前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[避免React组件不必要的重新渲染 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Java
...新思考,还促使开发者重新审视如何利用新的语言特性来优化代码。 与此同时,Google最近发布的Android 14开发者预览版也值得关注。Android 14在底层运行的是基于Java和Kotlin的框架,其中的一些改进可能会间接影响到开发者在处理数据传递时的选择。例如,新的API可能提供了更高效的方式来管理内存和资源,这对于理解和应用值传递与地址传递的概念有着重要的启示作用。 此外,业界对于函数式编程的关注也在不断增加,尤其是在处理大数据和复杂逻辑时。函数式编程强调不可变性和纯函数,这与值传递的理念不谋而合。学习函数式编程的思想和实践,不仅可以深化我们对值传递的理解,还能帮助我们写出更加简洁和高效的代码。例如,Scala作为一种广泛使用的函数式编程语言,其设计理念和最佳实践值得我们借鉴和学习。 总之,无论是Java的新版本特性,还是新兴的编程范式,都为我们理解和运用值传递与地址传递提供了新的视角。不断学习和掌握这些新知识,将有助于我们在实际项目中做出更明智的技术决策。
2024-12-20 15:38:42
104
岁月静好
Docker
...所需的运行环境和依赖组件,极大地简化了软件开发、测试及部署流程。 Docker Swarm , Docker Swarm是Docker生态系统中的集群管理工具,它将一组物理或虚拟主机作为一个单一的虚拟Docker引擎来管理和调度容器。Swarm模式下,用户可以通过统一的API或命令行界面,在整个集群范围内进行容器服务的部署、扩展和故障转移,以实现高可用性和水平扩展能力。 Docker Compose , Docker Compose是一种用于定义和运行多容器Docker应用程序的工具,通过编写一个YAML格式的Compose文件,用户可以简洁明了地定义多个容器之间的关系和服务依赖,并一键启动所有相关容器。这使得开发者能够轻松地搭建和管理复杂的应用程序堆栈,包括数据库、Web服务器、缓存服务等多种微服务架构场景。
2023-01-02 19:11:15
391
电脑达人
Flink
...。如果每次启动都需要重新初始化所有状态,那效率肯定不高。所以啊,怎么能让Flink任务在数据刚“醒过来”时迅速找回自己的状态,就成了我们急需搞定的大难题。 2. 探索解决方案 2.1 使用Checkpoint机制 Flink提供了一种叫Checkpoint的机制,它可以定期保存应用程序的状态到外部存储(比如HDFS)。这样一来,就算应用重启了,也能从最近的存档点恢复状态,这样就能快点儿恢复正常,不用让咱们干等着了。 java StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.enableCheckpointing(5000); // 每隔5秒做一次Checkpoint 这段代码开启了Checkpoint机制,并且每隔5秒钟保存一次状态。这样,即使应用重启,也可以从最近的Checkpoint快速恢复状态。 2.2 利用Savepoint 除了Checkpoint,Flink还提供了Savepoint的功能。Savepoint就像是给应用设的一个书签,当你点击它时,就能把当前的应用状态整个保存下来。这样,如果你想尝试新版本,但又担心出现问题,就可以用这个书签把应用恢复到你设置它时的样子。简单来说,它就是一个让你随时回到“原点”的神奇按钮! java env.saveCheckpoint("hdfs://path/to/savepoint"); 通过这段代码,我们可以手动创建一个Savepoint。以后如果需要恢复状态,可以直接从这个Savepoint启动应用。 2.3 状态后端选择 Flink支持多种状态后端(如RocksDB、FsStateBackend等),不同的状态后端对性能和持久性有不同的影响。在选择状态后端时,需要根据具体的应用场景来决定。 java env.setStateBackend(new RocksDBStateBackend("hdfs://path/to/state/backend")); 例如,上面的代码指定了使用RocksDB作为状态后端,并且配置了一个HDFS路径来保存状态数据。RocksDB是一个高效的键值存储引擎,非常适合大规模状态存储。 3. 实际案例分析 为了更好地理解这些概念,我们来看一个实际的例子。想象一下,我们有个应用能即时追踪用户的每个动作,那可真是数据狂潮啊,每一秒都涌来成堆的信息!如果我们不使用Checkpoint或Savepoint,每次重启应用都要从头开始处理所有历史数据,那可真是太折腾了,肯定不行啊。 