据接近100TB,2015年短短2个月内业务量增长10倍,数据量增长了50倍,上海主生产机房不堪重负。30GB的DDoS攻击对业务系统造成较大风险,上云成为承载大数据、抗网络攻击的好方法。 3) 高可用性挑战:众所周知,IDC自建系统运维要承担从底层硬件到上层应用的“全栈运维”运营能力与维修能力,当2015年夏天上海数据中心故障发生,主核心交换机宕机时,备核心交换机Bug同时被触发,从事故发生到硬件厂商携维修设备打车赶往现场维修的整个过程中,饥饿的消费者无法订餐吃饭,技术团队第一次经历业务中断而束手无策,才下定决心大笔投入混合云灾备的建设,“吃一堑,长一智”,持续向淘宝学习电商云生产与灾备架构,以自动化运维替代人肉运维,从灾备向多活演进,成为饿了么企业架构转型的必经之路。 4) 大数据精益运营:不论网络打车还是网络订餐,共享服务平台脱颖而出的关键成功要素是智能调度算法,以大数据训练算法提升调度效率,饿了么在高峰时段内让百万“骑士”(送餐快递员)完成更多订单是算法持续优化的目标,而这背后隐藏着诸多复杂因素,包括考虑餐厅、骑士、消费者三者的实时动态位置关系,把新订单插入现有“骑士”的行进路线中,估计每家餐厅出餐时间,每个骑手的行进速度、道路熟悉程度各不相同,新老消费者获客成本、高价低价订单的优先级皆不相同。种种考量因素合并到一起,对于人类调度员来说,每天中午和晚上的高峰都是巨大的挑战。以上海商城路配送站为例,一个调度员每6秒钟就要调度1单,他需要考虑骑手已有订单量、路线熟悉度等。因此可以说,这份工作已经完全不适合人类。但对人工智能而言,阿里云ET则非常擅长处理这类超复杂、大规模、实时性要求高的“非人”问题。 饿了么是中国最大的在线外卖和即时配送平台,日订单量900万单、180万骑手、100万家餐饮店,既是史无前例的计算存储挑战,又是人无我有的战略发展机遇。饿了么携手阿里云人工智能团队,通过海量数据训练优化全球最大实时智能调度系统。在基础架构层,云计算解决弹性支撑业务量波动的基础生存问题,在数据智能层,利用大数据训练核心调度算法、提升餐饮店的商业价值,才是业务决胜的“技术神器”。 在针对大数据资源的“专家+机器”运营分析中,不断发现新的特征: 1) 区域差异性:饿了么与阿里云联合研发小组测试中发现有2个配送站点出现严重超时问题。后来才知道:2个站点均在成都,当地人民喜欢早、中餐一起吃,高峰从11点就开始了。习惯了北上广节奏的ET到成都就懵了。据阿里云人工智能专家闵万里分析:“不存在一套通用的算法可以适配所有站点,所以我们需要让ET自己学习或者向人类运营专家请教当地的风土人情、饮食习惯”。除此之外,饿了么覆盖的餐厅不仅有高大上的连锁店,还有大街小巷的各类难以琢磨的特色小吃,难度是其他智能调度业务的数倍。 2) 复杂路径规划:吃一口热饭有多难?送餐路径规划比驾车出行路径规划难度更高,要考虑“骑士”地图熟悉程度、天气状况、拼单效率、送餐顺序、时间对客户满意度影响、送达写字楼电梯等待时间等各种实际情况,究竟ET是如何实现智能派单并确保效率最优的呢?简单来说,ET会将配送站新接订单插入到每个骑手已有的任务中,重新规划一轮最短配送路径,对比哪个骑手新增时间最短。为了能够准确预估新增时间,ET需要知道全国100万家餐厅的出餐速度、超过180万骑手各自的骑行速度、每个顾客坐电梯下楼取餐的时间。一般来说,餐厅出餐等待时间占到了整个送餐时间的三分之一。ET要想提高骑手效率,必须准确预估出餐时间以减少骑手等待,但又不能让餐等人,最后饭凉了。饿了么旗下蜂鸟配送“准时达”服务单均配送时长缩短至30分钟以内。 3) 天气特殊影响:天气等环境因素对送餐响应时间影响显著,要想计算骑手的送餐路程时间,ET需要知道每个骑手在不同区域、不同天气下的送餐速度。如果北京雾霾,ET能看见吗?双方研发团队为ET内置了恶劣天气的算法模型。通常情况下,每逢恶劣天气,外卖订单将出现大涨,对应的餐厅出餐速度和骑手骑行速度都将受到影响,这些ET都会考虑在内。如果顾客在下雪天点个火锅呢?ET也知道,将自动识别其为大单,锁定某一个骑手专门完成配送。 4) 餐饮营销顾问:饿了么整体业务涉及C端(消费者)、B端(餐饮商户)、D端(物流配送)、BD端(地推营销),以往区域业务开拓考核新店数量,现在会重点关注餐饮外卖“健康度”,对于营业额忽高忽低、在线排名变化的餐饮店,都需要BD专家根据大数据帮助餐饮店经营者找出原因并给出解决建议,避免新店外卖刚开始就淹没在区域竞争中,销量平平的新店会离开平台,通过机器学习把餐饮运营专家的经验、以及人看不到的隐含规律固化下来,以数据决策来发现餐饮店经营问题、产品差异定位,让餐饮商户尝到甜头,才愿意继续经营。举个例子,饿了么员工都喜欢楼下一家鸡排店的午餐,但大数据发现这家店的外卖营收并不如实体店那么火爆,9元“鸡排+酸梅汁”是所有人都喜欢的爆款产品,可为什么同样菜品遭遇“线下火、线上冷”呢?数据预警后,BD顾问指出线上外卖鸡排产品没有写明“含免费酸梅汁一杯”的关键促销内容,导致大多数外卖消费者订一份鸡排一杯酸梅汁,却收到一份鸡排两杯酸梅汁,体验自然不好。 饿了么是数据驱动、智能算法调度的自动化生活服务平台,通过O2O数据的在线实时分析,与阿里云人工智能团队不断改进算法,以“全局最优”取代“局部最优”,保证平台上所有餐饮商户都能享受到数据智能的科技红利。 “上云用数”的外部价值诸多,从饿了么内部反馈来看,上云不仅没有让运维团队失去价值,反而带来了“云原生应用”(Cloud Native Application)、“云上多活”、“CDN云端压测”、“安全风控一体化”等创新路径与方案,通过敏捷基础设施(IaaS)、微服务架构(PaaS和SaaS)、持续交付管理、DevOps等云最佳实践,摆脱“人肉”支撑的种种困境,进而实现更快的上线速度、细致的故障探测和发现、故障时能自动隔离、故障时能够自动恢复、方便的水平扩容。饿了么CTO张雪峰先生说:“互联网平台型组织,业务量涨数倍,企业人数稳定降低,才是技术驱动的正确商业模式。” 在不久的将来,你每天订餐、出行、娱乐、工作留下的大数据,会“驯养”出无处不在、无所不能的智能机器人管家,家庭助理帮你点菜,无人机为你送餐,聊天机器人接受你的投诉……当然这个无比美妙的“未来世界”背后,皆有阿里云的数据智能母体“ET”。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_34126557/article/details/90592502。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-31 14:48:26
343
转载
转载文章
...文章,其中详细解读了自动化特征工程、深度学习集成以及强化学习在解决实际问题中的新进展。他强调,尽管Python在数据预处理和模型训练上的便捷性无可比拟,但理解底层原理并熟悉多种工具和技术同样至关重要。 与此同时,Kaggle平台举办的各类数据科学竞赛持续激发全球开发者使用Python进行机器学习实践的热情。例如,在最近结束的一项医疗预测挑战赛中,冠军团队就成功运用Python构建了基于深度学习和传统统计方法相结合的混合模型,展示了Python在复杂预测任务中的强大应用潜力。 对于希望进一步深化Python机器学习技能的开发者来说,可以关注一些优质的在线课程与社区资源,如Coursera上吴恩达教授的专项课程,或是定期查阅PyData、NumFOCUS等组织发布的最新研究成果和技术动态。通过不断跟进行业前沿知识,并结合实战案例进行演练,将有助于开发者更好地从单纯编程角色向机器学习从业人员转型。
2023-07-11 10:04:06
92
转载
转载文章
...实践,在C中可以通过自动化等手段高频地去获取产品反馈并响应反馈的过程 简单的来说,持续集成就是持续不断地(一天多次)将代码合并(集成)到主干源码仓库,让产品可以快速迭代,同时保持高质量 代码每次通过集成到主干之前,必须通过自动化测试,以便快速发现和定位错误 持续集成并不能消除错误,而是让它们非常容易发现和改正 优点 缩减开发的周期,快速迭代版本 (尽早的持续集成,尽早进入迭代之中,尽早的暴露出问题,尽早解决,尽量在规定的时间内完成任务)(四尽早一尽量) 自动化流水线操作带来的高效 (CI的精髓在于持续,持续意味着自动化) (自动化验证代码变更的过程,可以在软件开发的早期发现缺陷和与其他代码、组件的集成问题) 随时可部署 (高频率的集成可以尽可能地保证随时部署上线,缩短开发复杂软件的市场交付时间) 极大程度避免低级错误 (减少大量内容合并到主干分支的请看看,避免代码合并冲突和无法预料的行为) 低级错误:编译错误,安装问题,接口问题,性能问题等 难点 迁移遗留代码到现有CI系统,需要的投入通常爱预料之外 在文化和组织上如果没有采用敏捷原则或DecOps的工作方式,那么很可能没有持续不断的提交,那么CI的存在意义不大 随着业务增长、工具的更替、技术的演进。CI系统也必然随之改动,往往会导致阶段性的不稳定和人力物力的耗费 如果CI的基本设定不到位,开发流程将会增加特别的开销 注意点 CI流程的触发方式 跟踪触发式:在每次提交到源码版本管理系统时触发 计划任务:预配置好的计划 手动:无论是通过CI服务器的管理界面还是脚本,用户可以手工执行CI工作流 代码审核 可在持续集成服务器里使用代码分析工具(例如Sonar)来执行自动代码审查 自动代码审查通过后,可发起一个人工代码审查,揪出那些自动审查无法找出的问题,即验证业务需求,架构问题,代码是否可读,以及是否易于扩展。 可灵活配置代码审核策略,例如:如果某些人没有审查代码便阻止对主干分支的任何提交。 最常用的工具是Gerrit 持续交付 简述 持续交付简称CD或CDE,是一种能够使得软件在较短的循环中可靠的发布的软件工程方法 与持续集成相比,持续交付的重点在于 交付,其核心对象不在于代码,而在于可交付的产物。 由于持续集成仅仅针对于新旧代码的集成过程执行来了一定的测试,其变动到持续交付后还需要一些额外的流程 持续交付可以看作为是持续集成的下一步,它强调的是,不敢怎么更新,软件是随时随快可以交付的 有图可看出,持续交付在持续集成的基础上,将集成后的代码部署到更贴近真实的运行环境的[类生产环境]中 目的 持续交付永爱确保让代码能够快速、安全的部署到产品环境中,它通过将每一次改动都会提交到一个模拟产品环境中,使用严格的自动化测试,确保业务应用和服务能符合预期 好处 持续交付和持续集成的好处非常相似: 快速发布。能够应对业务需求,并更快地实现软件价值 编码→测试→上线→交付的频繁迭代周期缩短,同时获得迅速反馈 高质量的软件发布标准。整个交付过程标准化、可重复、可靠 整个交付过程进度可视化,方便团队人员了解项目完成度 更先进的团队协作方式。从需求分析、产品的用户体验到交互、设计、开发、测试、运维等角色密切协作,相比于传统的瀑布式软件团队,更少浪费 持续部署 简述 持续部署 意味着:通过自动化部署的手段将软件功能频繁的进行交付 持续部署是持续交付的下一步,指的是代码通过审批以后,自动化部署到生产环境。 持续部署是持续交付的最高阶段,这意味着,所有通过了一系列的自动化测试的改动都将自动部署到生产环境。它也可以被称为“Continuous Release” 持续化部署的目标是:代码在任何时候都是可部署的,可以进入生产阶段。 持续部署的前提是能自动化完成测试、构建、部署等步骤 注:持续交付不等于持续集成 与持续交付以及持续集成相比,持续部署强调了通过 automated deployment 的手段,对新的软件功能进行集成 目标 持续部署的目标是:代码在任何时刻都是可部署的,可以进入生产阶段 有很多的业务场景里,一种业务需要等待另外的功能特征出现才能上线,这是的持续部署成为不可能。虽然使用功能切换能解决很多这样的情况,但并不是没每次都会这样。所以,持续部署是否适合你的公司是基于你们的业务需求——而不是技术限制 优点 持续部署主要的好处是:可以相对独立地部署新的功能,并能快速地收集真实用户的反馈 敏捷开发 简述 敏捷开发就是一种以人为核心、迭代循环渐进的开发方式。 在敏捷开发中,软件仙姑的构建被切分成多个子项目,各个子项目的成果都经过测试,具备集成和可运行的特征。 简单的说就是把一个大的项目分为多个相互联系,但也可以独立运行的小项目,并分别完成,在此过程中软件一直处于可使用状态 注意事项 敏捷开的就是一种面临迅速变化的需求快速开发的能力,要注意一下几点: 敏捷开发不仅仅是一个项目快速完成,而是对整个产品领域需求的高效管理 敏捷开发不仅仅是简单的快,而是短周期的不断改进、提高和调整 敏捷开发不仅仅是一个版本只做几个功能,而是突出重点、果断放弃当前的非重要点 敏捷开发不仅仅是随时增加需求,而是每个迭代周期对需求的重新审核和排序 如何进行敏捷开发 1、组织建设 也就是团队建设,建立以产品经理为主导,包含产品、设计、前后台开发和测试的team,快速进行产品迭代开发;扁平化的团队管理,大家都有共同目标,更有成就感; 2、敏捷制度 要找准适合自身的敏捷开发方式,主要是制定一个完善的效率高的设计、开发、测试、上线流程,制定固定的迭代周期,让用户更有期待; 3、需求收集 这个任何方式下都需要有,需求一定要有交互稿,评审通过后,一定要确定功能需求列表、责任人、工作量、责任人等; 4、工具建设 是指能够快速完成某项事情的辅助工具,比如开发环境的一键安装,各种底层的日志、监控等平台,发布、打包工具等; 5、系统架构 略为超前架构设计:支持良好的扩容性和可维护性;组件化基础功能模块:代码耦合度低,模块间的依赖性小;插件化业务模块:降低营销活动与业务耦合度,自升级、自维护;客户端预埋逻辑;技术预研等等; 6、数据运营与灰度发布 点击率分析、用户路径分析、渠道选择、渠道升级控制等等 原则、特点和优势 敏捷开发技术的12个原则: 1.我们最优先要做的是通过尽早的、持续的交付有价值的软件来使客户满意。 2.即使到了开发的后期,也欢迎改变需求。 3.经常性地交付可以工作的软件,交付的间隔可以从几周到几个月,交付的时间间隔越短越好。 4.在整个项目开发期间,业务人员和开发人员必须天天都在一起工作。 5.围绕被激励起来的个人来构建项目。 6.在团队内部,最具有效果并且富有效率的传递信息的方法,就是面对面的交谈。 7.工作的软件是首要的进度度量标准。 8.敏捷过程提倡可持续的开发速度。 9.不断地关注优秀的技能和好的设计会增强敏捷能力。 10.简单使未完成的工作最大化。 11.最好的构架、需求和设计出自于自组织的团队。 12.每隔一定时间,团队会在如何才能更有效地工作方面进行反省,然后相应地对自己的行为进行调整。 特点: 个体和交互胜过过程和工具 可以工作的软件胜过面面俱到的文档 客户合作胜过合同谈判 响应变化胜过遵循计划 优势总结: 敏捷开发确实是项目进入实质开发迭代阶段,用户很快可以看到一个基线架构班的产品。敏捷注重市场快速反应能力,也即具体应对能力,客户前期满意度高 适用范围: 项目团队的人不能太多 项目经常发生变更 高风险的项目实施 开发人员可以参与决策 劣势总结: 敏捷开发注重人员的沟通 忽略文档的重要性 若项目人员流动太大,维护的时候很难 项目存在新手的比较多的时候,老员工会比较累 需要项目中存在经验较强的人,要不然大项目中容易遇到瓶颈问题 Open-falcon 简述 open-falcon是小米的监控系统,是一款企业级、高可用、可扩展的开源监控解决方案 公司用open-falcon来监控调度系统各种信息,便于监控各个节点的调度信息。在服务器安装了falcon-agent自动采集各项指标,主动上报 特点 强大灵活的数据采集 (自动发现,支持falcon-agent、snmp、支持用户主动push、用户自定义插件支持、opentsdb data model like(timestamp、endpoint、metric、key-value tags) ) 水平扩展能力 (支持每个周期上亿次的数据采集、告警判定、历史数据存储和查询 ) 高效率的告警策略管理 (高效的portal、支持策略模板、模板继承和覆盖、多种告警方式、支持callback调用 ) 人性化的告警设置 (最大告警次数、告警级别、告警恢复通知、告警暂停、不同时段不同阈值、支持维护周期 ) 高效率的graph组件 (单机支撑200万metric的上报、归档、存储(周期为1分钟) ) 高效的历史数据query组件 (采用rrdtool的数据归档策略,秒级返回上百个metric一年的历史数据 ) dashboard(面向用户的查询界面,可以看到push到graph中的所有数据,并查看数据发展趋势 ) (对维度的数据展示,用户自定义Screen) 高可用 (整个系统无核心单点,易运维,易部署,可水平扩展) 开发语言 (整个系统的后端,全部golang编写,portal和dashboard使用python编写。 ) 监控范围 Open-Falcon支持系统基础监控,第三方服务监控,JVM监控,业务应用监控 基础监控指的是Linux系统的指标监控,包括CPU、load、内存、磁盘、IO、网络等, 这些指标由Openfalcon的agent节点直接支持,无需插件 第三方服务监控指的是一些常见的服务监控,包括Mysql、Redis、Nginx等 OpenFalcon官网提供了很多第三方服务的监控插件,也可以自己实现插件,定义采集指标。而采集到的指标,也是通过插件先发送给agent,再由agent发送到OpenFalcon。 JVM监控主要通过插件完成,插件通过JVM开放的JMX通信端口,获取到JVM参数指标,并推送到agent节点,再由agent发送到OpenFalcon。 业务应用监控就是监控企业自主开发的应用服务 主要通过插件完成,插件通过JVM开放的JMX通信端口,获取到JVM参数指标,并推送到agent节点,再由agent发送到OpenFalcon。 数据流向 常见的OpenFalcon包含transfer、hbs、agent、judge、graph、API几个进程 以下是各个节点的数据流向图,主数据流向是agent -> transfer -> judge/graph: SNMP 简述 SNMP:简单网络管理协议,是TCP/IP协议簇 的一个应用层协议,由于SNMP的简单性,在Internet时代得到了蓬勃的发展 ,1992年发布了SNMPv2版本,以增强SNMPv1的安全性和功能。现在,已经有了SNMPv3版本(它对网络管理最大的贡献在于其安全性。增加了对认证和密文传输的支持 )。 一套完整的SNMP系统主要包括:管理信息库(MIB)、管理信息结构(SMI)和 SNMP报文协议 为什么要用SNMP 作为运维人员,我们很大一部分的工作就是为了保证我们的网络能够正常、稳定的运行。因此监控,控制,管理各种网络设备成了我们日常的工作 优点和好处 优点: 简单易懂,部署的开销成本也小 ,正因为它足够简单,所以被广泛的接受,事实上它已经成为了主要的网络管理标准。在一个网络设备上实现SNMP的管理比绝大部分其他管理方式都简单直接。 好处: 标准化的协议:SNMP是TCP/IP网络的标准网络管理协议。 广泛认可:所有主流供应商都支持SNMP。 可移植性:SNMP独立于操作系统和编程语言。 轻量级:SNMP增强对设备的管理能力的同时不会对设备的操作方式或性能产生冲击。 可扩展性:在所有SNMP管理的设备上都会支持相同的一套核心操作集。 广泛部署:SNMP是最流行的管理协议,最为受设备供应商关注,被广泛部署在各种各样的设备上。 MIB、SMI和SNMP报文 MIB 管理信息库MIB:任何一个被管理的资源都表示成一个对象,称为被管理的对象。 MIB是被管理对象的集合。 它定义了被管理对象的一系列属性:对象的名称、对象的访问权限和对象的数据类型等。 每个SNMP设备(Agent)都有自己的MIB。 MIB也可以看作是NMS(网管系统)和Agent之间的沟通桥梁。 MIB文件中的变量使用的名字取自ISO和ITU管理的对象表示符命名空间,他是一个分级数的结构 SMI SMI定义了SNNMP框架多用信息的组织、组成和标识,它还未描述MIB对象和表述协议怎么交换信息奠定了基础 SMI定义的数据类型: 简单类型(simple): Integer:整型是-2,147,483,648~2,147,483,647的有符号整数 octet string: 字符串是0~65535个字节的有序序列 OBJECT IDENTIFIER: 来自按照ASN.1规则分配的对象标识符集 简单结构类型(simple-constructed ): SEQUENCE 用于列表。这一数据类型与大多数程序设计语言中的“structure”类似。一个SEQUENCE包括0个或更多元素,每一个元素又是另一个ASN.1数据类型 SEQUENCE OF type 用于表格。这一数据类型与大多数程序设计语言中的“array”类似。一个表格包括0个或更多元素,每一个元素又是另一个ASN.1数据类型。 应用类型(application-wide): IpAddress: 以网络序表示的IP地址。因为它是一个32位的值,所以定义为4个字节; counter:计数器是一个非负的整数,它递增至最大值,而后回零。在SNMPv1中定义的计数器是32位的,即最大值为4,294,967,295; Gauge :也是一个非负整数,它可以递增或递减,但达到最大值时保持在最大值,最大值为232-1; time ticks:是一个时间单位,表示以0.01秒为单位计算的时间; SNMP报文 SNMP规定了5种协议数据单元PDU(也就是SNMP报文),用来在管理进程和代理之间的交换。 get-request操作:从代理进程处提取一个或多个参数值。 get-next-request操作:从代理进程处提取紧跟当前参数值的下一个参数值。 set-request操作:设置代理进程的一个或多个参数值。 get-response操作:返回的一个或多个参数值。这个操作是由代理进程发出的,它是前面三种操作的响应操作。 trap操作:代理进程主动发出的报文,通知管理进程有某些事情发生。 操作命令 SNMP协议之所以易于使用,这是因为它对外提供了三种用于控制MIB对象的基本操作命令。它们是:Get、Set 和 Trap。 Get:管理站读取代理者处对象的值 Set:管理站设置代理者处对象的值 Trap: 代理者主动向管理站通报重要事件 SLA 简述 SLA(服务等级协议):是关于网络服务供应商和客户之间的一份合同,其中定义了服务类型、服务质量和客户付款等术语 一个完整的SLA同时也是一个合法的文档,包括所涉及的当事人、协定条款(包含应用程序和支持的服务)、违约的处罚、费用和仲裁机构、政策、修改条款、报告形式和双方的义务等。同样服务提供商可以对用户在工作负荷和资源使用方面进行规定。 KPI 简述 KPI(关键绩效指标):是通过对组织内部流程的输入端、输出端的关键参数进行设置、取样、计算、分析,衡量流程绩效的一种目标式量化管理指标,是把企业的战略目标分解为可操作的工作目标的工具,是企业绩效管理的基础。 KPI可以是部门主管明确部门的主要责任,并以此为基础,明确部门人员的业绩衡量指标,建立明确的切实可行的KPI体系,是做好绩效管理的关键。 KPI(关键绩效指标)是用于衡量工作人员工作绩效表现的量化指标,是绩效计划的重要组成部分 转载于:https://www.cnblogs.com/woshinideyugegea/p/11242034.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/anqiongsha8211/article/details/101592137。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-19 16:00:05
45
转载
转载文章
