前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[proxy_cache_bypass条件...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
.net
...、搞砸事情,什么竞争条件啦、数据混乱啦,各种麻烦接踵而至。就好比大家伙儿都盯着同一个饼干罐子,都想伸手拿饼干,但谁也没个规矩,结果不是抢得太猛把罐子摔了,就是谁都拿不痛快。所以啊,这种情况下,还是别让单例当这个“独裁者”了,分清楚责任才靠谱! 4.3 忘记注册依赖 有时候,我们可能会忘记注册某些依赖项。比如: csharp public class SomeClass { private readonly IAnotherService _anotherService; public SomeClass(IAnotherService anotherService) { _anotherService = anotherService; } } 如果IAnotherService没有被注册到DI容器中,那么在运行时就会抛出异常。为了避免这种情况,你可以使用AddScoped或AddTransient来确保所有依赖都被正确注册。 --- 5. 探讨与总结 通过今天的讨论,我们可以看到,虽然依赖注入能够极大地提高代码的质量和可维护性,但它并不是万能的。设置搞错了,那可就麻烦大了,小到一个单词拼错了,大到程序跑偏、东西乱套,什么幺蛾子都可能出现。 我的建议是,在使用DI框架时要多花时间去理解和实践。不要害怕犯错,因为正是这些错误教会了我们如何更好地编写代码。同时,也要学会利用工具和日志来帮助自己排查问题。 最后,我想说的是,编程不仅仅是解决问题的过程,更是一个不断学习和成长的过程。希望大家能够在实践中找到乐趣,享受每一次成功的喜悦! 好了,今天的分享就到这里啦,如果你有任何疑问或者想法,欢迎随时留言交流哦!😄
2025-05-07 15:53:50
43
夜色朦胧
Beego
...很容易地将日志输出到控制台或文件中。下面是一个使用 Beego 日志模块的例子: go package main import ( "github.com/beego/beego/v2/server/web" "log" ) func main() { // 设置日志级别 log.SetFlags(log.Ldate | log.Ltime | log.Lshortfile) // 加载配置文件 err := web.LoadAppConfig("ini", "./conf/app.conf") if err != nil { log.Fatalf("Failed to load configuration: %v", err) } // 继续执行其他逻辑 log.Println("Configuration loaded successfully.") } 在这个例子中,我们设置了日志的格式,并在加载配置文件时使用了 log.Fatalf 来记录错误信息。这样,即使程序崩溃,我们也能清楚地看到哪里出了问题。 4. 我的经验总结 经过多次实践,我发现处理配置文件解析错误的关键在于耐心和细心。很多时候,问题并不是特别复杂,只是我们一时疏忽导致的。所以啊,在写代码的时候,得养成好习惯,像时不时瞅一眼配置文件是不是整整齐齐的,别让那些键值对出问题,不然出了bug找起来可够呛。 同时,我也建议大家多利用 Beego 提供的各种工具和功能。Beego 是一个非常成熟的框架,它已经为我们考虑到了很多细节。只要我们合理使用这些工具,就能大大减少遇到问题的概率。 最后,我想说的是,编程其实是一个不断学习和成长的过程。当我们遇到困难时,不要气馁,也不要急于求成。静下心来,一步步分析问题,总能找到解决方案。这就跟处理配置文件出错那会儿似的,说白了嘛,只要你能沉住气,再琢磨出点门道来,这坎儿肯定能迈过去! 5. 结语 好了,今天的分享就到这里了。希望能通过这篇文章,让大家弄明白在 Beego 里怎么正确解决配置文件出错的问题,这样以后遇到类似情况就不会抓耳挠腮啦!如果你还有什么疑问或者更好的方法,欢迎随时跟我交流。我们一起进步,一起成为更优秀的开发者! 记住,编程不仅仅是解决问题,更是一种艺术。愿你在编程的道路上越走越远,越走越宽广!