java DataStream input = env.addSource(new KafkaConsumer<>("topic", new SimpleStringSchema())); input .map(new MapFunction>() { @Override public Tuple2 map(String value) throws Exception { return new Tuple2<>(value.split(",")[0], Integer.parseInt(value.split(",")[1])); } }) .keyBy(0) .sum(1) .addSink(new PrintSinkFunction<>()); env.enableCheckpointing(5000); env.setStateBackend(new FsStateBackend("hdfs://path/to/state/backend")); 在这个例子中,我们使用了Kafka作为数据源,然后对输入的数据进行简单的映射和聚合操作。通过开启Checkpoint并设置好状态后端,我们确保应用即使重启,也能迅速恢复状态,继续处理新数据。这样就不用担心重启时要从头再来啦! 4. 总结与反思 通过上述讨论,我们可以看到,Flink提供的Checkpoint和Savepoint机制极大地提升了数据冷启动的可重用性。选择合适的状态后端也是关键因素之一。当然啦,这些办法也不是一用就万事大吉的,还得根据实际情况不断调整和优化呢。 希望这篇文章能帮助你更好地理解和解决FlinkJob数据冷启动的可重用性问题。如果你有任何疑问或者有更好的解决方案,欢迎在评论区留言交流!
2024-12-27 16:00:23
38
彩虹之上
Datax
...插入为止。这样既可以避免超过最大行数限制,也可以提高插入效率。 2. 调整Datax配置 如果你发现是Datax配置不当导致的错误,你需要检查并调整Datax的配置。例如,你可以增加Datax的并发度,或者调整Datax的内存大小等。 3. 调整目标表设置 如果你发现是目标表的max insert row count设置过低导致的错误,你需要去数据库管理后台,把目标表的max insert row count调高。 四、预防措施 为了避免这种错误的发生,我们还可以采取以下预防措施: 1. 在开始工作前,先进行一次数据分析,估算需要插入的数据量,以此作为基础来设定Datax的工作参数。 2. 对于大项目,可以采用分阶段的方式,先完成一部分,再进行下一部分。 3. 及时监控Datax的工作状态,一旦发现问题,及时进行调整。 总结 当你的Datax批量插入操作遇到最大行数限制时,不要惊慌,要冷静应对。经过以上这些分析和解决步骤,我真心相信你绝对能够挖掘出最适合你的那个解决方案,没跑儿!记住,数据分析师的使命就是让数据说话,让数据为你服务,而不是被数据所困扰。加油!
2023-08-21 19:59:32
526
青春印记-t
Nacos
...acos与其他云原生组件如Istio、Knative等进行深度整合,以构建更加智能化、自动化的云原生服务体系。 综上所述,对于正在或即将采用Nacos作为配置中心的用户来说,持续关注Nacos的最新技术动态和深入应用场景解读,无疑有助于提升自身的微服务架构设计与运维水平,从而更好地应对各种复杂的业务挑战。
2023-09-30 18:47:57
111
繁华落尽_t
VUE
...面。它具有轻量级、可组件化和易于上手的特点,支持MVVM(Model-View-ViewModel)设计模式,并提供了响应式的数据绑定、组件系统、路由等功能,使得开发者能够快速、高效地开发复杂的单页Web应用。 ES6模块 , ECMAScript 6(简称ES6)引入了一种新的模块化标准,称为ES6模块。这种模块化系统允许开发者将代码组织成独立的模块,每个模块有自己的作用域,可以通过export关键字对外部暴露接口,其他模块则通过import关键字导入所需的模块成员。这种方式有助于提高代码复用性,减少全局命名空间污染,增强程序的可维护性和可扩展性。在本文中,export default是ES6模块化中的一个重要概念,用于定义模块的默认导出项。
2024-01-30 10:58:47
104
雪域高原_t
Kotlin
...升代码质量,还能有效避免因意外修改数据导致的复杂bug。特别是在并发编程环境下,不可变性原则与“左侧赋值必须为变量”的结合,更是成为了构建稳定、无数据竞争问题代码的重要基石。 因此,对于Kotlin开发者而言,深入理解和坚守这一基本原则,是提高开发效率、保障软件质量不可或缺的一环。同时,持续关注和学习Kotlin以及相关编程语言的最新发展动态,将有助于我们在实际工作中更好地运用这些原则,从而编写出更为优雅且健壮的代码。
2023-06-21 08:50:15
