前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[rawget函数用于避免nil引用异常 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Maven
...管理和综合工具,主要用于Java项目的构建、依赖管理和项目信息管理。在本文语境中,Maven通过标准化的构建生命周期和项目对象模型(pom.xml)文件,帮助开发者自动下载和管理项目依赖,定义并执行构建任务,使得项目构建过程更加规范化、自动化。 本地仓库 , 在Maven系统中,本地仓库是存储项目依赖库(如jar包和其他工件)的地方,通常位于用户本机上。当Maven构建项目时,会首先查找本地仓库中是否存在所需的依赖,如果不存在,则从远程仓库下载至本地仓库,并在后续构建过程中直接使用本地已有的依赖,以提高构建速度和效率。 依赖冲突 , 在Java项目开发中,特别是使用Maven进行依赖管理时,可能出现的一种问题。当两个或多个模块同时引用了同一个第三方库的不同版本时,Maven无法确定应该使用哪个版本,这就导致了依赖冲突。在本文中,作者举例说明了如何解决这种问题,通常的解决方案包括统一所有模块对同一依赖的版本,或者利用Maven的特定插件来管理这些冲突。 <dependency>标签 , 在Maven的项目配置文件pom.xml中,<dependency>是一个关键标签,用于声明项目的依赖关系。它包含了groupId、artifactId和version等属性,用于精确地定位所需依赖的坐标,以便Maven能够正确地从本地仓库或远程仓库下载并引入到项目中。如果<dependency>标签中的配置信息不完整或错误,将导致Maven在编译阶段抛出异常,无法正常引入和使用依赖。
2024-02-05 11:45:22
90
心灵驿站_t
RocketMQ
...时,就会引发内存溢出异常。同时,如果GC过于频繁地执行,会消耗大量CPU资源,从而影响系统的整体性能。 java // 示例:创建大量无用的对象可能导致内存溢出 public class MemoryOverflowExample { public static void main(String[] args) { List list = new ArrayList<>(); while (true) { list.add(new String("Memory is precious!")); } } } 3. RocketMQ与JVM内存管理 在使用RocketMQ的过程中,例如生产者发送消息或消费者消费消息时,如果不合理地管理内存,也可能触发上述问题。比如,你要是突然一股脑儿地发好多好多消息,或者把一大堆消息都堆在那儿不去处理,这就像是给内存施加了巨大的压力。你想啊,内存它也会“吃不消”,于是乎就可能频繁地进行垃圾回收(GC),甚至严重的时候还会“撑爆”,也就是内存溢出啦。 java import org.apache.rocketmq.client.producer.DefaultMQProducer; import org.apache.rocketmq.common.message.Message; public class RocketMQProducerExample { public static void main(String[] args) throws Exception { DefaultMQProducer producer = new DefaultMQProducer("ExampleProducerGroup"); producer.start(); for (int i = 0; i < Integer.MAX_VALUE; i++) { // 这里假设发送海量消息,极端情况下易引发内存溢出 Message msg = new Message("TopicTest", "TagA", ("Hello RocketMQ " + i).getBytes(RemotingHelper.DEFAULT_CHARSET)); producer.send(msg); } producer.shutdown(); } } 4. 针对RocketMQ的内存优化策略 面对这样的挑战,我们可以从以下几个方面着手优化: - 消息批量发送:利用DefaultMQProducer提供的send(batch)接口批量发送消息,减少单次操作创建的对象数,从而降低内存压力。 java List messageList = new ArrayList<>(); for (int i = 0; i < BATCH_SIZE; i++) { Message msg = ...; messageList.add(msg); } SendResult sendResult = producer.send(messageList); - 合理设置JVM参数:根据业务负载调整JVM堆大小(-Xms和-Xmx),并选择合适的GC算法,如G1或者ZGC,它们对于大内存及长时间运行的服务有良好的表现。 - 监控与预警:借助JMX或其他监控工具实时监控JVM内存状态和GC频率,及时发现并解决问题。 - 设计合理的消息消费逻辑:确保消费者能及时消费并释放已处理消息引用,避免消息堆积导致内存持续增长。 5. 结语 总之,我们在享受RocketMQ带来的便捷高效的同时,也需关注其背后可能存在的性能隐患,尤其是JVM内存管理和垃圾回收机制。通过一些实用的优化招数和实际行动,我们完全可以把内存溢出的问题稳稳扼杀在摇篮里,同时还能减少GC(垃圾回收)的频率,这样一来,咱们的系统就能始终保持稳定快速的运行状态,流畅得飞起。这不仅是一场技术的探索,更是对我们作为开发者不断追求卓越精神的体现。在咱们日常的工作里,咱们得换个更接地气儿的方式来看待问题,把每一个小细节都拿捏住,用更巧妙、更精细的招数来化解挑战。大家一起努力,让RocketMQ服务的质量噌噌往上涨,用户体验也得溜溜地提升起来!
2023-05-31 21:40:26
91
半夏微凉
Kotlin
...字,在Kotlin中用于声明一个属性,该属性可以在类外部被初始化,但必须在使用之前完成初始化。这意味着当你声明一个lateinit属性时,你承诺在代码执行过程中会调用其对应的初始化方法。哎呀,这个特性啊,它主要用在那些要到执行的时候才知道具体数值的玩意儿上头,或者在编程那会儿还不清楚确切数值咋整的情况。就像是你准备做饭,但到底加多少盐,得尝了味道再定,对吧?或者是你去超市买东西,但预算还没算好,得看商品价格了再做决定。这特性就跟那个差不多,灵活应变,随情况调整。 2. 示例代码 如何使用Lateinit Property? 首先,我们来看一个简单的例子,演示如何在类中声明并使用lateinit属性: kotlin class DataProcessor { lateinit var data: String fun loadData() { // 假设在这里从网络或其他源加载数据 data = "Processed Data" } } fun main() { val processor = DataProcessor() processor.loadData() println(processor.data) // 输出:Processed Data } 在这个例子中,data属性被声明为lateinit。这意味着在main函数中创建DataProcessor实例后,我们不能立即访问data属性,而是必须先调用loadData方法来初始化它。一旦初始化,就可以安全地访问和使用data属性了。 3. 使用Lateinit Property的注意事项 虽然lateinit属性提供了很大的灵活性,但在使用时也需要注意几个关键点: - 必须在使用前初始化:这是最基础的要求。如果你尝试在未初始化的状态下访问或使用lateinit属性,编译器会抛出IllegalStateException异常。 - 不可提前初始化:一旦lateinit属性被初始化,就不能再次修改其值。尝试这样做会导致运行时错误。 - 性能考量:虽然lateinit属性可以延迟初始化,但它可能会增加应用的启动时间和内存消耗,特别是在大量对象实例化时。 4. 遇到“Lateinit Property Not Initialized Before Use”错误怎么办? 当遇到这个错误时,通常意味着你试图访问或使用了一个未初始化的lateinit属性。解决这个问题的方法通常是: - 检查初始化逻辑:确保在使用属性之前,确实调用了对应的初始化方法或进行了必要的操作。 - 代码重构:如果可能,将属性的初始化逻辑移至更合适的位置,比如构造函数、特定方法或事件处理程序中。 - 避免不必要的延迟初始化:考虑是否真的需要延迟初始化,有时候提前初始化可能更为合理和高效。 5. 实践中的应用案例 在实际项目中,lateinit属性特别适用于依赖于用户输入、网络请求或文件读取等不确定因素的数据加载场景。例如,在构建一个基于用户选择的配置文件加载器时: kotlin class ConfigLoader { lateinit var config: Map fun loadConfig() { // 假设这里通过网络或文件系统加载配置 config = loadFromDisk() } } fun main() { val loader = ConfigLoader() loader.loadConfig() println(loader.config) // 此时config已初始化 } 在这个例子中,config属性的加载逻辑被封装在loadConfig方法中,确保在使用config之前,其已经被正确初始化。 结论 lateinit属性是Kotlin中一个强大而灵活的特性,它允许你推迟属性的初始化直到运行时。然而,正确使用这一特性需要谨慎考虑其潜在的性能影响和错误情况。通过理解其工作原理和最佳实践,你可以有效地利用lateinit属性来增强你的Kotlin代码,使其更加健壮和易于维护。
2024-08-23 15:40:12
94
幽谷听泉
CSS
在理解了“js函数未定义”的常见原因及避免方法后,进一步探讨JavaScript编程实践中的作用域和闭包等概念显得尤为重要。近期,随着ECMAScript 2022(ES13)的发布,新增了一些与作用域相关的特性,例如Private Fields in Classes(类中的私有字段),它通过符号为类成员变量提供了真正意义上的封装,这无疑对理解和管理作用域提出了新的要求。 与此同时,为了提升代码质量和团队协作效率,遵循模块化编程理念愈发关键。Node.js生态下的CommonJS和ES6的import/export语法已成为主流模块加载方式,它们在很大程度上能够帮助开发者更好地组织代码结构,明确函数的作用域范围,从而有效避免“函数未定义”等问题的发生。 此外,对于大型项目或团队开发,Linting工具如ESLint不仅可以实时检测出潜在的函数未定义错误,还能强制执行编码规范,包括命名规则、作用域使用等,从而降低代码维护成本,提高整体项目的健壮性。 深入学习JavaScript运行机制,理解其背后的原型链、闭包以及异步编程模型,将有助于开发者更全面地应对各类函数调用异常,切实提升实际开发过程中的问题解决能力。同时,关注前端社区最新动态,紧跟技术发展趋势,也是每个前端开发者持续精进、防范类似“函数未定义”这类问题的有效途径。
