前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[面向对象体积计算 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
HBase
...是指将数据分布在多个计算节点上,通过网络实现不同节点间的数据共享与协调一致。在文中提到的HBase即是分布式数据库的一种,它能够在大规模集群中运行并处理大量数据,具备良好的扩展性和容错性。 实时数据分析 , 实时数据分析是一种能够即时处理和分析源源不断产生的新数据的技术,旨在迅速从数据中提取有价值信息,以便做出实时决策或提供实时服务。文中提及HBase支持快速的数据插入和查询操作,这使得其非常适合应用于实时数据分析任务。 流式处理应用 , 流式处理是一种处理持续不断生成的数据流的计算范式,它允许数据在产生时立即进行处理,而非等待所有数据都收集完毕后一次性处理。文中指出,由于HBase能快速处理数据,因此对于需要对实时数据流进行连续分析和处理的应用场景非常适用。
2023-01-31 08:42:41
432
青春印记-t
RabbitMQ
...通信 , 异步通信是计算机程序间的一种通信方式,允许发送方(生产者)无需等待接收方(消费者)立即响应即可继续执行后续操作。在文章中,通过超市收银台的例子形象说明了异步通信的优势——生产者可以独立于消费者进行工作,从而提高整个系统的并行处理能力和吞吐量。 AMQP协议 , AMQP(Advanced Message Queuing Protocol,高级消息队列协议)是一种开放标准的应用层协议,用于消息中间件的统一通信。在使用RabbitMQ时,AMQP协议提供了定义消息路由规则、保证消息传输的可靠性与安全性等功能。在本文背景下,虽然未直接提及AMQP,但作为一款支持AMQP协议的消息中间件,RabbitMQ通过遵循这一协议来实现消息的发布、订阅、路由和确认等机制。 持久化特性 , 在RabbitMQ中,持久化特性指的是消息在被写入队列后,即使在服务器重启或者其他故障情况下也能保持不丢失。这意味着,当生产者设置消息为持久化时,RabbitMQ会将消息存储到磁盘上,以提供更高级别的数据可靠性保障,在出现故障恢复后仍能确保消息的完整性和一致性。
2023-12-12 10:45:52
37
春暖花开-t
转载文章
...适应未来数据中心和云计算环境的需求。 总之,了解Linux中的硬盘分区原理是基础,而关注其如何适应并推动存储技术的演进与发展,则能帮助我们更好地把握操作系统层面的存储管理趋势,从而有效提升数据存储的安全性、稳定性和效率。
2023-04-26 12:47:34
116
转载
Kubernetes
...tes与AI:未来云计算的新篇章 随着科技的飞速发展,人工智能(AI)正逐渐渗透到云计算的每一个角落,其中Kubernetes与AI的结合被视为推动云计算迈向更高层次的关键力量。Kubernetes作为容器编排领域的领导者,其与AI的融合不仅提升了云平台的灵活性和效率,还为开发者提供了更多创新的可能性。 Kubernetes的AI赋能 Kubernetes的AI赋能主要体现在以下几个方面: 1. 资源调度优化:AI技术可以分析历史数据,预测工作负载需求,从而优化Kubernetes的资源分配,减少资源浪费,提高服务器利用率。 2. 自动扩缩容:基于AI算法,Kubernetes可以根据实时的工作负载动态调整集群规模,确保服务的高可用性和性能。 3. 故障检测与预防:AI模型可以通过学习历史事件,识别潜在的系统故障模式,提前预警,减少宕机风险,提升系统稳定性。 4. 智能运维:借助AI,Kubernetes可以自动化执行复杂的运维任务,如自动修复错误、优化性能、更新软件等,显著减轻运维团队的工作负担。 实际案例与趋势 近年来,许多大型科技公司都在积极探索Kubernetes与AI的融合应用。例如,Google Cloud Platform(GCP)通过与AI技术的结合,为Kubernetes用户提供了更智能的管理工具和服务,如AutoML,帮助用户更高效地构建和部署机器学习模型。此外,AWS的Amazon Elastic Container Service (ECS)也通过集成AI功能,增强了其在自动化部署和运维方面的能力。 随着AI技术的不断进步和成熟,Kubernetes与AI的结合将带来更多的可能性。未来,我们或许可以看到更加智能、自动化的云平台,能够自主地进行资源管理、故障检测、服务优化等,为用户提供更加高效、稳定的云计算体验。 结语 Kubernetes与AI的融合是云计算领域的一大创新,它不仅提高了云平台的智能化水平,也为开发者提供了更多创新的空间。随着技术的持续发展,这一领域的潜力还有待进一步挖掘,未来值得期待。
2024-09-05 16:21:55
60
昨夜星辰昨夜风
Kibana
...加一个“计数”指标,计算每个方法的请求总数。 保存这个可视化图表,命名为“HTTP方法请求统计”。 4. 构建仪表板 - 创建仪表板: 进入“仪表板”界面,点击“新建”,创建一个新的空白仪表板。 - 添加可视化组件: 点击右上角的“添加可视化”按钮,选择我们在第3步创建的“HTTP方法请求统计”图表,将其添加至仪表板中。 - 扩展仪表板: 不止于此,我们可以继续创建其他可视化组件,比如折线图显示随着时间推移的响应时间变化,热力图展示不同路径和状态码的分布情况等,并逐一将它们添加到此仪表板上。 5. 自定义与交互性调整 Kibana的真正魅力在于其丰富的自定义能力和交互性设计。比如,你完全可以给每张图表单独设定过滤器规则,这样一来,整个仪表板上的数据就能像变魔术一样联动更新,超级炫酷。另外,你还能借助那个时间筛选器,轻轻松松地洞察到特定时间段内数据走势的变化,就像看一部数据演变的电影一样直观易懂。 在整个创建过程中,你可能会遇到疑惑、困惑,甚至挫折,但请记住,这就是探索和学习的魅力所在。随着对Kibana的理解逐渐加深,你会发现它不仅是一个工具,更是你洞察数据、讲述数据故事的强大伙伴。尽情发挥你的创造力,让数据活起来,赋予其生动的故事性和价值性。 总结来说,创建Kibana可视化仪表板的过程就像绘制一幅数据画卷,从准备画布(导入数据)开始,逐步添置元素(创建可视化组件),最后精心布局(构建仪表板),期间不断尝试、调整和完善,最终成就一份令人满意的可视化作品。在这个探索的过程中,你要像个充满好奇的小探险家一样,时刻保持对未知的热情,脑袋瓜子灵活运转,积极思考各种可能性。同时,也要有敢于动手实践的勇气,大胆尝试,别怕失败。这样下去,你肯定能在浩瀚的数据海洋中挖到那些藏得深深的宝藏,收获满满的惊喜。
2023-08-20 14:56:06
337
岁月静好
转载文章