280
半夏微凉
Logstash
...在提高数据处理效率与避免内存溢出之间找到平衡。 队列(Queue) , 在计算机科学中,队列是一种先进先出(FIFO)的数据结构。在文中提到的场景中,队列被用来暂存待处理的数据,以防止一次性加载所有数据到内存导致内存不足。通过合理设置队列大小,可以控制Logstash在任何时间点存储在内存中的数据量,从而有效管理内存资源,避免因数据量过大引发的系统崩溃风险。
2023-03-27 09:56:11
329
翡翠梦境-t
Lua
...早早地扼杀在摇篮里,避免它们出来捣乱。同时呢,咱们也得积极地寻找最适合咱们项目需求的模块管理方法,让代码那个“骨架”更加一目了然,各个模块之间的关系也能整得明明白白、清清楚楚的。
2023-05-18 14:55:34
113
昨夜星辰昨夜风
Beego
...议下的证书问题是不可避免的一部分。咱们得先把HTTPS协议那个基础原理摸清楚,再来说说如何在Beego框架里头给它配好HTTPS。而且啊,那些常遇到的小插曲、小问题,咱们也得心里有数,手到擒来地解决才行。只有这样,我们才能在实际开发过程中,更加轻松地应对各种证书问题。
2023-09-01 11:29:54
506
青山绿水-t
HTML
...减少数据传输量,从而避免在网络条件不佳时出现卡顿或延迟。本文提到的带宽自适应策略有助于优化用户体验,尤其是在网络状况不稳定的情况下。 备用服务器 , 备用服务器是指在主要服务器发生故障或性能下降时,用于接管其功能的服务器。通过设置多个备用服务器,当主服务器出现问题时,系统可以自动切换到备用服务器,从而保证服务的连续性和稳定性。本文中提到的备用服务器策略旨在提高WebRTC连接的可靠性和可用性,确保即使在主服务器出现问题时也能保持通信的流畅。
2025-01-10 16:06:48
159
冬日暖阳_
Apache Atlas
...as与其他开源大数据组件如Hadoop、Spark、Kafka等的集成应用也进行了深入探索。有专家指出,通过构建统一的数据治理平台,Apache Atlas能够更好地服务于数据分析、机器学习、人工智能等前沿领域,为企业的智能化运营提供强有力的支持。 此外,Apache软件基金会也在不断推进Atlas项目的迭代更新,强化其在实时元数据管理、数据血缘分析以及自动化的数据质量管理等方面的性能表现。未来,随着更多高级功能的加入和完善,Apache Atlas将在企业级数据治理领域发挥更加重要的作用,帮助企业在瞬息万变的大数据环境中稳操胜券。
2023-04-17 16:08:35
1148
柳暗花明又一村-t
Shell
...ne 2. 避免无限递归 如果while循环内部调用了其他while循环,我们应该确保这些循环能够在适当的时候退出。例如,下面的代码中,两个while循环相互调用,形成了无限递归: bash i=0 j=0 while [ $i -lt 10 ]; do j=$((j+1)) while [ $j -lt 10 ]; do i=$((i+1)) done done 我们应该调整逻辑,避免无限递归: bash i=0 j=0 while [ $i -lt 10 ]; do j=$((j+1)) while [ $j -lt 10 ]; do i=$((i+1)) j=$((j+1)) done j=0 done 3. 检查命令执行结果 如果我们发现while循环中的命令执行失败,我们就需要找出原因,并修复这个问题。例如,下面的代码中,sleep命令返回了非零状态,导致while循环条件判断始终为真: bash num=5 while true; do sleep 1 num=$((num-1)) if [ "$num" -eq 0 ]; then break fi done 我们应该修复这个错误,确保命令执行成功: bash num=5 while true; do sleep 1 num=$((num-1)) if [ "$num" -eq 0 ]; then break fi if ! some_command; then continue fi done 五、总结 通过本文的学习,我们应该对while循环条件判断失效有了更深刻的理解。无论是排查并搞定条件表达式的bug,防止程序陷入无限循环的漩涡,还是仔细审查命令执行的结果反馈,我们都能运用这些小妙招,手到病除地解决各类问题,让咱们的shell编程稳如磐石,靠得住得很。同时呢,咱们也得养成棒棒的编程习惯了,就像定期给车子做保养一样,时不时地给咱的代码做个“体检”和“调试”,这样一来,就能有效地防止这类问题再冒出来捣乱啦。
2023-07-15 08:53:29
71
蝶舞花间_t
Go Gin
...误处理、尝试尝试模板渲染这些功能,这样一来,你的编程技能肯定能噌噌噌地往上涨!最后,祝愿你在学习Go Gin的过程中愉快!
