前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[网络安全 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...8)长春站,最后一场网络赛! 3~5分钟后有队伍率先发现伪装了的签到题(博弈) 思路: 与取石头的巴什博弈对比 题目要求第一个人取数字在[1,k]间的某数x,后手取x加[1,k] ... android报表图形引擎(AChartEngine)demo解析与源码 AchartEngine支持多种图表样式,本文介绍两种:线状表和柱状表. AchartEngine有两种启动的方式:一种是通过ChartFactory.getView()方式来直接获取到view ... CSS长度单位及区别 em ex px pt in 1. css相对长度单位 Ø em 元素的字体高度 Ø ex 字体x的高度 Ø px ... es6的箭头函数 1.使用语法 : 参数 => 函数语句; 分为以下几种形式 : (1) ()=>语句 ( )=> statement 这是一种简写方法省略了花括号和return 相当于 ()=&g ... pdfplumber库解析pdf格式 参考地址:https://github.com/jsvine/pdfplumber 简单的pdf转换文本: import pdfplumber with pdfplumber.open(path) a ... KMP替代算法——字符串Hash 很久以前写的... 今天来谈谈一种用来替代KMP算法的奇葩算法--字符串Hash 例题:给你两个字符串p和s,求出p在s中出现的次数.(字符串长度小于等于1000000) 字符串的Hash 根据字面意 ... SSM_CRUD新手练习(5)测试mapper 上一篇我们使用逆向工程生成了所需要的bean.dao和对应的mapper.xml文件,并且修改好了我们需要的数据库查询方法. 现在我们来测试一下DAO层,在test包下新建一个MapperTest.j ... 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_35666639/article/details/118169985。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-16 11:42:34
253
转载
转载文章
...裸指针的生命周期,更安全shared_ptr<int>sp1(new int(10));// 使用make_shared,推荐做法,更符合工厂模式,可以连代码中的所有new,更高效;方法的参数是用来初始化模板类shared_ptr<int>sp2 = make_shared<int>(10); 禁止使用指向shared_ptr的裸指针,也就是智能指针的指针,这听起来就很奇怪,但开发中我们还需要注意,使用shared_ptr的指针指向一个shared_ptr时,引用计数并不会加一,操作shared_ptr的指针很容易就发生野指针异常。 shared_ptr<int>sp = make_shared<int>(10);cout << sp.use_count() << endl; //输出1shared_ptr<int> sp1 = &sp;cout << (sp1).use_count() << endl; //输出依然是1(sp1).reset(); //sp成为野指针cout << sp << endl; //crash 使用shared_ptr创建动态数组,在介绍unique_ptr时我们就讲过创建动态数组,而shared_ptr同样可以做到,不过稍微复杂一点,如下代码所示,除了要显示指定析构方法外(因为默认是T的析构函数,不是T[]),另外对外的数据类型依然是shared_ptr<T>,非常有迷惑性,看不出来是数组,最后不能直接使用下标读写数组,要先get()获取裸指针才可以使用下标。所以,不推荐使用shared_ptr来创建动态数组,尽量使用unique_ptr,这可是unique_ptr为数不多的优势了。 template <typename T>shared_ptr<T> make_shared_array(size_t size) {return shared_ptr<T>(new T[size], default_delete<T[]>());}shared_ptr<int>sp = make_shared_array(10); //看上去是shared<int>类型,实际上是数组sp.get()[0] = 100; //不能直接使用下标读写数组元素,需要通过get()方法获取裸指针后再操作 用shared_ptr实现多态,在我们使用裸指针时,实现多态就免不了定义虚函数,那么用shared_ptr时也不例外,不过有一处是可以省下的,就是析构函数我们不需要定义为虚函数了,如下面代码所示: class A {public:~A() {cout << "dealloc A" << endl;} };class B : public A {public:~B() {cout << "dealloc B" << endl;} };int main(int argc, const char argv[]) {A a = new B();delete a; //只打印dealloc Ashared_ptr<A>spa = make_shared<B>(); //析构spa是会先打印dealloc B,再打印dealloc Areturn 0;} 循环引用,笔者最先接触引用计数的语言就是Objective-C,而OC中最常出现的内存问题就是循环引用,如下面代码所示,A中引用B,B中引用A,spa和spb的强引用计数永远大于等于1,所以直到程序退出前都不会被退出,这种情况有时候在正常的业务逻辑中是不可避免的,而解决循环引用的方法最有效就是改用weak_ptr,具体可见下一章。 class A {public:shared_ptr<B> b;};class B {public:shared_ptr<A> a;};int main(int argc, const char argv[]) {shared_ptr<A> spa = make_shared<A>();shared_ptr<B> spb = make_shared<B>();spa->b = spb;spb->a = spa;return 0;} //main函数退出后,spa和spb强引用计数依然为1,无法释放 刚柔并济:weak_ptr 正如上一章提到,使用shared_ptr过程中有可能会出现循环引用,关键原因是使用shared_ptr引用一个指针时会导致强引用计数+1,从此该指针的生命周期就会取决于该shared_ptr的生命周期,然而,有些情况我们一个类A里面只是想引用一下另外一个类B的对象,类B对象的创建不在类A,因此类A也无需管理类B对象的释放,这个时候weak_ptr就应运而生了,使用shared_ptr赋值给一个weak_ptr不会增加强引用计数(strong_count),取而代之的是增加一个弱引用计数(weak_count),而弱引用计数不会影响到指针的生命周期,这就解开了循环引用,上一章最后的代码使用weak_ptr可改造为如下代码。 class A {public:shared_ptr<B> b;};class B {public:weak_ptr<A> a;};int main(int argc, const char argv[]) {shared_ptr<A> spa = make_shared<A>();shared_ptr<B> spb = make_shared<B>();spa->b = spb; //spb强引用计数为2,弱引用计数为1spb->a = spa; //spa强引用计数为1,弱引用计数为2return 0;} //main函数退出后,spa先释放,spb再释放,循环解开了使用weak_ptr也有需要注意的点,因为既然weak_ptr不负责裸指针的生命周期,那么weak_ptr也无法直接操作裸指针,我们需要先转化为shared_ptr,这就和OC的Strong-Weak Dance有点像了,具体操作如下:shared_ptr<int> spa = make_shared<int>(10);weak_ptr<int> spb = spa; //weak_ptr无法直接使用裸指针创建if (!spb.expired()) { //weak_ptr最好判断是否过期,使用expired或use_count方法,前者更快spb.lock() += 10; //调用weak_ptr转化为shared_ptr后再操作裸指针}cout << spa << endl; //20 智能指针原理 看到这里,智能指针的用法基本介绍完了,后面笔者来粗浅地分析一下为什么智能指针可以有效帮我们管理裸指针的生命周期。 使用栈对象管理堆对象 在C++中,内存会分为三部分,堆、栈和静态存储区,静态存储区会存放全局变量和静态变量,在程序加载时就初始化,而堆是由程序员自行分配,自行释放的,例如我们使用裸指针分配的内存;而最后栈是系统帮我们分配的,所以也会帮我们自动回收。因此,智能指针就是利用这一性质,通过一个栈上的对象(shared_ptr或unique_ptr)来管理一个堆上的对象(裸指针),在shared_ptr或unique_ptr的析构函数中判断当前裸指针的引用计数情况来决定是否释放裸指针。 shared_ptr引用计数的原理 一开始笔者以为引用计数是放在shared_ptr这个模板类中,但是细想了一下,如果这样将shared_ptr赋值给另一个shared_ptr时,是怎么做到两个shared_ptr的引用计数同时加1呢,让等号两边的shared_ptr中的引用计数同时加1?不对,如果还有第二个shared_ptr再赋值给第三个shared_ptr那怎么办呢?或许通过下面的类图便清楚个中奥秘。 [ boost中shared_ptr与weak_ptr类图 ] 我们重点关注shared_ptr<T>的类图,它就是我们可以直接操作的类,这里面包含裸指针T,还有一个shared_count的对象,而shared_count对象还不是最终的引用计数,它只是包含了一个指向sp_counted_base的指针,这应该就是真正存放引用计数的地方,包括强应用计数和弱引用计数,而且shared_count中包含的是sp_counted_base的指针,不是对象,这也就意味着假如shared_ptr<T> a = b,那么a和b底层pi_指针指向的是同一个sp_counted_base对象,这就很容易做到多个shared_ptr的引用计数永远保持一致了。 多线程安全 本章所说的线程安全有两种情况: 多个线程操作多个不同的shared_ptr对象 C++11中声明了shared_ptr的计数操作具有原子性,不管是赋值导致计数增加还是释放导致计数减少,都是原子性的,这个可以参考sp_counted_base的源码,因此,基于这个特性,假如有多个shared_ptr共同管理一个裸指针,那么多个线程分别通过不同的shared_ptr进行操作是线程安全的。 多个线程操作同一个shared_ptr对象 同样的道理,既然C++11只负责sp_counted_base的原子性,那么shared_ptr本身就没有保证线程安全了,加入两个线程同时访问同一个shared_ptr对象,一个进行释放(reset),另一个读取裸指针的值,那么最后的结果就不确定了,很有可能发生野指针访问crash。 作者:腾讯技术工程 https://mp.weixin.qq.com/s?__biz=MjM5ODYwMjI2MA==&mid=2649743462&idx=1&sn=c9d94ddc25449c6a0052dc48392a33c2&utm_source=tuicool&utm_medium=referralmp.weixin.qq.com 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_31467557/article/details/113049179。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-24 18:25:46
142
转载
Mahout
...对社交媒体情绪分析、网络公开信息挖掘、用户行为轨迹追踪等多维度数据的实时分析,金融机构能够更早地发现潜在的信用风险和欺诈行为。例如,通过分析用户的网络活动模式,AI系统可以识别出异常行为,进而采取预警措施,有效防范金融犯罪。此外,AI还可以通过预测模型帮助银行和信贷机构评估贷款申请人的信用风险,实现自动化审批流程,提高服务效率。 未来趋势与展望 随着5G、物联网、边缘计算等新技术的普及,实时光流分析与AI在金融领域的应用将更加广泛。未来,金融机构将能够实时处理海量的物联网设备产生的数据,实现智能资产管理、个性化金融服务等创新应用。同时,随着法律法规的完善和技术标准的统一,实时光流分析与AI在金融行业的应用将更加规范和成熟,为金融市场的健康发展提供坚实的技术支撑。 实时光流分析与AI在金融领域的深度融合,正引领着金融科技创新的新潮流,不仅推动了金融行业的数字化转型,也为全球经济的可持续发展注入了新的活力。随着技术的不断进步与应用场景的不断拓展,这一领域的发展前景无疑充满了无限可能。
2024-09-06 16:26:39
60
月影清风
Hadoop
...们:嘿,别忘了数据的安全和规矩可不能丢啊! 未来,随着技术的发展,Hadoop的功能会越来越强大。我希望你能继续探索更多有趣的话题,一起在这个充满挑战的世界里不断前行! 加油吧,程序员们!