2025-04-13 15:33:12
25
桃李春风一杯酒
转载文章
...既可以让程序员精确地控制堆上每一块内存,也让程序更容易发生crash,大大增加了使用指针的技术门槛。因此,从C++98开始便推出了auto_ptr,对裸指针进行封装,让程序员无需手动释放指针指向的内存区域,在auto_ptr生命周期结束时自动释放,然而,由于auto_ptr在转移指针所有权后会产生野指针,导致程序运行时crash,如下面示例代码所示: auto_ptr<int> p1(new int(10));auto_ptr<int> p2 = p1; //转移控制权p1 += 10; //crash,p1为空指针,可以用p1->get判空做保护 因此在C++11又推出了unique_ptr、shared_ptr、weak_ptr三种智能指针,慢慢取代auto_ptr。 unique_ptr的使用 unique_ptr是auto_ptr的继承者,对于同一块内存只能有一个持有者,而unique_ptr和auto_ptr唯一区别就是unique_ptr不允许赋值操作,也就是不能放在等号的右边(函数的参数和返回值例外),这一定程度避免了一些误操作导致指针所有权转移,然而,unique_str依然有提供所有权转移的方法move,调用move后,原unique_ptr就会失效,再用其访问裸指针也会发生和auto_ptr相似的crash,如下面示例代码,所以,即使使用了unique_ptr,也要慎重使用move方法,防止指针所有权被转移。 unique_ptr<int> up(new int(5));//auto up2 = up; // 编译错误auto up2 = move(up);cout << up << endl; //crash,up已经失效,无法访问其裸指针 除了上述用法,unique_ptr还支持创建动态数组。在C++中,创建数组有很多方法,如下所示: // 静态数组,在编译时决定了数组大小int arr[10];// 通过指针创建在堆上的数组,可在运行时动态指定数组大小,但需要手动释放内存int arr = new int[10];// 通过std::vector容器创建动态数组,无需手动释放数组内存vector<int> arr(10);// 通过unique_ptr创建动态数组,也无需手动释放数组内存,比vector更轻量化unique_ptr<int[]> arr(new int[10]); 这里需要注意的是,不管vector还是unique_ptr,虽然可以帮我们自动释放数组内存,但如果数组的元素是复杂数据类型时,我们还需要在其析构函数中正确释放内存。 真正的智能指针:shared_ptr auto_ptr和unique_ptr都有或多或少的缺陷,因此C++11还推出了shared_ptr,这也是目前工程内使用最多最广泛的智能指针,他使用引用计数(感觉有参考Objective-C的嫌疑),实现对同一块内存可以有多个引用,在最后一个引用被释放时,指向的内存才释放,这也是和unique_ptr最大的区别。 另外,使用shared_ptr过程中有几点需要注意: 构造shared_ptr的方法,如下示例代码所示,我们尽量使用shared_ptr构造函数或者make_shared的方式创建shared_ptr,禁止使用裸指针赋值的方式,这样会shared_ptr难于管理指针的生命周期。 // 使用裸指针赋值构造,不推荐,裸指针被释放后,shared_ptr就野了,不能完全控制裸指针的生命周期,失去了智能指针价值int p = new int(10);shared_ptr<int>sp = p;delete p; // sp将成为野指针,使用sp将crash// 将裸指针作为匿名指针传入构造函数,一般做法,让shared_ptr接管裸指针的生命周期,更安全shared_ptr<int>sp1(new int(10));// 使用make_shared,推荐做法,更符合工厂模式,可以连代码中的所有new,更高效;方法的参数是用来初始化模板类shared_ptr<int>sp2 = make_shared<int>(10); 禁止使用指向shared_ptr的裸指针,也就是智能指针的指针,这听起来就很奇怪,但开发中我们还需要注意,使用shared_ptr的指针指向一个shared_ptr时,引用计数并不会加一,操作shared_ptr的指针很容易就发生野指针异常。 shared_ptr<int>sp = make_shared<int>(10);cout << sp.use_count() << endl; //输出1shared_ptr<int> sp1 = &sp;cout << (sp1).use_count() << endl; //输出依然是1(sp1).reset(); //sp成为野指针cout << sp << endl; //crash 使用shared_ptr创建动态数组,在介绍unique_ptr时我们就讲过创建动态数组,而shared_ptr同样可以做到,不过稍微复杂一点,如下代码所示,除了要显示指定析构方法外(因为默认是T的析构函数,不是T[]),另外对外的数据类型依然是shared_ptr<T>,非常有迷惑性,看不出来是数组,最后不能直接使用下标读写数组,要先get()获取裸指针才可以使用下标。