...is第一反应就是当前对象,可以用来引用变量或是方法,一看就很懵B,所以这里通过例子来详细讲下this的用法。 2.例如下面代码 button.setOnClickListener(new OnClickListener() {@Overridepublic void onClick(View v) {Toast.makeText(TextC.this,"什么情况",1000).show();} 通俗讲,this就是指本类,但在上面Toast中直接写this会出错,因为当前本类是OnClickListener类,而不是我们的主类,如activity(或是mainActivity等),而this就是指向当前类OnClickListener。 3.再如:MainActivity中setOnClickListener(this)中的this指代什么? setOnClickListener的参数要求是一个实现了OnClickListener接口的对象实体,它可以是任何类的实例,只要该类实现了OnClickListener。这个问题中,this它就是MainActivity这个对象自己且用this实现了OnClickListener。 4.MainActivity.this是什么意思? 表示的就是MainActivity这个类对象本来,这种写法一般用在内部类里,因为在外部类中直接可以用关键字this表示本类,而内部类中直接写this的话表示的是内部类本身,想表示外部类的话就得加上外部类的类名.this。 5.在android中this使用的小结: this代表本类的一个引用,this.表示调用本类的某个方法,这个时候通常可以省略this;但在内部类中不能省略,否则编译器会认为是内部类的引用,所以要在this前加上类名. .this 表示本类的引用,通常前面的是用本类的名字表示,当然也可以省略,但是如果是在内部类中一定要加上类名,同时注意:this和static不能共存,就是在static修饰的方法中不能用this. 6.android context是什么 ?从SDK中可以知道 Interface to global information about an application environment. This is an abstract class whose implementation is provided by the Android system. It allows access to application-specific resources and classes, as well as up-cal for application-level operations such as launching activities, broadcasting and receiving intents, etc 从上的描述可以知道context和一下三点作用: 它描述的是一个应用程序的环境,即上下文 它类是一个抽象的类,android提供了一个具体的通用实现类contextIml类。 它就像是一个大管家,是一个访问全局信息的接口。通过它我们可以获取应用程度 的资源的类,包括一些应用级的操作,如启动一个activity,发送广播,接受Intent信息。 7.context家族的关系 8.android context源码简析 8.1Context.java:抽象类,提供了一组通用的API public abstract class Context { ... public abstract Object getSystemService(String name); //获得系统级服务 public abstract void startActivity(Intent intent); //通过一个Intent启动Activity public abstract ComponentName startService(Intent service); //启动Service //根据文件名得到SharedPreferences对象 public abstract SharedPreferences getSharedPreferences(String name,int mode); ... } 8.2 Contextlml.java:Context和实现类,但函数的大部分功能都是直接调用其属性的mPackageInfo去完成 / Common implementation of Context API, which provides the base context object for Activity and other application components. / class ContextImpl extends Context{ //所有Application程序公用一个mPackageInfo对象 /package/ ActivityThread.PackageInfo mPackageInfo; @Override public Object getSystemService(String name){ ... else if (ACTIVITY_SERVICE.equals(name)) { return getActivityManager(); } else if (INPUT_METHOD_SERVICE.equals(name)) { return InputMethodManager.getInstance(this); } } @Override public void startActivity(Intent intent) { ... //开始启动一个Activity mMainThread.getInstrumentation().execStartActivity( getOuterContext(), mMainThread.getApplicationThread(), null, null, intent, -1); } } 8.3 ContextWrapper.java:该类只是对Context类的一种包装,该类的构造函数包含了一个真正的Context引用,即ContextIml对象。 public class ContextWrapper extends Context { Context mBase; //该属性指向一个ContextIml实例,一般在创建Application、Service、Activity时赋值 //创建Application、Service、Activity,会调用该方法给mBase属性赋值 protected void attachBaseContext(Context base) { if (mBase != null) { throw new IllegalStateException("Base context already set"); } mBase = base; } @Override public void startActivity(Intent intent) { mBase.startActivity(intent); //调用mBase实例方法 } } 8.4ContextThemeWrapper.java:该类内部包含了主题(Theme)相关的接口,即android:theme属性指定的。