2023-08-12 12:30:02
429
岁月静好_t
SeaTunnel
...据集成与开发工具,适用于复杂的数据同步、ETL和实时计算场景。在本文的语境中,用户在使用SeaTunnel处理大规模数据时可能会遇到未在官方文档明确列出的异常状况。 数据倾斜 , 在分布式计算环境中,数据倾斜是指在进行数据分区和并行处理时,某些任务或节点所分配到的数据量远大于其他任务或节点的现象,这会导致系统资源利用不均,部分节点负载过高,进而引发性能瓶颈甚至任务失败。文中提到的未知异常可能就是由数据倾斜问题导致的。 FlinkKafkaSource , FlinkKafkaSource是Apache Flink提供的一个用于从Apache Kafka读取数据的源组件。在SeaTunnel中,用户可以配置FlinkKafkaSource作为数据输入源,将Kafka中的消息流转换为可供进一步处理的数据流。 Rescale操作 , 在Apache Flink中,Rescale是一种数据平衡策略,用于解决数据倾斜问题。它通过重新分布数据,使得在并行计算过程中,各个并行任务接收到的数据量尽可能均衡,从而避免因数据分布不均导致的性能下降和异常情况。 堆栈跟踪 , 堆栈跟踪(Stack Trace)是指当程序运行发生错误或异常时,系统记录下当时的执行路径信息,包括调用方法的顺序、函数调用位置以及相关变量信息等。在调试SeaTunnel出现的未知异常时,查看堆栈跟踪是定位问题源头的关键步骤之一,有助于开发者了解错误发生的详细上下文环境。
2023-09-12 21:14:29
254
海阔天空
Consul
... Token 是一种用于身份验证和权限控制的机制。通过生成不同的 Token,我们可以为用户赋予不同的访问权限。例如,你可以创建一个只允许读取服务列表的 Token,或者一个可以完全控制 Consul 系统的管理员 Token。 三、设置 Token 在实际应用中,我们首先需要在 Consul 中创建 Token。以下是如何在命令行界面创建 Token 的示例: bash 使用 consul 命令创建一个临时 Token consul acl create-token --policy-file=./my_policy.json -format=json > my_token.json 查看创建的 Token cat my_token.json 这里假设你已经有一个名为 my_policy.json 的策略文件,该文件定义了 Token 的权限范围。策略文件可能包含如下内容: json { "policies": [ { "name": "read-only-access", "rules": [ { "service": "", "operation": "read" } ] } ] } 这个策略允许拥有此 Token 的用户读取任何服务的信息,但不允许执行其他操作。 四、使用 Token 访问资源 有了 Token,我们就可以在 Consul 的客户端库中使用它来进行资源的访问。以下是使用 Go 语言的客户端库进行访问的例子: go package main import ( "fmt" "log" "github.com/hashicorp/consul/api" ) func main() { // 创建一个客户端实例 client, err := api.NewClient(&api.Config{ Address: "localhost:8500", }) if err != nil { log.Fatal(err) } // 使用 Token 进行认证 token := "your-token-here" client.Token = token // 获取服务列表 services, _, err := client.KV().List("", nil) if err != nil { log.Fatal(err) } // 打印服务列表 for _, service := range services { fmt.Println(service.Key) } } 在这个例子中,我们首先创建了一个 Consul 客户端实例,并指定了要连接的 Consul 服务器地址。然后,我们将刚刚生成的 Token 设置为客户端的认证令牌。最后,我们调用 KV().List() 方法获取服务列表,并打印出来。 五、管理 Token 为了保证系统的安全性,我们需要定期管理和更新 Token。这包括但不限于创建、更新、撤销 Token。以下是如何撤销一个 Token 的示例: bash 撤销 Token consul acl revoke-token my_token_name 六、总结 通过使用 Consul 的 Token 授权功能,我们能够为不同的用户或角色提供细粒度的访问控制,从而增强了系统的安全性。哎呀,你知道吗?从生成那玩意儿(就是Token)开始,到用它在真实场景里拿取资源,再到搞定Token的整个使用周期,Consul 给咱们准备了一整套既周全又灵活的方案。就像是给你的钥匙找到了一个超级棒的保管箱,不仅安全,还能随时取出用上,方便得很!哎呀,兄弟,咱们得好好规划一下Token策略,就像给家里的宝贝设置密码一样。这样就能确保只有那些有钥匙的人能进屋,避免了不请自来的家伙乱翻东西。这样一来,咱们的敏感资料就安全多了,不用担心被不怀好意的人瞄上啦! 七、展望未来 随着业务的不断扩展和复杂性的增加,对系统安全性的需求也会随之提高。利用 Consul 的 Token 授权机制,结合其他安全策略和技术(如多因素认证、访问控制列表等),可以帮助构建更加健壮、安全的分布式系统架构。嘿,你听过这样一句话没?就是咱们得一直努力尝试新的东西,不断实践,这样才能让咱们的系统在面对那些越来越棘手的安全问题时,还能稳稳地跑起来,不卡顿,不掉链子。就像是个超级英雄,无论遇到什么险境,都能挺身而出,保护好大家的安全。所以啊,咱们得加油干,让系统变得更强大,更聪明,这样才能在未来的挑战中,立于不败之地!
2024-08-26 15:32:27
123
落叶归根
转载文章
...进行优化, 比如使用引用计数std::shared_ptr,内存池方式等等。 1. 用户空间内存管理 目前大部分用户控件程序使用glibc提供的malloc/free系列函数,而glibc使用的ptmalloc2在性能上远远弱后于google的tcmalloc和facebook的jemalloc。 而且后两者只需要使用LD_PRELOAD环境变量启动程序即可,甚至并不需要重新编译。 1.1 ptmalloc2 malloc是一个C库中的函数,malloc向glibc请求内存空间。glibc初始分配或者通过brk和sbrk或者mmap向内核批发内存,然后“卖”给我们malloc使用。 既然brk、mmap提供了内存分配的功能,直接使用brk、mmap进行内存管理不是更简单吗,为什么需要glibc呢? 因为系统调用,导致程序从用户态陷入内核态,比较消耗资源。为了减少系统调用带来的性能损耗,glibc采用了内存池的设计,增加了一个代理层,每次内存分配,都优先从内存池中寻找,如果内存池中无法提供,再向操作系统申请。 1.2 tcmalloc tcmalloc 是google开发的内存分配算法库,用来替代传统的malloc内存分配函数,它有减少内存碎片,适用于多核,更好的并行性支持等特性。 要使用tcmalloc,只要将tcmalloc通过-ltcmalloc连接到应用程序即可。 也可以使用LD_PRELOAD在不是你自己编译的应用程序中使用:$ LD_PRELOAD="/usr/lib/libtcmalloc.so" 2. 内核空间内存管理 linux操作系统内核,将内存分为一个个页去管理。 2.1 页面管理算法–伙伴系统 在实际应用中,而频繁地申请和释放不同大小的连续页框,必然导致在已分配页框的内存块中分散了许多小块的空闲页框。这样,即使这些页框是空闲的,其他需要分配连续页框的应用也很难得到满足。 为了避免出现这种内存碎片,Linux内核中引入了伙伴系统算法(buddy system)。 2.1.1 Buddy(伙伴的定义) 满足以下三个条件的称为伙伴: 1)两个块大小相同; 2)两个块地址连续; 3)两个块必须是同一个大块中分离出来的; 2.1.2 Buddy算法的分配 假设要申请一个256个页框的块,先从256个页框的链表中查找空闲块,如果没有,就去512个页框的链表中找,找到了则将页框块分为2个256个页框的块,一个分配给应用,另外一个移到256个页框的链表中。如果512个页框的链表中仍没有空闲块,继续向1024个页框的链表查找,如果仍然没有,则返回错误。 2.1.3 Buddy算法的释放 内存的释放是分配的逆过程,也可以看作是伙伴的合并过程。页框块在释放时,会主动将两个连续的页框块合并为一个较大的页框块。 2.2 Slab机制 slab是Linux操作系统的一种内存分配机制。其工作是针对一些经常分配并释放的对象,如进程描述符等,这些对象的大小一般比较小,如果直接采用伙伴系统来进行分配和释放,不仅会造成大量的内碎片,而且处理速度也太慢。 而slab分配器是基于对象进行管理的,相同类型的对象归为一类(如进程描述符就是一类),每当要申请这样一个对象,slab分配器就从一个slab列表中分配一个这样大小的单元出去,而当要释放时,将其重新保存在该列表中,而不是直接返回给伙伴系统,从而避免这些内碎片。slab分配器并不丢弃已分配的对象,而是释放并把它们保存在内存中。当以后又要请求新的对象时,就可以从内存直接获取而不用重复初始化。 2.3 内核中申请内存的函数 2.3.1 __get_free_pages __get_free_pages函数是最原始的内存分配方式,直接从伙伴系统中获取原始页框,返回值为第一个页框的起始地址. 2.3.2 kmem_cache_alloc kmem_cache_create/ kmem_cache_alloc是基于slab分配器的一种内存分配方式,适用于反复分配释放同一大小内存块的场合。首先用kmem_cache_create创建一个高速缓存区域,然后用kmem_cache_alloc从 该高速缓存区域中获取新的内存块。 