...基于容器技术实现计算任务调度平台、保持团队技术先进性等。 CI/CD提升研发效率 为什么容器技术适合CI/CD CI/CD是DevOps的关键组成部分,DevOps是一套软件工程的流程,用于持续提升软件开发效率与软件交付质量。DevOps流程来源于制造业的精益生产理念,在这个领域的领头羊是丰田公司,《丰田套路》这本书总结丰田公司如何通过PDCA(Plan-Do-Check-Act)方法实施持续改进。PDCA通常也称为PDCA循环,PDCA实施过程简要描述为:确定目标状态、分析当前状态、找出与目标状态的差距、制定实施计划、实施并总结、开始下一个PDCA过程。 DevOps基本也是这么一个PDCA流程循环,很容易认知到PDCA过程中效率是关键,同一时间段内,实施更多数量的PDCA过程,收益越高。在软件开发领域的DevOps流程中,各种等待(等待编译、等待打包、等待部署等)、各种中断(部署失败、机器故障)是影响DevOps流程效率的重要因素。 容器技术出来之后,将容器技术应用到DevOps场景下,可以从技术手段消除DevOps流程中的部分等待与中断,从而大幅度提升DevOps流程中CI/CD的效率。 容器的OCI标准定义了容器镜像规范,容器镜像包与传统的压缩包(zip/tgz等)相比有两个关键区别点:1)分层存储;2)打包即部署。 分层存储可以极大减少镜像更新时候拉取镜像包的时间,通常应用程序更新升级都只是更新业务层(如Java程序的jar包),而镜像中的操作系统Lib层、运行时(如Jre)层等文件不会频繁更新。因此新版本镜像实质有变化的只有很小的一部分,在更新升级时候也只会从镜像仓库拉取很小的文件,所以速度很快。 打包即部署是指在容器镜像制作过程包含了传统软件包部署的过程(安装依赖的操作系统库或工具、创建用户、创建运行目录、解压、设置文件权限等等),这么做的好处是把应用及其依赖封装到了一个相对封闭的环境,减少了应用对外部环境的依赖,增强了应用在各种不同环境下的行为一致性,同时也减少了应用部署时间。 基于容器镜像的这些优势,容器镜像用到CI/CD场景下,可以减少CI/CD过程中的等待时间,减少因环境差异而导致的部署中断,从而提升CI/CD的效率,提升整体研发效率。 CI/CD的关键诉求与挑战 快 开发人员本地开发调试完成后,提交代码,执行构建与部署,等待部署完成后验证功能。这个等待的过程尽可能短,否则开发人员工作容易被打断,造成后果就是效率降低。如果提交代码后几秒钟就能够完成部署,那么开发人员几乎不用等待,工作也不会被打断;如果需要好几分钟或十几分钟,那么可以想象,这十几分钟就是浪费了,这时候很容易做点别的事情,那么思路又被打断了。 所以构建CI/CD环境时候,快是第一个需要考虑的因素。要达到快,除了有足够的机器资源免除排队等待,引入并行编译技术也是常用做法,如Maven3支持多核并行构建。 自定义流程 不同行业存在不同的行业规范、监管要求,各个企业有一套内部质量规范,这些要求都对软件交付流程有定制需求,如要求使用商用的代码扫描工具做安全扫描,如构建结果与企业内部通信系统对接发送消息。 在团队协同方面,不同的公司,对DevOps流程在不同团队之间分工有差异,典型的有开发者负责代码编写构建出构建物(如jar包),而部署模板、配置由运维人员负责;有的企业开发人员负责构建并部署到测试环境;有的企业开发人员直接可以部署到生产环境。这些不同的场景,对CI/CD的流程、权限管控都有定制需求。 提升资源利用率 OCI标准包含容器镜像标准与容器运行时标准两部分,容器运行时标准聚焦在定义如何将镜像包从镜像仓库拉取到本地并更新、如何隔离运行时资源这些方面。得益于分层存储与打包即部署的特性,容器镜像从到镜像仓库拉取到本地运行速度非常快(通常小于30秒,依赖镜像本身大小等因素),基于此可以实现按需分配容器运行时资源(cpu与内存),并限定单个容器资源用量;然后根据容器进程资源使用率设定弹性伸缩规则,实现自动的弹性伸缩。 这种方式相对于传统的按峰值配置资源方式,可以提升资源利用率。 按需弹性伸缩在体验与成本之间达成平衡 联动弹性伸缩 应用运行到容器,按需分配资源之后,理想情况下,Kubernetes的池子里没有空闲的资源。这时候扩容应用实例数,新扩容的实例会因资源不足调度失败。这时候需要资源池能自动扩容,加入新的虚拟机,调度新扩容的应用。 由于应用对资源的配比与Flavor有要求,因此新加入的虚拟机,应当是与应用所需要的资源配比与Flavor一致的。缩容也是类似。 弹性伸缩还有一个诉求点是“平滑”,对业务做到不感知,也称为“优雅”扩容/缩容。 请求风暴 上面提到的弹性伸缩一般是有计划或缓慢增压的场景,存在另外一种无法预期的请求风暴场景,这种场景的特征是无法预测、突然请求量增大数倍或数十倍、持续时间短。典型的例子如行情交易系统,当行情突变的时候,用户访问量徒增,持续几十分钟或一个小时。 这种场景的弹性诉求,要求短时间内能将资源池扩大数倍,关键是速度要快(秒级),否则会来不及扩容,系统已经被冲垮(如果无限流的话)。 目前基于 Virtual Kubelet 与云厂家的 Serverless 容器,理论上可以提供应对请求风暴的方案。不过在具体实施时候,需要考虑传统托管式Kubernetes容器管理平台与Serverless容器之间互通的问题,需要基于具体厂家提供的能力来评估。 基于容器技术实现计算调度平台 计算(大数据/AI训练等)场景的特征是短时间内需要大量算力,算完即释放。容器的环境一致性以及调度便利性适合这种场景。 技术选型 容器技术是属于基础设施范围,但是与传统虚拟化技术(Xen/KVM)比较,容器技术是应用虚拟化,不是纯粹的资源虚拟化,与传统虚拟化存在差异。在容器技术选型时候,需要结合当前团队在应用管理与资源管理的现状,对照容器技术与虚拟化技术的差异,选择最合适的容器技术栈。 什么是容器技术 (1)容器是一种轻量化的应用虚拟化技术。 在讨论具体的容器技术栈的时候,先介绍目前几种常用的应用虚拟化技术,当前有3种主流的应用虚拟化技术: LXC,MicroVM,UniKernel(LibOS)。 LXC: Linux Container,通过 Linux的 namespace/cgroups/chroot 等技术隔离进程资源,目前应用最广的docker就是基于LXC实现应用虚拟化的。 MicroVM: MicroVM 介于 传统的VM 与 LXC之间,隔离性比LXC好,但是比传统的VM要轻量,轻量体现在体积小(几M到几十M)、启动快(小于1s)。 AWS Firecracker 就是一种MicroVM的实现,用于AWS的Serverless计算领域,Serverless要求启动快,租户之间隔离性好。 UniKernel: 是一种专用的(特定编程语言技术栈专用)、单地址空间、使用 library OS 构建出来的镜像。UniKernel要解决的问题是减少应用软件的技术栈层次,现代软件层次太多导致越来越臃肿:硬件+HostOS+虚拟化模拟+GuestOS+APP。UniKernel目标是:硬件+HostOS+虚拟化模拟+APP-with-libos。 三种技术对比表: 开销 体积 启动速度 隔离/安全 生态 LXC 低(几乎为0) 小 快(等同进程启动) 差(内核共享) 好 MicroVM 高 大 慢(小于1s) 好 中(Kata项目) UniKernel 中 中 中 好 差 根据上述对比来看,LXC是应用虚拟化首选的技术,如果LXC无法满足隔离性要,则可以考虑MicroVM这种技术。当前社区已经在着手融合LXC与MicroVM这两种技术,从应用打包/发布调度/运行层面统一规范,Kubernetes集成Kata支持混合应用调度特性可以了解一下。 UniKernel 在应用生态方面相对比较落后,目前在追赶中,目前通过 linuxkit 工具可以在UniKernel应用镜像中使用docker镜像。这种方式笔者还未验证过,另外docker镜像运行起来之后,如何监控目前还未知。 从上述三种应用虚拟化技术对比,可以得出结论: (2)容器技术与传统虚拟化技术不断融合中。 再从规范视角来看容器技术,可以将容器技术定义为: (3)容器=OCI+CRI+辅助工具。 OCI规范包含两部分,镜像规范与运行时规范。简要的说,要实现一个OCI的规范,需要能够下载镜像并解压镜像到文件系统上组成成一个文件目录结构,运行时工具能够理解这个目录结构并基于此目录结构管理(创建/启动/停止/删除)进程。 容器(container)的技术构成就是实现OCI规范的技术集合。 对于不同的操作系统(Linux/Windows),OCI规范的实现技术不同,当前docker的实现,支持Windows与Linux与MacOS操作系统。当前使用最广的是Linux系统,OCI的实现,在Linux上组成容器的主要技术: chroot: 通过分层文件系统堆叠出容器进程的rootfs,然后通过chroot设置容器进程的根文件系统为堆叠出的rootfs。 cgroups: 通过cgroups技术隔离容器进程的cpu/内存资源。 namesapce: 通过pid, uts, mount, network, user namesapce 分别隔离容器进程的进程ID,时间,文件系统挂载,网络,用户资源。 网络虚拟化: 容器进程被放置到独立的网络命名空间,通过Linux网络虚拟化veth, macvlan, bridge等技术连接主机网络与容器虚拟网络。 存储驱动: 本地文件系统,使用容器镜像分层文件堆叠的各种实现驱动,当前推荐的是overlay2。 广义的容器还包含容器编排,即当下很火热的Kubernetes。Kubernetes为了把控容器调度的生态,发布了CRI规范,通过CRI规范解耦Kubelet与容器,只要实现了CRI接口,都可以与Kubelet交互,从而被Kubernetes调度。OCI规范的容器实现与CRI标准接口对接的实现是CRI-O。 辅助工具用户构建镜像,验证镜像签名,管理存储卷等。 容器定义 容器是一种轻量化的应用虚拟化技术。 容器=OCI+CRI+辅助工具。 容器技术与传统虚拟化技术不断融合中。 什么是容器编排与调度 选择了应用虚拟化技术之后,还需要应用调度编排,当前Kubernetes是容器领域内编排的事实标准,不管使用何种应用虚拟化技术,都已经纳入到了Kubernetes治理框架中。 Kubernetes 通过 CRI 接口规范,将应用编排与应用虚拟化实现解耦:不管使用何种应用虚拟化技术(LXC, MicroVM, LibOS),都能够通过Kubernetes统一编排。 当前使用最多的是docker,其次是cri-o。docker与crio结合kata-runtime都能够支持多种应用虚拟化技术混合编排的场景,如LXC与MicroVM混合编排。 docker(now): Moby 公司贡献的 docker 相关部件,当前主流使用的模式。 docker(daemon) 提供对外访问的API与CLI(docker client) containerd 提供与 kubelet 对接的 CRI 接口实现 shim负责将Pod桥接到Host namespace。 cri-o: 由 RedHat/Intel/SUSE/IBM/Hyper 公司贡献的实现了CRI接口的符合OCI规范的运行时,当前包括 runc 与 kata-runtime ,也就是说使用 cir-o 可以同时运行LXC容器与MicroVM容器,具体在Kata介绍中有详细说明。 CRI-O: 实现了CRI接口的进程,与 kubelet 交互 crictl: 类似 docker 的命令行工具 conmon: Pod监控进程 other cri runtimes: 其他的一些cri实现,目前没有大规模应用到生产环境。 容器与传统虚拟化差异 容器(container)的技术构成 前面主要讲到的是容器与编排,包括CRI接口的各种实现,我们把容器领域的规范归纳为南向与北向两部分,CRI属于北向接口规范,对接编排系统,OCI就属于南向接口规范,实现应用虚拟化。 简单来讲,可以这么定义容器: 容器(container) ~= 应用打包(build) + 应用分发(ship) + 应用运行/资源隔离(run)。 build-ship-run 的内容都被定义到了OCI规范中,因此也可以这么定义容器: 容器(container) == OCI规范 OCI规范包含两部分,镜像规范与运行时规范。简要的说,要实现一个OCI的规范,需要能够下载镜像并解压镜像到文件系统上组成成一个文件目录结构,运行时工具能够理解这个目录结构并基于此目录结构管理(创建/启动/停止/删除)进程。 容器(container)的技术构成就是实现OCI规范的技术集合。 对于不同的操作系统(Linux/Windows),OCI规范的实现技术不同,当前docker的实现,支持Windows与Linux与MacOS操作系统。当前使用最广的是Linux系统,OCI的实现,在Linux上组成容器的主要技术: chroot: 通过分层文件系统堆叠出容器进程的rootfs,然后通过chroot设置容器进程的根文件系统为堆叠出的rootfs。 cgroups: 通过cgroups技术隔离容器进程的cpu/内存资源。 namesapce: 通过pid, uts, mount, network, user namesapce 分别隔离容器进程的进程ID,时间,文件系统挂载,网络,用户资源。 网络虚拟化: 容器进程被放置到独立的网络命名空间,通过Linux网络虚拟化veth, macvlan, bridge等技术连接主机网络与容器虚拟网络。 存储驱动: 本地文件系统,使用容器镜像分层文件堆叠的各种实现驱动,当前推荐的是overlay2。 广义的容器还包含容器编排,即当下很火热的Kubernetes。Kubernetes为了把控容器调度的生态,发布了CRI规范,通过CRI规范解耦Kubelet与容器,只要实现了CRI接口,都可以与Kubelet交互,从而被Kubernetes调度。OCI规范的容器实现与CRI标准接口对接的实现是CRI-O。 容器与虚拟机差异对比 容器与虚拟机的差异可以总结为2点:应用打包与分发的差异,应用资源隔离的差异。当然,导致这两点差异的根基是容器是以应用为中心来设计的,而虚拟化是以资源为中心来设计的,本文对比容器与虚拟机的差异,更多的是站在应用视角来对比。 从3个方面对比差异:资源隔离,应用打包与分发,延伸的日志/监控/DFX差异。 1.资源隔离 隔离机制差异 容器 虚拟化 mem/cpu cgroup, 使用时候设定 require 与 limit 值 QEMU, KVM network Linux网络虚拟化技术(veth,tap,bridge,macvlan,ipvlan), 跨虚拟机或出公网访问:SNAT/DNAT, service转发:iptables/ipvs, SR-IOV Linux网络虚拟化技术(veth,tap,bridge,macvlan,ipvlan), QEMU, SR-IOV storage 本地存储: 容器存储驱动 本地存储:virtio-blk 差异引入问题与实践建议 应用程序未适配 cgroup 的内存隔离导致问题: 典型的是 JVM 虚拟机,在 JVM 启动时候会根据系统内存自动设置 MaxHeapSize 值,通常是系统内存的1/4,但是 JVM 并未考虑 cgroup 场景,读系统内存时候任然读取主机的内存来设置 MaxHeapSize,这样会导致内存超过 cgroup 限制从而导致进程被 kill 。问题详细阐述与解决建议参考Java inside docker: What you must know to not FAIL。 多次网络虚拟化问题: 如果在虚拟机内使用容器,会多一层网络虚拟化,并加入了SNAT/DNAT技术, iptables/ipvs技术,对网络吞吐量与时延都有影响(具体依赖容器网络方案),对问题定位复杂度变高,同时还需要注意网络内核参数调优。 典型的网络调优参数有:转发表大小 /proc/sys/net/netfilter/nf_conntrack_max 使用iptables 作为service转发实现的时候,在转发规则较多的时候,iptables更新由于需要全量更新导致非常耗时,建议使用ipvs。详细参考[华为云在 K8S 大规模场景下的 Service 性能优化实践](https://zhuanlan.zhihu.com/p/37230013)。 容器IP地址频繁变化不固定,周边系统需要协调适配,包括基于IP地址的白名单或防火墙控制策略需要调整,CMDB记录的应用IP地址需要适配动态IP或者使用服务名替代IP地址。 存储驱动带来的性能损耗: 容器本地文件系统是通过联合文件系统方式堆叠出来的,当前主推与默认提供的是overlay2驱动,这种模式应用写本地文件系统文件或修改已有文件,使用Copy-On-Write方式,也就是会先拷贝源文件到可写层然后修改,如果这种操作非常频繁,建议使用 volume 方式。 2.应用打包与分发 应用打包/分发/调度差异 容器 虚拟化 打包 打包既部署 一般不会把应用程序与虚拟机打包在一起,通过部署系统部署应用 分发 使用镜像仓库存储与分发 使用文件存储 调度运行 使用K8S亲和/反亲和调度策略 使用部署系统的调度能力 差异引入问题与实践建议 部署提前到构建阶段,应用需要支持动态配置与静态程序分离;如果在传统部署脚本中依赖外部动态配置,这部分需要做一些调整。 打包格式发生变化,制作容器镜像需要注意安全/效率因素,可参考Dockerfile最佳实践 容器镜像存储与分发是按layer来组织的,镜像在传输过程中放篡改的方式是传统软件包有差异。 3.监控/日志/DFX 差异 容器 虚拟化 监控 cpu/mem的资源上限是cgroup定义的;containerd/shim/docker-daemon等进程的监控 传统进程监控 日志采集 stdout/stderr日志采集方式变化;日志持久化需要挂载到volume;进程会被随机调度到其他节点导致日志需要实时采集否则分散很难定位 传统日志采集 问题定位 进程down之后自动拉起会导致问题定位现场丢失;无法停止进程来定位问题因为停止即删除实例 传统问题定位手段 差异引入问题实践与建议 使用成熟的监控工具,运行在docker中的应用使用cadvisor+prometheus实现采集与警报,cadvisor中预置了常用的监控指标项 对于docker管理进程(containerd/shim/docker-daemon)也需要一并监控 使用成熟的日志采集工具,如果已有日志采集Agent,则可以考虑将日志文件挂载到volume后由Agent采集;需要注意的是stderr/stdout输出也要一并采集 如果希望容器内应用进程退出后保留现场定位问题,则可以将Pod的restartPolicy设置为never,进程退出后进程文件都还保留着(/var/lib/docker/containers)。但是这么做的话需要进程没有及时恢复,会影响业务,需要自己实现进程重拉起。 团队配合 与周边的开发团队、架构团队、测试团队、运维团队评审并交流方案,与周边团队达成一致。 落地策略与注意事项 逐步演进过程中网络互通 根据当前已经存在的基础实施情况,选择容器化落地策略。通常使用逐步演进的方式,由于容器化引入了独立的网络namespace导致容器与传统虚拟机进程网络隔离,逐步演进过程中如何打通隔离的网络是最大的挑战。 分两种场景讨论: 不同服务集群之间使用VIP模式互通: 这种模式相对简单,基于VIP做灰度发布。 不同服务集群之间使用微服务点对点模式互通(SpringCloud/ServiceComb/Dubbo都是这一类): 这种模式相对复杂,在逐步容器化过程中,要求容器网络与传统虚拟机网络能够互通(难点是在虚拟机进程内能够直接访问到容器网络的IP地址),当前解决这个问题有几种方法。 自建Kubernetes场景,可使用开源的kube-router,kube-router 使用BGP协议实现容器网络与传统虚拟机网络之间互通,要求网络交换机支持BGP协议。 使用云厂商托管Kubernetes场景,选择云厂商提供的VPC-Router互通的网络插件,如阿里云的Terway网络插件, 华为云的Underlay网络模式。 选择物理机还是虚拟机 选择物理机运行容器还是虚拟机运行容器,需要结合基础设施与业务隔离性要求综合考虑。分两种场景:自建IDC、租用公有云。 自建IDC: 理想情况是使用物理机组成一个大集群,根据业务诉求,对资源保障与安全性要求高的应用,使用MicorVM方式隔离;普通应用使用LXC方式隔离。所有物理机在一个大集群内,方便削峰填谷提升资源利用率。 租用公有云:当前公有云厂家提供的裸金属服务价格较贵且只能包周期,使用裸金属性价比并不高,使用虚拟机更合适。 集群规模与划分 选择集群时候,是多个应用共用一个大集群,还是按应用分组分成多个小集群呢?我们把节点规模数量>=1000的定义为大集群,节点数<1000的定义为小集群。 大集群的优点是资源池共享容器,方便资源调度(削峰填谷);缺点是随着节点数量与负载数量的增多,会引入管理性能问题(需要量化): DNS 解析表变大,增加/删除 Service 或 增加/删除 Endpoint 导致DNS表刷新慢 K8S Service 转发表变大,导致工作负载增加/删除刷新iptables/ipvs记录变慢 etcd 存储空间变大,如果加上ConfigMap,可能导致 etcd 访问时延增加 小集群的优点是不会有管理性能问题,缺点是会导致资源碎片化,不容易共享。共享分两种情况: 应用之间削峰填谷:目前无法实现 计算任务与应用之间削峰填谷:由于计算任务是短时任务,可以通过上层的任务调度软件,在多个集群之间分发计算任务,从而达到集群之间资源共享的目的。 选择集群规模的时候,可以参考上述分析,结合实际情况选择适合的集群划分。 Helm? Helm是为了解决K8S管理对象散碎的问题,在K8S中并没有"应用"的概念,只有一个个散的对象(Deployment, ConfigMap, Service, etc),而一个"应用"是多个对象组合起来的,且这些对象之间还可能存在一定的版本配套关系。 Helm 通过将K8S多个对象打包为一个包并标注版本号形成一个"应用",通过 Helm 管理进程部署/升级这个"应用"。这种方式解决了一些问题(应用分发更方便)同时也引入了一些问题(引入Helm增加应用发布/管理复杂度、在K8S修改了对象后如何同步到Helm)。对于是否需要使用Helm,建议如下: 在自运维模式下不使用Helm: 自运维模式下,很多场景是开发团队交付一个运行包,运维团队负责部署与配置下发,内部通过兼容性或软件包与配置版本配套清单、管理软件包与配置的配套关系。 在交付软件包模式下使用Helm: 交付软件包模式下,Helm 这种把散碎组件组装为一个应用的模式比较适合,使用Helm实现软件包分发/部署/升级场比较简单。 Reference DOCKER vs LXC vs VIRTUAL MACHINES Cgroup与LXC简介 Introducing Container Runtime Interface (CRI) in Kubernetes frakti rkt appc-spec OCI 和 runc:容器标准化和 docker Linux 容器技术史话:从 chroot 到未来 Linux Namespace和Cgroup Java inside docker: What you must know to not FAIL QEMU,KVM及QEMU-KVM介绍 kvm libvirt qemu实践系列(一)-kvm介绍 KVM 介绍(4):I/O 设备直接分配和 SR-IOV [KVM PCI/PCIe Pass-Through SR-IOV] prometheus-book 到底什么是Unikernel? The Rise and Fall of the Operating System The Design and Implementation of the Anykernel and Rump Kernels UniKernel Unikernel:从不入门到入门 OSv 京东如何打造K8s全球最大集群支撑万亿电商交易 Cloud Native App Hub 更多云最佳实践 https://best.practices.cloud 本篇文章为转载内容。原文链接:https://blog.csdn.net/sinat_33155975/article/details/118013855。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-17 15:03:28