所以,不推荐使用shared_ptr来创建动态数组,尽量使用unique_ptr,这可是unique_ptr为数不多的优势了。 template <typename T>shared_ptr<T> make_shared_array(size_t size) {return shared_ptr<T>(new T[size], default_delete<T[]>());}shared_ptr<int>sp = make_shared_array(10); //看上去是shared<int>类型,实际上是数组sp.get()[0] = 100; //不能直接使用下标读写数组元素,需要通过get()方法获取裸指针后再操作 用shared_ptr实现多态,在我们使用裸指针时,实现多态就免不了定义虚函数,那么用shared_ptr时也不例外,不过有一处是可以省下的,就是析构函数我们不需要定义为虚函数了,如下面代码所示: class A {public:~A() {cout << "dealloc A" << endl;} };class B : public A {public:~B() {cout << "dealloc B" << endl;} };int main(int argc, const char argv[]) {A a = new B();delete a; //只打印dealloc Ashared_ptr<A>spa = make_shared<B>(); //析构spa是会先打印dealloc B,再打印dealloc Areturn 0;} 循环引用,笔者最先接触引用计数的语言就是Objective-C,而OC中最常出现的内存问题就是循环引用,如下面代码所示,A中引用B,B中引用A,spa和spb的强引用计数永远大于等于1,所以直到程序退出前都不会被退出,这种情况有时候在正常的业务逻辑中是不可避免的,而解决循环引用的方法最有效就是改用weak_ptr,具体可见下一章。 class A {public:shared_ptr<B> b;};class B {public:shared_ptr<A> a;};int main(int argc, const char argv[]) {shared_ptr<A> spa = make_shared<A>();shared_ptr<B> spb = make_shared<B>();spa->b = spb;spb->a = spa;return 0;} //main函数退出后,spa和spb强引用计数依然为1,无法释放 刚柔并济:weak_ptr 正如上一章提到,使用shared_ptr过程中有可能会出现循环引用,关键原因是使用shared_ptr引用一个指针时会导致强引用计数+1,从此该指针的生命周期就会取决于该shared_ptr的生命周期,然而,有些情况我们一个类A里面只是想引用一下另外一个类B的对象,类B对象的创建不在类A,因此类A也无需管理类B对象的释放,这个时候weak_ptr就应运而生了,使用shared_ptr赋值给一个weak_ptr不会增加强引用计数(strong_count),取而代之的是增加一个弱引用计数(weak_count),而弱引用计数不会影响到指针的生命周期,这就解开了循环引用,上一章最后的代码使用weak_ptr可改造为如下代码。 class A {public:shared_ptr<B> b;};class B {public:weak_ptr<A> a;};int main(int argc, const char argv[]) {shared_ptr<A> spa = make_shared<A>();shared_ptr<B> spb = make_shared<B>();spa->b = spb; //spb强引用计数为2,弱引用计数为1spb->a = spa; //spa强引用计数为1,弱引用计数为2return 0;} //main函数退出后,spa先释放,spb再释放,循环解开了使用weak_ptr也有需要注意的点,因为既然weak_ptr不负责裸指针的生命周期,那么weak_ptr也无法直接操作裸指针,我们需要先转化为shared_ptr,这就和OC的Strong-Weak Dance有点像了,具体操作如下:shared_ptr<int> spa = make_shared<int>(10);weak_ptr<int> spb = spa; //weak_ptr无法直接使用裸指针创建if (!spb.expired()) { //weak_ptr最好判断是否过期,使用expired或use_count方法,前者更快spb.lock() += 10; //调用weak_ptr转化为shared_ptr后再操作裸指针}cout << spa << endl; //20 智能指针原理 看到这里,智能指针的用法基本介绍完了,后面笔者来粗浅地分析一下为什么智能指针可以有效帮我们管理裸指针的生命周期。 