2.3.3 kmalloc kmalloc是内核中最常用的一种内存分配方式,它通过调用kmem_cache_alloc函数来实现。 kmalloc() 申请的内存位于物理内存映射区域,而且在物理上也是连续的,它们与真实的物理地址只有一个固定的偏移,因为存在较简单的转换关系,所以对申请的内存大小有限制,不能超过128KB。 较常用的flags()有: GFP_ATOMIC —— 不能睡眠; GFP_KERNEL —— 可以睡眠; GFP_DMA —— 给 DMA 控制器分配内存,需要使用该标志。 2.3.4 vmalloc vmalloc() 函数则会在虚拟内存空间给出一块连续的内存区,但这片连续的虚拟内存在物理内存中并不一定连续。由于 vmalloc() 没有保证申请到的是连续的物理内存,因此对申请的内存大小没有限制,如果需要申请较大的内存空间就需要用此函数了。 注意vmalloc和vfree时可以睡眠的,因此不能从中断上下问调用。 一般情况下,内存只有在要被 DMA 访问的时候才需要物理上连续,但为了性能上的考虑,内核中一般使用 kmalloc(),而只有在需要获得大块内存时才使用 vmalloc()。例如,当模块被动态加载到内核当中时,就把模块装载到由 vmalloc() 分配的内存上。 本篇文章为转载内容。原文链接:https://secdev.blog.csdn.net/article/details/109731954。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-26 20:46:17
231
转载
Kibana
...中实现自定义数据聚合函数,解锁数据洞察的新维度。 一、为何需要自定义数据聚合函数? 在数据科学和业务分析领域,我们经常遇到需要对数据进行定制化的分析需求。比如说,咱们得算出一堆数据里头某个指标的具体数值,就像找出一堆水果中最大的那个苹果。或者,我们还能根据时间序列,也就是按照时间顺序排列的数据,来预测未来的走向,就像是看天气预报,预测明天会不会下雨。还有就是,分析用户的个性化行为,比如有的人喜欢早起刷微博,有的人则习惯晚上熬夜看剧,我们要找出这些不同模式,就像是理解朋友的性格差异,知道什么时候找他们聊天最有效。哎呀,你知道的,有时候我们手上的数据,它们就像一群不听话的小孩,现有的那些内置工具啊,就像妈妈的规则,根本管不住他们。这就逼得我们得自己发明一些新的小把戏,比如自定义的数据聚合函数,这样就能更灵活地把这些数据整理成我们需要的样子啦。就像是给每个小孩量身定制的玩具,既符合他们的特性,又能让他们乖乖听话,多好啊! 二、Kibana自定义聚合函数的实现 在Kibana中,实现自定义聚合函数主要依赖于_scripted_metric聚合类型。这种类型的聚合允许用户编写JavaScript代码来定义自己的聚合逻辑。下面,我们将通过一个简单的示例来展示如何实现一个自定义聚合函数。 示例:计算数据的“活跃天数” 假设我们有一个日志数据集,每条记录代表一次用户操作,我们需要计算用户在某段时间内的活跃天数(即每天至少有一次操作)。 步骤1:定义聚合代码 首先,我们需要编写JavaScript代码来实现我们的逻辑。以下是一个示例: javascript { "aggs": { "active_days": { "scripted_metric": { "init_script": "total_days = 0", "map_script": "if (doc['timestamp'].value > 0) { total_days++; }", "combine_script": "return total_days", "reduce_script": "return sum" } } }, "script_fields": { "timestamp": { "script": { "source": "doc['timestamp'].value", "lang": "painless" } } } } 解释: - init_script:初始化变量total_days为0。 - map_script:当timestamp字段值大于0时,将total_days加1。 - combine_script:返回当前total_days的值。 - reduce_script:用于汇总多个聚合结果,这里使用sum函数将所有total_days值相加。 步骤2:执行聚合 在Kibana中创建一个新的搜索查询,选择_scripted_metric聚合类型,并粘贴上述代码片段。确保数据源正确,然后运行查询以查看结果。 三、实战应用与优化 在实际项目中,自定义聚合函数可以极大地增强数据分析的能力。例如,你可能需要根据业务需求调整map_script中的条件,或者优化init_script和combine_script以提高性能。 实践建议: - 测试与调试:在部署到生产环境前,务必充分测试自定义聚合函数,确保其逻辑正确且性能良好。 - 性能考虑:自定义聚合函数可能会增加查询的复杂度和执行时间,特别是在处理大量数据时。合理设计脚本,避免不必要的计算,以提升效率。 - 可读性:保持代码简洁、注释清晰,方便团队成员理解和维护。 四、结语 自定义数据聚合函数是Kibana强大的功能之一,它赋予了用户无限的创造空间,能够针对特定业务需求进行精细的数据分析。通过本文的探索,相信你已经掌握了基本的实现方法。嘿,兄弟!你得记住,实践就是那最棒的导师。别老是坐在那里空想,多动手做做看,不断试验,然后调整改进。这样啊,你的数据洞察力,那可是能突飞猛进的。就像种花一样,你得浇水、施肥、修剪,它才会开花结果。所以,赶紧去实践吧,让自己的技能开枝散叶!在数据的海洋中航行,自定义聚合函数就是你手中的指南针,引领你发现更多宝藏。
2024-09-16 16:01:07
167
心灵驿站
转载文章
... 闭包 定义双层嵌套函数,内层函数可以访问外层函数的变量 将内层函数作为外层函数的返回,此层函数就是闭包函数 在函数嵌套的前提下,内部函数使用了外部函数的变量,并且外部函数返回了内部函数,我们把这个使用外部函数变量的内部函数称为闭包 def outer(logo):def inner(msg):print(f"{logo}:{msg}")return innerfun = outer("java")fun("hello world") 闭包修改外部函数的值 需要用 nonlocal 声明这个外部变量 def outer(num1):def inner(num2):nonlocal num1num1 += num2print(num1)return innerfun = outer(10)fun(10) 输出20 优点: 无需定义全局变量即可实现通过函数,持续的访问、修改某个值 闭包使用的变量的所用于在函数内,难以被错误的调用修改 缺点: 由于内部函数持续引用外部函数的值,所以会导致这一部分内存空间不被释放,一直占用内存 装饰器 装饰器其实也是一种闭包,其功能就是在不破坏目标函数原有的代码和功能的前提下,为目标函数增加新功能 def outer(func):def inner():print("我要睡觉了")func()print("我起床了")return inner@outerdef sleep():print("睡眠中")sleep() 单例模式 单例def strTool():passsignle = strTool()==from 单例 import signlet1 = signlet2 = signleprint(id(t1))print(id(t2)) 工厂模式 将对象的创建由使用原生类本身创建转换到由特定的工厂方法来创建 好处: 大批量创建对象的时候有统一的入口,易于代码维护 当发生修改,仅修改工厂类的创建方法即可 class Person:passclass Worker(Person):passclass Student(Person):passclass Teacher(Person):passclass PersonFactory:def get_person(self,p_type):if p_type == 'w':return Worker()elif p_type == 's':return Student()else:return Teacher()pf = PersonFactory()worker = pf.get_person('w')student = pf.get_person('s')teacher = pf.get_person('t') 多线程 threading模块使用 import threadingimport timedef sing(msg):print(msg)time.sleep(1)def dance(msg):print(msg)time.sleep(1)if __name__ == '__main__':sing_thread = threading.Thread(target=sing,args=("唱歌。。。",))dance_thread = threading.Thread(target=dance,kwargs={"msg":"跳舞。。。"