2024-01-04 17:07:23
528
林中小径-t
SeaTunnel
...储已经传输过的数据,避免重复传输。例如,我们可以使用Redis作为缓存服务器: java Jedis jedis = new Jedis("localhost"); String data = jedis.get(key); if (data != null) { // 数据已经在缓存中,不需要再次传输 } else { // 数据不在缓存中,需要从源获取并存储到缓存中 } 在上面的例子中,我们在尝试获取数据之前,先检查数据是否已经在缓存中。 四、总结 SeaTunnel是一个强大的工具,可以帮助我们处理大规模的数据流。然而,在实际操作SeaTunnel的时候,我们免不了可能会碰上数据传输速度不给力的情况。你知道吗,如果我们灵活运用一些小技巧,就能让SeaTunnel这小子在传输数据时跑得飞快。首先,咱们可以巧妙地把数据“切片分块”,别让它一次性噎着,这样传输起来就更顺畅了。其次,挑个网速倍儿棒的环境,就像给它搬进了信息高速公路,嗖嗖的。再者,利用缓存技术提前备好一些常用的数据,随用随取,省去了不少等待时间。这样一来,SeaTunnel的数据传输速度妥妥地就能大幅提升啦! 以上就是我对解决SeaTunnel数据传输速度慢问题的一些想法和建议。如果您有任何问题,欢迎随时与我交流。
2023-11-23 21:19:10
181
桃李春风一杯酒-t
MySQL
...个空白值。 四、如何避免这种情况? 既然我们知道了为什么可以在设置了 NOT NULL 的字段上插入空白值,那么就可以采取相应的措施来避免这种情况的发生。 一种常见的做法是显式地指定你要插入的值。无论你是使用 INSERT INTO 语句还是 UPDATE 表达式,都应该清楚地指明要插入的值。如果你不确定某个字段的默认值是什么,可以使用 SHOW CREATE TABLE 语句查看表的详细信息。 另外,你也可以通过修改表的约束来限制插入操作。比如说,你完全可以考虑增加一个新栏目来专门存原始数据,然后在塞入新鲜数据之前,先瞅瞅这个位置是不是还空着没填呢。如果为空,你可以拒绝插入请求或者填充一个默认值。 五、总结 总的来说,虽然在 MySQL 中设置了 NOT NULL 的字段理论上不能包含空白值,但实际上却有可能发生这种情况。这是因为 MySQL 的数据验证是在 SQL 语句执行之前进行的,而默认值的选择也是自动完成的。为了避免出现这状况,咱们最好明确指出要塞进去的数值,或者换个法子给插入操作上个“紧箍咒”。希望这篇文章能够帮助到你们,谢谢阅读!