使用栈对象管理堆对象 在C++中,内存会分为三部分,堆、栈和静态存储区,静态存储区会存放全局变量和静态变量,在程序加载时就初始化,而堆是由程序员自行分配,自行释放的,例如我们使用裸指针分配的内存;而最后栈是系统帮我们分配的,所以也会帮我们自动回收。因此,智能指针就是利用这一性质,通过一个栈上的对象(shared_ptr或unique_ptr)来管理一个堆上的对象(裸指针),在shared_ptr或unique_ptr的析构函数中判断当前裸指针的引用计数情况来决定是否释放裸指针。 shared_ptr引用计数的原理 一开始笔者以为引用计数是放在shared_ptr这个模板类中,但是细想了一下,如果这样将shared_ptr赋值给另一个shared_ptr时,是怎么做到两个shared_ptr的引用计数同时加1呢,让等号两边的shared_ptr中的引用计数同时加1?不对,如果还有第二个shared_ptr再赋值给第三个shared_ptr那怎么办呢?或许通过下面的类图便清楚个中奥秘。 [ boost中shared_ptr与weak_ptr类图 ] 我们重点关注shared_ptr<T>的类图,它就是我们可以直接操作的类,这里面包含裸指针T,还有一个shared_count的对象,而shared_count对象还不是最终的引用计数,它只是包含了一个指向sp_counted_base的指针,这应该就是真正存放引用计数的地方,包括强应用计数和弱引用计数,而且shared_count中包含的是sp_counted_base的指针,不是对象,这也就意味着假如shared_ptr<T> a = b,那么a和b底层pi_指针指向的是同一个sp_counted_base对象,这就很容易做到多个shared_ptr的引用计数永远保持一致了。 多线程安全 本章所说的线程安全有两种情况: 多个线程操作多个不同的shared_ptr对象 C++11中声明了shared_ptr的计数操作具有原子性,不管是赋值导致计数增加还是释放导致计数减少,都是原子性的,这个可以参考sp_counted_base的源码,因此,基于这个特性,假如有多个shared_ptr共同管理一个裸指针,那么多个线程分别通过不同的shared_ptr进行操作是线程安全的。 多个线程操作同一个shared_ptr对象 同样的道理,既然C++11只负责sp_counted_base的原子性,那么shared_ptr本身就没有保证线程安全了,加入两个线程同时访问同一个shared_ptr对象,一个进行释放(reset),另一个读取裸指针的值,那么最后的结果就不确定了,很有可能发生野指针访问crash。 作者:腾讯技术工程 https://mp.weixin.qq.com/s?__biz=MjM5ODYwMjI2MA==&mid=2649743462&idx=1&sn=c9d94ddc25449c6a0052dc48392a33c2&utm_source=tuicool&utm_medium=referralmp.weixin.qq.com 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_31467557/article/details/113049179。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-24 18:25:46
141
转载
Hadoop
...“DataNode Cache”。打开这个功能之后啊,那些经常用到的数据就会被暂时存到内存里,这样下次再用的时候就嗖的一下快多了! 启用步骤: bash hadoop dfsadmin -setSpaceQuota 100g /cachedir hadoop dfs -cache /inputfile /cachedir 四、总结与展望 通过今天的讨论,我相信大家都对HDFS读取速度慢的原因有了更深的理解。其实,无论是网络延迟、数据本地性还是磁盘I/O瓶颈,都不是不可克服的障碍。其实吧,只要咱们肯花点心思去琢磨、去试试,肯定能找出个适合自己情况的办法。 最后,我想说的是,作为一名技术人员,我们应该始终保持好奇心和探索精神。不要害怕失败,也不要急于求成,因为每一次挫折都是一次成长的机会。希望这篇文章能给大家带来启发,让我们一起努力,让Hadoop变得更加高效可靠吧! --- 以上就是我对“HDFS读取速度慢”的全部看法和建议。如果你还有其他想法或者遇到类似的问题,请随时留言交流。咱们共同进步,一起探索大数据世界的奥秘!