})sing_thread.start()dance_thread.start() Socket Socket(套接字)是进程间通信工具 服务端 创建Socket对象import socketsocket_server = socket.socket() 绑定IP地址和端口socket_server.bind(("localhost", 8888)) 监听端口socket_server.listen(1) 等待客户端链接conn, address =socket_server.accept()print(f"接收到客户端的信息{address}")while True:data: str = conn.recv(1024).decode("UTF-8")print(f"客户端消息{data}") 发送回复消息msg = input("输入回复消息:")if msg == 'exit':breakconn.send(msg.encode("UTF-8")) 关闭连接conn.close()socket_server.close() 客户端、 import socket 创建socket对象socket_client = socket.socket() 连接到服务器socket_client.connect(("localhost", 8888))while True:msg = input("输入发送消息:")if(msg == 'exit'):break 发送消息socket_client.send(msg.encode("UTF-8"))接收返回消息recv_data = socket_client.recv(1024)print(f"服务端回复消息:{recv_data.decode('UTF-8')}") 关闭链接socket_client.close() 正则表达式使用 import res = "pythonxxxxxxpython"result = re.match("python",s) 从左到右匹配print(result) <re.Match object; span=(0, 6), match='python'>print(result.span()) (0, 6)print(result.group()) pythonresult = re.search("python",s) 匹配到第一个print(result) <re.Match object; span=(0, 6), match='python'>result = re.findall("python",s) 匹配全部print(result) ['python', 'python'] 单字符匹配 数量匹配 边界匹配 分组匹配 pattern = "1[35678]\d{9}"phoneStr = "15288888888"result = re.match(pattern, phoneStr)print(result) <re.Match object; span=(0, 11), match='15288888888'> 递归 递归显示目录中文件 import osdef get_files_recursion_dir(path):file_list = []if os.path.exists(path):for f in os.listdir(path):new_path = path + "/" + fif os.path.isdir(new_path):file_list += get_files_recursion_dir(new_path)else:file_list.append(new_path)else:print(f"指定的目录{path},不存在")return []return file_listif __name__ == '__main__':print(get_files_recursion_dir("D:\test")) 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_29385297/article/details/128085103。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-28 18:35:16
90
转载
Beego
...if err != nil { c.Ctx.ResponseWriter.WriteHeader(http.StatusInternalServerError) return } c.Data[http.StatusOK] = []byte(tokenString) } func authMiddleware() beego.ControllerFunc { return func(c beego.Controller) { tokenString := c.Ctx.Request.Header.Get("Authorization") token, err := jwt.ParseWithClaims(tokenString, &Claims{}, func(token jwt.Token) (interface{}, error) { return jwtSecret, nil }) if claims, ok := token.Claims.(Claims); ok && token.Valid { // 将用户信息存储在session或者全局变量中 c.SetSession("user", claims.Username) c.Next() } else { c.Ctx.ResponseWriter.WriteHeader(http.StatusUnauthorized) } } } 3. 中间件与拦截器 - 利用Beego的中间件机制,我们可以为特定路由添加权限检查逻辑,从而避免重复编写相同的权限校验代码。 - 示例代码: go func AuthRequiredMiddleware() beego.ControllerFunc { return func(c beego.Controller) { if !c.GetSession("user").(string) { c.Redirect("/login", 302) return } c.Next() } } func init() { beego.InsertFilter("/admin/", beego.BeforeRouter, AuthRequiredMiddleware) } 四、实际应用案例分析 让我们来看一个具体的例子,假设我们正在开发一款在线教育平台,需要对不同类型的用户(学生、教师、管理员)提供不同的访问权限。例如,只有管理员才能删除课程,而学生只能查看课程内容。 1. 定义用户类型 - 我们可以通过枚举类型来表示不同的用户角色。 - 示例代码: go type UserRole int const ( Student UserRole = iota Teacher Admin ) 2. 实现权限验证逻辑 - 在每个需要权限验证的操作之前,我们都需要先判断当前登录用户是否具有相应的权限。 - 示例代码: go func deleteCourse(c beego.Controller) { if userRole := c.GetSession("role"); userRole != Admin { c.Ctx.ResponseWriter.WriteHeader(http.StatusForbidden) return } // 执行删除操作... } 五、总结与展望 通过上述讨论,我们已经了解了如何在Beego框架下实现基本的用户权限管理系统。当然,实际应用中还需要考虑更多细节,比如异常处理、日志记录等。另外,随着业务越做越大,你可能得考虑引入一些更复杂的权限管理系统了,比如可以根据不同情况灵活调整的权限分配,或者可以精细到每个小细节的权限控制。这样能让你的系统管理起来更灵活,也更安全。 最后,我想说的是,无论采用哪种方法,最重要的是始终保持对安全性的高度警惕,并不断学习最新的安全知识和技术。希望这篇文章能对你有所帮助! --- 希望这样的风格和内容符合您的期待,如果有任何具体需求或想要进一步探讨的部分,请随时告诉我!
2024-10-31 16:13:08
166
初心未变
DorisDB
...AWS Lambda函数触发DorisDB备份任务,或通过CloudWatch事件监控DorisDB状态,实现自动化备份流程,大大降低了人工干预的需求,提高了数据保护的效率和可靠性。 实践案例与挑战 某金融机构通过整合DorisDB与AWS S3,构建了一套高效的数据备份体系。该体系不仅实现了数据的实时同步备份,还通过S3的跨区域复制功能,确保了数据在不同地理位置间的高可用性。同时,借助AWS Glue和Lambda的自动化脚本,实现了备份任务的周期性执行和异常检测,极大地提升了数据保护的水平。然而,这一过程中也面临了诸如成本控制、数据合规性、以及云服务的可靠性的挑战。因此,企业在实施云存储与DorisDB集成时,需综合考虑这些因素,制定相应的策略和预案。 总结与展望 数据备份与安全是现代企业不可忽视的重要议题。结合DorisDB的高效备份策略与云存储的灵活性,企业能够构建起更为强大、可靠的数据保护体系。未来,随着云计算技术的不断演进,以及数据安全标准的日益严格,如何在保障数据安全的同时,优化成本结构、提升数据治理能力,将是企业面临的又一重大课题。通过持续的技术创新和实践探索,我们有望实现数据价值的最大化,推动企业数字化转型的稳健前行。
2024-07-28 16:23:58
431
山涧溪流
Beego
...定义中间件来响应这些异常情况。通过创建一个中间件函数,可以优雅地处理503错误,并向用户呈现友好的提示信息,例如重试机制、缓存策略或简单的等待页面。 示例代码: go // 定义一个中间件函数处理503错误 func errorMiddleware(c beego.Context) { if c.Ctx.Input.StatusCode() == 503 { c.Data["Status"] = "503 Service Unavailable" c.Data["Message"] = "Sorry, our service is currently unavailable. Please try again later." c.ServeContent("error.html", http.StatusOK) } else { c.Next() } } // 注册中间件 func init() { beego.GlobalControllerInterceptors = append(beego.GlobalControllerInterceptors, new(errorMiddleware)) } 这段代码展示了如何在Beego应用中注册一个全局中间件,用于捕获并处理503状态码。哎呀,你遇到服务挂了的情况了吧?别急,这个中间件挺贴心的,它会给你弹出个温馨的小提示,告诉你:“嘿,稍等一下,我们正忙着处理一些事情呢。”然后,它还会给你展示一个等待页面,上面可能有好看的动画或者有趣的图片,让你在等待的时候也不觉得无聊。这样,你就不会因为服务暂时不可用了而感到烦躁了,体验感大大提升! 五、优化与预防服务不可用 预防服务不可用的关键在于资源管理、负载均衡以及监控系统的建立。Beego虽然本身不直接涉及这些问题,但可以通过集成第三方库或服务来实现。 - 资源管理:合理分配和监控CPU、内存、磁盘空间等资源,避免过度消耗导致服务不可用。 - 负载均衡:利用Nginx、HAProxy等工具对流量进行分发,减轻单点压力。 - 监控系统:使用Prometheus、Grafana等工具实时监控应用性能和资源使用情况,及时发现潜在问题。 六、结论 服务不可用是Web应用中不可避免的一部分,但通过使用Beego框架的特性,结合适当的策略和实践,可以有效地识别、诊断和解决这类问题。嘿,兄弟!想做个靠谱的Web应用吗?那可得注意了,你得时刻盯着点,别让你的应用出岔子。得给资源好好规划规划,别让服务器喘不过气来。还有,万一哪天程序出错了,你得有个应对的机制,别让小问题搞大了。这三样,监控、资源管理和错误处理,可是你稳定可靠的三大法宝!别忘了它们,你的应用才能健健康康地跑起来!