2025-04-29 15:54:59
80
风轻云淡
转载文章
...许多复杂关系,如社交网络、交通路线等,并且涉及诸如最短路径算法等相关算法的学习与应用。 深度优先遍历(DFS, Depth-First Search) , 深度优先遍历是一种在图论和树形结构中常用的搜索算法策略。在执行过程中,该算法首先访问一个顶点,然后尽可能深地探索其邻接顶点,直到到达无法继续深入的顶点(即叶子节点或已访问过的节点),之后回溯至前一个顶点并尝试探索其他未访问的邻接顶点。在文中,深度优先遍历被列为了学习数据结构时需要掌握的基本算法之一,适用于多种与树和图相关的数据结构处理场景。
2023-09-12 23:35:52
135
转载
ZooKeeper
...高并发场景下,或者是网络延迟导致请求堆积。 为了更好地理解这个问题,我们可以看看下面这段代码: java import org.apache.zookeeper.ZooKeeper; import org.apache.zookeeper.CreateMode; public class ZookeeperExample { public static void main(String[] args) throws Exception { // 创建ZooKeeper实例 ZooKeeper zk = new ZooKeeper("localhost:2181", 5000, event -> { System.out.println("ZooKeeper event: " + event); }); // 创建一个节点 String nodePath = zk.create("/testNode", "data".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT); System.out.println("Node created at path: " + nodePath); // 关闭连接 zk.close(); } } 在这个简单的例子中,我们尝试创建一个ZooKeeper实例并创建一个节点。如果这个时候ZooKeeper的队列满了,就会抛出CommitQueueFullException。所以,接下来我们要做的就是想办法避免这种情况的发生。 --- 二、为什么会出现CommitQueueFullException? 在深入讨论解决方案之前,我觉得有必要先搞清楚为什么会发生这种异常。其实,这背后涉及到了ZooKeeper的一些设计细节。 首先,ZooKeeper的队列大小是由配置文件中的zookeeper.commitlog.capacity参数决定的。默认情况下,这个值是比较小的,可能只有几兆字节。想象一下,你的应用像一个忙碌的快递站,接到了无数订单(也就是那些请求)。但要是快递小哥忙得顾不上送货,订单就会越堆越多,很快整个站点就塞满了,连下一份订单都没地方放了! 其次,网络环境也是一个重要因素。有时候,客户端和服务端之间的网络延迟会导致请求堆积。就算客户端那边请求没那么频繁,但要是服务端反应慢了,照样会出问题啊。 最后,还有一个容易被忽视的原因就是客户端的连接数过多。每个连接都会占用一定的资源,包括内存和CPU。要是连上的用户太多了,但服务器的“体力”又不够强(比如内存、CPU之类的资源有限),那它就很容易“忙不过来”,导致请求都排着队等着,根本处理不完。 说到这里,我忍不住想吐槽一下自己曾经犯过的错误。嘿,有次我在测试环境里弄了个能扛大流量的程序,结果发现ZooKeeper老是蹦出个叫“CommitQueueFullException”的错误,烦得不行!我当时就纳闷了:“我明明设了个挺合理的线程池大小啊,怎么还出问题了呢?”后来一查才发现,坏事了,是客户端的连接数配少了,结果请求都堵在那儿了,就像高速公路堵车一样。真是教训深刻啊! --- 三、如何优雅地处理CommitQueueFullException? 既然知道了问题的根源,那接下来就要谈谈具体的解决办法了。我觉得可以从以下几个方面入手: 1. 调整队列大小 最直接的办法当然是增大队列的容量。通过修改zookeeper.commitlog.capacity参数,可以让ZooKeeper拥有更大的缓冲空间。其实嘛,这个方法也不是啥灵丹妙药,毕竟咱们手头的硬件资源就那么多,要是傻乎乎地把队列弄得太长,说不定反而会惹出别的麻烦,比如让系统跑得更卡之类的。 代码示例: properties zookeeper.commitlog.capacity=10485760 上面这段配置文件的内容表示将队列大小调整为10MB。你可以根据实际情况进行调整。 2. 优化客户端逻辑 很多时候,CommitQueueFullException并不是因为服务器的问题,而是客户端的请求模式不合理造成的。比如说,你是否可以合并多个小请求为一个大请求?或者是否可以采用批量操作的方式减少请求次数? 举个例子,假设你在做一个日志采集系统,每天需要向ZooKeeper写入成千上万个临时节点。与其每次都往一个节点里写东西,不如一口气往多个节点里写,这样能大大减少你发出的请求次数,省事儿又高效! 代码示例: java List nodesToCreate = Arrays.asList("/node1", "/node2", "/node3"); List createdNodes = zk.create("/batch/", new byte[0], ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL, nodesToCreate.size()); System.out.println("Created nodes: " + createdNodes); 在这段代码中,我们一次性创建了三个临时节点,而不是分别调用三次create()方法。这样的做法不仅减少了请求次数,还提高了效率。 3. 增加服务器资源 如果以上两种方法都不能解决问题,那么可能就需要考虑升级服务器硬件了。比如增加内存、提升CPU性能,甚至更换更快的磁盘。当然,这通常是最后的选择,因为它涉及到成本和技术难度。 4. 使用异步API ZooKeeper提供了同步和异步两种API,其中异步API可以在一定程度上缓解CommitQueueFullException的问题。异步API可酷了!你提交个请求,它立马给你返回结果,根本不用傻等那个响应回来。这样一来啊,就相当于给任务队列放了个假,压力小了很多呢! 代码示例: java import org.apache.zookeeper.AsyncCallback.StringCallback; public class AsyncExample implements StringCallback { @Override public void processResult(int rc, String path, Object ctx, String name) { if (rc == 0) { System.out.println("Node created successfully at path: " + name); } else { System.err.println("Failed to create node with error code: " + rc); } } public static void main(String[] args) throws Exception { ZooKeeper zk = new ZooKeeper("localhost:2181", 5000, null); zk.createAsync("/asyncTest", "data".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT, new AsyncExample(), null); } } 在这段代码中,我们使用了createAsync()方法来异步创建节点。相比于同步版本,这种方式不会阻塞主线程,从而降低了队列满的风险。 --- 四、总结与展望 通过今天的探讨,我相信大家都对CommitQueueFullException有了更深刻的理解。嘿,别被这个错误吓到!其实啊,它也没那么可怕。只要你找到对的方法,保证分分钟搞定,就跟玩儿似的! 回顾整个过程,我觉得最重要的是要保持冷静和耐心。遇到技术难题的时候啊,别慌!先搞清楚它到底是个啥问题,就像剥洋葱一样,一层层搞明白本质。接着呢,就一步一步地去找解决的办法,慢慢来,总能找到出路的!就像攀登一座高山一样,每一步都需要脚踏实地。 最后,我想鼓励大家多动手实践。理论固然重要,但真正的成长来自于不断的尝试和失败。希望大家能够在实际项目中运用今天学到的知识,创造出更加优秀的应用! 好了,今天的分享就到这里啦!如果你还有什么疑问或者想法,欢迎随时交流哦~
2025-03-16 15:37:44
11
林中小径
ElasticSearch
...为它内存不够用,或者网络断了啥的,结果整个团队的工作都乱套了,没法正常运转了。 我当时就纳闷了:“这不是应该自动恢复吗?为啥还要报错呢?”后来才明白,虽然ElasticSearch确实有自我修复机制,但有时候我们需要手动干预才能让它恢复正常。 --- 2. 理解背后的逻辑 为什么会出现这种问题? 在深入了解之前,我觉得有必要先搞清楚这个异常的根本原因。其实NodeNotActiveException并不是什么特别复杂的概念,它主要出现在以下几种情况: - 节点宕机:某个节点由于硬件故障或者网络问题离线了。 - 磁盘空间不足:如果某个节点的磁盘满了,ElasticSearch会自动将其标记为不可用。 - 配置错误:比如分配给节点的资源不够,导致其无法启动。 对于我来说,问题出在第二个点上——磁盘空间不足。我当时为了省钱,给服务器分配的空间少得可怜,结果没多久就发现磁盘直接爆满,把自己都吓了一跳!于是ElasticSearch很生气,直接把该节点踢出了集群。 --- 3. 解决方案一 扩容磁盘空间 既然问题找到了,那就动手解决吧!首先,我决定先扩展磁盘容量。这一步其实很简单,只要登录服务器,增加磁盘大小就行。具体步骤如下: bash 查看当前磁盘状态 df -h 扩展磁盘(假设你已经购买了额外的存储) sudo growpart /dev/xvda 1 sudo resize2fs /dev/xvda1 完成后记得重启ElasticSearch服务: bash sudo systemctl restart elasticsearch 重启之后,神奇的事情发生了——我的节点重新上线了!不过这里有个小技巧分享给大家:如果你不确定扩容是否成功,可以通过以下命令检查磁盘使用情况: bash df -h 看到磁盘空间变大了,心里顿时舒坦了不少。 --- 4. 解决方案二 调整ElasticSearch配置 当然啦,仅仅扩容还不够,还需要优化ElasticSearch的配置文件。特别是那些容易导致内存不足或磁盘占用过高的参数,比如indices.memory.index_buffer_size和indices.store.throttle.max_bytes_per_sec。修改后的配置文件大概长这样: yaml cluster.routing.allocation.disk.threshold_enabled: true cluster.routing.allocation.disk.watermark.low: 85% cluster.routing.allocation.disk.watermark.high: 90% cluster.routing.allocation.disk.watermark.flood_stage: 95% cluster.info.update.interval: 30s 这些设置的意思是告诉ElasticSearch,当磁盘使用率达到85%时开始警告,达到90%时限制写入,超过95%时完全停止操作。这样可以有效避免再次出现类似的问题。 --- 5. 实战演练 代码中的应对策略 除了调整配置,我们还可以通过编写脚本来监控和处理NodeNotActiveException。比如,下面这段Java代码展示了如何捕获异常并记录日志: java import org.elasticsearch.client.RestHighLevelClient; import org.elasticsearch.client.RestClient; import org.elasticsearch.client.indices.CreateIndexRequest; import org.elasticsearch.client.indices.CreateIndexResponse; public class ElasticSearchExample { public static void main(String[] args) { RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(new HttpHost("localhost", 9200, "http"))); try { CreateIndexRequest request = new CreateIndexRequest("test_index"); CreateIndexResponse response = client.indices().create(request, RequestOptions.DEFAULT); System.out.println("Index created: " + response.isAcknowledged()); } catch (Exception e) { if (e instanceof ClusterBlockException) { System.err.println("Cluster block detected: " + e.getMessage()); } else { System.err.println("Unexpected error: " + e.getMessage()); } } finally { try { client.close(); } catch (IOException ex) { System.err.println("Failed to close client: " + ex.getMessage()); } } } } 这段代码的作用是在创建索引时捕获可能发生的异常,并根据异常类型采取不同的处理方式。如果遇到ClusterBlockException,我们可以选择延迟重试或者其他补偿措施。 --- 6. 总结与反思 成长路上的一课 通过这次经历,我深刻体会到,作为一名开发者,不仅要掌握技术细节,还要学会从实际问题出发,找到最优解。NodeNotActiveException这个错误看着不起眼,但其实背后有不少门道呢!比如说,你的服务器硬件是不是有点吃不消了?集群那边有没有啥小毛病没及时发现?还有啊,咱们平时运维的时候是不是也有点松懈了?这些都是得好好琢磨的地方! 最后,我想说的是,技术学习的过程就像爬山一样,有时候会遇到陡峭的山坡,但只要坚持下去,总能看到美丽的风景。希望这篇文章能给大家带来一些启发和帮助!如果还有其他疑问,欢迎随时交流哦~
2025-03-14 15:40:13
65
林中小径
转载文章