225
转载
转载文章
...4.滑动不跟手,列表自动更新,滚动不流畅 5.网络响应慢,数据和画面展示慢、 6.过渡动画生硬。 7.界面不可交互,卡死,等等现象。 卡顿是如何发生的 卡顿产生的原因一般都比较复杂,如CPU内存大小,IO操作,锁操作,低效的算法等都会引起卡顿。 站在开发的角度看: 通常我们讲,屏幕刷新率是60fps,需要在16ms内完成所有的工作才不会造成卡顿。 为什么是16ms,不是17,18呢? 下面我们先来理清在UI绘制中的几个概念: SurfaceFlinger: SurfaceFlinger作用是接受多个来源的图形显示数据Surface,合成后发送到显示设备,比如我们的主界面中:可能会有statusBar,侧滑菜单,主界面,这些View都是独立Surface渲染和更新,最后提交给SF后,SF根据Zorder,透明度,大小,位置等参数,合成为一个数据buffer,传递HWComposer或者OpenGL处理,最终给显示器。 在显示过程中使用到了bufferqueue,surfaceflinger作为consumer方,比如windowmanager管理的surface作为生产方产生页面,交由surfaceflinger进行合成。 VSYNC Android系统每隔16ms发出VSYNC信号,触发对UI进行渲染,VSYNC是一种在PC上很早就有应用,可以理解为一种定时中断技术。 tearing 问题: 早期的 Android 是没有 vsync 机制的,CPU 和 GPU 的配合也比较混乱,这也造成著名的 tearing 问题,即 CPU/GPU 直接更新正在显示的屏幕 buffer 造成画面撕裂。 后续 Android 引入了双缓冲机制,但是 buffer 的切换也需要一个比较合适的时机,也就是屏幕扫描完上一帧后的时机,这也就是引入 vsync 的原因。 早先一般的屏幕刷新率是 60fps,所以每个 vsync 信号的间隔也是 16ms,不过随着技术的更迭以及厂商对于流畅性的追求,越来越多 90fps 和 120fps 的手机面世,相对应的间隔也就变成了 11ms 和 8ms。 VSYNC信号种类: 1.屏幕产生的硬件VSYNC:硬件VSYNC是一种脉冲信号,起到开关和触发某种操作的作用。 2.由SurfaceFlinger将其转成的软件VSYNC信号,经由Binder传递给Choreographer Choreographer: 编舞者,用于注册VSYNC信号并接收VSYNC信号回调,当内部接收到这个信号时最终会调用到doFrame进行帧的绘制操作。 Choreographer在系统中流程: 如何通过Choreographer计算掉帧情况:原理就是: 通过给Choreographer设置FrameCallback,在每次绘制前后看时间差是16.6ms的多少倍,即为前后掉帧率。 使用方式如下: //Application.javapublic void onCreate() {super.onCreate();//在Application中使用postFrameCallbackChoreographer.getInstance().postFrameCallback(new FPSFrameCallback(System.nanoTime()));}public class FPSFrameCallback implements Choreographer.FrameCallback {private static final String TAG = "FPS_TEST";private long mLastFrameTimeNanos = 0;private long mFrameIntervalNanos;public FPSFrameCallback(long lastFrameTimeNanos) {mLastFrameTimeNanos = lastFrameTimeNanos;mFrameIntervalNanos = (long)(1000000000 / 60.0);}@Overridepublic void doFrame(long frameTimeNanos) {//初始化时间if (mLastFrameTimeNanos == 0) {mLastFrameTimeNanos = frameTimeNanos;}final long jitterNanos = frameTimeNanos - mLastFrameTimeNanos;if (jitterNanos >= mFrameIntervalNanos) {final long skippedFrames = jitterNanos / mFrameIntervalNanos;if(skippedFrames>30){//丢帧30以上打印日志Log.i(TAG, "Skipped " + skippedFrames + " frames! "+ "The application may be doing too much work on its main thread.");} }mLastFrameTimeNanos=frameTimeNanos;//注册下一帧回调Choreographer.getInstance().postFrameCallback(this);} } UI绘制全路径分析: 有了前面几个概念,这里我们让SurfaceFlinger结合View的绘制流程用一张图来表达整个绘制流程: 生产者:APP方构建Surface的过程。 消费者:SurfaceFlinger UI绘制全路径分析卡顿原因: 接下来,我们逐个分析,看看都会有哪些原因可能造成卡顿: 1.渲染流程 1.Vsync 调度:这个是起始点,但是调度的过程会经过线程切换以及一些委派的逻辑,有可能造成卡顿,但是一般可能性比较小,我们也基本无法介入; 2.消息调度:主要是 doframe Message 的调度,这就是一个普通的 Handler 调度,如果这个调度被其他的 Message 阻塞产生了时延,会直接导致后续的所有流程不会被触发 3.input 处理:input 是一次 Vsync 调度最先执行的逻辑,主要处理 input 事件。如果有大量的事件堆积或者在事件分发逻辑中加入大量耗时业务逻辑,会造成当前帧的时长被拉大,造成卡顿,可以尝试通过事件采样的方案,减少 event 的处理 4.动画处理:主要是 animator 动画的更新,同理,动画数量过多,或者动画的更新中有比较耗时的逻辑,也会造成当前帧的渲染卡顿。对动画的降帧和降复杂度其实解决的就是这个问题; 5.view 处理:主要是接下来的三大流程,过度绘制、频繁刷新、复杂的视图效果都是此处造成卡顿的主要原因。比如我们平时所说的降低页面层级,主要解决的就是这个问题; 6.measure/layout/draw:view 渲染的三大流程,因为涉及到遍历和高频执行,所以这里涉及到的耗时问题均会被放大,比如我们会降不能在 draw 里面调用耗时函数,不能 new 对象等等; 7.DisplayList 的更新:这里主要是 canvas 和 displaylist 的映射,一般不会存在卡顿问题,反而可能存在映射失败导致的显示问题; 8.OpenGL 指令转换:这里主要是将 canvas 的命令转换为 OpenGL 的指令,一般不存在问题 9.buffer 交换:这里主要指 OpenGL 指令集交换给 GPU,这个一般和指令的复杂度有关 10.GPU 处理:顾名思义,这里是 GPU 对数据的处理,耗时主要和任务量和纹理复杂度有关。这也就是我们降低 GPU 负载有助于降低卡顿的原因; 11.layer 合成:Android P 修改了 Layer 的计算方法 , 把这部分放到了 SurfaceFlinger 主线程去执行, 如果后台 Layer 过多, 就会导致 SurfaceFlinger 在执行 rebuildLayerStacks 的时候耗时 , 导致 SurfaceFlinger 主线程执行时间过长。 可以选择降低Surface层级来优化卡顿。 12.光栅化/Display:这里暂时忽略,底层系统行为; Buffer 切换:主要是屏幕的显示,这里 buffer 的数量也会影响帧的整体延迟,不过是系统行为,不能干预。 2.系统负载 内存:内存的吃紧会直接导致 GC 的增加甚至 ANR,是造成卡顿的一个不可忽视的因素; CPU:CPU 对卡顿的影响主要在于线程调度慢、任务执行的慢和资源竞争,比如 1.降频会直接导致应用卡顿; 2.后台活动进程太多导致系统繁忙,cpu \ io \ memory 等资源都会被占用, 这时候很容易出现卡顿问题 ,这种情况比较常见,可以使用dumpsys cpuinfo查看当前设备的cpu使用情况: 3.主线程调度不到 , 处于 Runnable 状态,这种情况比较少见 4.System 锁:system_server 的 AMS 锁和 WMS 锁 , 在系统异常的情况下 , 会变得非常严重 , 如下图所示 , 许多系统的关键任务都被阻塞 , 等待锁的释放 , 这时候如果有 App 发来的 Binder 请求带锁 , 那么也会进入等待状态 , 这时候 App 就会产生性能问题 ; 如果此时做 Window 动画 , 那么 system_server 的这些锁也会导致窗口动画卡顿 GPU:GPU 的影响见渲染流程,但是其实还会间接影响到功耗和发热; 功耗/发热:功耗和发热一般是不分家的,高功耗会引起高发热,进而会引起系统保护,比如降频、热缓解等,间接的导致卡顿。 如何监控卡顿 线下监控: 我们知道卡顿问题的原因错综复杂,但最终都可以反馈到CPU使用率上来 1.使用dumpsys cpuinfo命令 这个命令可以获取当时设备cpu使用情况,我们可以在线下通过重度使用应用来检测可能存在的卡顿点 A8S:/ $ dumpsys cpuinfoLoad: 1.12 / 1.12 / 1.09CPU usage from 484321ms to 184247ms ago (2022-11-02 14:48:30.793 to 2022-11-02 14:53:30.866):2% 1053/scanserver: 0.2% user + 1.7% kernel0.6% 934/system_server: 0.4% user + 0.1% kernel / faults: 563 minor0.4% 564/signserver: 0% user + 0.4% kernel0.2% 256/ueventd: 0.1% user + 0% kernel / faults: 320 minor0.2% 474/surfaceflinger: 0.1% user + 0.1% kernel0.1% 576/vendor.sprd.hardware.gnss@2.0-service: 0.1% user + 0% kernel / faults: 54 minor0.1% 286/logd: 0% user + 0% kernel / faults: 10 minor0.1% 2821/com.allinpay.appstore: 0.1% user + 0% kernel / faults: 1312 minor0.1% 447/android.hardware.health@2.0-service: 0% user + 0% kernel / faults: 1175 minor0% 1855/com.smartpos.dataacqservice: 0% user + 0% kernel / faults: 755 minor0% 2875/com.allinpay.appstore:pushcore: 0% user + 0% kernel / faults: 744 minor0% 1191/com.android.systemui: 0% user + 0% kernel / faults: 70 minor0% 1774/com.android.nfc: 0% user + 0% kernel0% 172/kworker/1:2: 0% user + 0% kernel0% 145/irq/24-70900000: 0% user + 0% kernel0% 575/thermald: 0% user + 0% kernel / faults: 300 minor... 2.CPU Profiler 这个工具是AS自带的CPU性能检测工具,可以在PC上实时查看我们CPU使用情况。 AS提供了四种Profiling Model配置: 1.Sample Java Methods:在应用程序基于Java的代码执行过程中,频繁捕获应用程序的调用堆栈 获取有关应用程序基于Java的代码执行的时间和资源使用情况信息。 2.Trace java methods:在运行时对应用程序进行检测,以在每个方法调用的开始和结束时记录时间戳。收集时间戳并进行比较以生成方法跟踪数据,包括时序信息和CPU使用率。 请注意与检测每种方法相关的开销会影响运行时性能,并可能影响性能分析数据。对于生命周期相对较短的方法,这一点甚至更为明显。此外,如果您的应用在短时间内执行大量方法,则探查器可能会很快超过其文件大小限制,并且可能无法记录任何进一步的跟踪数据。 3.Sample C/C++ Functions:捕获应用程序本机线程的示例跟踪。要使用此配置,您必须将应用程序部署到运行Android 8.0(API级别26)或更高版本的设备。 4.Trace System Calls:捕获细粒度的详细信息,使您可以检查应用程序与系统资源的交互方式 您可以检查线程状态的确切时间和持续时间,可视化CPU瓶颈在所有内核中的位置,并添加自定义跟踪事件进行分析。在对性能问题进行故障排除时,此类信息可能至关重要。要使用此配置,您必须将应用程序部署到运行Android 7.0(API级别24)或更高版本的设备。 使用方式: Debug.startMethodTracing("");// 需要检测的代码片段...Debug.stopMethodTracing(); 优点:有比较全面的调用栈以及图像化方法时间显示,包含所有线程的情况 缺点:本身也会带来一点的性能开销,可能会带偏优化方向 火焰图:可以显示当前应用的方法堆栈: 3.Systrace Systrace在前面一篇分析启动优化的文章讲解过 这里我们简单来复习下: Systrace用来记录当前应用的系统以及应用(使用Trace类打点)的各阶段耗时信息包括绘制信息以及CPU信息等。 使用方式: Trace.beginSection("MyApp.onCreate_1");alt(200);Trace.endSection(); 在命令行中: python systrace.py -t 5 sched gfx view wm am app webview -a "com.chinaebipay.thirdcall" -o D:\trac1.html 记录的方法以及CPU中的耗时情况: 优点: 1.轻量级,开销小,CPU使用率可以直观反映 2.右侧的Alerts能够根据我们应用的问题给出具体的建议,比如说,它会告诉我们App界面的绘制比较慢或者GC比较频繁。 4.StrictModel StrictModel是Android提供的一种运行时检测机制,用来帮助开发者自动检测代码中不规范的地方。 主要和两部分相关: 1.线程相关 2.虚拟机相关 基础代码: private void initStrictMode() {// 1、设置Debug标志位,仅仅在线下环境才使用StrictModeif (DEV_MODE) {// 2、设置线程策略StrictMode.setThreadPolicy(new StrictMode.ThreadPolicy.Builder().detectCustomSlowCalls() //API等级11,使用StrictMode.noteSlowCode.detectDiskReads().detectDiskWrites().detectNetwork() // or .detectAll() for all detectable problems.penaltyLog() //在Logcat 中打印违规异常信息// .penaltyDialog() //也可以直接跳出警报dialog// .penaltyDeath() //或者直接崩溃.build());// 3、设置虚拟机策略StrictMode.setVmPolicy(new StrictMode.VmPolicy.Builder().detectLeakedSqlLiteObjects()// 给NewsItem对象的实例数量限制为1.setClassInstanceLimit(NewsItem.class, 1).detectLeakedClosableObjects() //API等级11.penaltyLog().build());} } 线上监控: 线上需要自动化的卡顿检测方案来定位卡顿,它能记录卡顿发生时的场景。 自动化监控原理: 采用拦截消息调度流程,在消息执行前埋点计时,当耗时超过阈值时,则认为是一次卡顿,会进行堆栈抓取和上报工作 首先,我们看下Looper用于执行消息循环的loop()方法,关键代码如下所示: / Run the message queue in this thread. Be sure to call {@link quit()} to end the loop./public static void loop() {...for (;;) {Message msg = queue.next(); // might blockif (msg == null) {// No message indicates that the message queue is quitting.return;// This must be in a local variable, in case a UI event sets the loggerfinal Printer logging = me.mLogging;if (logging != null) {// 1logging.println(">>>>> Dispatching to " + msg.target + " " +msg.callback + ": " + msg.what);}...try {// 2 msg.target.dispatchMessage(msg);dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;} finally {if (traceTag != 0) {Trace.traceEnd(traceTag);} }...if (logging != null) {// 3logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);} 在Looper的loop()方法中,在其执行每一个消息(注释2处)的前后都由logging进行了一次打印输出。可以看到,在执行消息前是输出的">>>>> Dispatching to “,在执行消息后是输出的”<<<<< Finished to ",它们打印的日志是不一样的,我们就可以由此来判断消息执行的前后时间点。 具体的实现可以归纳为如下步骤: 1、首先,我们需要使用Looper.getMainLooper().setMessageLogging()去设置我们自己的Printer实现类去打印输出logging。这样,在每个message执行的之前和之后都会调用我们设置的这个Printer实现类。 2、如果我们匹配到">>>>> Dispatching to "之后,我们就可以执行一行代码:也就是在指定的时间阈值之后,我们在子线程去执行一个任务,这个任务就是去获取当前主线程的堆栈信息以及当前的一些场景信息,比如:内存大小、电脑、网络状态等。 3、如果在指定的阈值之内匹配到了"<<<<< Finished to ",那么说明message就被执行完成了,则表明此时没有产生我们认为的卡顿效果,那我们就可以将这个子线程任务取消掉。 这里我们使用blockcanary来做测试: BlockCanary APM是一个非侵入式的性能监控组件,可以通过通知的形式弹出卡顿信息。它的原理就是我们刚刚讲述到的卡顿监控的实现原理。 使用方式: 1.导入依赖 implementation 'com.github.markzhai:blockcanary-android:1.5.0' Application的onCreate方法中开启卡顿监控 // 注意在主进程初始化调用BlockCanary.install(this, new AppBlockCanaryContext()).start(); 3.继承BlockCanaryContext类去实现自己的监控配置上下文类 public class AppBlockCanaryContext extends BlockCanaryContext {....../ 指定判定为卡顿的阈值threshold (in millis), 你可以根据不同设备的性能去指定不同的阈值 @return threshold in mills/public int provideBlockThreshold() {return 1000;}....} 4.在Activity的onCreate方法中执行一个耗时操作 try {Thread.sleep(4000);} catch (InterruptedException e) {e.printStackTrace();} 5.结果: 可以看到一个和LeakCanary一样效果的阻塞可视化堆栈图 那有了BlockCanary的方法耗时监控方式是不是就可以解百愁了呢,呵呵。有那么容易就好了 根据原理:我们拿到的是msg执行前后的时间和堆栈信息,如果msg中有几百上千个方法,就无法确认到底是哪个方法导致的耗时,也有可能是多个方法堆积导致。 这就导致我们无法准确定位哪个方法是最耗时的。如图中:堆栈信息是T2的,而发生耗时的方法可能是T1到T2中任何一个方法甚至是堆积导致。 那如何优化这块? 这里我们采用字节跳动给我们提供的一个方案:基于 Sliver trace 的卡顿监控体系 Sliver trace 整体流程图: 主要包含两个方面: 检测方案: 在监控卡顿时,首先需要打开 Sliver 的 trace 记录能力,Sliver 采样记录 trace 执行信息,对抓取到的堆栈进行 diff 聚合和缓存。 同时基于我们的需要设置相应的卡顿阈值,以 Message 的执行耗时为衡量。