2024-10-10 16:02:03
102
月影清风
Etcd
...步都走对了,这样才能避免踩坑。 三、策略冲突的常见类型 策略冲突主要表现在以下几个方面: 1. 数据冗余 在清理日志时,如果策略过于激进,可能会删除关键历史数据,导致后续查询或恢复操作失败。 2. 一致性问题 不同节点之间的日志清理可能不一致,造成集群内数据的一致性被破坏。 3. 性能影响 频繁的日志清理操作可能对系统性能产生负面影响,尤其是在高并发场景下。 4. 数据完整性 错误的清理策略可能导致重要数据的永久丢失。 四、案例分析 Etcd中的日志清理策略冲突 假设我们正在管理一个Etcd集群,用于存储服务配置信息。为了优化存储空间并提高响应速度,我们计划实施定期的日志清理策略。具体策略如下: - 策略一:每日凌晨0点,清理所有超过7天历史的过期日志条目。 - 策略二:每月末,清理所有超过30天历史的过期日志条目。 问题:当策略一和策略二同时执行时,可能会出现冲突。想象一下,就像你家的书架,有一天你整理了书架(策略一),把一些不再需要的书拿走了,但过了22天,你的朋友又来帮忙整理(策略二),又把一些书从书架上取了下来。这样一来,原本在书架上的书,因为两次整理,可能就不见了,这就是数据丢失的意思。 五、解决策略 优化日志清理逻辑 为了解决上述策略冲突,我们可以采取以下措施: 1. 引入版本控制 在Etcd中,每条日志都关联着一个版本号。通过维护版本号,可以准确追踪每个操作的历史状态,避免不必要的数据删除。 代码示例: go // 假设etcdClient为Etcd客户端实例 resp, err := etcdClient.Put(context.Background(), "/config/key", "value", clientv3.WithVersion(1)) if err != nil { log.Fatalf("Failed to put value: %s", err) } 2. 实施并行清理机制 设计一个系统级别的时间线清理逻辑,确保同一时间点的数据不会被重复清理。 代码示例: go // 清理逻辑函数 func cleanupLogs() error { // 根据时间戳进行清理,避免冲突 // 实现细节略去 return nil } 3. 引入审计跟踪 对于关键操作,如日志清理,记录详细的审计日志,便于事后审查和问题定位。 代码示例: go // 审计日志记录函数 func auditLog(operation string, timestamp time.Time) { // 记录审计日志 // 实现细节略去 } 六、总结与反思 通过上述策略和代码示例的讨论,我们可以看到在Etcd集群中管理日志清理策略时,需要细致考虑各种潜在的冲突和影响。哎呀,你得知道,咱们要想在项目里防住那些让人头疼的策略冲突,有几个招儿可使。首先,咱们得搞个版本控制系统,就像有个大本营,随时记录着每个人对代码的修改,这样就算有冲突,也能轻松回溯,找到问题源头。然后,咱还得上个并行清理机制,就像是给团队的工作分配任务时,能确保每个人都清楚自己的责任,不会乱了套,这样就能大大减少因为分工不明产生的冲突。最后,建立一个审计跟踪系统,就相当于给项目装了个监控,每次有人改动了什么,都得有迹可循,这样一来,一旦出现矛盾,就能快速查清谁是谁非,解决起来也快多了。这三招合在一起,简直就是防冲突的无敌组合拳啊!嘿,兄弟!你得知道,监控和评估清理策略的执行效果,然后根据实际情况灵活调整,这可是保证咱们系统健健康康、高效运作的不二法门!就像咱们打游戏时,随时观察自己的状态和环境变化,及时调整战术一样,这样才能稳坐钓鱼台,轻松应对各种挑战嘛! --- 通过本文的探讨,我们不仅深入理解了Etcd集群日志清理策略的重要性和可能遇到的挑战,还学习了如何通过实际的代码示例来解决策略冲突,从而为构建更稳定、高效的分布式系统提供了实践指导。
2024-07-30 16:28:05
455
飞鸟与鱼
转载文章
...文中,模块化编程被应用于 HTML、CSS 和 JavaScript 的开发过程中。借助 React 或 Vue 等框架以及 Webpack 的打包能力,开发者可以将每个组件相关的 HTML、CSS 和 JS 代码封装为一个单独的模块,从而实现更好的组织结构、代码重用性和减少全局命名冲突。 style-loader 和 css-loader , 这两个是 Webpack 中用于处理 CSS 文件的加载器。css-loader 负责解析和加载 CSS 模块,并将其转换成 CommonJS 模块,使得 CSS 可以在 JavaScript 中通过 import 或 require 进行引用。而 style-loader 则负责将由 css-loader 处理过的 CSS 样式动态地注入到页面的 DOM 中,使其生效。通过配合使用这两个加载器,Webpack 能够将 CSS 实现模块化打包,解决传统开发模式下的样式管理混乱问题。
2023-03-13 11:42:35
72
转载
Golang
...); err != nil { fmt.Println("Error parsing flags:", err) os.Exit(1) } fmt.Printf("Listening on port: %d\n", port) fmt.Printf("Log level: %s\n", logLevel) } 示例代码2:加载配置文件并验证 go package main import ( "encoding/yaml" "fmt" "io/ioutil" "log" yamlfile "path/to/your/config.yaml" // 假设这是你的配置文件路径 ) type Config struct { Server struct { Port int yaml:"port" LogLevel string yaml:"logLevel" } yaml:"server" } func main() { configFile, err := ioutil.ReadFile(yamlfile) if err != nil { log.Fatalf("Failed to read config file: %v", err) } var config Config err = yaml.Unmarshal(configFile, &config) if err != nil { log.Fatalf("Failed to parse config: %v", err) } fmt.Printf("Configured port: %d\n", config.Server.Port) fmt.Printf("Configured log level: %s\n", config.Server.LogLevel) } 4. 错误处理与预防策略 当遇到“配置文件无效”的错误时,关键在于: - 详细的错误信息:确保错误信息足够详细,能够指向具体问题所在。 - 日志记录:在关键步骤加入日志输出,帮助追踪问题发生的具体环节。 - 输入验证:对配置文件的每一项进行严格验证,确保其符合预期格式和值域。 - 配置文件格式一致性:保持配置文件格式的一致性和规范性,避免使用过于灵活但难以解析的格式。 - 异常处理:在加载配置文件和解析过程中添加适当的错误处理逻辑,避免程序崩溃。 5. 结语 拥抱变化与持续优化 面对“配置文件无效”的挑战,关键是保持耐心与细致,从每一次错误中学习,不断优化配置管理实践。哎呀,兄弟!咱们的目标可不小。我们得把输入的东西好好检查一下,不让那些乱七八糟的玩意儿混进来。同时,咱们还得给系统多穿几层防护,万一出了啥差错,也能及时发现,迅速解决。这样,咱们的系统不仅能在风雨中稳如泰山,还能方便咱们后期去调整和优化,就像是自己的孩子一样,越养越顺手,你说是不是?嘿,兄弟!如果你在Golang的海洋里漂泊,那我这小文就是为你准备的一盏明灯。在这片充满智慧和创造力的社区里,大家互相分享经验,就像老渔民分享钓鱼秘籍一样,让每个人都能从前辈们的实战中汲取营养,共同进步。这篇文章,就像是你旅途中的指南针,希望能给你带来灵感,让你的编程之路不再孤单,走得更远,飞得更高!
2024-08-22 15:58:15
168
落叶归根
Apache Lucene
...应用需求。它被广泛应用于各种规模的项目中,尤其适用于需要高性能搜索功能的应用场景。 NullPointerException , 在 Java 中,NullPointerException 是一种运行时异常,表示程序试图访问一个空对象实例的属性或调用其方法。这种异常通常发生在没有正确初始化对象或对象引用被意外设置为 null 的情况下。为了避免 NullPointerException,开发者需要在使用对象之前检查其是否为 null,或者在设计代码时采取防御性编程策略,确保所有对象在使用前都已正确初始化。 IndexWriter , IndexWriter 是 Apache Lucene 中的一个核心类,负责向索引中添加、删除或更新文档。通过 IndexWriter,开发者可以创建一个新的索引或将文档添加到现有的索引中。IndexWriter 类提供了丰富的配置选项,允许开发者指定索引的存储方式、分析器等参数。使用 IndexWriter 可以简化索引创建和管理的过程,使得开发者能够专注于搜索逻辑的设计与实现。
2024-10-16 15:36:29
88
岁月静好
RabbitMQ
...it(1) 调用函数尝试建立连接 connection = connect_to_rabbitmq() 3.2 实施断线重连策略 除了基本的重试机制外,我们还可以实现更复杂的断线重连策略。例如,当检测到连接异常时,立即尝试重新建立连接,并记录重连日志以便后续分析。另外,我们也可以试试用指数退避算法来调整重连的时间间隔,这样就不会在短时间内反复向服务器发起连接请求,也能让服务器稍微轻松一点。 下面展示了一个基于RabbitMQ官方客户端库pika的断线重连示例: python import pika from time import sleep class ReconnectingRabbitMQClient: def __init__(self, host='localhost'): self.host = host self.connection = None self.channel = None def connect(self): while True: try: self.connection = pika.BlockingConnection(pika.ConnectionParameters(self.host)) self.channel = self.connection.channel() print("成功连接到RabbitMQ") break except Exception as e: print(f"尝试连接失败,将在{2self.retry_count}秒后重试...") self.retry_count += 1 sleep(2self.retry_count) def close(self): if self.connection: self.connection.close() def send_message(self, message): if not self.channel: self.connect() self.channel.basic_publish(exchange='', routing_key='hello', body=message) client = ReconnectingRabbitMQClient() client.send_message('Hello World!') 在这个例子中,我们创建了一个ReconnectingRabbitMQClient类,它包含了连接、关闭连接以及发送消息的方法。特别要注意的是connect方法里的那个循环,这家伙每次连接失败后都会先歇一会儿,然后再杀回来试试看。而且这休息的时间也是越来越长,越往后重试间隔就按指数往上翻。 3.3 异步处理与心跳机制 对于那些需要长时间保持连接的应用场景,我们还可以采用异步处理方式,配合心跳机制来维持连接的有效性。心跳其实就是一种简单的保活方法,就像定时给对方发个信息或者挥挥手,确认一下对方还在不在。这样就能赶紧发现并搞定那些断掉的连接,免得因为放太长时间没动静而导致连接中断的问题。 4. 总结与展望 处理RabbitMQ中的连接故障是一项复杂但至关重要的任务。通过上面提到的几种招数——比如重试机制、断线重连和心跳监测,我们的系统会变得更强壮,也更靠谱了。当然,针对不同应用场景和需求,还需要进一步定制化和优化这些方案。比如说,对于那些对延迟特别敏感的应用,你得更仔细地调整重试策略,不然用户可能会觉得卡顿或者直接闪退。至于那些需要应对海量并发连接的场景嘛,你就得上点“硬货”了,比如用更牛的技术来搞定负载均衡和集群管理,这样才能保证系统稳如老狗。总而言之,就是咱们得不停地试啊试的,然后就能慢慢弄出个既快又稳的分布式消息传递系统。 --- 以上就是关于RabbitMQ中如何处理连接故障的一些探讨。希望这些内容能帮助你在实际工作中更好地应对挑战,打造更加可靠的应用程序。如果你有任何疑问或想要分享自己的经验,请随时留言讨论!