...的链接 java实现网络爬虫:https://www.cnblogs.com/1996swg/p/7355577.html Jsoup教程:https://www.jianshu.com/p/fd5caaaa950d 接下来,我通过Jsoup来实现爬取彼岸桌面里面的图片进行爬虫学习!!! 我用的开发工具是IDEA,jdk是1.7版本,项目结构大致如下所示: 一、页面分析 首先来分析一下彼岸桌面的网页的结构: 我们第一个看到的是网站的域名为http://www.netbian.com/,它有如上所示的分类,我们尝试着点开一些分类去看一下他的链接。 通过点击每个分类,发现不同的分类下,地址栏显示为域名后面拼接这对应分类的拼音,但在分类为王者荣耀之后的拼接的确是“s/分类拼音”。这样我们可以创建一个枚举类,将所有分类集中管理。在common包下创建一个Kind枚举类: package com.asahi.common;/ 分类的枚举/public enum Kind {RILI("rili"), DONGMAN("dongman"), FENGJING("fengjing"), MEINV("meinv"), YOUXI("youxi"), YINGSHI("yingshi"),DONGTAI("dongtai"), WEIMEI("weimei"), SHEJI("sheji"), KEAI("keai"), QICHE("qiche"), HUAHUI("huahui"),DONGWU("dongwu"), JIERI("jieri"), RENWU("renwu"), MEISHI("meishi"), SHUIGUO("shuiguo"), JIANZHU("jianzhu"),TIYU("tiyu"), JUNSHI("junshi"), FEIZHULIU("feizhuliu"), QITA("qita"), WANGZHERONGYAO("s/wangzherongyao"), HUYAN("s/huyan"), LOL("s/lol");String kind;Kind(String kind) {this.kind = kind;}public static boolean contains(String test) {for (Kind c : Kind.values()) {if (c.kind.equals(test)) {return true;} }return false;} } 这里我添加了一个比较的方法供之后判断输入的分类名是否包含在这些分类里面。 接下来我们在分析分类面的展示情况,以美女分类页面为例(●´∀`●),最下边有分页,如果只获取这个页面的图片并不能获取所有美女图,我们还需要点击每一个分页,从分页中获取所有的图片。通过分析发现,第一页的链接是在原有链接基础上拼接“/index.htm”,从第二页之后拼接的是“/index_页号.htm”。 这样我们只需要获取总页数在依次遍历拼接就可以了,现在的问题是如何获取总页数,我一开始的想法是获取分页中“共167页”这个标签后再只保留数字就可以个,但发现运行后获取不到该元素节点,经过排查了解到这个标签是通过js生成的,于是我转换了思路,通过获取最后一个页号来得到一共分了多少页 Document root_doc = Jsoup.connect("http://www.netbian.com/" + kind + "/").get();Elements els = root_doc.select("main .page a");//这里els.eq(els.size() - 2的原因是后边确定按钮用的是a标签要去掉,再去掉一个“下一页”标签Integer page = Integer.parseInt(els.eq(els.size() - 2).text()); 分类页中图片所在的标签结构为: 分类页面下的图片不是我们想要的,我们想要的是点击进去详细页的高清大图,所以需要获取a标签的链接,再从这个链接中获取真正想要的图片。 详细页中图片所在的标签结构为: 二、代码实现 到这里分类页分析的差不多了,我们通过代码来进行获取图片。首先导入Jsoup的jar包:jsoup-1.12.1.jar,如果采用Maven请导入下边的依赖。 <dependency><groupId>org.jsoup</groupId><artifactId>jsoup</artifactId><version>1.12.1</version></dependency> 在utils创建JsoupPic类,并添加getPic方法,代码如下: public static void getPic(String kind) throws Exception {//get请求方式进行请求Document root_doc = Jsoup.connect("http://www.netbian.com/" + kind + "/").get();//获取分页标签,用于获取总页数Elements els = root_doc.select("main .page a");Integer page = Integer.parseInt(els.eq(els.size() - 2).text());for (int i = 1; i < page; i++) {Document document = null;//这里判断的是当前页号是否为1,如果为1就不拼页号,否则拼上对应的页号if (i == 1) {document = Jsoup.connect("http://www.netbian.com/" + kind + "/index.htm").get();} else {document = Jsoup.connect("http://www.netbian.com/" + kind + "/index_" + i + ".htm").get();}//获取每个分页链接里面a标签的链接,进入链接页面获取当前图拼的大尺寸图片Elements elements = document.select("main .list li a");for (Element element : elements) {String href = element.attr("href");String picUrl = "http://www.netbian.com" + href;Document document1 = Jsoup.connect(picUrl).get();Elements elements1 = document1.select(".endpage .pic p a img");//获取所有图片的链接System.out.println(elements1);} }} 在分类页中有一个隐藏的问题图片: 正常的图片链接都是以“/”开头,以“.htm”结尾,而每个分类下的第三张图片的链接都是“http://pic.netbian.com/”,如果不过滤的话会报如下错误: 所以这里必须要判断一下: Elements elements = document.select("main .list li a");for (Element element : elements) {String href = element.attr("href");//判断是否是以“/”开头if (href.startsWith("/")) {String picUrl = "http://www.netbian.com" + href;Document document1 = Jsoup.connect(picUrl).get();Elements elements1 = document1.select(".endpage .pic p a img");System.out.println(elements1);} } 到这里,页面就已经分析好了,问题基本上已经解决了,接下来我们需要将图片存到我们的系统里,这里我将图片保存到我的电脑桌面上,并按照分类来存储图片。 首先是要获取桌面路径,在utils包下创建Download类,添加getDesktop方法,代码如下: public static File getDesktop(){FileSystemView fsv = FileSystemView.getFileSystemView();File path=fsv.getHomeDirectory(); return path;} 接着我们再该类中添加下载图片的方法: //urlPath为网络图片的路径,savePath为要保存的本地路径(这里指定为桌面下的images文件夹)public static void download(String urlPath,String savePath) throws Exception {// 构造URLURL url = new URL(urlPath);// 打开连接URLConnection con = url.openConnection();//设置请求超时为5scon.setConnectTimeout(51000);// 输入流InputStream is = con.getInputStream();// 1K的数据缓冲byte[] bs = new byte[1024];// 读取到的数据长度int len;// 输出的文件流File sf=new File(savePath);int randomNo=(int)(Math.random()1000000);String filename=urlPath.substring(urlPath.lastIndexOf("/")+1,urlPath.length());//获取服务器上图片的名称filename=new java.text.SimpleDateFormat("yyyy-MM-dd-HH-mm-ss").format(new Date())+randomNo+filename;//时间+随机数防止重复OutputStream os = new FileOutputStream(sf.getPath()+"\\"+filename);// 开始读取while ((len = is.read(bs)) != -1) {os.write(bs, 0, len);}// 完毕,关闭所有链接os.close();is.close();} 写好后,我们再完善一下JsouPic中的getPic方法。 public static void getPic(String kind) throws Exception {//get请求方式进行请求Document root_doc = Jsoup.connect("http://www.netbian.com/" + kind + "/").get();//获取分页标签,用于获取总页数Elements els = root_doc.select("main .page a");Integer page = Integer.parseInt(els.eq(els.size() - 2).text());for (int i = 1; i < page; i++) {Document document = null;//这里判断的是当前页号是否为1,如果为1就不拼页号,否则拼上对应的页号if (i == 1) {document = Jsoup.connect("http://www.netbian.com/" + kind + "/index.htm").get();} else {document = Jsoup.connect("http://www.netbian.com/" + kind + "/index_" + i + ".htm").get();}File desktop = Download.getDesktop();Download.checkPath(desktop.getPath() + "\\images\\" + kind);//获取每个分页链接里面a标签的链接,进入链接页面获取当前图拼的大尺寸图片Elements elements = document.select("main .list li a");for (Element element : elements) {String href = element.attr("href");if (href.startsWith("/")) {String picUrl = "http://www.netbian.com" + href;Document document1 = Jsoup.connect(picUrl).get();Elements elements1 = document1.select(".endpage .pic p a img");Download.download(elements1.attr("src"), desktop.getPath() + "\\images\\" + kind);} }} } 在Download类中,我添加了checkPath方法,用于判断目录是否存在,不存在就创建一个。 public static void checkPath(String savePath) throws Exception {File file = new File(savePath);if (!file.exists()){file.mkdirs();} } 最后在mainapp包内创建PullPic类,并添加主方法。 package com.asahi.mainapp;import com.asahi.common.Kind;import com.asahi.common.PrintLog;import com.asahi.utils.JsoupPic;import java.util.Scanner;public class PullPic {public static void main(String[] args) throws Exception {new PullPic().downloadPic();}public void downloadPic() throws Exception {System.out.println("启动程序>>\n请输入所爬取的分类:");Scanner scanner = new Scanner(System.in);String kind = scanner.next();while(!Kind.contains(kind)){System.out.println("分类不存在,请重新输入:");kind = scanner.next();}System.out.println("分类输入正确!");System.out.println("开始下载>>");JsoupPic.getPic(kind);} } 三、成果展示 最终的运行结果如下: 最终的代码已上传到我的github中,点击“我的github”进行查看。 在学习Java爬虫的过程中,我收获了很多,一开始做的时候确实遇到了很多困难,这次写的获取图片也是最基础的,还可以继续深入。本来我想写一个通过多线程来获取图片来着,也尝试着去写了一下,越写越跑偏,暂时先放着不处理吧,等以后有时间再来弄,我想问题应该不大,只是考虑的东西有很多。希望大家多多指点不足,有哪些需要改进的地方,我也好多学习学习๑乛◡乛๑。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_39693281/article/details/108463868。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-12 10:26:04
131
转载
转载文章
...志审计等功能确保数据安全合规。因此,了解和研究云环境下的数据库运维策略,对于提升企业IT基础设施水平至关重要。 同时,在数据库主从复制领域,MySQL 8.0及MariaDB的新版本中增强了GTID(全局事务标识符)功能,简化了主从配置流程,并提高了数据同步的一致性和可靠性。结合最新的数据库监控工具如Prometheus和Grafana,可以实时监测主从复制状态,及时发现并解决潜在问题,这对于构建高性能、高可用的分布式数据库架构具有重要意义。 综上所述,紧跟数据库技术发展潮流,关注MariaDB等开源数据库软件的更新动态,探索云端数据库运维实践与高可用性设计,无疑将助力企业在数字化转型过程中更好地利用数据库这一关键基础设施,以支撑更加复杂多变的业务场景需求。
2023-07-12 10:11:01
311
转载
转载文章