只有Activity需要主题,Service不需要主题,所以Service直接继承于ContextWrapper类。 public class ContextThemeWrapper extends ContextWrapper { //该属性指向一个ContextIml实例,一般在创建Application、Service、Activity时赋值 private Context mBase; //mBase赋值方式同样有一下两种 public ContextThemeWrapper(Context base, int themeres) { super(base); mBase = base; mThemeResource = themeres; } @Override protected void attachBaseContext(Context newBase) { super.attachBaseContext(newBase); mBase = newBase; } } 9.Activity类 、Service类 、Application类本质上都是Context子类,所以应用程序App共有的Context数目公式为: 总Context实例个数 = Service个数 + Activity个数 + 1(Application对应的Context实例) 10.AR/VR研究的朋友可以加入下面的群或是关注下面的微信公众号 本篇文章为转载内容。原文链接:https://blog.csdn.net/yywan1314520/article/details/51953172。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-27 17:37:26
94
转载
Tornado
...塞I/O模型 , 在计算机编程中,异步非阻塞I/O是一种处理大量并发连接的高效编程模式。在这种模型下,当应用程序发起一个I/O操作(如读取文件或网络通信)时,它不会等待该操作完成,而是立即返回并继续执行其他任务。操作系统会在后台处理I/O请求,一旦I/O操作完成,会通过事件通知机制告知程序,然后程序可以回调函数或其他方式处理已完成的I/O结果。在本文语境中,Tornado框架采用了这种模型以实现高并发Web服务,能够有效避免因等待I/O操作而导致的线程阻塞和性能瓶颈。 AsyncIO , AsyncIO是Python 3.4版本引入的标准库,它提供了一种在Python中编写异步代码的原生支持。AsyncIO使用协程(coroutine)和事件循环(event loop)机制来实现异步编程,使得开发者能够利用async/await语法编写出清晰、易于理解和维护的异步代码。在文章中,AsyncIO被用来与Tornado结合,进一步提升异步处理能力和性能,并简化了异步编程流程。 Tornado HTTPClient , Tornado HTTPClient是Tornado框架内置的一个异步HTTP客户端组件,用于从服务器发送和接收HTTP请求。它可以处理多个并发的HTTP请求而无需为每个请求创建新的线程或进程,从而大大提高了资源利用率和系统的整体吞吐量。但在文章讨论中,为了展示如何利用AsyncIO优化网络I/O性能,作者提到了可以采用第三方库aiohttp替代Tornado HTTPClient,在特定场景下可能带来额外的性能提升。
2023-10-30 22:07:28
140
烟雨江南
Maven
...的构建生命周期和项目对象模型(pom.xml)文件,帮助开发者自动下载和管理项目依赖,定义并执行构建任务,使得项目构建过程更加规范化、自动化。 本地仓库 , 在Maven系统中,本地仓库是存储项目依赖库(如jar包和其他工件)的地方,通常位于用户本机上。当Maven构建项目时,会首先查找本地仓库中是否存在所需的依赖,如果不存在,则从远程仓库下载至本地仓库,并在后续构建过程中直接使用本地已有的依赖,以提高构建速度和效率。 依赖冲突 , 在Java项目开发中,特别是使用Maven进行依赖管理时,可能出现的一种问题。当两个或多个模块同时引用了同一个第三方库的不同版本时,Maven无法确定应该使用哪个版本,这就导致了依赖冲突。在本文中,作者举例说明了如何解决这种问题,通常的解决方案包括统一所有模块对同一依赖的版本,或者利用Maven的特定插件来管理这些冲突。 <dependency>标签 , 在Maven的项目配置文件pom.xml中,<dependency>是一个关键标签,用于声明项目的依赖关系。它包含了groupId、artifactId和version等属性,用于精确地定位所需依赖的坐标,以便Maven能够正确地从本地仓库或远程仓库下载并引入到项目中。如果<dependency>标签中的配置信息不完整或错误,将导致Maven在编译阶段抛出异常,无法正常引入和使用依赖。
2024-02-05 11:45:22
90
心灵驿站_t
Tomcat
...。 与此同时,随着云计算技术的发展,越来越多的企业选择将业务迁移到云端。然而,云环境下的JMX监控面临着新的挑战,如跨VPC访问、复杂的网络隔离策略等。对此,AWS在其官方博客中发布了一篇文章,深入探讨了如何在AWS环境中高效配置JMX监控,提供了详细的配置指南和常见问题解决方案。这些内容不仅对使用AWS的用户大有裨益,也为其他云平台用户提供了参考思路。 另外,随着微服务架构的普及,传统的JMX监控方式面临诸多限制。为此,Netflix开源了其内部使用的Micrometer库,该库支持多种监控后端,包括Prometheus、Graphite等,大大简化了微服务环境下的监控配置工作。近期,Micrometer团队发布了一系列更新,增加了对更多监控后端的支持,并优化了性能。这一进展对于正在探索微服务监控方案的企业来说,具有重要的参考价值。 以上内容不仅展示了JMX监控领域的最新发展动态,也为读者提供了丰富的实战经验和理论指导。希望这些延伸阅读材料能够帮助大家更好地理解和应用JMX监控技术。
2025-02-15 16:21:00
103
月下独酌
SpringBoot
...d:value配合计算属性,确保数据在发送前已转换为正确的类型。 3. 后端配置 SpringBoot可以配置Jackson或Gson等JSON库,设置@JsonInclude(JsonInclude.Include.NON_NULL)来忽略所有空值。 4. 异常处理 添加适当的异常处理,捕获可能的转换异常并提供有用的错误消息。 五、结论 解决这个问题的关键在于理解数据流的每个环节,从前端到后端,每一个可能的类型转换和验证步骤都需要仔细审查。你知道吗,有时候生活就像个惊喜包,比如说JavaScript那些隐藏的小秘密,但别急,咱们一步步找,那问题的源头准能被咱们揪出来!希望这篇文章能帮助你在遇到类似困境时,更好地定位和解决“0”问题,提升开发效率和用户体验。 --- 当然,实际的代码示例可能需要根据你的项目结构和配置进行调整,以上只是一个通用的指导框架。记住,遇到问题时,耐心地查阅文档,结合调试工具,往往能更快地找到答案。祝你在前端与后端的交互之旅中一帆风顺!