2024-12-02 16:11:51
94
红尘漫步
Kotlin
...索一下这个“非法参数异常”背后的故事。 第一章:何为 IllegalArgumentException 在Kotlin中,当我们尝试调用一个方法时,如果传入的参数不符合该方法的要求或者类型不匹配,就会抛出 IllegalArgumentException。这事儿就像你去参加一个超级认真的补习班,老师布置了一道题目让你做,结果你交上去的答案全错了,那肯定得被老师好好点名批评一番了。 第二章:深入剖析 IllegalArgumentException 假设我们有一个简单的函数 calculateAge,它接受一个人的出生年份作为参数,并计算出当前年龄: kotlin fun calculateAge(birthYear: Int): Int { val currentYear = 2023 return currentYear - birthYear } 如果我们不小心传入了一个非整数类型的参数,比如一个字符串,Kotlin会立即察觉到这一点,并优雅地抛出 IllegalArgumentException: kotlin fun test() { val age = calculateAge("2000") println("Your age is $age.") } // 运行结果:编译错误,因为calculateAge接受的是Int类型参数,而"2000"是String类型。 第三章:如何避免 IllegalArgumentException 避免 IllegalArgumentException 的关键在于确保所有传入函数的参数都符合预期的类型和格式。我们可以利用Kotlin的静态类型系统来帮助我们进行这一工作: - 类型检查:确保所有输入的参数都是正确的类型。例如,可以使用 assert 函数在运行时验证类型: kotlin fun safeCalculateAge(birthYear: Any): Int { assert(birthYear is Int) { "Expected an Integer for birthYear" } val currentYear = 2023 return currentYear - birthYear.toInt() } // 使用示例: val age = safeCalculateAge(2000) println("Your age is $age.") - 函数参数验证:在定义函数时就加入类型检查逻辑: kotlin fun calculateAgeWithValidation(birthYear: Int): Int { if (birthYear < 0 || birthYear > 2023) { throw IllegalArgumentException("Birth year must be within the range of 0 to 2023.") } val currentYear = 2023 return currentYear - birthYear } 第四章:实战演练:创建一个更复杂的示例 假设我们要构建一个简单的日历应用,其中包含一个用于计算天数的函数。为了增加复杂性,我们添加了对月份和年份的验证: kotlin data class Date(val day: Int, val month: Int, val year: Int) fun calculateDaysSinceBirthday(dateOfBirth: Date): Int { val currentYear = Calendar.getInstance().get(Calendar.YEAR) val currentMonth = Calendar.getInstance().get(Calendar.MONTH) + 1 // 注意月份是从0开始的 val currentDay = Calendar.getInstance().get(Calendar.DAY_OF_MONTH) val birthday = dateOfBirth.day to dateOfBirth.month to dateOfBirth.year val birthDate = Date(birthday) val daysSinceBirthday = (currentYear - birthDate.year) 365 + (currentMonth - birthDate.month) 30 + (currentDay - birthDate.day) return daysSinceBirthday } fun main() { val birthDate = Date(day = 1, month = 1, year = 2000) val days = calculateDaysSinceBirthday(birthDate) println("Days since your birthday: $days") } 在上面的代码中,我们通过 Calendar 类获取当前日期,并与生日日期进行比较,计算出天数差值。嘿,兄弟!咱们就拿一年有365天,一个月有30天来打个比方,这可是咱们简化了一下,方便大家理解。实际上啊,生活里头可没这么简单,得分清闰年和普通年是怎么回事,这样日子才过得有模有样呢! 结语:面对挑战,拥抱学习 每一次遇到 IllegalArgumentException 都是一次学习的机会。它们提醒我们,即使在看似完美的代码中,也可能隐藏着一些小错误。通过仔细检查和验证我们的参数,我们可以编写出更加健壮、可维护的代码。哎呀,你瞧这Kotlin,它可真是个能手呢!它那一大堆好用的工具和特性,就像是魔法一样,帮我们解决了好多麻烦事儿。比如说,静态类型这一招,就像是一道坚固的防线,能提前发现那些可能出错的地方。还有函数注解,就像是给代码贴上了标签,让我们一眼就能看出这是干啥的。而模式匹配嘛,简直就是解谜神器,轻轻松松就能解开那些复杂的逻辑难题。这些玩意儿合在一起,就形成了一个强大的武器库,帮我们防患于未然,解决问题更是不在话下。你说是不是,这Kotlin,简直就是程序员的好伙伴!让我们带着好奇心和探索精神,继续在编程的海洋中航行吧! --- 在这篇文章中,我们不仅探讨了 IllegalArgumentException 的由来和解决方法,还通过一系列的代码示例展示了如何在实践中应用这些知识。嘿,兄弟!读完这篇文章后,希望你对Kotlin里的异常处理方式有了一番全新的领悟。别担心,这不像是AI在跟你说话,就像跟老朋友聊天一样轻松。你得尝试将这些小技巧应用到你的实际项目中,让代码不仅好看,而且超级稳定,就像是给你的程序穿上了一件坚固的盔甲。这样,无论遇到什么问题,它都能稳如泰山。所以,拿起你的键盘,动手实践吧!记住,编程是一场持续的学习之旅,每一次遇到困难都是成长的机会。加油!
2024-09-18 16:04:27
112
追梦人
Go Gin
....Request, nil) if err != nil { log.Println("Failed to upgrade:", err) return } defer ws.Close() for { messageType, msg, err := ws.ReadMessage() if err != nil { log.Println("Error reading message:", err) break } log.Printf("Received: %s\n", string(msg)) err = ws.WriteMessage(messageType, msg) if err != nil { log.Println("Error writing message:", err) break } } } func main() { r := gin.Default() r.GET("/ws", handleWebSocket) r.Run(":8080") } 在这段代码中,我们利用gorilla/websocket包实现了WebSocket升级,并在handleWebSocket函数中处理了消息的读取与发送。你可以试着在浏览器里输入这个地址:ws://localhost:8080/ws,然后用JavaScript发个消息试试,看能不能马上收到服务器的回应。 深入探讨 说实话,刚开始写这部分代码的时候,我还担心WebSocket的兼容性问题。后来发现,只要正确设置了CheckOrigin方法,大多数现代浏览器都能正常工作。这让我更加坚定了对Gin的信心——它虽然简单,但足够强大! --- 四、进阶技巧 并发与性能优化 在实际项目中,我们可能会遇到高并发的情况。为了保证系统的稳定性,我们需要合理地管理线程池和内存分配。Gin提供了一些工具可以帮助我们做到这一点。 例如,我们可以使用sync.Pool来复用对象,减少垃圾回收的压力。下面是一个示例: go package main import ( "sync" "time" "github.com/gin-gonic/gin" ) var pool sync.Pool func init() { pool = &sync.Pool{ New: func() interface{} { return make([]byte, 1024) }, } } func handler(c gin.Context) { data := pool.Get().([]byte) defer pool.Put(data) copy(data, []byte("Hello World!")) time.Sleep(100 time.Millisecond) // 模拟耗时操作 c.String(http.StatusOK, string(data)) } func main() { r := gin.Default() r.GET("/", handler) r.Run(":8080") } 在这个例子中,我们定义了一个sync.Pool来存储临时数据。每次处理请求时,从池中获取缓冲区,处理完毕后再放回池中。这样可以避免频繁的内存分配和释放,从而提升性能。 反思与总结 其实,刚开始学习这段代码的时候,我对sync.Pool的理解还停留在表面。直到后来真正用它解决了性能瓶颈,我才意识到它的价值所在。这也让我明白,优秀的框架只是起点,关键还是要结合实际需求去探索和实践。 --- 五、未来展望 Gin与实时处理的无限可能 Gin的强大之处不仅仅在于它的易用性和灵活性,更在于它为开发者提供了广阔的想象空间。无论是构建大型分布式系统,还是打造小型实验项目,Gin都能胜任。 如果你也想尝试用Gin构建实时处理系统,不妨从一个小目标开始——比如做一个简单的在线聊天室。相信我,当你第一次看到用户实时交流的画面时,那种成就感绝对会让你欲罢不能! 最后的话 写这篇文章的过程,其实也是我自己重新审视Gin的过程。其实这个东西吧,说白了挺简单的,但让我学到了一个本事——用最利索的办法搞定事情。希望能这篇文章也能点醒你,让你在今后的开发路上,慢慢琢磨出属于自己的那套玩法!加油吧,程序员们!