....0版本凭借其增强的安全性、更高的性能以及对JSON文档支持的改进,得到了广泛应用。例如,在云服务领域,AWS RDS已全面支持MySQL 8.0,用户可以更加便捷地构建高性能、高可用的应用程序。 此外,对于数据库管理及优化方面,一篇来自InfoQ的技术文章《MySQL 8.0新特性解读及其在大规模数据处理中的实践》深度剖析了MySQL 8.0的各项新功能,包括窗口函数、通用表表达式等,并通过实例演示如何利用这些新特性提高查询效率,降低存储成本。 同时,针对日益增长的数据安全需求,《企业如何借助MySQL强化数据库安全性》一文强调了实施严格访问控制、审计跟踪、加密传输和透明数据加密等功能的重要性,并引用了最新的行业标准和法规要求作为依据。 对于开发者而言,学习并掌握MySQL的高级特性以及最佳实践至关重要。近日,Oracle发布了MySQL HeatWave,这是一种融合分析型数据库引擎,能在同一个MySQL数据库中实现事务处理与实时分析,极大简化了大数据处理流程,提升了业务决策速度。 综上所述,了解MySQL的最新动态和技术演进不仅可以帮助我们更好地进行日常的数据库管理工作,还能洞悉未来数据库技术的发展趋势,从而为我们的系统设计与优化提供有力支撑。在实战中,结合具体业务场景灵活运用SQL语句及数据库管理系统,将有效提升整个系统的稳定性和效率。
2024-02-16 12:44:07
545
转载
转载文章
...Mozilla开发者网络(MDN)提供了详尽的API文档和技术指南,帮助开发者更好地掌握这两个特性,并应用于日常开发工作中。 同时,在前端框架领域,除了Vue之外,React Hooks的useState和useEffect也从另一个角度实现了数据响应式,它们通过函数组件状态管理和副作用钩子机制,间接实现了对数据变化的监听。读者可以对比研究两种不同的响应式实现方式,理解它们各自的优势与应用场景。 最近,一些前沿的JavaScript库如MobX、RxJS等也在响应式编程上做出了新的探索,通过更高级的抽象和流处理思想,将响应式理念扩展到了异步编程和大规模应用架构层面。深入学习这些库的设计原理和实践案例,有助于我们拓宽视野,更好地适应未来JavaScript生态的发展趋势。 综上所述,无论是紧跟最新的JavaScript语言特性发展动态,还是深入探究各类前端框架的响应式实现原理,都有助于我们提升代码质量和开发效率,为构建高性能、易于维护的现代Web应用奠定坚实基础。
2023-01-11 12:37:47
680
转载
转载文章
...得开发者能够以更简洁安全的方式处理潜在的空值异常;而在数据库操作层面,Spring Framework近期发布的版本中对Mybatis整合支持进行了增强,简化了配置并提升了性能表现。 针对Excel处理工具EasyExcel,阿里巴巴团队持续对其进行迭代更新,新增了如模板导出、大数据量分块读写等功能,进一步满足企业级应用对数据导入导出高效稳定的需求。此外,随着云原生和微服务架构的普及,JSON作为跨语言的数据交换格式,其解析库如Fastjson也积极跟进,强化安全性的同时提升解析速度。 对于IDEA这类集成开发环境,JetBrains官方及社区开发者们也在不断丰富和完善各种插件的功能,如Lombok插件已兼容至最新Java版本,提供更多便捷的注解生成方式,并且有更多新颖实用的插件(如SonarLint for IntelliJ)帮助开发者遵循编码规范、提高代码质量。 总之,紧跟时代步伐,关注技术动态,通过阅读最新的博客文章、官方文档或参与开发者论坛讨论,能让我们更好地理解和掌握上述技术工具的最新进展,从而在实际项目开发中更加游刃有余。
2023-05-26 23:30:52
269
转载
转载文章
...栋楼之间都有一条有线网络通讯链路。 已知任意两栋楼之间的直线距离(单位:千米)。为了降低成本,要求两栋楼之间都用直线光纤连接。 光纤的单位成本C已知(单位:X星币/千米),请问最少需要多少X星币才能保证任意两栋楼之间都有光纤直接或者间接相连? 注意:如果1号楼和2号楼相连,2号楼和3号楼相连,则1号楼和3号楼间接相连。 输入 单组输入。 第1行输入两个正整数N和C,分别表示楼栋的数量和光纤的单位成本(单位:X星币/千米),N<=100,C<=100。两者之间用英文空格隔开。 接下来N(N-1)/2行,每行包含三个正整数,第1个正整数和第2个正整数表示楼栋的编号(从1开始一直到N),编号小的在前,编号大的在后,第3个正整数为两栋楼之间的直线距离(单位:千米)。 输出 输出最少需要多少X星币才能保证任意两栋楼之间都有光纤直接或者间接相连。 最小生成树模板题 //prim()最小生成树include <bits/stdc++.h>using namespace std;define ll long longdefine INF 0x3f3f3f3fint n,c;int dist[105];bool vis[105];int a[105][105];ll prim(int pos){memset(dist,INF,sizeof(dist));dist[pos]=0;ll sum=0;for(int i=1;i<=n;i++){int cur=-1;for(int j=1;j<=n;j++){if(!vis[j]&&(cur==-1||dist[j]<dist[cur]))cur=j;}if(dist[cur]>=INF)return INF;sum+=dist[cur];vis[cur]=1;for(int l=1;l<=n;l++)if(!vis[l])dist[l]=min(dist[l],a[cur][l]);}return sum;}int main() {scanf("%d%d",&n,&c);int x,y,z;memset(a,INF,sizeof(a));for(int i=1;i<=n;i++)a[i][i]=0;for(int i=1;i<=n(n-1)/2;i++){scanf("%d%d%d",&x,&y,&z);a[x][y]=min(a[x][y],z);a[y][x]=a[x][y];}printf("%lld\n",prim(1)c);return 0;}//Kruskal()最小生成树include<bits/stdc++.h>using namespace std;struct node {int x,y,z;}edge[10005];bool cmp(node a,node b) {return a.z < b.z;}int fa[105];int n,m,c;long long sum;int get(int x) {return x == fa[x] ? x : fa[x] = get(fa[x]);}int main() {scanf("%d%d",&n,&c);m=n(n-1)/2;for(int i = 1; i <= m; i ++) {scanf("%d%d%d",&edge[i].x,&edge[i].y,&edge[i].z);}for(int i = 0; i <= n; i ++) {fa[i] = i;}sort(edge + 1,edge + 1 + m,cmp);// 每次加入一条最短的边for(int i = 1; i <= m; i ++) {int x = get(edge[i].x);int y = get(edge[i].y);if(x == y) continue;fa[y] = x;sum += edge[i].z;}printf("%lld\n",sumc);return 0;} 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_52139055/article/details/123284091。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-20 16:20:26
469
转载
Ruby
...乱,我们需要使用线程安全的操作,比如Mutex(互斥锁)。Mutex可以确保每次只有一个线程能够修改某个变量。 修正后的代码: ruby 正确的代码 require 'thread' counter = 0 mutex = Mutex.new threads = [] 5.times do |i| threads << Thread.new do 100_000.times do mutex.synchronize { counter += 1 } end end end threads.each(&:join) puts "Counter: {counter}" 总结: 这一段代码告诉我们,共享状态是一个雷区。如果你非要用共享变量,记得给它加上锁,不然后果不堪设想。 --- 4. 示例二 死锁的诅咒 场景描述: 有时候,我们会遇到更复杂的情况,比如两个线程互相等待对方释放资源。哎呀,这种情况就叫“死锁”,简直就像两只小猫抢一个玩具,谁都不肯让步,结果大家都卡在那里动弹不得,程序也就这样傻乎乎地停在原地,啥也干不了啦! 问题出现: 想象一下,你有两个线程,A线程需要获取锁X,B线程需要获取锁Y。想象一下,A和B两个人都想打开两把锁——A拿到了锁X,B拿到了锁Y。然后呢,A心想:“我得等B先把他的锁Y打开,我才能继续。”而B也在想:“等A先把她的锁X打开,我才能接着弄。”结果俩人就这么干等着,谁也不肯先放手,最后就成了“死锁”——就像两个人在拔河,谁都不松手,僵在那里啥也干不成。 代码示例: ruby 死锁的代码 lock_a = Mutex.new lock_b = Mutex.new thread_a = Thread.new do lock_a.synchronize do puts "Thread A acquired lock A" sleep(1) lock_b.synchronize do puts "Thread A acquired lock B" end end end thread_b = Thread.new do lock_b.synchronize do puts "Thread B acquired lock B" sleep(1) lock_a.synchronize do puts "Thread B acquired lock A" end end end thread_a.join thread_b.join 分析: 在这段代码中,两个线程都在尝试获取两个不同的锁,但由于它们的顺序不同,最终导致了死锁。运行这段代码时,你会发现程序卡住了,没有任何输出。 解决方案: 为了避免死锁,我们需要遵循“总是按照相同的顺序获取锁”的原则。比如,在上面的例子中,我们可以强制让所有线程都先获取锁A,再获取锁B。 修正后的代码: ruby 避免死锁的代码 lock_a = Mutex.new lock_b = Mutex.new thread_a = Thread.new do [lock_a, lock_b].each do |lock| lock.synchronize do puts "Thread A acquired lock {lock.object_id}" end end end thread_b = Thread.new do [lock_a, lock_b].each do |lock| lock.synchronize do puts "Thread B acquired lock {lock.object_id}" end end end thread_a.join thread_b.join 总结: 死锁就像一只隐形的手,随时可能掐住你的喉咙。记住,保持一致的锁顺序是关键! --- 5. 示例三 不恰当的线程池 场景描述: 线程池是一种管理线程的方式,它可以复用线程,减少频繁创建和销毁线程的开销。但在实际使用中,很多人会因为配置不当而导致性能下降甚至崩溃。 问题出现: 假设你创建了一个线程池,但线程池的大小设置得不合理。哎呀,这就好比做饭时锅不够大,菜都堆在那儿煮不熟,菜要是放太多呢,锅又会冒烟、潽得到处都是,最后饭也没做好。线程池也一样,太小了任务堆成山,程序半天没反应;太大了吧,电脑资源直接被榨干,啥事也干不成,还得收拾烂摊子! 代码示例: ruby 线程池的错误用法 require 'thread' pool = Concurrent::FixedThreadPool.new(2) 20.times do |i| pool.post do sleep(1) puts "Task {i} completed" end end pool.shutdown pool.wait_for_termination 分析: 在这个例子中,线程池的大小被设置为2,但有20个任务需要执行。哎呀,这就好比你请了个帮手,但他一次只能干两件事,其他事儿就得排队等着,得等前面那两件事儿干完了,才能轮到下一件呢!这种情况下,整个程序的执行时间会显著延长。 解决方案: 为了优化线程池的性能,我们需要根据系统的负载情况动态调整线程池的大小。可以使用Concurrent::CachedThreadPool,它会根据当前的任务数量自动调整线程的数量。 修正后的代码: ruby 使用缓存线程池 require 'concurrent' pool = Concurrent::CachedThreadPool.new 20.times do |i| pool.post do sleep(1) puts "Task {i} completed" end end sleep(10) 给线程池足够的时间完成任务 pool.shutdown pool.wait_for_termination 总结: 线程池就像一把双刃剑,用得好可以提升效率,用不好则会成为负担。记住,线程池的大小要根据实际情况灵活调整。 --- 6. 示例四 忽略异常的代价 场景描述: 并发编程的一个常见问题是,线程中的异常不容易被察觉。如果你没有妥善处理这些异常,程序可能会因为一个小错误而崩溃。 问题出现: 假设你有一个线程在执行某个操作时抛出了异常,但你没有捕获它,那么整个线程池可能会因此停止工作。 代码示例: ruby 忽略异常的代码 threads = [] 5.times do |i| threads << Thread.new do raise "Error in thread {i}" if i == 2 puts "Thread {i} completed" end end threads.each(&:join) 分析: 在这个例子中,当i == 2时,线程会抛出一个异常。哎呀糟糕!因为我们没抓住这个异常,程序直接就挂掉了,别的线程啥的也别想再跑了。 解决方案: 为了防止这种情况发生,我们应该在每个线程中添加异常捕获机制。比如,可以用begin-rescue-end结构来捕获异常并进行处理。 修正后的代码: ruby 捕获异常的代码 threads = [] 5.times do |i| threads << Thread.new do begin raise "Error in thread {i}" if i == 2 puts "Thread {i} completed" rescue => e puts "Thread {i} encountered an error: {e.message}" end end end threads.each(&:join) 总结: 异常就像隐藏在暗处的敌人,稍不注意就会让你措手不及。学会捕获和处理异常,是成为一个优秀的并发编程者的关键。 --- 7. 结语 好了,今天的分享就到这里啦!并发编程确实是一项强大的技能,但也需要谨慎对待。大家看看今天这个例子,是不是觉得有点隐患啊?希望能引起大家的注意,也学着怎么避开这些坑,别踩雷了! 最后,我想说的是,编程是一门艺术,也是一场冒险。每次遇到新挑战,我都觉得像打开一个神秘的盲盒,既兴奋又紧张。不过呢,光有好奇心还不够,还得有点儿耐心,就像种花一样,得一点点浇水施肥,不能急着看结果。相信只要我们不断学习、不断反思,就一定能写出更加优雅、高效的代码! 祝大家编码愉快!