2024-04-13 10:41:58
83
柳暗花明又一村_
SpringCloud
...} } - 面向接口而非实现:遵循微服务的原则,服务间的通信应当基于API契约进行,即调用方只关心服务提供的接口及其返回结果,而不应关心对方具体的实现细节。所以,正确的做法就像是这样:给各个服务之间设立明确、易懂的API接口,然后就像过家家一样,通过网关或者直接“喊话”调用这些接口来实现彼此的沟通交流。 4. 探讨与建议 在实践中,构建健康的微服务生态系统离不开注册中心的支持。它不仅简化了服务间的依赖管理和通信,也极大地提升了系统的健壮性和弹性。讲到直接调用Service层这事儿,乍一看在一些简单场景里确实好像省事儿不少,不过你要是从长远角度琢磨一下,其实并不利于咱们系统的松耦合和扩展性发展。 结论:即使面临短期成本或复杂度增加的问题,为了保障系统的长期稳定和易于维护,我们强烈建议在Spring Cloud微服务架构中采用注册中心,并遵循服务间通过API进行通信的最佳实践。这样才能充分发挥微服务架构的优势,让每个服务都能独立部署、迭代和扩展。
2023-11-23 11:39:17
37
岁月如歌_
Hive
...che Spark的计算力结合起来,实现了高性能的大数据处理。 总的来说,Hive正在不断进化,以适应数据科学的最新需求。对于那些已经在使用Hive的企业和开发者来说,关注这些新功能和趋势,将有助于他们在数据驱动的决策中保持领先。
2024-04-04 10:40:57
769
百转千回
转载文章
...片 , 内存碎片是指计算机系统在分配和回收内存时,由于各种原因导致的无法被利用的小块连续内存区域。在连续分配内存的系统中,频繁地进行小块内存分配和释放操作容易产生内存碎片,这些碎片虽然总量可能足够大,但由于它们不连续,所以无法分配给较大的内存请求使用,从而降低了内存利用率。在文章中,通过使用柔性数组,可以在一定程度上减少内存碎片的产生,因为可以一次性为结构体及其内部动态大小的数组分配连续的内存空间。
2023-01-21 13:56:11
501
转载
Impala
...些特点: 基于内存的计算:Impala的所有计算都在内存中完成,这大大提高了查询速度。跟那些老式批处理系统可不一样,Impala能在几秒钟内就把查询给搞定了,哪还需要等个几分钟甚至更久的时间! 多线程执行:Impala采用多线程执行查询,可以充分利用多核CPU的优势。每个线程都会独立地处理一部分数据,然后将结果合并在一起。 列式存储:Impala使用列式存储方式,可以显著减少I/O操作,提高查询性能。在列式存储中,每行数据都是一个列块,而不是一个完整的记录。这就意味着,当你在查询时只挑了部分列,Impala这个小机灵鬼就会聪明地只去读取那些被你点名的列所在的区块,压根儿不用浪费时间去翻看整条记录。 高速缓存:Impala有一个内置的查询缓存机制,可以将经常使用的查询结果缓存起来,减少不必要的计算。此外,Impala还可以利用Hadoop的内存管理机制,将结果缓存在HDFS上。 这些特点使Impala能够在大数据环境中提供卓越的查询性能。其实吧,实际情况是这样的,性能到底怎么样,得看多个因素的脸色。就好比硬件配置啦,查询的复杂程度啦,还有数据分布什么的,这些家伙都对最终的表现有着举足轻重的影响呢! 如何优化Impala查询性能? 虽然Impala已经非常强大,但是仍然有一些方法可以进一步提高其查询性能。以下是一些常见的优化技巧: 合理设计查询语句:首先,你需要确保你的查询语句是最优的。这通常就是说,咱得尽量避开那个费时费力的全表扫一遍的大动作,学会巧妙地利用索引这个神器,还有啊,JOIN操作也得玩得溜,用得恰到好处才行。如果你不确定如何编写最优的查询语句,可以尝试使用Impala自带的优化器。 调整资源设置:Impala的性能受到许多资源因素的影响,如内存、CPU、磁盘等。你可以通过调整这些参数来优化查询性能。比如说,你完全可以尝试给Impala喂饱更多的内存,或者把更重的计算任务分配给那些运算速度飞快的核心CPU,就像让短跑健将去跑更重要的赛段一样。 使用分区:分区是一种有效的方法,可以将大型表分割成较小的部分,从而提高查询性能。你知道吗,通过给数据分区这么一个操作,你就能把它们分散存到多个不同的硬件设备上。这样一来,当你需要查找信息的时候,效率嗖嗖地提升,就像在图书馆分门别类放书一样,找起来又快又准! 缓存查询结果:Impala有一个内置的查询缓存机制,可以将经常使用的查询结果缓存起来,减少不必要的计算。此外,Impala还可以利用Hadoop的内存管理机制,将结果缓存在HDFS上。 以上只是优化Impala查询性能的一小部分方法。实际上,还有很多其他的技术和工具可以帮助你提高查询性能。关键在于,你得像了解自家后院一样熟悉你的数据和工作负载,这样才能做出最棒、最合适的决策。 总结 Impala是一种强大的查询工具,能够在大数据环境中提供卓越的查询性能。如果你想让你的Impala查询速度嗖嗖提升,这里有几个小妙招可以试试:首先,设计查询时要够精明合理,别让它成为拖慢速度的小尾巴;其次,灵活调整资源分配,确保每一份计算力都用在刀刃上;最后,巧妙运用分区功能,让数据查找和处理变得更加高效。这样一来,你的Impala就能跑得飞快啦!最后,千万记住这事儿啊,你得像了解自家的后花园一样深入了解你的数据和工作负载,这样才能够做出最棒、最合适的决策,一点儿都不含糊。