2025-04-07 16:03:11
65
时光倒流
转载文章
...都读《金刚经》… 先引用一段吧: 所有一切众生之类,若卵生、若胎生、若湿生、若化生、若有色、若无色、若有想、若无想、若非有想非无想,我皆令入无余涅槃而灭度之。如是灭度无量无数无边众生,实无众生得灭度者。何以故?须菩提,若菩萨有我相、人相、众生相、寿者相,即非菩萨。 类是众生之类吗?若化生??若无想??若非有想非无想?? 我不是个无知无欲的佛教徒,写这一段,我是非常非常伤感的,因为今天,我们就要把我们刚刚认识的,刚刚喜欢的,感觉已经有了很深的情感的几个类,几个象人一样可爱的类,给“灭度”掉。 请原谅我的任性,我不知道用这个词到底确切不确切,只是想这么用,就这么用了,原谅我的无知吧…… 这几个类,早已让很多网友不耐烦了,它们是SqlConnection、SqlCommand、SqlDataReader… 让我们,慢慢地,来个《梁山伯与祝英台》中的《十八相送》?? 怕是没有多少人这么有耐心地倾听那悠悠的、凄美的爱情了,我们还是简化一下,分六步吧:…. 一相送,送到try…catch…finally结构中: using System;using System.Data;using System.Data.SqlClient;using System.Configuration;using System.Collections.Generic;using WestGarden.Model;namespace WestGarden.Web{public partial class Default1 : System.Web.UI.Page{protected void Page_Load(object sender, EventArgs e){IList<CategoryInfo> catogories = new List<CategoryInfo>();string connectionString = ConfigurationManager.ConnectionStrings["NetShopConnString"].ConnectionString;string cmdText = "SELECT CategoryId, Name, Descn FROM Category";SqlCommand cmd = new SqlCommand();SqlConnection conn = new SqlConnection(connectionString);try{cmd.Connection = conn;cmd.CommandType = CommandType.Text;cmd.CommandText = cmdText;conn.Open();SqlDataReader rdr = cmd.ExecuteReader();while (rdr.Read()){CategoryInfo category = new CategoryInfo(rdr.GetString(0), rdr.GetString(1), rdr.GetString(2));catogories.Add(category);}rdr.Close();}finally{conn.Close();}ddlCategories.DataSource = catogories;ddlCategories.DataTextField = "Name";ddlCategories.DataValueField = "CategoryId";ddlCategories.DataBind();} }} 二相送,送到using()结构中: using System;using System.Data;using System.Data.SqlClient;using System.Configuration;using System.Collections.Generic;using WestGarden.Model;namespace WestGarden.Web{public partial class Default2 : System.Web.UI.Page{protected void Page_Load(object sender, EventArgs e){IList<CategoryInfo> catogories = new List<CategoryInfo>();string connectionString = ConfigurationManager.ConnectionStrings["NetShopConnString"].ConnectionString;string cmdText = "SELECT CategoryId, Name, Descn FROM Category";SqlCommand cmd = new SqlCommand();//简单地说,using()结构等同于前面的try...finally结构,隐式关闭了conn。using(SqlConnection conn = new SqlConnection(connectionString)){cmd.Connection = conn;cmd.CommandType = CommandType.Text;cmd.CommandText = cmdText;conn.Open();SqlDataReader rdr = cmd.ExecuteReader();while (rdr.Read()){CategoryInfo category = new CategoryInfo(rdr.GetString(0), rdr.GetString(1), rdr.GetString(2));catogories.Add(category);}rdr.Close();}ddlCategories.DataSource = catogories;ddlCategories.DataTextField = "Name";ddlCategories.DataValueField = "CategoryId";ddlCategories.DataBind();} }} 三相送,送到通用的数据库访问函数中: using System;using System.Data;using System.Data.SqlClient;using System.Configuration;using System.Collections.Generic;using WestGarden.Model;namespace WestGarden.Web{public partial class Default3 : System.Web.UI.Page{protected void Page_Load(object sender, EventArgs e){IList<CategoryInfo> catogories = new List<CategoryInfo>();string connectionString = ConfigurationManager.ConnectionStrings["NetShopConnString"].ConnectionString;string cmdText = "SELECT CategoryId, Name, Descn FROM Category";SqlDataReader rdr = ExecuteReader(connectionString, CommandType.Text, cmdText);while (rdr.Read()){CategoryInfo category = new CategoryInfo(rdr.GetString(0), rdr.GetString(1), rdr.GetString(2));catogories.Add(category);}rdr.Close();ddlCategories.DataSource = catogories;ddlCategories.DataTextField = "Name";ddlCategories.DataValueField = "CategoryId";ddlCategories.DataBind();}public static SqlDataReader ExecuteReader(string connectionString, CommandType cmdType, string cmdText){SqlCommand cmd = new SqlCommand();SqlConnection conn = new SqlConnection(connectionString);try{cmd.Connection = conn;cmd.CommandType = cmdType;cmd.CommandText = cmdText;conn.Open();//如果创建了 SqlDataReader 并将 CommandBehavior 设置为 CloseConnection,//则关闭 SqlDataReader 会自动关闭此连接SqlDataReader rdr = cmd.ExecuteReader(CommandBehavior.CloseConnection);return rdr;}catch{conn.Close();throw;}//finally//{// conn.Close();//} }} } 这个通用数据库访问函数可以进一步完善如下: using System;using System.Data;using System.Data.SqlClient;using System.Configuration;using System.Collections.Generic;using WestGarden.Model;namespace WestGarden.Web{public partial class Default4 : System.Web.UI.Page{protected void Page_Load(object sender, EventArgs e){IList<CategoryInfo> catogories = new List<CategoryInfo>();string connectionString = ConfigurationManager.ConnectionStrings["NetShopConnString"].ConnectionString;string cmdText = "SELECT CategoryId, Name, Descn FROM Category";SqlDataReader rdr = ExecuteReader(connectionString, CommandType.Text, cmdText,null);while (rdr.Read()){CategoryInfo category = new CategoryInfo(rdr.GetString(0), rdr.GetString(1), rdr.GetString(2));catogories.Add(category);}rdr.Close();ddlCategories.DataSource = catogories;ddlCategories.DataTextField = "Name";ddlCategories.DataValueField = "CategoryId";ddlCategories.DataBind();}public static SqlDataReader ExecuteReader(string connectionString, CommandType cmdType, string cmdText, params SqlParameter[] commandParameters){SqlCommand cmd = new SqlCommand();SqlConnection conn = new SqlConnection(connectionString);try{//cmd.Connection = conn;//cmd.CommandType = cmdType;//cmd.CommandText = cmdText;//conn.Open();PrepareCommand(cmd, conn, null, cmdType, cmdText, commandParameters);//如果创建了 SqlDataReader 并将 CommandBehavior 设置为 CloseConnection,//则关闭 SqlDataReader 会自动关闭此连接。SqlDataReader rdr = cmd.ExecuteReader(CommandBehavior.CloseConnection);cmd.Parameters.Clear();return rdr;}catch{conn.Close();throw;}//finally//{// conn.Close();//} }private static void PrepareCommand(SqlCommand cmd, SqlConnection conn, SqlTransaction trans, CommandType cmdType, string cmdText, SqlParameter[] cmdParms){if (conn.State != ConnectionState.Open)conn.Open();cmd.Connection = conn;cmd.CommandText = cmdText;if (trans != null)cmd.Transaction = trans;cmd.CommandType = cmdType;if (cmdParms != null){foreach (SqlParameter parm in cmdParms)cmd.Parameters.Add(parm);} }} } 因为重点在过程,在结构,代码都比较简单,唯一值得一提的是SqlConnection的关闭问题,在最后比较完善的数据库访问函数中(这是SQLHelper中的源代码),没有使用using()结构,也没有显示关闭,主要原因是调用ExecuteReader方法时,使用了参数 CommandBehavior 并将其设置为 CloseConnection: SqlDataReader rdr = cmd.ExecuteReader(CommandBehavior.CloseConnection); 根据MSDN的说法:如果创建了 SqlDataReader 并将 CommandBehavior 设置为 CloseConnection,则关闭 SqlDataReader 会自动关闭此连接。 参考网址:http://msdn.microsoft.com/zh-cn/library/y6wy5a0f(v=vs.80).aspx 版权所有©2012,WestGarden.欢迎转载,转载请注明出处.更多文章请参阅博客http://www.cnblogs.com/WestGarden/ 转载于:https://www.cnblogs.com/WestGarden/archive/2012/06/04/2533560.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_33697898/article/details/94471782。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-18 20:09:36