2025-04-25 16:14:17
33
凌波微步
转载文章
...计算、大数据以及5G网络的普及,大文件传输与高效下载的需求愈发显著。例如,某知名云存储服务提供商近期宣布升级其文件下载服务,采用先进的分段传输技术以应对用户对超大文件快速稳定下载的需求,这正是基于类似上述文章所介绍的HTTP Range请求头原理。通过服务器端的智能分片处理和客户端的断点续传支持,极大提升了用户在各种网络环境下的下载体验。 此外,前端技术社区也在不断优化大文件下载的用户体验。有开发者分享了一篇关于如何利用Vue.js配合WebSocket实现实时下载进度展示的文章,其中详细解读了在进行文件分片下载时,如何从前端角度实时获取并更新下载进度信息,从而提升用户界面的互动性和友好性。 对于深入理解文件切片下载机制,推荐阅读《HTTP协议权威指南》一书,书中详尽剖析了HTTP协议中的范围请求(Range Request)及其实现方式,这对于掌握和优化文件下载功能具有极高的参考价值。同时,关注Spring Boot官方文档和社区讨论,可以及时获取到针对大文件处理的最新最佳实践和技术动态。 综上所述,在当前高速发展的互联网环境下,结合SpringBoot后端框架与Vue前端技术实现文件切片下载功能,并关注该领域的最新发展与应用案例,无疑将有助于我们更好地服务于用户的实际需求,提升产品竞争力。
2023-01-19 08:12:45
547
转载
Kafka
...索,比如监控、调优、安全等等。其实我觉得啊,只要你把命名的规矩弄明白了,东西该怎么放也心里有数了,那你就算是走上正轨啦,成功嘛,它就已经在向你招手啦!加油吧,朋友们! --- 希望这篇文章对你有所帮助,如果有任何疑问,欢迎随时交流哦!
2025-04-05 15:38:52
96
彩虹之上
转载文章
...恢复策略对于确保数据安全至关重要。近期,SQLite数据库技术领域也持续取得新进展,特别是在数据保护和稳定性方面。 2022年5月,SQLite官方发布了版本3.37.0,其中引入了更多的完整性检查机制以及优化的写入策略,以降低因硬件故障、程序异常导致的数据损坏风险。同时,该版本还改进了WAL(Write Ahead Log)模式下的性能和可靠性,使得即使在高并发场景下也能更有效地防止数据库损坏。 此外,一些数据库管理工具如DB Browser for SQLite和SQLite Expert Personal等,也开始集成更为先进的数据库维护功能,如定期健康检查、自动修复及实时备份功能,这些都能够有效帮助开发者和用户在SQLite数据库出现问题时快速恢复数据,减少潜在的数据丢失风险。 值得注意的是,在实际应用中,结合云存储服务进行增量备份和容灾也是提升SQLite数据库安全性的有力手段。例如,将本地SQLite数据库定期同步至云端,并通过云端数据库的冗余备份和故障切换机制,能够在设备断电或App崩溃时,最大程度地保障用户数据的安全性和完整性。 总之,随着SQLite数据库技术的不断演进及其配套工具的日益完善,开发者们在面对数据库损坏问题时有了更多解决方案和选择,为移动应用尤其是聊天记录这类重要数据的持久化存储提供了更强有力的保障。在未来,继续关注SQLite的最新研究动态和技术革新,将是优化数据管理、提升用户体验的重要一环。
2023-11-23 18:22:40
128
转载
Golang
...并发处理、内存管理、网络优化和代码结构。Go在这几个方面都有独到的优势,接下来咱们一个个拆解来看。 2.1 并发处理:协程的力量 先说并发处理吧。Go最大的特点之一就是协程(goroutine)。嘿,你知道为啥大家都说协程比线程“瘦”吗?就是因为它真的省空间啊!打个比方,一个协程的“小背包”(也就是栈内存)才不到2KB,可传统线程那背包大得吓人,动不动就几十KB起步,甚至能到上百KB。这差距,简直是一个小巧玲珑的手拿包和一个超大登山包的区别! 举个例子,假设我们要做一个聊天服务器,每秒钟需要处理上千个用户的请求。要是用那种老式的多线程方式,创建和销毁线程的代价大得会让你的服务器累得直不起腰,简直要崩溃了!但用Go的话,完全可以轻松应对: go package main import ( "fmt" "net/http" ) func handleRequest(w http.ResponseWriter, r http.Request) { fmt.Fprintf(w, "Hello, %s!", r.URL.Path[1:]) } func main() { http.HandleFunc("/", handleRequest) fmt.Println("Server started at :8080") err := http.ListenAndServe(":8080", nil) if err != nil { panic(err) } } 这段代码虽然简单,但它背后却隐藏着Go的魔力。嘿,你有没有试过访问这个地址:http://localhost:8080/username?当你这么做的时候,Go 这家伙就会偷偷摸摸地给你派来一个小帮手——一个协程,专门负责处理你的请求。而且更贴心的是,它完全不用你去管什么线程池那些听起来就头大的复杂玩意儿,简直是太省心了吧! 当然了,光靠协程还不够。为了确保程序的健壮性,我们需要合理地利用通道(channel)来进行通信。比如下面这个简单的生产者-消费者模型: go package main import ( "fmt" "time" ) func producer(ch chan<- int) { for i := 0; i < 5; i++ { ch <- i fmt.Println("Produced:", i) time.Sleep(500 time.Millisecond) } close(ch) } func consumer(ch <-chan int) { for num := range ch { fmt.Println("Consumed:", num) } } func main() { ch := make(chan int) go producer(ch) consumer(ch) } 在这个例子中,producer函数向通道发送数据,而consumer函数从通道接收数据。用这种方法,咱们就能又优雅又稳妥地搞定多线程里的同步难题,还不用担心被死锁给缠上。 --- 3. 内存管理 GC的奥秘 接下来谈谈内存管理。Go的垃圾回收器(GC)是它的一大亮点。就像用老式工具编程一样,C/C++这种传统语言就得让程序员自己动手去清理内存,稍不留神,就可能搞出内存泄漏,或者戳到那些讨厌的野指针,简直让人头大!而Go则完全解放了我们的双手,它会自动帮你清理不再使用的内存。 不过,GC也不是万能的。有时候,如果你对性能要求特别高,可能会遇到GC停顿的问题。为了解决这个问题,Go团队一直在优化GC算法。最新版本中引入了分代GC(Generational GC),大幅降低了停顿时间。 那么,我们在实际开发中应该如何减少GC的压力呢?最直接的方法就是尽量避免频繁的小对象分配。比如,我们可以复用一些常见的结构体,而不是每次都新建它们: go type Buffer struct { data []byte } func NewBuffer(size int) Buffer { return &Buffer{data: make([]byte, size)} } func (b Buffer) Reset() { b.data = b.data[:0] } func main() { buf := NewBuffer(1024) for i := 0; i < 100; i++ { buf.Reset() // 使用buf... } } 在这个例子中,我们通过Reset()方法复用了同一个Buffer实例,而不是每次都调用make([]byte, size)重新创建一个新的切片。这样可以显著降低GC的压力。 --- 4. 网络优化 TCP/IP的实战 再来说说网络优化。Go的net包提供了强大的网络编程支持,无论是HTTP、WebSocket还是普通的TCP/UDP,都能轻松搞定。特别是对那些高性能服务器而言,怎么才能又快又稳地搞定海量连接,这简直就是一个绕不开的大难题啊! 举个例子,假设我们要实现一个简单的HTTP长连接服务器。传统的做法可能是监听端口,然后逐个处理请求。但这种方式效率不高,特别是在高并发场景下。Go提供了一个更好的解决方案——使用net/http包的Serve方法: go package main import ( "log" "net/http" ) func handler(w http.ResponseWriter, r http.Request) { w.Write([]byte("Hello, World!")) } func main() { http.HandleFunc("/", handler) log.Fatal(http.ListenAndServe(":8080", nil)) } 这段代码看起来很简单,但它实际上已经具备了处理大量并发连接的能力。为啥呢?就是因为Go语言里的http.Server自带了一个超级能打的“工具箱”,里面有个高效的连接池和请求队列,遇到高并发的情况时,它就能像一个经验丰富的老司机一样,把各种请求安排得明明白白,妥妥地hold住场面! 当然,如果你想要更底层的控制,也可以直接使用net包来编写TCP服务器。比如下面这个简单的TCP回显服务器: go package main import ( "bufio" "fmt" "net" ) func handleConnection(conn net.Conn) { defer conn.Close() reader := bufio.NewReader(conn) for { message, err := reader.ReadString('\n') if err != nil { fmt.Println("Error reading:", err) break } fmt.Print("Received:", message) conn.Write([]byte(message)) } } func main() { listener, err := net.Listen("tcp", ":8080") if err != nil { fmt.Println("Error listening:", err) return } defer listener.Close() fmt.Println("Listening on :8080...") for { conn, err := listener.Accept() if err != nil { fmt.Println("Error accepting:", err) continue } go handleConnection(conn) } } 在这个例子中,我们通过listener.Accept()不断接受客户端连接,并为每个连接启动一个协程来处理请求。这种模式非常适合处理大量短连接的场景。 --- 5. 代码结构 模块化与可扩展性 最后,我们来聊聊代码结构。一个高性能的服务器不仅仅依赖于语言特性,还需要良好的设计思路。Go语言特别推崇把程序分成小块儿来写,就像搭积木一样,每个功能都封装成独立的小模块或包。这样不仅修 bug 的时候方便找问题,写代码的时候也更容易看懂,以后想加新功能啥的也简单多了。 比如,假设我们要开发一个分布式任务调度系统,可以按照以下方式组织代码: go // tasks.go package task type Task struct { ID string Name string Param interface{} } func NewTask(id, name string, param interface{}) Task { return &Task{ ID: id, Name: name, Param: param, } } // scheduler.go package scheduler import "task" type Scheduler struct { tasks []task.Task } func NewScheduler() Scheduler { return &Scheduler{ tasks: make([]task.Task, 0), } } func (s Scheduler) AddTask(t task.Task) { s.tasks = append(s.tasks, t) } func (s Scheduler) Run() { for _, t := range s.tasks { fmt.Printf("Executing task %s\n", t.Name) // 执行任务逻辑... } } 通过这种方式,我们将任务管理和调度逻辑分离出来,使得代码更加清晰易懂。同时,这样的设计也方便未来扩展新的功能,比如添加日志记录、监控指标等功能。 --- 6. 总结与展望 好了,到这里咱们就差不多聊完了如何用Go语言进行高性能服务器开发。说实话,写着这篇文章的时候,我脑海里突然蹦出大学时那股子钻研劲儿,感觉就像重新回到那些熬夜敲代码的日子了,整个人都热血上头!Go这门语言真的太带感了,简单到没话说,效率还超高,稳定性又好得没话说,简直就是程序员的救星啊! 不过,我也想提醒大家一句:技术再好,最终还是要服务于业务需求。不管你用啥法子、说啥话,老老实实问问自己:“这招到底管不管用?是不是真的解决问题了?”这才是真本事! 希望这篇文章对你有所帮助,如果你有任何疑问或者想法,欢迎随时留言讨论!让我们一起继续探索Go的无限可能吧!