对主线程消息调度流程进行拦截,在消息开始分发执行时埋点,在消息执行结束时计算消息执行耗时,当消息执行耗时超过阈值,则认为产生了一次卡顿。 堆栈聚合策略: 当卡顿发生时,我们需要为此次卡顿准备数据,这部分工作是在端上子线程中完成的,主要是 dump trace 到文件以及过滤聚合要上报的堆栈。分为以下几步: 1.拿到缓存的主线程 trace 信息并 dump 到文件中。 2.然后从文件中读取 trace 信息,按照数据格式,从最近的方法栈向上追溯,找到当前 Message 包含的全部 trace 信息,并将当前 Message 的完整 trace 写入到待上传的 trace 文件中,删除其余 trace 信息。 3.遍历当前 Message trace,按照(Method 执行耗时 > Method 耗时阈值 & Method 耗时为该层堆栈中最耗时)为条件过滤出每一层函数调用堆栈的最长耗时函数,构成最后要上报的堆栈链路,这样特征堆栈中的每一步都是最耗时的,且最底层 Method 为最后的耗时大于阈值的 Method。 之后,将 trace 文件和堆栈一同上报,这样的特征堆栈提取策略保证了堆栈聚合的可靠性和准确性,保证了上报到平台后堆栈的正确合理聚合,同时提供了进一步分析问题的 trace 文件。 可以看到字节给的是一整套监控方案,和前面BlockCanary不同之处就在于,其是定时存储堆栈,缓存,然后使用diff去重的方式,并上传到服务器,可以最大限度的监控到可能发生比较耗时的方法。 开发中哪些习惯会影响卡顿的发生 1.布局太乱,层级太深。 1.1:通过减少冗余或者嵌套布局来降低视图层次结构。比如使用约束布局代替线性布局和相对布局。 1.2:用 ViewStub 替代在启动过程中不需要显示的 UI 控件。 1.3:使用自定义 View 替代复杂的 View 叠加。 2.主线程耗时操作 2.1:主线程中不要直接操作数据库,数据库的操作应该放在数据库线程中完成。 2.2:sharepreference尽量使用apply,少使用commit,可以使用MMKV框架来代替sharepreference。 2.3:网络请求回来的数据解析尽量放在子线程中,不要在主线程中进行复制的数据解析操作。 2.4:不要在activity的onResume和onCreate中进行耗时操作,比如大量的计算等。 2.5:不要在 draw 里面调用耗时函数,不能 new 对象 3.过度绘制 过度绘制是同一个像素点上被多次绘制,减少过度绘制一般减少布局背景叠加等方式,如下图所示右边是过度绘制的图片。 4.列表 RecyclerView使用优化,使用DiffUtil和notifyItemDataSetChanged进行局部更新等。 5.对象分配和回收优化 自从Android引入 ART 并且在Android 5.0上成为默认的运行时之后,对象分配和垃圾回收(GC)造成的卡顿已经显著降低了,但是由于对象分配和GC有额外的开销,它依然又可能使线程负载过重。 在一个调用不频繁的地方(比如按钮点击)分配对象是没有问题的,但如果在在一个被频繁调用的紧密的循环里,就需要避免对象分配来降低GC的压力。 减少小对象的频繁分配和回收操作。 好了,关于卡顿优化的问题就讲到这里,下篇文章会对卡顿中的ANR情况的处理,这里做个铺垫。 如果喜欢我的文章,欢迎关注我的公众号。 点击这看原文链接: 参考 Android卡顿检测及优化 一文读懂直播卡顿优化那些事儿 “终于懂了” 系列:Android屏幕刷新机制—VSync、Choreographer 全面理解! 深入探索Android卡顿优化(上) 西瓜卡顿 & ANR 优化治理及监控体系建设 5376)] 参考 Android卡顿检测及优化 一文读懂直播卡顿优化那些事儿 “终于懂了” 系列:Android屏幕刷新机制—VSync、Choreographer 全面理解! 深入探索Android卡顿优化(上) 西瓜卡顿 & ANR 优化治理及监控体系建设 本篇文章为转载内容。原文链接:https://blog.csdn.net/yuhaibing111/article/details/127682399。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-26 08:05:57
214
转载
转载文章
...种pod删除了之后会自动重建; kubectl create deployment mynginx --image=nginx:1.17.1 什么是pod控制器 Pod控制器是管理pod的中间层,使用Pod控制器之后,只需要告诉Pod控制器,想要多少个什么样的Pod就可以了,它会创建出满足条件的Pod并确保每一个Pod资源处于用户期望的目标状态。如果Pod资源在运行中出现故障,它会基于指定策略重新编排Pod。 控制器的种类 在kubernetes有很多种类型的pod控制器,每种都有自己的使用场景 ReplicationController:比较原始的pod控制器,已经被废弃,由ReplicaSet替代 ReplicaSet:保证副本数量一直维持在期望值,并支持pod数量扩缩容,镜像版本升级 Deployment:通过控制ReplicaSet来控制Pod,并支持滚动升级、回退版本 Horizontal Pod Autoscaler:可以根据集群负载自动水平调整Pod的数量,实现削峰填谷 DaemonSet:在集群中的指定Node上运行且仅运行一个副本,一般用于守护进程类的任务 Job:它创建出来的pod只要完成任务就立即退出,不需要重启或重建,用于执行一次性任务 Cronjob:它创建的Pod负责周期性任务控制,不需要持续后台运行,可以理解为是定时任务; StatefulSet:管理有状态应用 1、ReplicaSet 简称为RS,主要的作用是保证一定数量的pod能够正常运行,它会持续监听这些pod的运行状态,提供了以下功能 自愈能力: 重启 :当某节点中的pod运行过程中出现问题导致无法启动时,k8s会不断重启,直到可用状态为止 故障转移:当正在运行中pod所在的节点发生故障或者宕机时,k8s会选择集群中另一个可用节点,将pod运行到可用节点上; pod数量的扩缩容:pod副本的扩容和缩容 镜像升降级:支持镜像版本的升级和降级; 配置模板 rs的所有配置如下 apiVersion: apps/v1 版本号kind: ReplicaSet 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: rsspec: 详情描述replicas: 3 副本数量selector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: nginx-podmatchExpressions: Expressions匹配规则,key就是label的key,values的值是个数组,意思是标签值必须是此数组中的其中一个才能匹配上;- {key: app, operator: In, values: [nginx-pod]}template: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels: 这里的标签必须和上面的matchLabels一致,将他们关联起来app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1ports:- containerPort: 80 1、创建一个ReplicaSet 新建一个文件 rs.yaml,内容如下 apiVersion: apps/v1kind: ReplicaSet pod控制器metadata: 元数据name: pc-replicaset 名字namespace: dev 名称空间spec:replicas: 3 副本数selector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: nginx-podtemplate: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1 运行 kubectl create -f rs.yaml 获取replicaset kubectl get replicaset -n dev 2、扩缩容 刚刚我们已经用第一种方式创建了一个replicaSet,现在就基于原来的rs进行扩容,原来的副本数量是3个,现在我们将其扩到6个,做法也很简单,运行编辑命令 第一种方式: scale 使用scale命令实现扩缩容,后面--replicas=n直接指定目标数量即可kubectl scale rs pc-replicaset --replicas=2 -n dev 第二种方式:使用edit命令编辑rs 这种方式相当于使用vi编辑修改yaml配置的内容,进去后将replicas的值改为1,保存后自动生效kubectl edit rs pc-replicaset -n dev 3、镜像版本变更 第一种方式:scale kubectl scale rs pc-replicaset nginx=nginx:1.71.2 -n dev 第二种方式:edit 这种方式相当于使用vi编辑修改yaml配置的内容,进去后将nginx的值改为nginx:1.71.2,保存后自动生效kubectl edit rs pc-replicaset -n dev 4、删除rs 第一种方式kubectl delete -f rs.yaml 第二种方式 ,如果想要只删rs,但不删除pod,可在删除时加上--cascade=false参数(不推荐)kubectl delete rs pc-replicaset -n dev --cascade=false 2、Deployment k8s v1.2版本后加入Deployment;这种控制器不直接控制pod,而是通过管理ReplicaSet来间接管理pod;也就是Deployment管理ReplicaSet,ReplicaSet管理pod;所以 Deployment 比 ReplicaSet 功能更加强大 当我们创建了一个Deployment之后,也会自动创建一个ReplicaSet 功能 支持ReplicaSet 的所有功能 支持发布的停止、继续 支持版本的滚动更新和回退功能 配置模板 新建文件 apiVersion: apps/v1 版本号kind: Deployment 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: deployspec: 详情描述replicas: 3 副本数量revisionHistoryLimit: 3 保留历史版本的数量,默认10,内部通过保留rs来实现paused: false 暂停部署,默认是falseprogressDeadlineSeconds: 600 部署超时时间(s),默认是600strategy: 策略type: RollingUpdate 滚动更新策略rollingUpdate: 滚动更新maxSurge: 30% 最大额外可以存在的副本数,可以为百分比,也可以为整数maxUnavailable: 30% 最大不可用状态的 Pod 的最大值,可以为百分比,也可以为整数selector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: nginx-podmatchExpressions: Expressions匹配规则- {key: app, operator: In, values: [nginx-pod]}template: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1ports:- containerPort: 80 1、创建和删除Deployment 创建pc-deployment.yaml,内容如下: apiVersion: apps/v1kind: Deployment metadata:name: pc-deploymentnamespace: devspec: replicas: 3selector:matchLabels:app: nginx-podtemplate:metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1 创建和查看 创建deployment,--record=true 表示记录整个deployment更新过程[root@k8s-master01 ~] kubectl create -f pc-deployment.yaml --record=truedeployment.apps/pc-deployment created 查看deployment READY 可用的/总数 UP-TO-DATE 最新版本的pod的数量 AVAILABLE 当前可用的pod的数量[root@k8s-master01 ~] kubectl get deploy pc-deployment -n devNAME READY UP-TO-DATE AVAILABLE AGEpc-deployment 3/3 3 3 15s 查看rs 发现rs的名称是在原来deployment的名字后面添加了一个10位数的随机串[root@k8s-master01 ~] kubectl get rs -n devNAME DESIRED CURRENT READY AGEpc-deployment-6696798b78 3 3 3 23s 查看pod[root@k8s-master01 ~] kubectl get pods -n devNAME READY STATUS RESTARTS AGEpc-deployment-6696798b78-d2c8n 1/1 Running 0 107spc-deployment-6696798b78-smpvp 1/1 Running 0 107spc-deployment-6696798b78-wvjd8 1/1 Running 0 107s 删除deployment 删除deployment,其下的rs和pod也将被删除kubectl delete -f pc-deployment.yaml 2、扩缩容 deployment的扩缩容和 ReplicaSet 的扩缩容一样,只需要将rs或者replicaSet改为deployment即可,具体请参考上面的 ReplicaSet 扩缩容 3、镜像更新 刚刚在创建时加上了--record=true参数,所以在一旦进行了镜像更新,就会新建出一个pod出来,将老的old-pod上的容器全删除,然后在新的new-pod上在新建对应数量的容器,此时old-pod是不会删除的,因为这个old-pod是要进行回退的; 镜像更新策略有2种 滚动更新(RollingUpdate):(默认值),杀死一部分,就启动一部分,在更新过程中,存在两个版本Pod 重建更新(Recreate):在创建出新的Pod之前会先杀掉所有已存在的Pod strategy:指定新的Pod替换旧的Pod的策略, 支持两个属性:type:指定策略类型,支持两种策略Recreate:在创建出新的Pod之前会先杀掉所有已存在的PodRollingUpdate:滚动更新,就是杀死一部分,就启动一部分,在更新过程中,存在两个版本PodrollingUpdate:当type为RollingUpdate时生效,用于为RollingUpdate设置参数,支持两个属性:maxUnavailable:用来指定在升级过程中不可用Pod的最大数量,默认为25%。maxSurge: 用来指定在升级过程中可以超过期望的Pod的最大数量,默认为25%。 重建更新 编辑pc-deployment.yaml,在spec节点下添加更新策略 spec:strategy: 策略type: Recreate 重建更新 创建deploy进行验证 变更镜像[root@k8s-master01 ~] kubectl set image deployment pc-deployment nginx=nginx:1.17.2 -n devdeployment.apps/pc-deployment image updated 观察升级过程[root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEpc-deployment-5d89bdfbf9-65qcw 1/1 Running 0 31spc-deployment-5d89bdfbf9-w5nzv 1/1 Running 0 31spc-deployment-5d89bdfbf9-xpt7w 1/1 Running 0 31spc-deployment-5d89bdfbf9-xpt7w 1/1 Terminating 0 41spc-deployment-5d89bdfbf9-65qcw 1/1 Terminating 0 41spc-deployment-5d89bdfbf9-w5nzv 1/1 Terminating 0 41spc-deployment-675d469f8b-grn8z 0/1 Pending 0 0spc-deployment-675d469f8b-hbl4v 0/1 Pending 0 0spc-deployment-675d469f8b-67nz2 0/1 Pending 0 0spc-deployment-675d469f8b-grn8z 0/1 ContainerCreating 0 0spc-deployment-675d469f8b-hbl4v 0/1 ContainerCreating 0 0spc-deployment-675d469f8b-67nz2 0/1 ContainerCreating 0 0spc-deployment-675d469f8b-grn8z 1/1 Running 0 1spc-deployment-675d469f8b-67nz2 1/1 Running 0 1spc-deployment-675d469f8b-hbl4v 1/1 Running 0 2s 滚动更新 编辑pc-deployment.yaml,在spec节点下添加更新策略 spec:strategy: 策略type: RollingUpdate 滚动更新策略rollingUpdate:maxSurge: 25% maxUnavailable: 25% 创建deploy进行验证 变更镜像[root@k8s-master01 ~] kubectl set image deployment pc-deployment nginx=nginx:1.17.3 -n dev deployment.apps/pc-deployment image updated 观察升级过程[root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEpc-deployment-c848d767-8rbzt 1/1 Running 0 31mpc-deployment-c848d767-h4p68 1/1 Running 0 31mpc-deployment-c848d767-hlmz4 1/1 Running 0 31mpc-deployment-c848d767-rrqcn 1/1 Running 0 31mpc-deployment-966bf7f44-226rx 0/1 Pending 0 0spc-deployment-966bf7f44-226rx 0/1 ContainerCreating 0 0spc-deployment-966bf7f44-226rx 1/1 Running 0 1spc-deployment-c848d767-h4p68 0/1 Terminating 0 34mpc-deployment-966bf7f44-cnd44 0/1 Pending 0 0spc-deployment-966bf7f44-cnd44 0/1 ContainerCreating 0 0spc-deployment-966bf7f44-cnd44 1/1 Running 0 2spc-deployment-c848d767-hlmz4 0/1 Terminating 0 34mpc-deployment-966bf7f44-px48p 0/1 Pending 0 0spc-deployment-966bf7f44-px48p 0/1 ContainerCreating 0 0spc-deployment-966bf7f44-px48p 1/1 Running 0 0spc-deployment-c848d767-8rbzt 0/1 Terminating 0 34mpc-deployment-966bf7f44-dkmqp 0/1 Pending 0 0spc-deployment-966bf7f44-dkmqp 0/1 ContainerCreating 0 0spc-deployment-966bf7f44-dkmqp 1/1 Running 0 2spc-deployment-c848d767-rrqcn 0/1 Terminating 0 34m 至此,新版本的pod创建完毕,就版本的pod销毁完毕 中间过程是滚动进行的,也就是边销毁边创建 4、版本回退 更新 刚刚在创建时加上了--record=true参数,所以在一旦进行了镜像更新,就会新建出一个pod出来,将老的old-pod上的容器全删除,然后在新的new-pod上在新建对应数量的容器,此时old-pod是不会删除的,因为这个old-pod是要进行回退的; 回退 在回退时会将new-pod上的容器全部删除,在将old-pod上恢复原来的容器; 回退命令 kubectl rollout: 版本升级相关功能,支持下面的选项: status 显示当前升级状态 history 显示 升级历史记录 pause 暂停版本升级过程 resume 继续已经暂停的版本升级过程 restart 重启版本升级过程 undo 回滚到上一级版本(可以使用–to-revision回滚到指定版本) 用法 查看当前升级版本的状态kubectl rollout status deploy pc-deployment -n dev 查看升级历史记录kubectl rollout history deploy pc-deployment -n dev 版本回滚 这里直接使用--to-revision=1回滚到了1版本, 如果省略这个选项,就是回退到上个版本kubectl rollout undo deployment pc-deployment --to-revision=1 -n dev 金丝雀发布 Deployment控制器支持控制更新过程中的控制,如“暂停(pause)”或“继续(resume)”更新操作。 比如有一批新的Pod资源创建完成后立即暂停更新过程,此时,仅存在一部分新版本的应用,主体部分还是旧的版本。然后,再筛选一小部分的用户请求路由到新版本的Pod应用,继续观察能否稳定地按期望的方式运行。确定没问题之后再继续完成余下的Pod资源滚动更新,否则立即回滚更新操作。这就是所谓的金丝雀发布。 