2023-03-25 22:18:41
487
凌波微步-t
Cassandra
... 与此同时,随着边缘计算、5G技术的发展,物联网设备产生的实时时间序列数据呈爆炸式增长,对存储系统的需求也在不断提升。例如,某大型工业互联网平台采用Cassandra构建其分布式时序数据库,通过灵活设计分区键与排序列簇,成功实现了对数百万传感器数据的秒级写入与查询,大幅度提升了整体系统的响应速度与可靠性。 另外,业界对时序数据的分析与预测需求日渐增长,不少专家提倡结合流处理框架(如 Apache Kafka 和 Apache Flink)与Cassandra进行联动,实现实时数据分析与长期历史数据归档的无缝衔接。这种架构不仅能够满足业务对实时监控的需求,还能利用机器学习算法对时序数据进行深度挖掘,为企业决策提供有力支持。 总之,在实际应用中不断探索和完善Cassandra在时间序列数据处理中的设计方案,并紧跟行业发展趋势和技术进步,才能更好地发挥其在大数据时代的优势,解决日益复杂的数据存储与分析挑战。
2023-12-04 23:59:13
770
百转千回
Kibana
...通过API创建可视化对象不是最常见的方式,但你可以通过Kibana的界面来设计你的可视化,并将其导出为JSON格式。下面是一个简单的示例,展示了如何通过API创建一个简单的柱状图: json POST /api/saved_objects/visualization { "attributes": { "title": "Sales by Category", "visState": "{\"title\":\"Sales by Category\",\"type\":\"histogram\",\"params\":{\"addTimeMarker\":false,\"addTooltip\":true,\"addLegend\":true,\"addTimeAxis\":true,\"addDistributionBands\":false,\"scale\":\"linear\",\"mode\":\"stacked\",\"times\":[],\"yAxis\":{},\"xAxis\":{},\"grid\":{},\"waterfall\":{} },\"aggs\":[{\"id\":\"1\",\"enabled\":true,\"type\":\"count\",\"schema\":\"metric\",\"params\":{} },{\"id\":\"2\",\"enabled\":true,\"type\":\"terms\",\"schema\":\"segment\",\"params\":{\"field\":\"category\",\"size\":5,\"order\":\"desc\",\"orderBy\":\"1\"} }],\"listeners\":{} }", "uiStateJSON": "{}", "description": "", "version": 1, "kibanaSavedObjectMeta": { "searchSourceJSON": "{\"index\":\"sales\",\"filter\":[],\"highlight\":{},\"query\":{\"query_string\":{\"query\":\"\",\"analyze_wildcard\":true} }}" } }, "references": [], "migrationVersion": {}, "updated_at": "2023-09-28T00:00:00.000Z" } 3. 思考与实践 在实际操作中,数据切片并不仅仅是简单的过滤和查询,它还涉及到如何有效地组织和呈现数据。这就得咱们不停地试各种招儿,比如说用聚合函数搞更复杂的统计分析,或者搬出机器学习算法来预测未来的走向。每一次尝试都可能带来新的发现,让数据背后的故事更加生动有趣。 4. 结语 数据切片是数据分析中不可或缺的一部分,它帮助我们在海量数据中寻找有价值的信息。Kibana这家伙可真不赖,简直就是个数据分析神器,有了它,我们实现目标简直易如反掌!希望本文能为你提供一些灵感和思路,让你在数据分析的路上越走越远! --- 以上就是本次关于如何在Kibana中实现数据切片的技术分享,希望能对你有所帮助。如果你有任何疑问或想了解更多内容,请随时留言讨论!