2025-04-23 15:46:59
40
桃李春风一杯酒
转载文章
...这是我目前推荐的比较安全的方式:如果元素的宽度超过效果图宽度的一半(效果图宽为640或750),果断使用百分比宽度,或者flex布局。就像把等屏宽的图片宽度设为100%一样。 3.问:不是 1rem = 100px吗,为什么我的代码写了一个宽度为3rem的元素,在电脑端的谷歌浏览器上宽度只有150px? 答:先说高清方案代码,再次强调咱们的高清方案代码是根据设备的dpr动态设置html 的 font-size, 如果dpr=1(如电脑端),则html的font-size为50px,此时 1rem = 50px 如果dpr=2(如iphone 5 和 6),则html的font-size为100px,此时 1rem = 100px 如果dpr=3(如iphone 6 sp),则html的font-size为150px,此时 1rem = 150px 如果dpr为其他值,即便不是整数,如3.4 , 也是一样直接将dpr 乘以 50 。 再来说说效果图,一般来讲,我们的效果图宽度要么是640,要么是750,无论哪一个,它们对应设备的dpr=2,此时,1 rem = 50 × 2 = 100px。这也就是为什么高清方案默认1rem = 100px。而将1rem默认100px也是好处多多,可以帮你快速换算单位,比如在750宽度下的效果图,某元素宽度为53px,那么css宽度直接设为53/100=0.53rem了。 然而极少情况下,有设计师将效果图宽定为1242px,因为他手里只有一个iphone 6 sp (dpr = 3),设计完效果图刚好可以在他的iphone 6 sp里查看调整。一切完毕之后,他将这个效果图交给你来切图。由于这个效果图对应设备的dpr=3,也就是1rem = 50 × 3 = 150px。所以如果你量取了一个宽度为90px的元素,它的css宽度应该为 90/150=0.6rem。由于咱们的高清方案默认1rem=100px,为了还原效果图,你需要这样换算。当然,一个技巧就是你可以直接修改咱们的高清方案的默认设置。在代码的最后 你会看到 flex(false, 100, 1) ,将其修改成flex(false, 66.66667, 1)(感谢简友:V旅行指出此处错误! 2017/3/24)就不用那么麻烦的换算了,此时那个90px的直接写成0.9rem就可以了。 4.问:在此方案下,我如果引用了别的UI库,那些UI库的元素会显得特别小,如何解决? 答:可以这样去理解问题的原因,如果不用高清方案,别的UI库的元素在移动设备上(假设这个设备是iphone 5好了)显示是正常的,这没有问题,然后我们在这个设备上将该页面截图放到电脑上看,发现宽度是640(问答1解释过了),根据你的像素眼大致测量,你发现这个设备上的某个字体大小应该是12px,而你在电脑上测量应该是24px。 现在我们使用高清方案去还原这个页面,那么字体大小应该写为 0.24rem 才对! 所以,如果你引用了其他的UI库,为了兼容高清方案,你需要对该UI库里凡是应用px的地方做相应处理,即: a px => a0.02 rem (具体处理方式因人而异,有模块化开发经验的同学可使用类似的 px2rem 的插件去转化,也可以完全手动处理) (2017/9/9更新)然而真实情况往往更为复杂,比如,你引入了百度地图(N个样式需要处理转换);或者你引入了一个 framework;又或者你使用了 video 标签,上面默认的尺寸样式很难处理。等等这些棘手问题 面对这些情况,此时我们的高清方案如果不再压缩页面,那么以上问题将迎刃而解。 基于这样的思路,笔者对高清方案的源码做了如下修改,即添加一个叫做 normal 的参数,由它来控制页面是否压缩。 在文章顶部代码的最后,你会看到 flex(false, 100, 1),默认情况下页面是开启压缩的。 如果你需要禁止压缩,由于我们的源码执行后,直接将flex函数挂载到全局变量window上了,此时你直接在需要禁止压缩的页面执行 window.flex(true) 就可以了,而rem的用法保持不变。 有一点美中不足的是,如果禁止了页面压缩,高清屏的1像素就不能实现了,如果你必须要实现1像素,那么自行谷歌:css 0.5像素,有N多的解决方案,这里不再赘述。 5.问:有时候字体会不受控制的变大,怎么办? 答:在X5新内核Blink中,在排版页面的时候,会主动对字体进行放大,会检测页面中的主字体,当某一块字体在我们的判定规则中,认为字号较小,并且是页面中的主要字体,就会采取主动放大的操作。然而这不是我们想要的,可以采取给最大高度解决 解决方案: , :before, :after { max-height: 100000px } 补充:有同学反映,在一些情况下 textarea 标签内的字体大小即便加上上面的方案,字体也会变大,无法控制。此时你需要给 textarea 的 display 设为 table 或者 inline-table 即可恢复正常。(感谢 程序媛喵喵 对此的补充!2017/7/7) 6.问:我在底部导航用的flex感觉更合适一些,请问这样子混着用可以吗? 答:咱们的rem适合写固定尺寸。其余的根据需要换成flex或者百分比。源码示例中就有这三种的综合运用。 7.问:在高清方案下,一个标准的,较为理想的宽度为640的页面效果图应该是怎样的? 点击浏览:一个标准的640手机页面设计稿参考(没错,在此方案中,你可以完全按照这张设计稿的尺寸写布局了。就是这么简单!) 8.问:用了这个方案如何使用媒体查询呢? 一般来讲,使用了这个方案是没必要用媒体查询了,如果你必须要用,假设你要对 iphone5 (css像素宽度320px, 这里需要取其物理像素,也就是640)宽度下的类名做处理,你可以这样 @media screen and (max-width: 640px) {.yourLayout {width:100%;} } 9.问:可以提供下这个高清方案的源码吗? 'use strict';/ @param {Boolean} [normal = false] - 默认开启页面压缩以使页面高清; @param {Number} [baseFontSize = 100] - 基础fontSize, 默认100px; @param {Number} [fontscale = 1] - 有的业务希望能放大一定比例的字体;/const win = window;export default win.flex = (normal, baseFontSize, fontscale) => {const _baseFontSize = baseFontSize || 100;const _fontscale = fontscale || 1;const doc = win.document;const ua = navigator.userAgent;const matches = ua.match(/Android[\S\s]+AppleWebkit\/(\d{3})/i);const UCversion = ua.match(/U3\/((\d+|\.){5,})/i);const isUCHd = UCversion && parseInt(UCversion[1].split('.').join(''), 10) >= 80;const isIos = navigator.appVersion.match(/(iphone|ipad|ipod)/gi);let dpr = win.devicePixelRatio || 1;if (!isIos && !(matches && matches[1] > 534) && !isUCHd) {// 如果非iOS, 非Android4.3以上, 非UC内核, 就不执行高清, dpr设为1;dpr = 1;}const scale = normal ? 1 : 1 / dpr;let metaEl = doc.querySelector('meta[name="viewport"]');if (!metaEl) {metaEl = doc.createElement('meta');metaEl.setAttribute('name', 'viewport');doc.head.appendChild(metaEl);}metaEl.setAttribute('content', width=device-width,user-scalable=no,initial-scale=${scale},maximum-scale=${scale},minimum-scale=${scale});doc.documentElement.style.fontSize = normal ? '50px' : ${_baseFontSize / 2 dpr _fontscale}px;}; 10.问:我在使用 rem 布局进阶方案的时候遇到了XXX的问题,如何解决? 此方案久经考验,具有普遍适用性,自身出致命问题的情况很少,至少笔者是没遇到过。 绝大多数你遇到的问题,都是由于对rem布局理解不到位导致的。本文对rem布局做了大量的解释说明,配置了若干 demo,你可以把你遇到的问题放到demo里测试。遇到问题时,首先问自己,为什么这明显的错误大家没遇到就我遇到了?? 如果你真的经过充分验证,比对,确实是rem布局自身出了问题,那么请私信我,把还原问题场景的 demo 或者文件发给我。谢谢! 本篇文章为转载内容。原文链接:https://blog.csdn.net/hjhfreshman/article/details/88864894。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-23 12:01:53
134
转载
转载文章
...it/10000)的网络带宽就可以。 物理资源是足够的,是软件的问题,特别是网络的 I/O 模型问题。 I/O 的模型,文件 I/O和网络 I/O 模型也类似。 在 C10K 以前,Linux 中网络处理都用同步阻塞的方式,也就是每个请求都分配一个进程或者线程。 请求数只有 100 个时,这种方式自然没问题,但增加到 10000 个请求时,10000 个进程或线程的调度、上下文切换乃至它们占用的内存,都会成为瓶颈。 每个请求分配一个线程的方式不合适,为了支持 10000 个并发请求,有两个问题需要我们解决 第一,怎样在一个线程内处理多个请求,也就是要在一个线程内响应多个网络 I/O。以前的同步阻塞方式下,一个线程只能处理一个请求,到这里不再适用,是不是可以用非阻塞 I/O 或者异步 I/O 来处理多个网络请求呢? 第二,怎么更节省资源地处理客户请求,也就是要用更少的线程来服务这些请求。是不是可以继续用原来的 100 个或者更少的线程,来服务现在的 10000 个请求呢? I/O 模型优化 异步、非阻塞 I/O 的解决思路是我们在网络编程中经常用到的 I/O 多路复用(I/O Multiplexing) 两种 I/O 事件通知的方式:水平触发和边缘触发,它们常用在套接字接口的文件描述符中。 水平触发:只要文件描述符可以非阻塞地执行 I/O ,就会触发通知。也就是说,应用程序可以随时检查文件描述符的状态,然后再根据状态,进行 I/O 操作。 边缘触发:只有在文件描述符的状态发生改变(也就是 I/O 请求达到)时,才发送一次通知。这时候,应用程序需要尽可能多地执行 I/O,直到无法继续读写,才可以停止。如果 I/O 没执行完,或者因为某种原因没来得及处理,那么这次通知也就丢失了。 I/O 多路复用的方法有很多实现方法,我带你来逐个分析一下。 第一种,使用非阻塞 I/O 和水平触发通知,比如使用 select 或者 poll。 根据刚才水平触发的原理,select 和 poll 需要从文件描述符列表中,找出哪些可以执行 I/O ,然后进行真正的网络 I/O 读写。由于 I/O 是非阻塞的,一个线程中就可以同时监控一批套接字的文件描述符,这样就达到了单线程处理多请求的目的。所以,这种方式的最大优点,是对应用程序比较友好,它的 API 非常简单。 但是,应用软件使用 select 和 poll 时,需要对这些文件描述符列表进行轮询,这样,请求数多的时候就会比较耗时。并且,select 和 poll 还有一些其他的限制。 select 使用固定长度的位相量,表示文件描述符的集合,因此会有最大描述符数量的限制。比如,在 32 位系统中,默认限制是 1024。