金丝雀发布不是自动完成的,需要人为手动去操作,才能达到金丝雀发布的标准; 更新deployment的版本,并配置暂停deploymentkubectl set image deploy pc-deployment nginx=nginx:1.17.4 -n dev && kubectl rollout pause deployment pc-deployment -n dev 观察更新状态kubectl rollout status deploy pc-deployment -n dev 监控更新的过程kubectl get rs -n dev -o wide 确保更新的pod没问题了,继续更新kubectl rollout resume deploy pc-deployment -n dev 如果有问题,就回退到上个版本回退到上个版本kubectl rollout undo deployment pc-deployment -n dev Horizontal Pod Autoscaler 简称HPA,使用deployment可以手动调整pod的数量来实现扩容和缩容;但是这显然不符合k8s的自动化的定位,k8s期望可以通过检测pod的使用情况,实现pod数量自动调整,于是就有了HPA控制器; HPA可以获取每个Pod利用率,然后和HPA中定义的指标进行对比,同时计算出需要伸缩的具体值,最后实现Pod的数量的调整。比如说我指定了一个规则:当我的cpu利用率达到90%或者内存使用率到达80%的时候,就需要进行调整pod的副本数量,每次添加n个pod副本; 其实HPA与之前的Deployment一样,也属于一种Kubernetes资源对象,它通过追踪分析ReplicaSet控制器的所有目标Pod的负载变化情况,来确定是否需要针对性地调整目标Pod的副本数,也就是HPA管理Deployment,Deployment管理ReplicaSet,ReplicaSet管理pod,这是HPA的实现原理。 1、安装metrics-server metrics-server可以用来收集集群中的资源使用情况 安装git[root@k8s-master01 ~] yum install git -y 获取metrics-server, 注意使用的版本[root@k8s-master01 ~] git clone -b v0.3.6 https://github.com/kubernetes-incubator/metrics-server 修改deployment, 注意修改的是镜像和初始化参数[root@k8s-master01 ~] cd /root/metrics-server/deploy/1.8+/[root@k8s-master01 1.8+] vim metrics-server-deployment.yaml按图中添加下面选项hostNetwork: trueimage: registry.cn-hangzhou.aliyuncs.com/google_containers/metrics-server-amd64:v0.3.6args:- --kubelet-insecure-tls- --kubelet-preferred-address-types=InternalIP,Hostname,InternalDNS,ExternalDNS,ExternalIP 2、安装metrics-server [root@k8s-master01 1.8+] kubectl apply -f ./ 3、查看pod运行情况 [root@k8s-master01 1.8+] kubectl get pod -n kube-systemmetrics-server-6b976979db-2xwbj 1/1 Running 0 90s 4、使用kubectl top node 查看资源使用情况 [root@k8s-master01 1.8+] kubectl top nodeNAME CPU(cores) CPU% MEMORY(bytes) MEMORY%k8s-master01 289m 14% 1582Mi 54% k8s-node01 81m 4% 1195Mi 40% k8s-node02 72m 3% 1211Mi 41% [root@k8s-master01 1.8+] kubectl top pod -n kube-systemNAME CPU(cores) MEMORY(bytes)coredns-6955765f44-7ptsb 3m 9Micoredns-6955765f44-vcwr5 3m 8Mietcd-master 14m 145Mi... 至此,metrics-server安装完成 5、 准备deployment和servie 创建pc-hpa-pod.yaml文件,内容如下: apiVersion: apps/v1kind: Deploymentmetadata:name: nginxnamespace: devspec:strategy: 策略type: RollingUpdate 滚动更新策略replicas: 1selector:matchLabels:app: nginx-podtemplate:metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1resources: 资源配额limits: 限制资源(上限)cpu: "1" CPU限制,单位是core数requests: 请求资源(下限)cpu: "100m" CPU限制,单位是core数 创建deployment [root@k8s-master01 1.8+] kubectl run nginx --image=nginx:1.17.1 --requests=cpu=100m -n dev 6、创建service [root@k8s-master01 1.8+] kubectl expose deployment nginx --type=NodePort --port=80 -n dev 7、查看 [root@k8s-master01 1.8+] kubectl get deployment,pod,svc -n devNAME READY UP-TO-DATE AVAILABLE AGEdeployment.apps/nginx 1/1 1 1 47sNAME READY STATUS RESTARTS AGEpod/nginx-7df9756ccc-bh8dr 1/1 Running 0 47sNAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGEservice/nginx NodePort 10.101.18.29 <none> 80:31830/TCP 35s 8、 部署HPA 创建pc-hpa.yaml文件,内容如下: apiVersion: autoscaling/v1kind: HorizontalPodAutoscalermetadata:name: pc-hpanamespace: devspec:minReplicas: 1 最小pod数量maxReplicas: 10 最大pod数量 ,pod数量会在1~10之间自动伸缩targetCPUUtilizationPercentage: 3 CPU使用率指标,如果cpu使用率达到3%就会进行扩容;为了测试方便,将这个数值调小一些scaleTargetRef: 指定要控制的nginx信息apiVersion: /v1kind: Deploymentname: nginx 创建hpa [root@k8s-master01 1.8+] kubectl create -f pc-hpa.yamlhorizontalpodautoscaler.autoscaling/pc-hpa created 查看hpa [root@k8s-master01 1.8+] kubectl get hpa -n devNAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGEpc-hpa Deployment/nginx 0%/3% 1 10 1 62s 9、 测试 使用压测工具对service地址192.168.5.4:31830进行压测,然后通过控制台查看hpa和pod的变化 hpa变化 [root@k8s-master01 ~] kubectl get hpa -n dev -wNAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGEpc-hpa Deployment/nginx 0%/3% 1 10 1 4m11spc-hpa Deployment/nginx 0%/3% 1 10 1 5m19spc-hpa Deployment/nginx 22%/3% 1 10 1 6m50spc-hpa Deployment/nginx 22%/3% 1 10 4 7m5spc-hpa Deployment/nginx 22%/3% 1 10 8 7m21spc-hpa Deployment/nginx 6%/3% 1 10 8 7m51spc-hpa Deployment/nginx 0%/3% 1 10 8 9m6spc-hpa Deployment/nginx 0%/3% 1 10 8 13mpc-hpa Deployment/nginx 0%/3% 1 10 1 14m deployment变化 [root@k8s-master01 ~] kubectl get deployment -n dev -wNAME READY UP-TO-DATE AVAILABLE AGEnginx 1/1 1 1 11mnginx 1/4 1 1 13mnginx 1/4 1 1 13mnginx 1/4 1 1 13mnginx 1/4 4 1 13mnginx 1/8 4 1 14mnginx 1/8 4 1 14mnginx 1/8 4 1 14mnginx 1/8 8 1 14mnginx 2/8 8 2 14mnginx 3/8 8 3 14mnginx 4/8 8 4 14mnginx 5/8 8 5 14mnginx 6/8 8 6 14mnginx 7/8 8 7 14mnginx 8/8 8 8 15mnginx 8/1 8 8 20mnginx 8/1 8 8 20mnginx 1/1 1 1 20m pod变化 [root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEnginx-7df9756ccc-bh8dr 1/1 Running 0 11mnginx-7df9756ccc-cpgrv 0/1 Pending 0 0snginx-7df9756ccc-8zhwk 0/1 Pending 0 0snginx-7df9756ccc-rr9bn 0/1 Pending 0 0snginx-7df9756ccc-cpgrv 0/1 ContainerCreating 0 0snginx-7df9756ccc-8zhwk 0/1 ContainerCreating 0 0snginx-7df9756ccc-rr9bn 0/1 ContainerCreating 0 0snginx-7df9756ccc-m9gsj 0/1 Pending 0 0snginx-7df9756ccc-g56qb 0/1 Pending 0 0snginx-7df9756ccc-sl9c6 0/1 Pending 0 0snginx-7df9756ccc-fgst7 0/1 Pending 0 0snginx-7df9756ccc-g56qb 0/1 ContainerCreating 0 0snginx-7df9756ccc-m9gsj 0/1 ContainerCreating 0 0snginx-7df9756ccc-sl9c6 0/1 ContainerCreating 0 0snginx-7df9756ccc-fgst7 0/1 ContainerCreating 0 0snginx-7df9756ccc-8zhwk 1/1 Running 0 19snginx-7df9756ccc-rr9bn 1/1 Running 0 30snginx-7df9756ccc-m9gsj 1/1 Running 0 21snginx-7df9756ccc-cpgrv 1/1 Running 0 47snginx-7df9756ccc-sl9c6 1/1 Running 0 33snginx-7df9756ccc-g56qb 1/1 Running 0 48snginx-7df9756ccc-fgst7 1/1 Running 0 66snginx-7df9756ccc-fgst7 1/1 Terminating 0 6m50snginx-7df9756ccc-8zhwk 1/1 Terminating 0 7m5snginx-7df9756ccc-cpgrv 1/1 Terminating 0 7m5snginx-7df9756ccc-g56qb 1/1 Terminating 0 6m50snginx-7df9756ccc-rr9bn 1/1 Terminating 0 7m5snginx-7df9756ccc-m9gsj 1/1 Terminating 0 6m50snginx-7df9756ccc-sl9c6 1/1 Terminating 0 6m50s DaemonSet 简称DS,ds可以保证在集群中的每一台节点(或指定节点)上都运行一个副本,一般适用于日志收集、节点监控等场景;也就是说,如果一个Pod提供的功能是节点级别的(每个节点都需要且只需要一个),那么这类Pod就适合使用DaemonSet类型的控制器创建。 DaemonSet控制器的特点: 每当向集群中添加一个节点时,指定的 Pod 副本也将添加到该节点上 当节点从集群中移除时,Pod 也就被垃圾回收了 配置模板 apiVersion: apps/v1 版本号kind: DaemonSet 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: daemonsetspec: 详情描述revisionHistoryLimit: 3 保留历史版本updateStrategy: 更新策略type: RollingUpdate 滚动更新策略rollingUpdate: 滚动更新maxUnavailable: 1 最大不可用状态的 Pod 的最大值,可以为百分比,也可以为整数selector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: nginx-podmatchExpressions: Expressions匹配规则- {key: app, operator: In, values: [nginx-pod]}template: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1ports:- containerPort: 80 1、创建ds 创建pc-daemonset.yaml,内容如下: apiVersion: apps/v1kind: DaemonSet metadata:name: pc-daemonsetnamespace: devspec: selector:matchLabels:app: nginx-podtemplate:metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1 运行 创建daemonset[root@k8s-master01 ~] kubectl create -f pc-daemonset.yamldaemonset.apps/pc-daemonset created 查看daemonset[root@k8s-master01 ~] kubectl get ds -n dev -o wideNAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE AGE CONTAINERS IMAGES pc-daemonset 2 2 2 2 2 24s nginx nginx:1.17.1 查看pod,发现在每个Node上都运行一个pod[root@k8s-master01 ~] kubectl get pods -n dev -o wideNAME READY STATUS RESTARTS AGE IP NODE pc-daemonset-9bck8 1/1 Running 0 37s 10.244.1.43 node1 pc-daemonset-k224w 1/1 Running 0 37s 10.244.2.74 node2 2、删除daemonset [root@k8s-master01 ~] kubectl delete -f pc-daemonset.yamldaemonset.apps "pc-daemonset" deleted Job 主要用于负责批量处理一次性(每个任务仅运行一次就结束)任务。当然,你也可以运行多次,配置好即可,Job特点如下: 当Job创建的pod执行成功结束时,Job将记录成功结束的pod数量 当成功结束的pod达到指定的数量时,Job将完成执行 配置模板 apiVersion: batch/v1 版本号kind: Job 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: jobspec: 详情描述completions: 1 指定job需要成功运行Pods的次数。默认值: 1parallelism: 1 指定job在任一时刻应该并发运行Pods的数量。默认值: 1activeDeadlineSeconds: 30 指定job可运行的时间期限,超过时间还未结束,系统将会尝试进行终止。backoffLimit: 6 指定job失败后进行重试的次数。默认是6manualSelector: true 是否可以使用selector选择器选择pod,默认是falseselector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: counter-podmatchExpressions: Expressions匹配规则- {key: app, operator: In, values: [counter-pod]}template: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels:app: counter-podspec:restartPolicy: Never 重启策略只能设置为Never或者OnFailurecontainers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 2;done"] 关于重启策略设置的说明:(这里只能设置为Never或者OnFailure) 如果指定为OnFailure,则job会在pod出现故障时重启容器,而不是创建pod,failed次数不变 如果指定为Never,则job会在pod出现故障时创建新的pod,并且故障pod不会消失,也不会重启,failed次数加1 如果指定为Always的话,就意味着一直重启,意味着job任务会重复去执行了,当然不对,所以不能设置为Always 1、创建一个job 创建pc-job.yaml,内容如下: apiVersion: batch/v1kind: Job metadata:name: pc-jobnamespace: devspec:manualSelector: trueselector:matchLabels:app: counter-podtemplate:metadata:labels:app: counter-podspec:restartPolicy: Nevercontainers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 3;done"] 创建 创建job[root@k8s-master01 ~] kubectl create -f pc-job.yamljob.batch/pc-job created 查看job[root@k8s-master01 ~] kubectl get job -n dev -o wide -wNAME COMPLETIONS DURATION AGE CONTAINERS IMAGES SELECTORpc-job 0/1 21s 21s counter busybox:1.30 app=counter-podpc-job 1/1 31s 79s counter busybox:1.30 app=counter-pod 通过观察pod状态可以看到,pod在运行完毕任务后,就会变成Completed状态[root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEpc-job-rxg96 1/1 Running 0 29spc-job-rxg96 0/1 Completed 0 33s 接下来,调整下pod运行的总数量和并行数量 即:在spec下设置下面两个选项 completions: 6 指定job需要成功运行Pods的次数为6 parallelism: 3 指定job并发运行Pods的数量为3 然后重新运行job,观察效果,此时会发现,job会每次运行3个pod,总共执行了6个pod[root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEpc-job-684ft 1/1 Running 0 5spc-job-jhj49 1/1 Running 0 5spc-job-pfcvh 1/1 Running 0 5spc-job-684ft 0/1 Completed 0 11spc-job-v7rhr 0/1 Pending 0 0spc-job-v7rhr 0/1 Pending 0 0spc-job-v7rhr 0/1 ContainerCreating 0 0spc-job-jhj49 0/1 Completed 0 11spc-job-fhwf7 0/1 Pending 0 0spc-job-fhwf7 0/1 Pending 0 0spc-job-pfcvh 0/1 Completed 0 11spc-job-5vg2j 0/1 Pending 0 0spc-job-fhwf7 0/1 ContainerCreating 0 0spc-job-5vg2j 0/1 Pending 0 0spc-job-5vg2j 0/1 ContainerCreating 0 0spc-job-fhwf7 1/1 Running 0 2spc-job-v7rhr 1/1 Running 0 2spc-job-5vg2j 1/1 Running 0 3spc-job-fhwf7 0/1 Completed 0 12spc-job-v7rhr 0/1 Completed 0 12spc-job-5vg2j 0/1 Completed 0 12s 2、删除 删除jobkubectl delete -f pc-job.yaml CronJob 简称为CJ,CronJob控制器以 Job控制器资源为其管控对象,并借助它管理pod资源对象,Job控制器定义的作业任务在其控制器资源创建之后便会立即执行,但CronJob可以以类似于Linux操作系统的周期性任务作业计划的方式控制其运行时间点及重复运行的方式。也就是说,CronJob可以在特定的时间点(反复的)去运行job任务。