2023-04-18 15:27:46
87
风轻云淡_t
Superset
...况下,修改查询后需要重新加载相关视图才能看到更新后的结果。 2. 动态更新SQL查询的策略 策略一:直接编辑SQL查询 Superset允许我们在不重启服务的前提下直接编辑已有的SQL查询。 - 步骤1:登录Superset,导航到“数据” -> “SQL Lab”,找到你需要修改的SQL查询。 - 步骤2:点击查询名称进入编辑页面,然后直接在SQL编辑器中修改你的查询语句。 sql -- 原始查询示例: SELECT date, COUNT() as total_events FROM events GROUP BY date; -- 更新后的查询示例: SELECT date, COUNT() as total_events, AVG(time_spent) as avg_time_spent -- 添加新的计算字段 FROM events GROUP BY date; - 步骤3:保存修改,并刷新相关的仪表板或图表视图,即可看到基于新查询的结果。 策略二:利用API动态更新 对于自动化或者批处理场景,你可以通过调用Superset的API来动态更新SQL查询。 python import requests from flask_appbuilder.security.manager import AuthManager 初始化认证信息 auth = AuthManager() headers = auth.get_auth_header() 查询ID query_id = 'your_query_id' 新的SQL查询语句 new_sql_query = """ SELECT ... """ 更新SQL查询API调用 response = requests.put( f'http://your-superset-server/api/v1/sql_lab/{query_id}', json={"query": new_sql_query}, headers=headers ) 检查响应状态码确认更新是否成功 if response.status_code == 200: print("SQL查询已成功更新!") else: print("更新失败,请检查错误信息:", response.json()) 3. 质疑与思考 虽然上述方法可以实现在不重启服务的情况下更新SQL查询,但我们仍需注意,频繁地动态更新可能会对系统的性能和稳定性产生一定影响。所以,在我们设计和实施任何改动的时候,千万记得要全面掂量一下这会对生产环境带来啥影响,而且一定要精心挑选出最合适的时间窗口来进行更新,可别大意了哈。 此外,对于大型企业级应用而言,考虑采用更高级的策略,比如引入版本控制、审核流程等手段,确保SQL查询更改的安全性和可追溯性。 总结来说,Superset的强大之处在于它的灵活性和易用性,它为我们提供了便捷的方式去管理和更新SQL查询。但是同时呢,咱也得慎重对待每一次的改动,让数据带着我们做决策的过程既更有效率又更稳当。就像是开车,每次调整方向都得小心翼翼,才能保证一路既快速又平稳地到达目的地。毕竟,就像咱们人类思维一步步升级进步那样,探寻数据世界的冒险旅途也是充满各种挑战和乐趣的。
2023-12-30 08:03:18
102
寂静森林
HBase
...任何大数据系统都无法避免的问题,但在HBase中,通过合理的配置和正确的操作,我们可以有效地防止数据丢失。同时,咱们也得明白一个道理,就是哪怕咱们拼尽全力,也无法给数据的安全性打包票,做到万无一失。所以,当我们用HBase时,最好能培养个好习惯,定期给数据做个“体检”和“备胎”,这样万一哪天它闹情绪了,咱们也能快速让它满血复活。 五、参考文献 [1] Apache HBase官方网站:https://hbase.apache.org/ [2] HBase Backup and Restore Guide:https://hbase.apache.org/book.html_backup_and_restore [3] HFile Splitter Guide:https://hbase.apache.org/book.html_hfile_splitter
2023-08-27 19:48:31
414
海阔天空-t
SpringBoot
...最终构建产物中,从而避免运行时依赖缺失的问题。为此,建议开发者密切关注Spring Boot官方文档及更新日志,以便及时掌握最新打包技术动态,提升开发效率并确保应用部署稳定可靠。
2023-02-09 19:33:58
70
飞鸟与鱼_
Datax