2024-10-28 15:42:51
43
飞鸟与鱼
MemCache
近期,随着云计算和大数据技术的快速发展,缓存系统的优化和管理变得更加关键。最近的一份报告指出,某知名电商网站在“双十一”购物节期间遭遇了严重的缓存雪崩事件,导致大量用户无法正常访问商品信息,严重影响了用户体验和业务运营。此次事件暴露出在高并发场景下,单一缓存系统的设计缺陷和应急响应机制的不足。为了避免类似问题再次发生,该企业迅速采取了多项改进措施,包括引入多级缓存架构、优化缓存过期策略以及增强系统监控和报警机制。这些举措不仅提升了系统的稳定性,也为其他面临相似挑战的企业提供了宝贵的参考经验。 与此同时,有研究团队针对缓存击穿现象进行了深入分析,发现热点数据的频繁访问是导致缓存击穿的主要原因之一。研究人员提出了一种基于机器学习的预测模型,能够提前识别出潜在的热点数据,并采取预加载等策略进行预防。这一创新方法已经在多个实际应用场景中得到了验证,显著降低了缓存击穿的风险,提高了系统的整体性能和可用性。 此外,根据Gartner发布的最新报告,未来几年内,随着边缘计算和物联网技术的普及,缓存系统将面临更加复杂和多变的环境。因此,企业需要不断优化现有的缓存策略,探索新的技术和方法,以应对日益增长的数据处理需求和更高的性能要求。例如,采用分布式缓存方案、引入内存数据库以及利用容器化技术提高系统的灵活性和扩展性,都是值得考虑的方向。这些技术的应用不仅能有效缓解缓存雪崩和缓存击穿问题,还能为企业带来更高效、更稳定的IT基础设施支持。
2024-11-22 15:40:26
60
岁月静好
Go Iris
...传输信息作为JSON对象。这种信息可以通过数字签名来验证其真实性。JWT主要有三种类型:签名的、加密的和签名+加密的。在咱们这个情况里,咱们主要用的是签名单点登录的那种JWT,这样就不用老依赖服务器来存东西,也能确认用户的身份了。 代码示例:生成JWT go package main import ( "github.com/kataras/iris/v12" jwt "github.com/appleboy/gin-jwt/v2" ) func main() { app := iris.New() // 创建JWT中间件 jwtMiddleware, _ := jwt.New(&jwt.GinJWTMiddleware{ Realm: "test zone", Key: []byte("secret key"), Timeout: time.Hour, MaxRefresh: time.Hour, IdentityKey: "id", }) // 定义登录路由 app.Post("/login", jwtMiddleware.LoginHandler) // 使用JWT中间件保护路由 app.Use(jwtMiddleware.MiddlewareFunc()) // 启动服务 app.Listen(":8080") } 2.2 OAuth2:授权的守护者 OAuth2是一个授权框架,允许第三方应用获得有限的访问权限,而不需要提供用户名和密码。通过OAuth2,用户可以授予应用程序访问他们资源的权限,而无需共享他们的凭据。 代码示例:OAuth2客户端授权 go package main import ( "github.com/kataras/iris/v12" oauth2 "golang.org/x/oauth2" ) func main() { app := iris.New() // 配置OAuth2客户端 config := oauth2.Config{ ClientID: "your_client_id", ClientSecret: "your_client_secret", RedirectURL: "http://localhost:8080/callback", Endpoint: oauth2.Endpoint{ AuthURL: "https://accounts.google.com/o/oauth2/auth", TokenURL: "https://accounts.google.com/o/oauth2/token", }, Scopes: []string{"profile", "email"}, } // 登录路由 app.Get("/login", func(ctx iris.Context) { url := config.AuthCodeURL("state") ctx.Redirect(url) }) // 回调路由处理 app.Get("/callback", func(ctx iris.Context) { code := ctx.URLParam("code") token, err := config.Exchange(context.Background(), code) if err != nil { ctx.WriteString("Failed to exchange token: " + err.Error()) return } // 在这里处理token,例如保存到数据库或直接使用 }) app.Listen(":8080") } 3. 构建策略决策树 智能授权 现在,我们已经了解了JWT和OAuth2的基本概念及其在Iris框架中的应用。接下来,我们要聊聊怎么把这两样东西结合起来,搞出一棵基于策略的决策树,这样就能更聪明地做授权决定了。 3.1 策略决策树的概念 策略决策树是一种基于规则的系统,用于根据预定义的条件做出决策。在这个情况下,我们主要根据用户的JWT信息(比如他们的角色和权限)和OAuth2的授权状态来判断他们是否有权限访问某些特定的资源。换句话说,就是看看用户是不是有“资格”去看那些东西。 代码示例:基于JWT的角色授权 go package main import ( "github.com/kataras/iris/v12" jwt "github.com/appleboy/gin-jwt/v2" ) type MyCustomClaims struct { Role string json:"role" jwt.StandardClaims } func main() { app := iris.New() jwtMiddleware, _ := jwt.New(&jwt.GinJWTMiddleware{ Realm: "test zone", Key: []byte("secret key"), Timeout: time.Hour, MaxRefresh: time.Hour, IdentityKey: "id", IdentityHandler: func(c jwt.Manager, ctx iris.Context) (interface{}, error) { claims := jwt.ExtractClaims(ctx) role := claims["role"].