可以理解为定时任务 配置模板 apiVersion: batch/v1beta1 版本号kind: CronJob 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: cronjobspec: 详情描述schedule: cron格式的作业调度运行时间点,用于控制任务在什么时间执行concurrencyPolicy: 并发执行策略,用于定义前一次作业运行尚未完成时是否以及如何运行后一次的作业failedJobHistoryLimit: 为失败的任务执行保留的历史记录数,默认为1successfulJobHistoryLimit: 为成功的任务执行保留的历史记录数,默认为3startingDeadlineSeconds: 启动作业错误的超时时长jobTemplate: job控制器模板,用于为cronjob控制器生成job对象;下面其实就是job的定义metadata:spec:completions: 1parallelism: 1activeDeadlineSeconds: 30backoffLimit: 6manualSelector: trueselector:matchLabels:app: counter-podmatchExpressions: 规则- {key: app, operator: In, values: [counter-pod]}template:metadata:labels:app: counter-podspec:restartPolicy: Never containers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 20;done"] cron表达式写法 需要重点解释的几个选项:schedule: cron表达式,用于指定任务的执行时间/1 <分钟> <小时> <日> <月份> <星期>分钟 值从 0 到 59.小时 值从 0 到 23.日 值从 1 到 31.月 值从 1 到 12.星期 值从 0 到 6, 0 代表星期日多个时间可以用逗号隔开; 范围可以用连字符给出;可以作为通配符; /表示每... 例如1 // 每个小时的第一分钟执行/1 // 每分钟都执行concurrencyPolicy:Allow: 允许Jobs并发运行(默认)Forbid: 禁止并发运行,如果上一次运行尚未完成,则跳过下一次运行Replace: 替换,取消当前正在运行的作业并用新作业替换它 1、创建cronJob 创建pc-cronjob.yaml,内容如下: apiVersion: batch/v1beta1kind: CronJobmetadata:name: pc-cronjobnamespace: devlabels:controller: cronjobspec:schedule: "/1 " 每分钟执行一次jobTemplate:metadata:spec:template:spec:restartPolicy: Nevercontainers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 3;done"] 运行 创建cronjob[root@k8s-master01 ~] kubectl create -f pc-cronjob.yamlcronjob.batch/pc-cronjob created 查看cronjob[root@k8s-master01 ~] kubectl get cronjobs -n devNAME SCHEDULE SUSPEND ACTIVE LAST SCHEDULE AGEpc-cronjob /1 False 0 <none> 6s 查看job[root@k8s-master01 ~] kubectl get jobs -n devNAME COMPLETIONS DURATION AGEpc-cronjob-1592587800 1/1 28s 3m26spc-cronjob-1592587860 1/1 28s 2m26spc-cronjob-1592587920 1/1 28s 86s 查看pod[root@k8s-master01 ~] kubectl get pods -n devpc-cronjob-1592587800-x4tsm 0/1 Completed 0 2m24spc-cronjob-1592587860-r5gv4 0/1 Completed 0 84spc-cronjob-1592587920-9dxxq 1/1 Running 0 24s 2、删除cronjob kubectl delete -f pc-cronjob.yaml pod调度 什么是调度 默认情况下,一个pod在哪个node节点上运行,是通过scheduler组件采用相应的算法计算出来的,这个过程是不受人工控制的; 调度规则 但是在实际使用中,我们想控制某些pod定向到达某个节点上,应该怎么做呢?其实k8s提供了四类调度规则 调度方式 描述 自动调度 通过scheduler组件采用相应的算法计算得出运行在哪个节点上 定向调度 运行到指定的node节点上,通过NodeName、NodeSelector实现 亲和性调度 跟谁关系好就调度到哪个节点上 1、nodeAffinity :节点亲和性,调度到关系好的节点上 2、podAffinity:pod亲和性,调度到关系好的pod所在的节点上 3、PodAntAffinity:pod反清河行,调度到关系差的那个pod所在的节点上 污点(容忍)调度 污点是站在node的角度上的,比如果nodeA有一个污点,大家都别来,此时nodeA会拒绝master调度过来的pod 定向调度 指的是利用在pod上声明nodeName或nodeSelector的方式将pod调度到指定的pod节点上,因为这种定向调度是强制性的,所以如果node节点不存在的话,也会向上面进行调度,只不过pod会运行失败; 1、定向调度-> nodeName nodeName 是将pod强制调度到指定名称的node节点上,这种方式跳过了scheduler的调度逻辑,直接将pod调度到指定名称的节点上,配置文件内容如下 apiVersion: v1 版本号kind: Pod 资源类型metadata: name: pod-namenamespace: devspec: containers: - image: nginx:1.17.1name: nginx-containernodeName: node1 调度到node1节点上 2、定向调度 -> NodeSelector NodeSelector是将pod调度到添加了指定label标签的node节点上,它是通过k8s的label-selector机制实现的,也就是说,在创建pod之前,会由scheduler用matchNodeSelecto调度策略进行label标签的匹配,找出目标node,然后在将pod调度到目标node; 要实验NodeSelector,首先得给node节点加上label标签 kubectl label nodes node1 nodetag=node1 配置文件内容如下 apiVersion: v1 版本号kind: Pod 资源类型metadata: name: pod-namenamespace: devspec: containers: - image: nginx:1.17.1name: nginx-containernodeSelector: nodetag: node1 调度到具有nodetag=node1标签的节点上 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_27184497/article/details/121765387。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-29 09:08:28
422
转载
转载文章
...,没有做不到; 7、自动化: 打印过程中全部自动化,无需象生成PDF、Word、Excel那样还需要人工再点打印; 8、易部署:打印模板既可以部署在客户端(与 cfprint.exe 程序放在同一目录下),也支持部署在服务端随报表数据一起传到客户端; 9、目标活:支持在数据文件中或模板中指定要输出的打印机,发票用针打、报表用激光打、小票用小票机,专机专打; 三、使用前提条件: 1、IE6以上版本、Chrome(谷歌浏览器)4.0以上版本、Firefox 4.0以上版本、Opera 11以上版本、Safari 5.0.2以上版本、iOS 4.2以上版本 或使用Chrome内核、Firefox内核的浏览器均可直接使用本打印系统; 2、在进行打印前,需要先设计好打印模板(模板设计器请见第五节); 3、打印数据必须Json的格式发送给打印服务器,并且数据必须满足指定的格式(见下文); 四、数据格式说明: 下面以一个跨境电商快递面单数据为例解释一下数据各项的含义; { "template": "waybill.fr3", /打印模板文件名。除了指定模板文件以外,还支持把模板嵌入到数据文件中,以实现在服务器端灵活使用打印模板,格式如下:/ /"template": "base64:QTBBRTNEQTE3MkFFQjIzNEFERD<后面省略>" / "ver": 4, /数据模板文件版本/ "Copies": 3, /打印份数,支持指定打印份数/ "Duplex": 1, /是否双面打印,0:默认,不双面,1:垂直,2:水平,3:单面打印(simplex)/ "Printer": "priPrinter", /指定打印机,本系统支持在数据文件中指定打印机,也支持在打印模板中指定打印机/ "PageNumbers": "", /要打印的页码范围,同打印机的打印设置里的格式相同,例如:"1,2,3"表示打印前3页, “2-5”:表示打印第2到5页,“1,2,4-8”表示打印第1、2、4到8页/ "Preview": 1, /是否预览,跟主界面上选择“预览”效果相同,取值为0:不预览,1:预览/ "Tables":[ /数据表数组/ { "Name": "Table1", /表名/ "Cols": [ /字段定义/ { "type": "str", /字段类型,可选值:String,Str,Integer,Int,Smallint,Float,Long, Blob,/ /对于图片、PDF等使用Blob类型,并把值进行Base64编码,并加前缀:/ / "base64/pdf:" 字段值是PDF; "base64/jpg:" 字段值是jpg; "base64/png:" 字段值是png; "base64/gif:" 字段值是gif; / "size": 255, /字段长度/ "name": "HAWB", /字段名称,必须与打印模板中的打印项名称相同/ "required": false /字段是否必填/ }, { "type": "int", "size": 0, "name": "NO", "required": false }, { "type": "float", "size": 0, "name": "报关公司面单号", "required": false }, { "type": "integer", "size": 0, "name": "公司内部单号", "required": false }, { "type": "str", "size": 255, "name": "发件人", "required": false }, { "type": "str", "size": 255, "name": "发件人地址", "required": false }, { "type": "str", "size": 255, "name": "发件人电话", "required": false }, { "type": "str", "size": 255, "name": "发货国家", "required": false }, { "type": "str", "size": 255, "name": "收件人", "required": false }, { "type": "str", "size": 255, "name": "收件人地址", "required": false }, { "type": "str", "size": 255, "name": "收件人电话", "required": false }, { "type": "str", "size": 255, "name": "收货人证件号码", "required": false }, { "type": "str", "size": 255, "name": "收货省份", "required": false }, { "type": "float", "size": 0, "name": "总计费重量", "required": false }, { "type": "int", "size": 0, "name": "总件数", "required": false }, { "type": "float", "size": 0, "name": "申报总价(CNY)", "required": false }, { "type": "float", "size": 0, "name": "申报总价(JPY)", "required": false }, { "type": "int", "size": 0, "name": "件数1", "required": false }, { "type": "str", "size": 255, "name": "品名1", "required": false }, { "type": "float", "size": 0, "name": "单价1(JPY)", "required": false }, { "type": "str", "size": 255, "name": "单位1", "required": false }, { "type": "float", "size": 0, "name": "申报总价1(CNY)", "required": false }, { "type": "float", "size": 0, "name": "申报总价1(JPY)", "required": false }, { "type": "int", "size": 0, "name": "件数2", "required": false }, { "type": "str", "size": 255, "name": "品名2", "required": false }, { "type": "float", "size": 0, "name": "单价2(JPY)", "required": false }, { "type": "str", "size": 255, "name": "单位2", "required": false }, { "type": "float", "size": 0, "name": "申报总价2(CNY)", "required": false }, { "type": "float", "size": 0, "name": "申报总价2(JPY)", "required": false }, { "type": "AutoInc", "size": 0, "name": "ID", "required": false }, { "type": "blob", "size": 0, "name": "附件", "required": false } ], "Data": [ /数据行定义,每一行含义见上面的字段定义/ { "HAWB": "860014010055", "NO": 1, "报关公司面单号": 200303900791, "公司内部单号": 730293, "发件人": "NAKAGAWA SUMIRE 2", "发件人地址": " 991-199-113,Kameido,Koto-ku,Tokyo", "发件人电话": "03-3999-3999", "发货国家": "日本", "收件人": "张三丰", "收件人地址": "上海市闵行区虹梅南路1660弄蔷薇八村99号9999室", "收件人电话": "182-1234-8888", "收货人证件号码": null, "收货省份": null, "总计费重量": 3.2, "总件数": 13, "申报总价(CNY)": null, "申报总价(JPY)": null, "件数1": 10, "品名1": "纸尿片", "单价1(JPY)": null, "单位1": null, "申报总价1(CNY)": null, "申报总价1(JPY)": null, "件数2": null, "品名2": null, "单价2(JPY)": null, "单位2": null, "申报总价2(CNY)": null, "申报总价2(JPY)": null, "ID": 1, "附件": "base64/pdf:JVBERi0xLjQKJcDIzNINCjEgMCBvYmoKPDwKL1RpdGxlICh3YXliaWxsLmZyMykKL0F1dGhvciAoc2hlbmcpCi9DcmVhdG9yIChwZGZGYWN0b3J5IFBybyB3d3cucGRmZmFjdG9yeS5jb20pCi9Qcm9kdWNlciAocGRmRmFjdG9yeSBQcm8gNS4zNSBcKFdpbmRvd3MgNyBVbHRpbWF0ZSB4ODYgQ2hpbmVzZSBcKFNpbXBsaWZpZWRcKVwpKQovQ3JlYXRpb25EYXRlIChEOjIwMTcwMjI3MTIyODM2KzA4JzAwJykKPj4KZW5kb2JqCjUgMCBvYmoKPDwKL0ZpbHRlci9GbGF0ZURlY29kZQovTGVuZ3RoIDQwNAo+PnN0cmVhbQ0KSImVVMlOw0AMvecrTLkUoZqxZ80VhR44gTQSH4CKEKJIhQO/j2cS0skGrRo1cWy/97xkDvAIByC4B4We4Rso5EvZZLLxaAx87uAVnuCjIg5o5bULqBn2FVmk3nzvTNKYjTZ2aPWhX1XivY3VzZauCWqsHcSXqhCyIVDykxspSbQOa4a4F7dwxGdYw8UVxDcB4D79mBMIgymyNgqV0brNfMiJKj832w6llHHEcZQAZthXlznvLlZSRBve/kuQIfROkqTy2MwKZcFxKbg5UxnVSUhOnJEyniVxiiZSaKSLGEB4ORznOem/FIC1d1S37SfmpDMB2K587WywphzAMq+WNNcTC9CQmAtaGhJKpgtLc5O6Qwhlj5YlWAFaVnBC6TYDjksftvyvNW43WG6yDkmQFy25sjV0sx76XdKa3NOlGYf20vq1GfqNyRsi/mbWr11HNbdok+DfiaxXs2CcGp3c5XchApUn5aF/2ExfWYtKThw5KMx/3/dJeK5GlnVnf9YKjao/hSgkxWTySZMbUyzFD6PnEr4KZW5kc3RyZWFtCmVuZG9iago0IDAgb2JqCjw8Ci9UeXBlL1BhZ2UKL1BhcmVudCAzIDAgUgovTWVkaWFCb3hbMCAwIDE0MiAyODNdCi9SZXNvdXJjZXMKPDwKL1Byb2NTZXRbL1BERi9UZXh0XQovRm9udAo8PAovRjErMSA2IDAgUgovRjIgNyAwIFIKPj4KPj4KL0NvbnRlbnRzIDUgMCBSCj4+CmVuZG9iago2IDAgb2JqCjw8Ci9UeXBlL0ZvbnQKL1N1YnR5cGUvVHJ1ZVR5cGUKL0Jhc2VGb250IC9BSEpTV1orTlNpbVN1bgovTmFtZS9GMSsxCi9Ub1VuaWNvZGUgOCAwIFIKL0ZpcnN0Q2hhciAzMgovTGFzdENoYXIgMzUKL1dpZHRocyBbMTAwMCAxMDAwIDEwMDAgMTAwMF0KL0ZvbnREZXNjcmlwdG9yIDkgMCBSCj4+CmVuZG9iago5IDAgb2JqCjw8Ci9UeXBlL0ZvbnREZXNjcmlwdG9yCi9Gb250TmFtZSAvQUhKU1daK05TaW1TdW4KL0ZsYWdzIDcKL0ZvbnRCQm94Wy04IC0xNDUgMTAwMCA4NTldCi9TdGVtViA1MDAKL0l0YWxpY0FuZ2xlIDAKL0NhcEhlaWdodCA4NTkKL0FzY2VudCA4NTkKL0Rlc2NlbnQgLTE0MQovRm9udEZpbGUyIDEwIDAgUgo+PgplbmRvYmoKOCAwIG9iago8PAovRmlsdGVyL0ZsYXRlRGVjb2RlCi9MZW5ndGggMjQ2Cj4+c3RyZWFtDQpIiW1QwUrEMBS85yve0cVDtnGtK5SA7Fqs4CpGELxlk9caMGlI00P/3qRbVhQPecxj3gyTobtm3zgTgb6EXgmM0BqnAw79GBTCETvjoGCgjYrLNk9lpSc0icU0RLSNa3tSVYS+JnKIYYILevfwKN4/Lg/CWDG6FdDnoDEY1/3HidH7L7ToIqwJ56CxTfZP0h+kRfhz/8O+TR6BzXuxBOs1Dl4qDNJ1CBVb8zSuOKDTvzmyOSmOrfqUgZwut/X+lidcJFyWrM6YZXy9vck4GVWb+7rkJPktyuyc6oBzXDWGkH4ydzbHzAGNw3Otvvc5T37kGxjtexEKZW5kc3RyZWFtCmVuZG9iagoxMCAwIG9iago8PAovRmlsdGVyL0ZsYXRlRGVjb2RlCi9MZW5ndGggMTI3OAovTGVuZ3RoMSAyNjc2Cj4+c3RyZWFtDQpIie1WXWwUVRQ+997ZmZ2d353dmdku3R+26+7SrSUtdBdWWlpaCP4UkEIKUaObsm3R3XapxVCfeJAXjcbwYDSYIG8kRm3ExAqJERMeTAgPhjdrNDExijHxJ8QXw3ju7tAEjEEfjd7Jvff7zjn33nPu7wABABVOAoPhqUa1KYjMQclVAGJNPbeYljawnxB/DUA/nm7ONB46d/o7AOEttNFm6kvTy9dfOIZ8GfXnZ2vVI6F6igJIh1BfmkUBkm+Qv4o8O9tYPCEA9CL/AHmsPj9VpR1kDjmOB3qjeqJJPt0+iXwVeXqu2qi9d+7FN5H/jj6ca84/u+j9CBqAzMdPNxdqzcDqXmwrf4L8fcwEeDw8IiAi3DNRJgTubfVvTt7/6T+d4G2g0MQseLe8r5CLEIQQng8dTLAgCg7EIA6dkOSSv9Sjxd8YK4nfZ7jpOvGj3g04CJtgC1zG/oahDIPQD9tg1fsSJmEcFEi18mnUPI8e1mEe0vjFcUTuA88GwHKh5+H9h3aOrVu//vD9fEMLoHg/w024hhZd0A27ALaTJNFJTtpUdrtEieNekhelfKmcy5cdt1Tuykj5csvGTdJS2RbtTC9rGQxwFbaTTlEnJITEoSXDKsrhuBMQlQ45XaQbo7EOmrXMwGhQGaKWQTUxKqeHSo7dszVnh2KCEXFlTZELUli+ShVVk2NJ08kmo45NI53BbJglE67FbD3ZySo0pJtK52shi1EqBFTBsJkbNDR5gsmKFuSx6d4P8CvGxnDuHagAlO1NA3mXexh1pYEuWypt5qJWrHarSBIMSOql7YhdnUiOy8M6ODltHpBNmRiTBtEnz3xk2LXNWuSANWpb9IG+lBq5j/YojigK4dSDmnImmeyXQ5q0xQxqstjRpyYSVcPOaJENAcICgkqNmNltsfWjmhBSbG2coY+q9z38gt4GIAEZ9DVJxFzeXwbHRa9yt5cB/WmtxDE9HBaVxy+azpCWKoxE2GBq4ygZ6U6o6zRlq56IK9fkqJMO95nOSDEbEJhqZYoaixSLw4xV8vkK7mTZ+xbX/3PI4t6C8ua8K9lrs4GTVGqv6QD6kB8iOHGiQUqDhDPKmYT2Ufcsickp1RrsVq3dxCQ9uITjRdVgiibYQSGwg8QNFrTjITsYEbUgeSWXVKR+1aqo1iOG1NfH5EpnlLq96xRRMc+nwk/nsWlmS1oXM4oszVqx1jsUkN7t+e3R608a226C0n6YPnx9x0leX7k0thtP5Bco5W+dinG1Ezdb9VYhS8C71aLkrit97V1DBe9Vx6xiln3xHFzBZ/CA35dI6tC31vNG2ICgOnjJtzXgot8/AQluj0URSz4WEOk+FhHbPmbg4ilnQAQZJTqe9DamiEd8jPsZ9vpYRPyEjxn+AzzDcVDAtiK84WPe9qyPBZS/42Pe9oKPGeTg8p6Jo42J43P7azPH69UFn/lV88j0rurU4vzCUnrfwnwl7YthD0zAUWhgeRynaD/UYAZRHaqwcJfuTtaEIzCN10wVpmARL6kFWMJrah/W83hA03da15Yfe2nvxJ29+7J/1KvfpjXP7Xf8Bv+n+dNegJE4CRMTb9YC7mIdClgbfq0SDQcoEM3nOvJYW35hV2EfWSHeqZchsdyPF+zyycThFSLunMWia2yFCBwJHAVaaOdTiDila5RyyjilnDJOYU0LnBJOgVPSNUaK7QTwBzD6P0QKZW5kc3RyZWFtCmVuZG9iago3IDAgb2JqCjw8Ci9UeXBlL0ZvbnQKL1N1YnR5cGUvVHJ1ZVR5cGUKL0Jhc2VGb250IC9BcmlhbE1UCi9OYW1lL0YyCi9GaXJzdENoYXIgMzIKL0xhc3RDaGFyIDI1NQovV2lkdGhzIFsyNzggMjc4IDM1NSA1NTYgNTU2IDg4OSA2NjcgMTkxIDMzMyAzMzMgMzg5IDU4NCAyNzggMzMzIDI3OCAyNzgKNTU2IDU1NiA1NTYgNTU2IDU1NiA1NTYgNTU2IDU1NiA1NTYgNTU2IDI3OCAyNzggNTg0IDU4NCA1ODQgNTU2CjEwMTUgNjY3IDY2NyA3MjIgNzIyIDY2NyA2MTEgNzc4IDcyMiAyNzggNTAwIDY2NyA1NTYgODMzIDcyMiA3NzgKNjY3IDc3OCA3MjIgNjY3IDYxMSA3MjIgNjY3IDk0NCA2NjcgNjY3IDYxMSAyNzggMjc4IDI3OCA0NjkgNTU2CjMzMyA1NTYgNTU2IDUwMCA1NTYgNTU2IDI3OCA1NTYgNTU2IDIyMiAyMjIgNTAwIDIyMiA4MzMgNTU2IDU1Ngo1NTYgNTU2IDMzMyA1MDAgMjc4IDU1NiA1MDAgNzIyIDUwMCA1MDAgNTAwIDMzNCAyNjAgMzM0IDU4NCAyNzgKNTU2IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4CjI3OCAyNzggMjc4IDI3OCA5MjMgMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OAoyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzgKMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4IDI3OCAyNzggMjc4CjI3OCA1NTYgNTU2IDMzMyA1NTYgNTU2IDU1NiA1NTYgMjc4IDY2NyAyNzggMjc4IDI3OCAyNzggMjc4IDY2NwoyNzggNjY3IDI3OCAyNzggMjc4IDI3OCAyNzggNjY3IDI3OCA2NjcgMjc4IDY2NyAyNzggNjY3IDI3OCAyNzgKMjc4IDY2NyAyNzggNjY3IDU1MiAyNzggMjc4IDI3OCAyNzggNTU2IDI3OCA1NTYgMjc4IDI3OCAyNzggNjY3CjI3OCA2NjcgMjc4IDI3OCAyNzggNjY3IDI3OCA2NjcgMjc4IDY2NyAyNzggNjY3IDI3OCA2NjcgMjc4IDI3OF0KL0VuY29kaW5nL1dpbkFuc2lFbmNvZGluZwovRm9udERlc2NyaXB0b3IgMTEgMCBSCj4+CmVuZG9iagoxMSAwIG9iago8PAovVHlwZS9Gb250RGVzY3JpcHRvcgovRm9udE5hbWUgL0FyaWFsTVQKL0ZsYWdzIDMyCi9Gb250QkJveFstNjY1IC0zMjUgMjAwMCAxMDA2XQovU3RlbVYgOTUKL0l0YWxpY0FuZ2xlIDAKL0NhcEhlaWdodCA5MDUKL0FzY2VudCA5MDUKL0Rlc2NlbnQgLTIxMgo+PgplbmRvYmoKMyAwIG9iago8PAovVHlwZS9QYWdlcwovQ291bnQgMQovS2lkc1s0IDAgUl0KPj4KZW5kb2JqCjIgMCBvYmoKPDwKL1R5cGUvQ2F0YWxvZwovUGFnZXMgMyAwIFIKL1BhZ2VMYXlvdXQvU2luZ2xlUGFnZQovVmlld2VyUHJlZmVyZW5jZXMgMTIgMCBSCj4+CmVuZG9iagoxMiAwIG9iago8PAovVHlwZS9WaWV3ZXJQcmVmZXJlbmNlcwo+PgplbmRvYmoKeHJlZgowIDEzCjAwMDAwMDAwMDAgNjU1MzUgZg0KMDAwMDAwMDAxNiAwMDAwMCBuDQowMDAwMDA0MjEzIDAwMDAwIG4NCjAwMDAwMDQxNTggMDAwMDAgbg0KMDAwMDAwMDcxNiAwMDAwMCBuDQowMDAwMDAwMjQxIDAwMDAwIG4NCjAwMDAwMDA4NzIgMDAwMDAgbg0KMDAwMDAwMjkyNyAwMDAwMCBuDQowMDAwMDAxMjQ1IDAwMDAwIG4NCjAwMDAwMDEwNTUgMDAwMDAgbg0KMDAwMDAwMTU2MiAwMDAwMCBuDQowMDAwMDAzOTg5IDAwMDAwIG4NCjAwMDAwMDQzMTAgMDAwMDAgbg0KdHJhaWxlcgo8PAovU2l6ZSAxMwovSW5mbyAxIDAgUgovUm9vdCAyIDAgUgovSURbPDVBMkU0QzkzOTdENEU0RDE3NkIwOTBDRUU3OTMxMzRGPjw1QTJFNEM5Mzk3RDRFNEQxNzZCMDkwQ0VFNzkzMTM0Rj5dCj4+CnN0YXJ0eHJlZgo0MzU2CiUlRU9GCg==", }, { "HAWB": "860014010035", "NO": 2, "报关公司面单号": 200303900789, "公司内部单号": 730291, "发件人": "NAKAGAWA SUMIRE", "发件人地址": " 991-199-113,Kameido,Koto-ku,Tokyo", "发件人电话": "03-3999-3999", "发货国家": "日本", "收件人": "张无忌", "收件人地址": "上海市闵行区虹梅南路1660弄蔷薇八村88号8888室", "收件人电话": "182-1234-8888", "收货人证件号码": null, "收货省份": null, "总计费重量": 3.2, "总件数": 13, "申报总价(CNY)": null, "申报总价(JPY)": null, "件数1": 10, "品名1": "纸尿片", "单价1(JPY)": null, "单位1": null, "申报总价1(CNY)": null, "申报总价1(JPY)": null, "件数2": null, "品名2": null, "单价2(JPY)": null, "单位2": null, "申报总价2(CNY)": null, "申报总价2(JPY)": null, "ID": 2, "附件":"base64/gif:R0lGODlhrgCuAPcAAAAAAAEBAQICAgMDAwQEBAUFBQYGBgcHBwgICAkJCQoKCgsLCwwMDA0NDQ4ODg8PDxAQEBERERISEhMTExQUFBUVFRYWFhcXFxgYGBkZGRoaGhsbGxwcHB0dHR4eHh8fHyAgICEhISIiIiMjIyQkJCUlJSYmJicnJygoKCkpKSoqKisrKywsLC0tLS4uLi8vLzAwMDExMTIyMjMzMzQ0NDU1NTY2Njc3Nzg4ODk5OTo6Ojs7Ozw8PD09PT4+Pj8/P0BAQEFBQUJCQkNDQ0REREVFRUZGRkdHR0hISElJSUpKSktLS0xMTE1NTU5OTk9PT1BQUFFRUVJSUlNTU1RUVFVVVVZWVldXV1hYWFlZWVpaWltbW1xcXF1dXV5eXl9fX2BgYGFhYWJiYmNjY2RkZGVlZWZmZmdnZ2hoaGlpaWpqamtra2xsbG1tbW5ubm9vb3BwcHFxcXJycnNzc3R0dHV1dXZ2dnd3d3h4eHl5eXp6ent7e3x8fH19fX5+fn9/f4CAgIGBgYKCgoODg4SEhIWFhYaGhoeHh4iIiImJiYqKiouLi4yMjI2NjY6Ojo+Pj5CQkJGRkZKSkpOTk5SUlJWVlZaWlpeXl5iYmJmZmZqampubm5ycnJ2dnZ6enp+fn6CgoKGhoaKioqOjo6SkpKWlpaampqenp6ioqKmpqaqqqqurq6ysrK2tra6urq+vr7CwsLGxsbKysrOzs7S0tLW1tba2tre3t7i4uLm5ubq6uru7u7y8vL29vb6+vr+/v8DAwMHBwcLCwsPDw8TExMXFxcbGxsfHx8jIyMnJycrKysvLy8zMzM3Nzc7Ozs/Pz9DQ0NHR0dLS0tPT09TU1NXV1dbW1tfX19jY2NnZ2dra2tvb29zc3N3d3d7e3t/f3+Dg4OHh4eLi4uPj4+Tk5OXl5ebm5ufn5+jo6Onp6erq6uvr6+zs7O3t7e7u7u/v7/Dw8PHx8fLy8vPz8/T09PX19fb29vf39/j4+Pn5+fr6+vv7+/z8/P39/f7+/v///ywAAAAArgCuAAAI/wD/CRxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBDihxJsqTJkyhTqlzJsqXLlzBjypxJs6bNmzhzhgTAs6fOnzJ7CuUJtOjKoUgBGF1a0mdBoUyjgiR60KnUqxqpVtWKtStFrgatev2ZtOxCsWHBjqVZtm3StEoVql37si1DswLRbo1LdyPUh0gr2r07t+9EvHKHIiQQOLFehI8NR3SbUHFBxm4bP+XbsLBkh3/z6rU8MLNpzhIjfz47Wmxo0adjH/a8unJhqK//xd6t2jbq2qx/E3xbOjNm2rpzg0YOvDgAAsG5UnYunCPz5rA7o0Y8XHn06t2xa/8H79jzbsjE94onPPs279eD1a/3ndr9+6HQp8Od79ivWe/FJRffZuTN1xtg6QlY4D/HURXZgQYypxl1rUkIIFwLindgg65deCF1k2WI3YHTWWhifSI2R5tpDXE4YXbsOccfeuAp5mJ5LAY4HlEQjmgeWqQR5CJ3Ou4Y5IwyLlZdbkhBtxORSCp4XZKwpYjRgFFKGWJ4KbXlZJYwSqXYhxoeyVKPClZppWEvqpQgjVqRuVqbXXIGIXxysmkmSjw1mNx4GK6J1Z58vnVioIIyRWihgZm4JJqD5imST40CuleiSy3aHaTLUfhnZQLCKZuYeTrVp3+e/hjqpe9lqqloavr/p1SjNZqJ331G4bcQY1JyiuOYXyJK4HY/StoSnZul6euvlH63aVo76kSphGnCmpWhBZLWGoJTujlttrNahaZqxC2orVrdVsuWqcjxiBu5+m3qoLmhMbnmsiPVG+dv7kKp5mmrfhrdsFxyu6508woXrr9g3dejd2Pem+6kyjVZVa8VKtxmZnB2PDG+HgGIbL/n4sqsviu6GyKm1sHrIcaxUvjmychW+/HEH/VWc8I7z8zti4jdzLKsztJXM4HoQQQx0FaC3DK4JB4tb8O+Fqux0jjnrPOdDxLLF5YZVdx01lp33a7L/WIosKz8jj10R0SiDbWcZPt2tcE1Tbj0lN3W/93xVj/fJDa7xgqcI9u2Lef0k/b5/N3hYXuYodTepky5qPJdS+iH3+Z9XeGAJx45yRrr5WfAMS0+m1wZna7u1AOqDjfoF7l3pb1zIZy732VfbpHtFbk+NbSK4+T7720jbza6IsreFO+WWoui5UBOfipZzhOm8vT04nko9tlrn67F4n+7aPgkHa/8z+NTdiOIB/MWlPr/Zuz4UQ7rWuf9J/ef+mAOoxjYjNSTYAVnJkIxIOxM1h7jsEp+XqEbaTiEsfxxTCFDipdXjqM43THPgq8algbpAqkjBQl6KMqS0LzGMxTibUZVwx3p0JeYSA3wWQLhlfhEuDB/oSoqENyP9P8cY0AKyox+2gHi3h4jLuuVzn433FKujmaruPBtd4PbF+1CB5QoVilZa6uhQd5XQR2FUIzgi5nd7GTFoZ2nVe1JI/zWOK+8BA9y9fNif3KSsTDmUUtfodwIF2g6F5ZtjBesYA8F47bzBdGP82vbaW6UNkZiTTUZBBgkYdJHUaGsbpyK2tcCaJPqLWhIMusUlVRZu0QikGopMuEZtbgy9j3xjPvb18okGTU1EnCJm0Ni+vSYuQV6soSaBGR2OrRFAfpwj0hjIENcZMABcqeAniNmMYs0qg7K7VEkGwhmStlEspmShVYZhi27Jzpxdi6blzEnV4zItnHVSljk5GIK//X/NGOpCp8HQ5oltVk8ZNLIk/DEYSBdycg2vlCg0GrmVGDZykHWEnWsUWBpLrXKl4yzYMr7i+poGb05yktI1/ufQkPqtYZ6qjyIeg5Iw8RJ/l0UopcUIn0eeLa39VOiOsVp8YRKVMwpyac/DRkWJaa2v3XwoPxhYuFg2bjpbbNM6LwiOjkayKBGlY3PLBI/CeZSk361h3qk6O5u5ySgRlA/smRmuBj3OhXGDY/vcqYhu+Iza+aVcXt96/J2uMnRIVUyCeQqTAtb0cPOqZOLDewXwcQ+s35SNBq9Iw2BY8FeYZSllG3oBWf42QZKNkofjahlRorL0FYUZk6zqWtvR7iwwNLRsbPlISFBJ9vc7lKqFo0pbl3rRTwKd7iUte1+gmk+316Eno1lkVt929pL/me6ucVuAzPr3IeepLrdvSptzxNezbI0f+V9rWhJmd71aQ657dUnbeP7vKfRd5hQHep9KZZf7e13mCwM3H/1qr7NDpiHUz3tgU+KM2wumL9JPOmDBTgws05YqbWS64UBnFUJb5jAb9Luhx8HXPiOWLGBOvF3S2ZgFdNMxC7+bYtjTOMa2/jGOM6xjnfM4x772MYBAQA7" } ] }, { "Name": "Table2", "Cols": [ { "type": "int", "size": 0, "name": "NO", "required": false }, { "type": "float", "size": 0, "name": "订单编号", "required": false }, { "type": "integer", "size": 0, "name": "下单日期", "required": false }, { "type": "str", "size": 255, "name": "下单平台", "required": false } ], "Data": [ { "NO": 1, "订单编号": 200303900791, "下单日期": "2017-01-20", "下单平台": "天猫" }, { "NO": 2, "订单编号": 200303900792, "下单日期": "2017-01-20", "下单平台": "京东" } ] } ] } 五、调用示例: <!-- ★★★ 模式1 ★★★ --> <!DOCTYPE html> <head> <meta charset="utf-8" /> <title>康虎云报表系统测试</title> </head> <body> <div style="width: 100%;text-align:center;"> <h2>康虎云报表系统</h2> <h3>打印测试(模式1)</h3> <div> <input type="button" id="btnPrint" value="打印" onClick="doSend(_reportData);" /> </div> </div> <div id="output"></div> </body> <script type="text/javascript"> //定义数据脚本 var _reportData = '{"template":"waybill.fr3","Cols":[{"type":"str","size":255,"name":"HAWB","required":false},<这里省略1000字> ]}'; //在浏览器控制台输出调试信息 console.log("reportData = " + _reportData); </script> <script language="javascript" type="text/javascript" src="cfprint.min.js"></script> <script language="javascript" type="text/javascript" src="cfprint_ext.js"></script> <script language="javascript" type="text/javascript"> /下面四个参数必须放在myreport.js脚本后面,以覆盖myreport.js中的默认值/ var _delay_send = 1000; //发送打印服务器前延时时长,-1则表示不自动打印 var _delay_close = 1000; //打印完成后关闭窗口的延时时长, -1则表示不关闭 var cfprint_addr = "127.0.0.1"; //打印服务器监听地址 var cfprint_port = 54321; //打印服务器监听端口 </script> </html> <!-- ★★★ 模式2 ★★★ --> <?php //如果有php运行环境,只需把该文件扩展名改成 .php,然后上传到web目录即可在真实服务器上测试 header("Access-Control-Allow-Origin: "); ?> <!DOCTYPE html> <head> <meta charset="utf-8" /> <title>康虎云报表系统测试</title> <style type="text/css"> output {font-size: 12px; background-color:F0FFF0;} </style> </head> <body> <div style="width: 100%;text-align:center;"> <h2>康虎云报表系统(Ver 1.3.0)</h2> <h3>打印测试(模式2)</h3> <div style="line-height: 1.5;"> <div style="width: 70%; text-align: left;"> <b>一、首先按下列步骤设置:</b><br/> 1、运行打印服务器;<br/> 2、按“停止”按钮停止服务;<br/> 3、打开“设置”区;<br/> 4、在“常用参数-->服务模式”中,选择“模式2”;<br/> 5、按“启动”按钮启动服务。 </div> <div style="width: 70%; text-align: left;"> <b>二、按本页的“打印”按钮开始打印。</b><br/> </div><br/> <input type="button" id="btnPrint" value="打印" /><br/><br/> <div style="width: 70%; text-align: left; font-size: 12px;"> 由于JavaScript在不同域名下访问会出现由来已久的跨域问题,所以正式部署到服务器使用时,要解决跨域问题。<br/> 对于IE8以上版本浏览器,只需增加一个reponse头:Access-Control-Allow-Origin即可,而对于php、jsp、asp/aspx等动态语言而言,增加一个response头是非常简单的事,例如:<br/> <b>在php:</b><br/><span style="color: red;"> <?php <br/> header("Access-Control-Allow-Origin: ");<br/> ?