...证线程之间的互斥性,避免出现竞态条件等问题。在Datax中,我们可以使用锁或者其他同步机制来保证这一点。 java synchronized (lock) { // 执行任务... } 五、并发度与性能的关系 并发度对性能的影响主要体现在两个方面: 1. 数据库读写性能 当并发度提高时,数据库的读写操作会增多,这可能会导致数据库性能下降。 2. 网络通信性能 在网络通信中,过多的并发连接可能会导致网络拥塞,降低通信效率。 因此,在调整并发度时,我们需要根据实际情况来选择合适的值。一般来说,我们应该尽可能地提高并发度,以提高任务执行的速度。不过有些时候,我们确实得把系统的整体表现放在心上,就像是防微杜渐那样,别让同时处理的任务太多,把系统给挤崩溃了。 六、总结 在使用Datax进行数据抽取时,我们可能需要调整抽取任务的并发度。明白了并发度的重要性,以及Datax提供的那些控制并发的招数后,咱们就能更聪明地玩转并发控制,让性能嗖嗖提升,达到咱们想要的理想效果。当然啦,咱们也得留意一下并发度对系统性能的影响这件事儿,可别一不小心让太多的并发把咱的系统给整出问题来了。
2023-06-13 18:39:09
982
星辰大海-t
Golang
...,我们可以调整代码以避免整数溢出,并修正断言: go func divide(a, b int) (int, error) { if b == 0 { return 0, errors.New("除数不能为零") } // 添加对溢出的检查 if a > 0 && b < 0 || a < 0 && b > 0 { if a > math.MinInt64/b { return 0, errors.New("运算结果超出int范围") } } result := a / b assert(resultb == a || (a != math.MinInt64 && a != math.MaxInt64), "除法运算结果或边界条件有误") return result, nil } 这里我们不仅修正了断言表达式,还引入了对潜在溢出问题的判断,从而确保断言反映的是正确的程序逻辑。 5. 结语 --- 断言失败如同一面镜子,反映出代码中隐藏的逻辑瑕疵。在使用Golang编程的时候,如果我们能灵活巧妙地运用断言这个小工具,就能像侦探一样揪出那些藏在代码深处的逻辑bug,让它们无处遁形。这样一来,咱们不仅能提高代码的质量,还能让整个程序稳如磐石,运行起来更顺畅、更可靠。记住,断言不是银弹,但它是我们确保代码正确性的重要手段之一。让我们善用断言,洞察代码背后的逻辑世界,共同编织出更健壮、可靠的程序吧!
2023-04-24 17:22:37
492
凌波微步
MyBatis
... 在实际应用中,尽量避免一次性获取全部数据,而是采用分页查询的方式,通过LIMIT关键字实现数据的分批读取。例如,上述代码展示了一个分页查询的方法定义。 2.2 合理设置批量处理与流式查询 MyBatis 3.4.0及以上版本支持了ResultHandler接口以及useGeneratedKeys、fetchSize等属性,可以用来进行批量处理和流式查询,有效减少内存占用。 示例代码: java @Select("SELECT FROM large_table") @Results(id = "largeTableResult", value = { @Result(property = "id", column = "id") // 其他字段映射... }) void streamLargeData(ResultSetHandler handler); 在这个例子中,我们通过ResultSetHandler接口处理结果集,而非一次性加载到内存,这样就可以按需逐条处理数据,显著降低内存压力。 2.3 精细化配置懒加载与缓存策略 对于实体间的关联关系,应合理配置懒加载以避免N+1查询问题。另外,咱们也可以琢磨一下开启二级缓存这招,或者拉上像Redis这样的第三方缓存工具,这样一来,数据访问的速度就能噌噌噌地往上提了。 示例代码: xml 以上示例展示了如何在实体关联映射中启用懒加载,只有当真正访问LargeTable.detail属性时,才会执行对应的SQL查询。 3. 总结与思考 面对MyBatis处理大量数据时可能出现的性能瓶颈,我们应从SQL优化、分页查询、批量处理、懒加载策略等方面综合施策。同时呢,咱们得在实际操作中不断摸索、改进,针对不同的业务场景,灵活耍起各种技术手段,这样才能保证咱的系统在面对海量数据挑战时,能够轻松应对,游刃有余,就像一把磨得飞快的刀切豆腐一样。 在此过程中,我们需要保持敏锐的洞察力和持续优化的态度,理解并熟悉MyBatis的工作原理,才能逐步克服性能瓶颈,使我们的应用程序在海量数据面前展现出更强大的处理能力。同时,咱也得留意一下性能优化和代码可读性、维护性之间的微妙平衡,目标是追求那种既高效又易于理解和维护的最佳技术方案。
2023-08-07 09:53:56
57
雪落无痕
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
mv oldfile newfile
- 文件重命名或移动。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"