(string) return &MyCustomClaims{Role: role}, nil }, }) // 保护需要特定角色才能访问的路由 app.Use(jwtMiddleware.MiddlewareFunc()) // 定义受保护的路由 app.Get("/admin", jwtMiddleware.AuthorizeRole("admin"), func(ctx iris.Context) { ctx.Writef("Welcome admin!") }) app.Listen(":8080") } 3.2 结合OAuth2与JWT的策略决策树 为了进一步增强安全性,我们可以将OAuth2的授权状态纳入策略决策树中。这意味着,不仅需要验证用户的JWT,还需要检查OAuth2授权的状态,以确保用户具有访问特定资源的权限。 代码示例:结合OAuth2与JWT的策略决策 go package main import ( "github.com/kataras/iris/v12" jwt "github.com/appleboy/gin-jwt/v2" "golang.org/x/oauth2" ) // 自定义的OAuth2授权检查函数 func checkOAuth2Authorization(token oauth2.Token) bool { // 这里可以根据实际情况添加更多的检查逻辑 return token.Valid() } func main() { app := iris.New() jwtMiddleware, _ := jwt.New(&jwt.GinJWTMiddleware{ Realm: "test zone", Key: []byte("secret key"), Timeout: time.Hour, MaxRefresh: time.Hour, IdentityKey: "id", IdentityHandler: func(c jwt.Manager, ctx iris.Context) (interface{}, error) { claims := jwt.ExtractClaims(ctx) role := claims["role"].(string) return &MyCustomClaims{Role: role}, nil }, }) app.Use(jwtMiddleware.MiddlewareFunc()) app.Get("/secure-resource", jwtMiddleware.AuthorizeRole("user"), func(ctx iris.Context) { // 获取当前请求的JWT令牌 token := jwtMiddleware.TokenFromRequest(ctx.Request()) // 检查OAuth2授权状态 if !checkOAuth2Authorization(token) { ctx.StatusCode(iris.StatusUnauthorized) ctx.Writef("Unauthorized access") return } ctx.Writef("Access granted to secure resource") }) app.Listen(":8080") } 4. 总结与展望 通过以上讨论和代码示例,我们看到了如何在Iris框架中有效地使用JWT和OAuth2来构建一个智能的授权决策系统。这不仅提高了应用的安全性,还增强了用户体验。以后啊,随着技术不断进步,咱们可以期待更多酷炫的新方法来简化这些流程,让认证和授权变得超级高效又方便。 希望这篇探索之旅对你有所帮助,也欢迎你加入讨论,分享你的见解和实践经验!
2024-11-07 15:57:06
57
夜色朦胧
转载文章
... l {} ; 查找计算机中所有大于1mb的文件 find / -size +1M -a -type f 查找当前目录下名为hello.doc 的文档 find -name hello.doc 查找/root目录下所有名称以.log 结尾的文档 十、du命令 用来计算文件或目录的容量大小 命令格式: du 【选项】 【文件或目录】 命令选项: -h 人性化显示容量信息 -a 查看所有目录以及文件的容量信息 -s 仅显示总容量 实例1 du -h /opt 实例2 du -a /opt 实例3 du -s /opt 2.1.2查看文件内容 一、 cat 命令 cat命令用来查看文件内容 命令格式: cat 【选项】 【文件】 选项命令 -b 显示行号,空白行不显示行号 -n 显示行号,包含空白行 实例1. cat /opt/test 查看test里面的内容 实例2.cat -n /opt/test 显示行号 二、more命令和less命令 more命令可以分页查看文件内容,通过空格键查看下一页,q键则退出查看。 less命令也可以分页查看文件内容,空格是下一页,方向键可以上下翻页,q键退出查看 命令格式: more 【文件名】 用来查看指定文件 more -num 【文件名】 可以指定显示行数 less 【文件名】 查看指定文件 三、head 命令 head 命令可以查看文件头部内容,默认显示前10行 命令格式 head -6 【文件名】 显示的是文件前6行 head -n -6 【文件名】 显示除了最后6行最后的行 head -c 10 【文件名】显示前十个字节的数据 四、tail 命令 tail命令用来查看文件尾部内容,默认显示后10行 命令格式: tail -6 【文件名】 显示最后6行 tail -f 【文件名】即时显示文件中新写入的行 五、wc 命令 wc命令用来显示文件的行、单词与字节统计信息 命令格式: wc 【选项】【文件】 选项: -c 显示文件字节统计信息 -l 显示文件行数统计信息 -w 显示文件单词统计信息 实例1 依次显示文件的行数,单词数,字节数 实例2 使用-c选项显示文件的字节信息 实例3 使用-l 选项显示文件行数 实例4 使用-w选项显示文件单词个数 六、grep命令 grep命令用来查找关键字并打印匹配的值 命令格式: grep【选项】 匹配模式【文件】 选项: -i 查找时忽略大小写 -v 取反匹配 -w 匹配单词 –color 显示颜色 实例1 在test文件中过滤出包含a的行 实例2 过滤不包含a关键词的行 七、echo 命令 echo命令用来输出显示一行指定的字符串 实例1 显示一行普通的字符串 实例2 显示转义字符使用-e选项 本篇文章为转载内容。原文链接:https://blog.csdn.net/Zenian_dada/article/details/88669234。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-16 19:29:49