89
转载
Mongo
...ce是一种编程模型,用于大规模数据集的并行运算。在MongoDB中,我们可以通过map()和reduce()函数实现数据的分组、转换和聚合。基本流程如下: - Map阶段:数据被分割成多个分片,每个分片经过map()函数处理,产生键值对形式的数据流。 - Shuffle阶段:键相同的数据会被合并在一起,为reduce()阶段做准备。 - Reduce阶段:针对每个键,执行reduce()函数,合并所有相关值,产生最终的结果集。 2. MongoDB中的MapReduce实践 为了让你更好地理解MapReduce在MongoDB中的应用,下面我将通过一个具体的例子来展示如何使用MapReduce处理数据。 示例代码: 假设我们有一个名为sales的集合,其中包含销售记录,每条记录包含product_id和amount两个字段。我们的目标是计算每个产品的总销售额。 javascript // 首先,我们定义Map函数 db.sales.mapReduce( function() { // 输出键为产品ID,值为销售金额 emit(this.product_id, this.amount); }, function(key, values) { // 将所有销售金额相加得到总销售额 var total = 0; for (var i = 0; i < values.length; i++) { total += values[i]; } return total; }, { "out": { "inline": 1, "pipeline": [ {"$group": {"_id": "$_id", "total_sales": {$sum: "$value"} }} ] } } ); 这段代码首先通过map()函数将每个销售记录映射到键为product_id和值为amount的键值对。哎呀,这事儿啊,就像是这样:首先,你得有个列表,这个列表里头放着一堆商品,每一项商品下面还有一堆数字,那是各个商品的销售价格。然后,咱们用一个叫 reduce() 的魔法棒来处理这些数据。这个魔法棒能帮咱们把每一样商品的销售价格加起来,就像数钱一样,算出每个商品总共卖了多少钱。这样一来,我们就能知道每种商品的总收入啦!哎呀,你懂的,我们用out这个参数把结果塞进了一个临时小盒子里面。然后,我们用$group这个魔法棒,把数据一通分类整理,看看哪些地方数据多,哪些地方数据少,这样就给咱们的数据做了一次大扫除,整整齐齐的。 3. 性能优化与注意事项 在使用MapReduce时,有几个关键点需要注意,以确保最佳性能: - 数据分区:合理的数据分区可以显著提高MapReduce的效率。通常,我们会根据数据的分布情况选择合适的分区策略。 - 内存管理:MapReduce操作可能会消耗大量内存,特别是在处理大型数据集时。合理设置maxTimeMS选项,限制任务运行时间,避免内存溢出。 - 错误处理:在实际应用中,处理潜在的错误和异常情况非常重要。例如,使用try-catch块捕获并处理可能出现的异常。 4. 进阶技巧与高级应用 对于那些追求更高效率和更复杂数据处理场景的开发者来说,以下是一些进阶技巧: - 使用索引:在Map阶段,如果数据集中有大量的重复键值对,使用索引可以在键的查找过程中节省大量时间。 - 异步执行:对于高并发的应用场景,可以考虑将MapReduce操作异步化,利用MongoDB的复制集和分片集群特性,实现真正的分布式处理。 结语 MapReduce在MongoDB中的应用,为我们提供了一种高效处理大数据集的强大工具。哎呀,看完这篇文章后,你可不光是知道了啥是MapReduce,啥时候用,还能动手在自己的项目里把MapReduce用得溜溜的!就像是掌握了新魔法一样,你学会了怎么给这玩意儿加点料,让它在你的项目里发挥出最大效用,让工作效率蹭蹭往上涨!是不是感觉整个人都精神多了?这不就是咱们追求的效果嘛!嘿,兄弟!听好了,掌握新技能最有效的办法就是动手去做,尤其是像MapReduce这种技术。别光看书上理论,找一个你正在做的项目,大胆地将MapReduce实践起来。你会发现,通过实战,你的经验会大大增加,对这个技术的理解也会更加深入透彻。所以,行动起来吧,让自己的项目成为你学习路上的伙伴,你肯定能从中学到不少东西!让我们继续在数据处理的旅程中探索更多可能性!
2024-08-13 15:48:45
148
柳暗花明又一村
Go-Spring
...error类型,用于表示可能发生的错误。Hey, 你知道GoSpring怎么玩儿的嘛?它把错误处理这个事儿做得超有创意的!它不仅让咱们能更灵活地处理各种小状况,还特别注意保护咱们的安全感。怎么做到的呢?就是通过接口和那些具体的错误类型,就像是给错误贴上了标签,这样咱们就能更精准地识别和应对问题了。这下,无论是小故障还是大难题,都能被咱们轻松搞定,是不是感觉整个程序都活灵活现起来了呢? 示例代码: go package main import ( "fmt" "net/http" "os" ) func main() { http.HandleFunc("/", func(w http.ResponseWriter, r http.Request) { if err := processRequest(r); err != nil { writeError(err) } }) err := http.ListenAndServe(":8080", nil) if err != nil { fmt.Println("Server start error:", err) os.Exit(1) } } func processRequest(req http.Request) error { // 示例错误处理 return errors.New("Request processing failed") } func writeError(err error) { // 日志记录错误 log.Error(err) } 在这个例子中,我们定义了一个简单的HTTP服务器,其中包含了错误处理逻辑。如果在处理请求时遇到错误,processRequest函数会返回一个error对象。哎呀,兄弟!这事儿得这么干:首先,咱们得动用 writeError 这个功能,把出错的提示给记到日记本里头去。要是服务器启动的时候遇到啥问题,那咱们就别藏着掖着,直接把错误的信息给大伙儿瞧一瞧,这样大家也好知道哪儿出了岔子,好及时修修补补。 2. 日志记录的最佳实践 日志记录是监控系统健康状况、追踪错误来源以及优化应用性能的关键手段。哎呀,你懂的,GoSpring这个家伙可厉害了!它能跟好多不同的日志工具玩得转,比如那个基础的log,还有那个火辣辣的zap。想象一下,就像是你有好多不同口味的冰淇淋可以选择,无论是奶油味、巧克力味还是草莓味,GoSpring都能给你完美的体验。而且,它还能让你自己来调调口味,比如你想让日志多一些颜色、或者想让它在特定的时候特别响亮,GoSpring都能满足你,真的超贴心的! 示例代码: go package main import ( "log" "os" "go.uber.org/zap" ) func main() { // 初始化日志器 sugarLogger := zap.NewExample().Sugar() defer sugarLogger.Sync() http.HandleFunc("/", func(w http.ResponseWriter, r http.Request) { sugarLogger.Info("Processing request", zap.String("method", r.Method), zap.String("path", r.URL.Path)) }) err := http.ListenAndServe(":8080", nil) if err != nil { sugarLogger.Fatal("Server start error", zap.Error(err)) } } 在这个例子中,我们使用了go.uber.org/zap库来初始化日志器。咱们用个俏皮点的糖糖(Sugar())功能做了一个小版的日志记录工具,这样就能更轻松地往里面塞进各种日志信息了。就像是给日记本添上了便利贴,想记录啥就直接贴上去,简单又快捷!当服务器启动失败时,日志器会自动记录错误信息并结束程序执行。 3. 结合错误处理与日志记录的最佳实践 在实际应用中,错误处理和日志记录通常是紧密相连的。正确的错误处理策略应该包括: - 异常捕获:确保捕获所有潜在的错误,并适当处理或记录它们。 - 上下文信息:在日志中包含足够的上下文信息,帮助快速定位问题根源。 - 日志级别:根据错误的严重程度选择合适的日志级别(如INFO、ERROR)。 - 错误重试:对于可以重试的操作,实现重试机制,并在日志中记录重试尝试。 示例代码: go package main import ( "context" "math/rand" "time" "go.uber.org/zap" ) func main() { rand.Seed(time.Now().UnixNano()) ctx, cancel := context.WithTimeout(context.Background(), 5time.Second) defer cancel() for i := 0; i < 10; i++ { err := makeNetworkCall(ctx) if err != nil { zap.Sugar().Errorf("Network call %d failed: %s", i, err) } else { zap.Sugar().Infof("Network call %d succeeded", i) } time.Sleep(1 time.Second) } } func makeNetworkCall(ctx context.Context) error { time.Sleep(time.Duration(rand.Intn(10)) time.Millisecond) return fmt.Errorf("network call failed after %d ms", rand.Intn(10)) } 在这个例子中,我们展示了如何在一个循环中处理网络调用,同时利用context来控制调用的超时时间。在每次调用失败时,我们记录详细的错误信息和调用次数。这种做法有助于在出现问题时快速响应和诊断。 结论 通过上述实践,我们可以看到GoSpring如何通过结构化错误处理和日志记录来提升应用的健壮性和维护性。哎呀,兄弟!如果咱们能好好执行这些招数,那可真是大有裨益啊!不仅能大大缩短遇到问题时,咱们得花多少时间去修复,还能省下一大笔银子呢!更棒的是,还能让咱们团队里的小伙伴们,心往一处想,劲往一处使,互相理解,配合得天衣无缝。这感觉,就像是大家在一块儿打游戏,每个人都有自己的角色,但又都为了一个共同的目标而努力,多带劲啊!哎呀,你知道吗?当咱们的应用越做越大,用GoSpring的那些工具和好方法,简直就是如虎添翼啊!这样咱就能打造出一个既稳如泰山又快如闪电,还特别容易打理的系统。想象一下,就像给你的小花园施肥浇水,让每一朵花都长得茁壮又美丽,是不是感觉棒极了?所以啊,别小看了这些工具和最佳实践,它们可是你建大事业的得力助手!
2024-07-31 16:06:44
277
月下独酌
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
dig +short myip.opendns.com @resolver1.opendns.com
- 快速获取本机公网IP地址。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"