><br/> </span> <b>在jsp:</b><br/><span style="color: red;"> <% <br/> response.setHeader("Access-Control-Allow-Origin", ""); <br/> %><br/> </span> <b>在asp.net中:</b><br/><span style="color: red;"> Response.AppendHeader("Access-Control-Allow-Origin", ""); </span>,<br/>其他语言里,大家请自行搜索“ajax跨域”。而对于IE8以下的浏览器,大家可以自行搜索“IE6+Ajax+跨域”寻找解决办法吧,也可以联系我们帮助。 </div> </div> </div> <div id="output"></div> </body> <!-- 引入模式2所需的javascript支持库 --> <script type="text/javascript" src="cfprint_mode2.min.js" charset="UTF-8"></script> <!-- 构造报表数据 --> <script type="text/javascript"> var _reportData = '{"template":"waybill.fr3","ver":3, "Tables":[ {"Name":"Table1", "Cols":[{"type":"str","size":255,"name":"HAWB","required":false},{"type":"int","size":0,"name":"NO","required":false},{"type":"float","size":0,"name":"报关公司面单号","required":false},{"type":"integer","size":0,"name":"公司内部单号","required":false},{"type":"str","size":255,"name":"发件人","required":false},{"type":"str","size":255,"name":"发件人地址","required":false},{"type":"str","size":255,"name":"发件人电话","required":false},{"type":"str","size":255,"name":"发货国家","required":false},{"type":"str","size":255,"name":"收件人","required":false},{"type":"str","size":255,"name":"收件人地址","required":false},{"type":"str","size":255,"name":"收件人电话","required":false},{"type":"str","size":255,"name":"收货人证件号码","required":false},{"type":"str","size":255,"name":"收货省份","required":false},{"type":"float","size":0,"name":"总计费重量","required":false},{"type":"int","size":0,"name":"总件数","required":false},{"type":"float","size":0,"name":"申报总价(CNY)","required":false},{"type":"float","size":0,"name":"申报总价(JPY)","required":false},{"type":"int","size":0,"name":"件数1","required":false},{"type":"str","size":255,"name":"品名1","required":false},{"type":"float","size":0,"name":"单价1(JPY)","required":false},{"type":"str","size":255,"name":"单位1","required":false},{"type":"float","size":0,"name":"申报总价1(CNY)","required":false},{"type":"float","size":0,"name":"申报总价1(JPY)","required":false},{"type":"int","size":0,"name":"件数2","required":false},{"type":"str","size":255,"name":"品名2","required":false},{"type":"float","size":0,"name":"单价2(JPY)","required":false},{"type":"str","size":255,"name":"单位2","required":false},{"type":"float","size":0,"name":"申报总价2(CNY)","required":false},{"type":"float","size":0,"name":"申报总价2(JPY)","required":false},{"type":"int","size":0,"name":"件数3","required":false},{"type":"str","size":255,"name":"品名3","required":false},{"type":"float","size":0,"name":"单价3(JPY)","required":false},{"type":"str","size":255,"name":"单位3","required":false},{"type":"float","size":0,"name":"申报总价3(CNY)","required":false},{"type":"float","size":0,"name":"申报总价3(JPY)","required":false},{"type":"int","size":0,"name":"件数4","required":false},{"type":"str","size":255,"name":"品名4","required":false},{"type":"float","size":0,"name":"单价4(JPY)","required":false},{"type":"str","size":255,"name":"单位4","required":false},{"type":"float","size":0,"name":"申报总价4(CNY)","required":false},{"type":"float","size":0,"name":"申报总价4(JPY)","required":false},{"type":"int","size":0,"name":"件数5","required":false},{"type":"str","size":255,"name":"品名5","required":false},{"type":"float","size":0,"name":"单价5(JPY)","required":false},{"type":"str","size":255,"name":"单位5","required":false},{"type":"float","size":0,"name":"申报总价5(CNY)","required":false},{"type":"float","size":0,"name":"申报总价5(JPY)","required":false},{"type":"str","size":255,"name":"参考号","required":false},{"type":"AutoInc","size":0,"name":"ID","required":false}],"Data":[{"公司内部单号":730293,"发货国家":"日本","单价1(JPY)":null,"申报总价2(JPY)":null,"单价4(JPY)":null,"申报总价2(CNY)":null,"申报总价5(JPY)":null,"报关公司面单号":200303900791,"申报总价5(CNY)":null,"收货人证件号码":null,"申报总价1(JPY)":null,"单价3(JPY)":null,"申报总价1(CNY)":null,"申报总价4(JPY)":null,"申报总价4(CNY)":null,"收件人电话":"182-1758-9999","收件人地址":"上海市闵行区虹梅南路1660弄蔷薇八村139号502室","HAWB":"860014010055","发件人电话":"03-3684-9999","发件人地址":" 1-1-13,Kameido,Koto-ku,Tokyo","NO":3,"ID":3,"单价2(JPY)":null,"申报总价3(JPY)":null,"单价5(JPY)":null,"申报总价3(CNY)":null,"收货省份":null,"申报总价(JPY)":null,"申报总价(CNY)":null,"总计费重量":3.20,"收件人":"张三丰2","总件数":13,"品名5":null,"品名4":null,"品名3":null,"品名2":null,"品名1":"纸尿片","参考号":null,"发件人":"NAKAGAWA SUMIRE 2","单位5":null,"单位4":null,"单位3":null,"单位2":null,"单位1":null,"件数5":null,"件数4":null,"件数3":3,"件数2":null,"件数1":10},{"公司内部单号":730291,"发货国家":"日本","单价1(JPY)":null,"申报总价2(JPY)":null,"单价4(JPY)":null,"申报总价2(CNY)":null,"申报总价5(JPY)":null,"报关公司面单号":200303900789,"申报总价5(CNY)":null,"收货人证件号码":null,"申报总价1(JPY)":null,"单价3(JPY)":null,"申报总价1(CNY)":null,"申报总价4(JPY)":null,"申报总价4(CNY)":null,"收件人电话":"182-1758-9999","收件人地址":"上海市闵行区虹梅南路1660弄蔷薇八村139号502室","HAWB":"860014010035","发件人电话":"03-3684-9999","发件人地址":" 1-1-13,Kameido,Koto-ku,Tokyo","NO":1,"ID":1,"单价2(JPY)":null,"申报总价3(JPY)":null,"单价5(JPY)":null,"申报总价3(CNY)":null,"收货省份":null,"申报总价(JPY)":null,"申报总价(CNY)":null,"总计费重量":3.20,"收件人":"张三丰","总件数":13,"品名5":null,"品名4":null,"品名3":null,"品名2":null,"品名1":"纸尿片","参考号":null,"发件人":"NAKAGAWA SUMIRE","单位5":null,"单位4":null,"单位3":null,"单位2":null,"单位1":null,"件数5":null,"件数4":null,"件数3":3,"件数2":null,"件数1":10},{"公司内部单号":730292,"发货国家":"日本","单价1(JPY)":null,"申报总价2(JPY)":null,"单价4(JPY)":null,"申报总价2(CNY)":null,"申报总价5(JPY)":null,"报关公司面单号":200303900790,"申报总价5(CNY)":null,"收货人证件号码":null,"申报总价1(JPY)":null,"单价3(JPY)":null,"申报总价1(CNY)":null,"申报总价4(JPY)":null,"申报总价4(CNY)":null,"收件人电话":"182-1758-9999","收件人地址":"上海市闵行区虹梅南路1660弄蔷薇八村139号502室","HAWB":"860014010045","发件人电话":"03-3684-9999","发件人地址":" 1-1-13,Kameido,Koto-ku,Tokyo","NO":2,"ID":2,"单价2(JPY)":null,"申报总价3(JPY)":null,"单价5(JPY)":null,"申报总价3(CNY)":null,"收货省份":null,"申报总价(JPY)":null,"申报总价(CNY)":null,"总计费重量":3.20,"收件人":"张无忌","总件数":13,"品名5":null,"品名4":null,"品名3":null,"品名2":null,"品名1":"纸尿片","参考号":null,"发件人":"NAKAGAWA SUMIRE 1","单位5":null,"单位4":null,"单位3":null,"单位2":null,"单位1":null,"件数5":null,"件数4":null,"件数3":3,"件数2":null,"件数1":10}]}]}'; if(window.console) console.log("reportData = " + _reportData); </script> <!-- 设置服务器参数 --> <script language="javascript" type="text/javascript"> var cfprint_addr = "127.0.0.1"; //打印服务器监听地址 var cfprint_port = 54321; //打印服务器监听端口 var _url = "http://"+cfprint_addr+":"+cfprint_port; </script> <!-- 编写回调函数用以处理服务器返回的数据 --> <script type="text/javascript"> / 参数: readyState: XMLHttpRequest的状态 httpStatus: 服务端返回的http状态 responseText: 服务端返回的内容 / var callbackSuccess = function(readyState, httpStatus, responseText){ if (httpStatus === 200) { //{"result": 1, "message": "打印完成"} var response = CFPrint.parseJSON(responseText); alert(response.message+", 状态码["+response.result+"]"); }else{ alert('打印失败,HTTP状态代码是:'+httpStatus); } } / 参数: message: 错误信息 / var callbackFailed = function(message){ alert('发送打印任务出错: ' + message); } </script> <!-- 调用发送打印请求功能 --> <script type="text/javascript"> (function(){ document.getElementById("btnPrint").onclick = function() { CFPrint.outputid = "output"; //指定调试信息输出div的id CFPrint.SendRequest(_url, _reportData, callbackSuccess, callbackFailed); //发送打印请求 }; })(); </script> </html> 六、模板设计器(重要!重要!!,好多朋友都找不到设计器入口) 在主界面上,双击右下角的“设计”两个字,即可打开模板设计工具箱,在工具箱有三个按钮和一个大文本框。三个按钮的作用分别是: 设计:以大文本框中的json数据为数据源,打开模板设计器窗口; 预览:以大文本框中的json数据为数据源,预览当前所用模板的打印效果; 打印:以大文本框中的json数据为数据源,向打印机输出当前所用模板生成的报表; 以后将会有详细的模板设计教程发布,如果您遇到紧急的难题,请向作者咨询。 本篇文章为转载内容。原文链接:https://blog.csdn.net/chensongmol/article/details/76087600。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-01 18:34:12
234
转载
建站模板下载
...高效,适用于各类公司自动化数据后台的搭建与管理。此模板下载后易于部署和自定义,提供丰富的功能模块以实现对企业的全方位、精细化管控,助力企业实现数据后台的自动化运营与维护,提升管理效率。 点我下载 文件大小:150.27 KB 您将下载一个资源包,该资源包内部文件的目录结构如下: 本网站提供模板下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-11-09 15:17:45
87
本站
建站模板下载
...台界面,满足各类办公自动化场景需求,实现企业资源、业务流程的有效管控与可视化呈现。 点我下载 文件大小:7.46 MB 您将下载一个资源包,该资源包内部文件的目录结构如下: 本网站提供模板下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-12-02 09:10:14
284
本站
建站模板下载
...适用于智能科技研发、自动化机器人及智能设备相关公司官网建设。该模板采用响应式设计,可在不同设备上完美展现,以红色为主色调,彰显科技创新与活力。模板内含丰富的展示板块,便于全方位介绍公司的技术实力、产品线及研发成果,提供便捷的下载服务,助力企业快速搭建专业且富有现代感的官方网站。 点我下载 文件大小:2.55 MB 您将下载一个资源包,该资源包内部文件的目录结构如下: 本网站提供模板下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-12-21 20:19:19
329
本站
建站模板下载
...介绍 这款“宽屏精品自动化智能机器人企业网站模板”采用先进的HTML5技术构建,专为展示和推广智能机械设备、自动化生产线及机器人产品而设计。该模板拥有精美的宽屏布局与自适应功能,确保在不同设备上呈现卓越的响应式视觉效果。它强调产品细节展示,提供丰富多样的内容呈现方式,助力企业全面展现其在智能制造领域的专业技术与解决方案,提升品牌形象与市场影响力。 点我下载 文件大小:967.68 KB 您将下载一个资源包,该资源包内部文件的目录结构如下: 本网站提供模板下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-12-21 22:14:25
105
本站
建站模板下载
...理,实现 OA 办公自动化,可直接下载使用,大大提升了医院后台管理效率与用户体验。 点我下载 文件大小:3.44 MB 您将下载一个资源包,该资源包内部文件的目录结构如下: 本网站提供模板下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-08-26 15:12:51
57
本站
建站模板下载
...者信息管理和内部办公自动化。其特色在于具备患者管理模块,以及适应各类终端设备的响应式设计,让医院网站在PC端与移动端均能呈现优秀用户体验。同时,它也兼顾了医院形象展示与业务管理的双重需求,是现代化医院网站建设的理想选择。 点我下载 文件大小:2.42 MB 您将下载一个资源包,该资源包内部文件的目录结构如下: 本网站提供模板下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-03-18 17:47:09
119
本站
JQuery插件下载
...图验证,增强了对机器自动识别的抵抗力。在实际使用中,用户需要拖动滑块至预设位置,完成一张被分割图像的拼接。这一过程中,插件会记录用户的拖动时间、动作精度以及滑动轨迹等详细行为数据,并将其发送到服务器进行复杂的后台算法验证。这种验证机制有效防止了恶意的自动化脚本攻击,提高了网站的安全性和用户账号的安全保护级别。此外,该插件具有良好的兼容性和易用性,开发者可以根据需求快速集成到项目中,实现平滑的跨平台适配效果,确保无论用户处于何种设备环境下,都能获得流畅且安全的验证体验。 点我下载 文件大小:86.92 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-12-27 08:30:10
42
本站
JQuery插件下载
...户,从而有效地抵御了自动化工具或脚本的攻击。这种机制不仅增加了登录过程的安全性,也减少了因机器人尝试登录而导致的服务器资源浪费。无论是个人网站还是大型电商平台,这款插件都是一款理想的登录验证解决方案,它不仅能够保护用户的账号安全,还能显著提升网站的整体用户体验。安装简便,配置灵活,是开发者实现高效、安全登录验证的理想选择。 点我下载 文件大小:44.66 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-11-17 10:36:10
115
本站
JQuery插件下载
...日益猖獗的恶意攻击与自动化脚本,传统的验证码方式已经难以有效阻挡这些威胁。因此,引入如滑动解锁这样的交互式验证方法成为了一种更为有效的防御手段。该插件通过模拟真实的人类操作行为,要求用户在指定区域内滑动滑块至特定位置,以此来证明用户并非自动化程序或恶意攻击者。这一过程不仅增加了攻击成本,还大大提升了用户体验,因为用户无需面对复杂的图形或文本输入验证,只需通过简单的滑动操作即可完成验证流程。unlock.js的实现原理基于HTML5的Canvas元素,利用JavaScript和jQuery库来构建动态的滑动解锁界面。开发者只需将插件引入项目中,并通过简单的API调用配置验证区域和滑块参数,即可轻松地将其集成到任何需要进行安全验证的登录或注册页面上。此外,unlock.js还提供了高度的自定义能力,允许开发者根据自己的需求调整界面风格、验证难度以及错误提示信息,从而更好地适应不同的应用场景和设计风格。这使得该插件不仅适用于各类网站,还能在移动应用和跨平台项目中发挥重要作用。总之,unlock.js是一款功能强大且易于集成的jQuery插件,它通过引入滑动解锁验证机制,有效提升了网站的安全性,同时保持了良好的用户体验。对于那些希望在保护用户账户安全的同时,避免干扰用户操作的开发者来说,unlock.js无疑是一个值得考虑的选择。 点我下载 文件大小:44.60 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-08-25 21:20:25
25
本站
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
pkill process_name
- 结束与指定名称匹配的进程。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"