512
转载
Nacos
...用程序,它充分利用云计算的弹性、可扩展性和分布式优势。这类应用遵循微服务架构原则,采用容器化部署,并通过自动化运维工具进行管理,例如Kubernetes等容器编排系统,以及Nacos这样的配置中心服务,实现快速迭代、高可用和动态伸缩。 Nacos , Nacos是阿里巴巴开源的一款集服务发现、配置管理和服务元数据管理于一体的中间件产品。在云原生应用体系中,Nacos扮演着核心角色,为服务提供注册与发现能力,同时能够集中式地管理和分发配置信息,简化了分布式系统的搭建和维护工作。 LDAP(轻量级目录访问协议) , LDAP是一个开放的标准,用于在网络上查询和获取用户、组以及其他资源的相关信息。在本文语境中,Nacos可以集成LDAP认证服务,将用户的登录验证过程委托给LDAP服务器处理,从而增强Nacos控制台的安全性。这意味着用户需要通过LDAP服务器进行身份验证后,才能访问和操作Nacos中的配置信息。
2023-10-20 16:46:34
335
夜色朦胧_
MemCache
...的高性能、分布式内存对象缓存系统,在Web应用程序中扮演着关键角色,它能极大地提升动态Web应用的性能和可扩展性。不过,你知道吗?Memcached这家伙可纯粹是个临时记忆库,它并不支持数据长期存储这功能。也就是说,一旦服务器打了个盹(重启)或者撂挑子不干了(崩溃),那存放在它脑瓜子里的所有数据,就会瞬间蒸发得无影无踪。这就是咱们今天要重点唠一唠的话题——聊聊Memcached的数据丢失那些事儿。 2. Memcached的数据特性与潜在风险 (1)内存缓存与数据丢失 Memcached的设计初衷是提供临时性的高速数据访问服务,所有的数据都存储在内存中,而非硬盘上。这就意味着,如果突然出现个意外状况,比如系统崩溃啦,或者我们有意为之的重启操作,那内存里暂存的数据就无法原地待命了,会直接消失不见,这样一来,就难免会遇到数据丢失的麻烦喽。 python import memcache mc = memcache.Client(['localhost:11211'], debug=0) mc.set('key', 'value') 将数据存入Memcached 假设此时服务器突然宕机,'key'对应的'value'在重启后将不复存在 (2)业务场景下的影响 对于一些对数据实时性要求较高但又允许一定时间内数据短暂缺失的场景,如用户会话信息、热点新闻等,Memcached的数据丢失可能带来的影响相对有限。不过,在有些场景下,我们需要长期确保数据的一致性,比如你网购时的购物车信息、积分累计记录这些情况。万一这种数据丢失了,那可能就会影响你的使用体验,严重的话,甚至会引发一些让人头疼的业务逻辑问题。 3. 面对数据丢失的应对策略 (1)备份与恢复方案 虽然Memcached本身不具备数据持久化的功能,但我们可以通过其他方式间接实现数据的持久化。例如,可以定期将Memcached中的数据备份到数据库或其他持久化存储中: python 假设有一个从Memcached获取并持久化数据到MySQL的过程 def backup_to_mysql(): all_items = mc.get_multi(mc.keys()) for key, value in all_items.items(): save_to_mysql(key, value) 自定义保存到MySQL的函数 (2)组合使用Redis等具备持久化的缓存系统 另一个可行的方案是结合使用Redis等既具有高速缓存特性和又能持久化数据的系统。Redis不仅可以提供类似Memcached的内存缓存服务,还支持RDB和AOF两种持久化机制,能在一定程度上解决数据丢失的问题。 python import redis r = redis.Redis(host='localhost', port=6379, db=0) r.set('key', 'value') 在Redis中设置键值对,即使服务器重启,数据也能通过持久化机制得以恢复 (3)架构层面优化 在大型分布式系统中,可以通过设计冗余和分布式存储策略来降低单点故障带来的影响。比如,我们可以像搭积木那样部署多个Memcached实例,然后用一致性哈希这类聪明的算法给它们分配工作量和切分数据块。这样不仅能确保整体负载均衡,还能保证每一份数据都有好几个备份,分别存放在不同的节点上,就像把鸡蛋放在不同的篮子里一样,安全又可靠。 4. 结语 人类视角的理解与思考 面对Memcached数据丢失的问题,开发者们不能止步于理解其原理,更应积极寻求有效的应对策略。这就像生活中我们对待易逝的事物,尽管明白“天下无不散之筵席”,但我们依然会拍照留念、撰写日记,以期留住美好瞬间。同样,在我们使用Memcached这玩意儿的时候,也得充分了解它的脾性,借助一些巧妙的技术手段和设计架构,让数据既能痛快地享受高速缓存带来的速度福利,又能机智地避开数据丢失的坑。只有这样,我们的系统才能在效率与可靠性之间取得最佳平衡,更好地服务于业务需求。
2023-05-22 18:41:39
84
月影清风
Apache Lucene
... , 批量操作是指在计算机程序中一次性处理多个任务或数据项的操作方式。这种方式可以显著减少对系统资源的请求次数,从而提高整体处理效率。在Apache Lucene中,批量操作通常用于索引文档的添加、删除和更新,通过一次操作处理多个文档,而不是逐个处理,可以减少锁定资源的时间,降低死锁风险,并提高并发度和系统吞吐量。此外,批量操作还可以减少I/O操作次数,进一步提升性能。
2024-11-03 16:12:51
115
笑傲江湖
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
ln -s target link
- 创建符号链接。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"