并且,在 select 内部,检查套接字状态是用轮询的方法,再加上应用软件使用时的轮询,就变成了一个 O(n^2) 的关系。 而 poll 改进了 select 的表示方法,换成了一个没有固定长度的数组,这样就没有了最大描述符数量的限制(当然还会受到系统文件描述符限制)。但应用程序在使用 poll 时,同样需要对文件描述符列表进行轮询,这样,处理耗时跟描述符数量就是 O(N) 的关系。 除此之外,应用程序每次调用 select 和 poll 时,还需要把文件描述符的集合,从用户空间传入内核空间,由内核修改后,再传出到用户空间中。这一来一回的内核空间与用户空间切换,也增加了处理成本。 有没有什么更好的方式来处理呢?答案自然是肯定的。 第二种,使用非阻塞 I/O 和边缘触发通知,比如 epoll。既然 select 和 poll 有那么多的问题,就需要继续对其进行优化,而 epoll 就很好地解决了这些问题。 epoll 使用红黑树,在内核中管理文件描述符的集合,这样,就不需要应用程序在每次操作时都传入、传出这个集合。 epoll 使用事件驱动的机制,只关注有 I/O 事件发生的文件描述符,不需要轮询扫描整个集合。 不过要注意,epoll 是在 Linux 2.6 中才新增的功能(2.4 虽然也有,但功能不完善)。由于边缘触发只在文件描述符可读或可写事件发生时才通知,那么应用程序就需要尽可能多地执行 I/O,并要处理更多的异常事件。 第三种,使用异步 I/O(Asynchronous I/O,简称为 AIO)。 在前面文件系统原理的内容中,我曾介绍过异步 I/O 与同步 I/O 的区别。异步 I/O 允许应用程序同时发起很多 I/O 操作,而不用等待这些操作完成。而在 I/O 完成后,系统会用事件通知(比如信号或者回调函数)的方式,告诉应用程序。这时,应用程序才会去查询 I/O 操作的结果。 异步 I/O 也是到了 Linux 2.6 才支持的功能,并且在很长时间里都处于不完善的状态,比如 glibc 提供的异步 I/O 库,就一直被社区诟病。同时,由于异步 I/O 跟我们的直观逻辑不太一样,想要使用的话,一定要小心设计,其使用难度比较高。 工作模型优化 了解了 I/O 模型后,请求处理的优化就比较直观了。 使用 I/O 多路复用后,就可以在一个进程或线程中处理多个请求,其中,又有下面两种不同的工作模型。 第一种,主进程 + 多个 worker 子进程,这也是最常用的一种模型。这种方法的一个通用工作模式就是:主进程执行 bind() + listen() 后,创建多个子进程;然后,在每个子进程中,都通过 accept() 或 epoll_wait() ,来处理相同的套接字。 比如,最常用的反向代理服务器 Nginx 就是这么工作的。它也是由主进程和多个 worker 进程组成。主进程主要用来初始化套接字,并管理子进程的生命周期;而 worker 进程,则负责实际的请求处理。我画了一张图来表示这个关系。 这里要注意,accept() 和 epoll_wait() 调用,还存在一个惊群的问题。换句话说,当网络 I/O 事件发生时,多个进程被同时唤醒,但实际上只有一个进程来响应这个事件,其他被唤醒的进程都会重新休眠。 其中,accept() 的惊群问题,已经在 Linux 2.6 中解决了; 而 epoll 的问题,到了 Linux 4.5 ,才通过 EPOLLEXCLUSIVE 解决。 为了避免惊群问题, Nginx 在每个 worker 进程中,都增加一个了全局锁(accept_mutex)。这些 worker 进程需要首先竞争到锁,只有竞争到锁的进程,才会加入到 epoll 中,这样就确保只有一个 worker 子进程被唤醒。 不过,根据前面 CPU 模块的学习,你应该还记得,进程的管理、调度、上下文切换的成本非常高。那为什么使用多进程模式的 Nginx ,却具有非常好的性能呢? 这里最主要的一个原因就是,这些 worker 进程,实际上并不需要经常创建和销毁,而是在没任务时休眠,有任务时唤醒。只有在 worker 由于某些异常退出时,主进程才需要创建新的进程来代替它。 当然,你也可以用线程代替进程:主线程负责套接字初始化和子线程状态的管理,而子线程则负责实际的请求处理。由于线程的调度和切换成本比较低,实际上你可以进一步把 epoll_wait() 都放到主线程中,保证每次事件都只唤醒主线程,而子线程只需要负责后续的请求处理。 第二种,监听到相同端口的多进程模型。在这种方式下,所有的进程都监听相同的接口,并且开启 SO_REUSEPORT 选项,由内核负责将请求负载均衡到这些监听进程中去。这一过程如下图所示。 由于内核确保了只有一个进程被唤醒,就不会出现惊群问题了。比如,Nginx 在 1.9.1 中就已经支持了这种模式。 不过要注意,想要使用 SO_REUSEPORT 选项,需要用 Linux 3.9 以上的版本才可以。 C1000K 基于 I/O 多路复用和请求处理的优化,C10K 问题很容易就可以解决。不过,随着摩尔定律带来的服务器性能提升,以及互联网的普及,你并不难想到,新兴服务会对性能提出更高的要求。 很快,原来的 C10K 已经不能满足需求,所以又有了 C100K 和 C1000K,也就是并发从原来的 1 万增加到 10 万、乃至 100 万。从 1 万到 10 万,其实还是基于 C10K 的这些理论,epoll 配合线程池,再加上 CPU、内存和网络接口的性能和容量提升。大部分情况下,C100K 很自然就可以达到。 那么,再进一步,C1000K 是不是也可以很容易就实现呢?这其实没有那么简单了。 首先从物理资源使用上来说,100 万个请求需要大量的系统资源。比如, 假设每个请求需要 16KB 内存的话,那么总共就需要大约 15 GB 内存。 而从带宽上来说,假设只有 20% 活跃连接,即使每个连接只需要 1KB/s 的吞吐量,总共也需要 1.6 Gb/s 的吞吐量。千兆网卡显然满足不了这么大的吞吐量,所以还需要配置万兆网卡,或者基于多网卡 Bonding 承载更大的吞吐量。 其次,从软件资源上来说,大量的连接也会占用大量的软件资源,比如文件描述符的数量、连接状态的跟踪(CONNTRACK)、网络协议栈的缓存大小(比如套接字读写缓存、TCP 读写缓存)等等。 最后,大量请求带来的中断处理,也会带来非常高的处理成本。这样,就需要多队列网卡、中断负载均衡、CPU 绑定、RPS/RFS(软中断负载均衡到多个 CPU 核上),以及将网络包的处理卸载(Offload)到网络设备(如 TSO/GSO、LRO/GRO、VXLAN OFFLOAD)等各种硬件和软件的优化。 C1000K 的解决方法,本质上还是构建在 epoll 的非阻塞 I/O 模型上。只不过,除了 I/O 模型之外,还需要从应用程序到 Linux 内核、再到 CPU、内存和网络等各个层次的深度优化,特别是需要借助硬件,来卸载那些原来通过软件处理的大量功能。 C10M 显然,人们对于性能的要求是无止境的。再进一步,有没有可能在单机中,同时处理 1000 万的请求呢?这也就是 C10M 问题。 实际上,在 C1000K 问题中,各种软件、硬件的优化很可能都已经做到头了。特别是当升级完硬件(比如足够多的内存、带宽足够大的网卡、更多的网络功能卸载等)后,你可能会发现,无论你怎么优化应用程序和内核中的各种网络参数,想实现 1000 万请求的并发,都是极其困难的。 究其根本,还是 Linux 内核协议栈做了太多太繁重的工作。从网卡中断带来的硬中断处理程序开始,到软中断中的各层网络协议处理,最后再到应用程序,这个路径实在是太长了,就会导致网络包的处理优化,到了一定程度后,就无法更进一步了。 要解决这个问题,最重要就是跳过内核协议栈的冗长路径,把网络包直接送到要处理的应用程序那里去。这里有两种常见的机制,DPDK 和 XDP。 第一种机制,DPDK,是用户态网络的标准。它跳过内核协议栈,直接由用户态进程通过轮询的方式,来处理网络接收。 说起轮询,你肯定会下意识认为它是低效的象征,但是进一步反问下自己,它的低效主要体现在哪里呢?是查询时间明显多于实际工作时间的情况下吧!那么,换个角度来想,如果每时每刻都有新的网络包需要处理,轮询的优势就很明显了。比如: 在 PPS 非常高的场景中,查询时间比实际工作时间少了很多,绝大部分时间都在处理网络包; 而跳过内核协议栈后,就省去了繁杂的硬中断、软中断再到 Linux 网络协议栈逐层处理的过程,应用程序可以针对应用的实际场景,有针对性地优化网络包的处理逻辑,而不需要关注所有的细节。 此外,DPDK 还通过大页、CPU 绑定、内存对齐、流水线并发等多种机制,优化网络包的处理效率。 第二种机制,XDP(eXpress Data Path),则是 Linux 内核提供的一种高性能网络数据路径。它允许网络包,在进入内核协议栈之前,就进行处理,也可以带来更高的性能。XDP 底层跟我们之前用到的 bcc-tools 一样,都是基于 Linux 内核的 eBPF 机制实现的。 XDP 的原理如下图所示: 你可以看到,XDP 对内核的要求比较高,需要的是 Linux 4.8 以上版本,并且它也不提供缓存队列。基于 XDP 的应用程序通常是专用的网络应用,常见的有 IDS(入侵检测系统)、DDoS 防御、 cilium 容器网络插件等。 总结 C10K 问题的根源,一方面在于系统有限的资源;另一方面,也是更重要的因素,是同步阻塞的 I/O 模型以及轮询的套接字接口,限制了网络事件的处理效率。Linux 2.6 中引入的 epoll ,完美解决了 C10K 的问题,现在的高性能网络方案都基于 epoll。 从 C10K 到 C100K ,可能只需要增加系统的物理资源就可以满足;但从 C100K 到 C1000K ,就不仅仅是增加物理资源就能解决的问题了。这时,就需要多方面的优化工作了,从硬件的中断处理和网络功能卸载、到网络协议栈的文件描述符数量、连接状态跟踪、缓存队列等内核的优化,再到应用程序的工作模型优化,都是考虑的重点。 再进一步,要实现 C10M ,就不只是增加物理资源,或者优化内核和应用程序可以解决的问题了。这时候,就需要用 XDP 的方式,在内核协议栈之前处理网络包;或者用 DPDK 直接跳过网络协议栈,在用户空间通过轮询的方式直接处理网络包。 当然了,实际上,在大多数场景中,我们并不需要单机并发 1000 万的请求。通过调整系统架构,把这些请求分发到多台服务器中来处理,通常是更简单和更容易扩展的方案。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_23864697/article/details/114626793。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-11 18:25:52
261
转载
转载文章
...立的一个软件可靠性和安全性研究中心,研究包括了度量、工具、风险等各个方面 http://seg.iit.nrc.ca/English/index.html 加拿大的一个研究软件工程质量方面的组织,可以提供研究论文的下载 http://sepo.nosc.mil 内容来自美国SAN DIEGO的软件工程机构(Sofrware Engineering Process Office)主页,包括软件工程知识方面的资料 http://www.asq.org/ 是世界上最大的一个质量团体组织之一,有着比较丰富的论文资源,不过是收费的 http://www.automated-testing.com/ 一个自动化软件测试和自然语言处理研究页面,属于个人网页,上面有些资源可供下载 http://www.benchmarkresources.com/ 提供有关标杆方面的资料,也有一些其它软件测试方面的资料 http://www.betasoft.com/ 包含一些流行测试工具的介绍、下载和讨论,还提供测试方面的资料 http://www.brunel.ac.uk/~csstmmh2/vast/home.html VASTT研究组织,主要从事通过切片技术、测试技术和转换技术来验证和分析系统,对这方面技术感兴趣的人是可以在这里参考一些研究的项目及相关的一些主题信息 http://www.cc.gatech.edu/aristotle/ Aristole研究组织,研究软件系统分析、测试和维护等方面的技术,在测试方面的研究包括了回归测试、测试套最小化、面向对象软件测试等内容,该网站有丰富的论文资源可供下载 http://www.computer.org/ IEEE是世界上最悠久,也是在最大的计算机社会团体,它的电子图书馆拥有众多计算机方面的论文资料,是研究计算机方面的一个重要资源参考来源 http://www.cs.colostate.edu/testing/ 可靠性研究网站,有一些可靠性方面的论文资料 http://www.cs.york.ac.uk/testsig/ 约克大学的测试专业兴趣研究组网页,有比较丰富的资料下载,内容涵盖了测试的多个方面,包括测试自动化、测试数据生成、面向对象软件测试、验证确认过程等 http://www.csr.ncl.ac.uk/index.html 学校里面的一个软件可靠性研究中心,提供有关软件可靠性研究方面的一些信息和资料,对这方面感兴趣的人可以参考 http://www.dcs.shef.ac.uk/research/groups/vt/ 学校里的一个验证和测试研究机构,有一些相关项目和论文可供参考 http://www.esi.es/en/main/ ESI(欧洲软件组织),提供包括CMM评估方面的各种服务 http://www.europeindia.org/cd02/index.htm 一个可靠性研究网站,有可靠性方面的一些资料提供参考 http://www.fortest.org.uk/ 一个测试研究网站,研究包括了静态测试技术(如模型检查、理论证明)和动态测试(如测试自动化、特定缺陷的检查、测试有效性分析等) http://www.grove.co.uk/ 一个有关软件测试和咨询机构的网站,有一些测试方面的课程和资料供下载 http://www.hq.nasa.gov/office/codeq/relpract/prcls-23.htm NASA可靠性设计实践资料 http://www.io.com/~wazmo/ Bret Pettichord的主页,他的一个热点测试页面连接非常有价值,从中可以获得相当大的测试资料,很有价值 http://www.iso.ch/iso/en/ISOOnline.frontpage 国际标准化组织,提供包括ISO标准系统方面的各类参考资料 http://www.isse.gmu.edu/faculty/ofut/classes/ 821-ootest/papers.html 提供面向对象和基于构架的测试方面著作下载,对这方面感兴趣的读者可以参考该网站,肯定有价值 http://www.ivv.nasa.gov/ NASA设立的独立验证和确认机构,该机构提出了软件开发的全面验证和确认,在此可以获得这方面的研究资料 http://www.kaner.com/ 著名的测试专家Cem Kanner的主页,里面有许多关于测试的专题文章,相信对大家都有用。Cem Kanner关于测试的最著名的书要算Testing Software,这本书已成为一个测试人员的标准参考书 http://www.library.cmu.edu/Re-search/Engineer-ingAndSciences/CS+ECE/index.html 卡耐基梅陇大学网上图书馆,在这里你可以获得有关计算机方面各类论文资料,内容极其庞大,是研究软件测试不可获取的资料来源之一 http://www.loadtester.com/ 一个性能测试方面的网站,提供有关性能测试、性能监控等方面的资源,包括论文、论坛以及一些相关链接 http://www.mareinig.ch/mt/index.html 关于软件工程和应用开发领域的各种免费的实践知识、时事信息和资料文件下载,包括了测试方面的内容 http://www.mtsu.ceu/-storm/ 软件测试在线资源,包括提供目前有哪些人在研究测试,测试工具列表连接,测试会议,测试新闻和讨论,软件测试文学(包括各种测试杂志,测试报告),各种测试研究组织等内容 http://www.psqtcomference.com/ 实用软件质量技术和实用软件测试技术国际学术会议宣传网站,每年都会举行两次 http://www.qacity.com/front.htm 测试工程师资源网站,包含各种测试技术及相关资料下载 http://www.qaforums.com/ 关于软件质量保证方面的一个论坛,需要注册 http://www.qaiusa.com/ QAI是一个提供质量保证方面咨询的国际著名机构,提供各种质量和测试方面证书认证 http://www.qualitytree.com/ 一个测试咨询提供商,有一些测试可供下载,有几篇关于缺陷管理方面的文章值得参考 http://www.rational.com/ IBM Rational的官方网站,可以在这里寻找测试方面的工具信息。IBM Rational提供测试方面一系列的工具,比较全面 http://rexblackconsulting.com/Pages/publicat-ions.htm Rex Black的个人主页,有一些测试和测试管理方面的资料可供下载 http://www.riceconsulting.com/ 一个测试咨询提供商,有一些测试资料可供下载,但不多 http://www.satisfice.com/ 包含James Bach关于软件测试和过程方面的很多论文,尤其在启发式测试策略方面值得参考 http://www.satisfice.com/seminars.shtml 一个黑盒软件测试方面的研讨会,主要由测试专家Cem Kanar和James Bach组织,有一些值得下载的资料 http://www.sdmagazine.com/ 软件开发杂志,经常会有一些关于测试方面好的论文资料,同时还包括了项目和过程改进方面的课题,并且定期会有一些关于质量和测试方面的问题讨论 http://www.sei.cmu.edu/ 著名的软件工程组织,承担美国国防部众多软件工程研究项目,在这里你可以获俄各类关于工程质量和测试方面的资料。该网站提供强有力的搜索功能,可以快速检索到你想要的论文资料,并且可以免费下载 http://www.soft.com/Institute/HotList/ 提供了网上软件质量热点连接,包括:专业团体组织连接、教育机构连接、商业咨询公司连接、质量相关技术会议连接、各类测试技术专题连接等 http://www.soft.com/News/QTN-Online/ 质量技术时事,提供有关测试质量方面的一些时事介绍信息,对于关心测试和质量发展的人士来说是很有价值的 http://www.softwaredioxide.com/ 包括软件工程(CMM,CMMI,项目管理)软件测试等方面的资源 http://www.softwareqatest.com/ 软件质量/测试资源中心。该中心提供了常见的有关测试方面的FAQ资料,各质量/测试网站介绍,各质量/测试工具介绍,各质量/策划书籍介绍以及与测试相关的工作网站介绍 http://www.softwaretestinginstitute.com 一个软件测试机构,提供软件质量/测试方面的调查分析,测试计划模板,测试WWW的技术,如何获得测试证书的指导,测试方面书籍介绍,并且提供了一个测试论坛 http://www.sqatester.com/index.htm 一个包含各种测试和质量保证方面的技术网站,提供咨询和培训服务,并有一些测试人员社团组织,特色内容是缺陷处理方面的技术 http://www.sqe.com/ 一个软件质量工程服务性网站,组织软件测试自动化、STAR-EASE、STARWEST等方面的测试学术会议,并提供一些相关信息资料和课程服务 http://www.stickyminds.com/ 提供关于软件测试和质量保证方面的当前发展信息资料,论文等资源 http://www.stqemagazine.com/ 软件策划和质量工程杂志,经常有一些好的论文供下载,不过数量较少,更多地需要通过订购获得,内容还是很有价值的 http://www.tantara.ab.ca/ 软件质量方面的一个咨询网站,有过程改进方面的一些资料提供 http://www.tcse.org/ IEEE的一个软件工程技术委员会,提供技术论文下载,并有一个功能强大的分类下载搜索功能,可以搜索到测试类型、测试管理、 测试分析等各方面资料 http://www.testing.com/ 测试技术专家Brain Marick的主页,包含了Marick 研究的一些资料和论文,该网页提供了测试模式方面的资料,值得研究。总之,如果对测试实践感兴趣,该网站一定不能错过 http://www.testingcenter.com/ 有一些测试方面的课程体系,有一些价值 http://www.testingconferences.com/asiastar/home 著名的AsiaStar测试国际学术会议官方网站,感兴趣的人一定不能错过 http://www.testingstuff.com/ Kerry Zallar的个人主页,提供一些有关培训、工具、会议、论文方面的参考信息 http://www-sqi.cit.gu.edu.au/ 软件质量机构,有一些技术资料可以供下载,包括软件产品质量模型、再工程、软件质量改进等 这里有些网站已经不能使用了. 转载于:https://www.cnblogs.com/mmsky/p/4581975.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/aizongzhuang2281/article/details/101129638。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-29 09:17:46
135
转载
转载文章
... 的广泛应用。底层的网络工作方式已经在悄悄地发生变化了。所以我又开辟了一个网络虚拟化的坑,来一点一点地填。 现在我们的「开发内功修炼」公众号和 Github 就是在作为一个我和大家分享我的技术思考的一个窗口。 04 重回腾讯 时隔 7 年,我又以一种奇特的方式变回了腾讯人的身份。 腾讯再一次收购了搜狗的股份,这一次不再是控股,而是全资。 在离开腾讯的这 7 年多的时间里,腾讯的内部技术工作方式已经发生了翻天覆地的变化。 所以在刚转回腾讯的这一段时间里,我花了大量的精力来熟悉腾讯基于 tRPC 的各种技术生态。除了工作日,也投入了不少周末的精力。 05 再叨叨几句 最后,水文里挤干货,通过我今天的文章我想给大家分享这么几点经验。 第一,是要学会抬头看路,选择一个好的赛道进去。我非常庆幸我当年从广电赛道切换到了互联网,获得了更大的舞台。不过其实我自己在这点上做的也不是特别好,2013年底入职搜狗前拒绝了字节大把期权的offer,要不然我我早就财务自由了。 第二,不要光被动接收领导的指令干活。要主动积极思考项目中哪些地方是待改进的,想到了你就去做。领导都非常喜欢积极主动的员工。我自己也是喜欢招一些能主动思考,积极推进的同学。这些人能创造意外的价值。 第三,工作中除了业务以外还要主动技术的深度思考。毕竟技术仍然是开发的立命之本。在晋升考核的时候,业务数据做的再好也代替不了技术实力的核心位置。把工作中的技术点总结一下,在公司内分享出来。不涉及机密的话在外网分享一下更好。对你自己,对你的团队,都是好事。 技术交流群 最近有很多人问,有没有读者交流群,想知道怎么加入。 最近我创建了一些群,大家可以加入。交流群都是免费的,只需要大家加入之后不要随便发广告,多多交流技术就好了。 目前创建了多个交流群,全国交流群、北上广杭深等各地区交流群、面试交流群、资源共享群等。 有兴趣入群的同学,可长按扫描下方二维码,一定要备注:全国 Or 城市 Or 面试 Or 资源,根据格式备注,可更快被通过且邀请进群。 ▲长按扫描 往期推荐 武大94年博士年薪201万入职华为!学霸日程表曝光,简直降维打击! 腾讯三面:40亿个QQ号码如何去重? 我被开除了。。只因为看了骂公司的帖子 如果你喜欢本文, 请长按二维码,关注 Hollis. 转发至朋友圈,是对我最大的支持。 点个 在看 喜欢是一种感觉 在看是一种支持 ↘↘↘ 本篇文章为转载内容。原文链接:https://blog.csdn.net/hollis_chuang/article/details/121738393。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-06 11:38:24
233
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
echo $BASH_VERSION
- 显示当前bash shell版本。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"