2025-05-04 16:24:39
103
月影清风
转载文章
...操作系统级别的功能如控制组(cgroups)和命名空间(namespaces)来实现这一目标。每个运行态容器都有自己的独立进程空间,限制了它们对CPU、内存、网络、磁盘等资源的访问,并且让容器内的进程看起来像是在独立的操作系统环境中运行。 镜像层(Image Layer) , 在Docker镜像结构中,镜像层是构成镜像的基本单元。每一个镜像层代表了对文件系统的一次修改或新增内容,且每一层都包含相应的元数据以及指向其父层的指针。镜像层之间采用堆叠的方式组合在一起,形成最终的镜像。这种分层的设计使得镜像能够高效地复用已有的层,并且便于跟踪和理解镜像的历史变更记录。在创建容器时,基于镜像最上面加上一层可读写层,从而保证了容器具有独立的存储空间,可以在不改变镜像本身的情况下进行持久化存储或者动态调整。
2023-11-26 15:47:20
538
转载
转载文章
...急数据缓冲区及其相关控制变量等。通过half_stream结构体,Libnids能够有效地管理和分析TCP连接中的数据传输情况。 端口扫描 , 端口扫描是一种网络安全检测技术,也是攻击者探测目标主机开放服务、寻找潜在漏洞的重要手段。在本文上下文中,Libnids库具备检测端口扫描攻击的能力,通过设定参数scan_num_hosts和scan_delay等,可以监控同时扫描的端口数量和两次扫描之间的间隔时间,当发现有超出阈值的端口扫描活动时,会触发相应的警告或防御机制,帮助管理员识别并抵御可能的网络攻击。
2023-02-08 17:36:31
306
转载
Docker
... 登录Rancher控制台。 2. 点击“Add Cluster”按钮。 3. 输入目标节点的信息(IP地址、SSH密钥等)。 4. 等待几分钟,Rancher会自动为你安装必要的组件。 一旦节点加入成功,你就可以直接在这个界面上部署应用了。比如,用Kubernetes部署一个Redis集群: bash kubectl create deployment redis --image=redis:alpine kubectl expose deployment redis --type=LoadBalancer --port=6379 虽然这条命令看起来很简单,但它背后实际上涉及到了复杂的调度逻辑和网络配置。而Rancher把这些复杂的事情封装得很好,让我们可以专注于业务本身。 --- 5. Traefik 反向代理与负载均衡的最佳拍档 最后要介绍的是Traefik,这是一个轻量级的反向代理工具,专门用来处理HTTP请求的转发和负载均衡。它最厉害的地方啊,就是能跟Docker完美地融为一体,还能根据容器上的标签,自动调整路由规则呢! 比如说,你有两个服务分别监听在8080和8081端口,现在想通过一个域名访问它们。只需要给这两个容器加上相应的标签: yaml labels: - "traefik.enable=true" - "traefik.http.routers.service1.rule=Host(service1.example.com)" - "traefik.http.services.service1.loadbalancer.server.port=8080" - "traefik.http.routers.service2.rule=Host(service2.example.com)" - "traefik.http.services.service2.loadbalancer.server.port=8081" 这样一来,当用户访问service1.example.com时,Traefik会自动将请求转发到监听8080端口的容器;而访问service2.example.com则会指向8081端口。这种方式不仅高效,还极大地减少了配置的工作量。 --- 6. 总结 找到最适合自己的工具 好了,到这里咱们已经聊了不少关于服务器管理工具的话题。从Docker到Portainer,再到Rancher和Traefik,每一种工具都有其独特的优势和适用场景。 我的建议是,先根据自己的需求确定重点。要是你只想弄个小玩意儿,图个省事儿快点搞起来,那用Docker配个Portainer就完全够用了。但要是你们团队一起干活儿,或者要做大范围的部署,那Rancher这种专业的“老司机工具”就得安排上啦! 当然啦,技术的世界永远没有绝对的答案。其实啊,很多时候你会发现,最适合你的工具不一定是最火的那个,而是那个最合你心意、用起来最顺手的。就像穿鞋一样,别人觉得好看的根本不合脚,而那双不起眼的小众款却让你走得又稳又舒服!所以啊,在用这些工具的时候,别光顾着看,得多动手试试,边用边记下自己的感受和想法,这样你才能真的搞懂它们到底有啥门道! 好了,今天的分享就到这里啦!如果你还有什么问题或者想法,欢迎随时留言交流哦~咱们下次再见啦!
2025-04-16 16:05:13
97
月影清风_
Sqoop
...者存在一些复杂的约束条件时,Sqoop就表现得不太友好。 --- 二、Sqoop作业失败的背后 接下来,让我们一起深入探讨一下这个问题。说实话,刚开始接触Sqoop那会儿,我对它是怎么工作的压根儿没弄明白,稀里糊涂的。我以为只要配置好连接信息,然后指定源表和目标路径就行了。但实际上,Sqoop并不是这么简单的工具。 当我第一次遇到作业失败的情况时,内心是崩溃的。屏幕上显示的错误信息密密麻麻,但仔细一看,其实都是些常见的问题。打个比方啊,Sqoop这家伙一碰到一些特别的符号,比如空格或者换行符,就容易“翻车”,直接给你整出点问题来。还有呢,有时候因为网络卡了一下,延迟太高,Sqoop就跟服务器说拜拜了,连接就这么断了,挺烦人的。 有一次,我在尝试将一张包含大量JSON字段的表导出到HDFS时,Sqoop直接报错了。我当时就在心里嘀咕:“为啥别的工具处理起来轻轻松松的事儿,到Sqoop这儿就变得这么棘手呢?”后来,我一咬牙,开始翻遍各种资料,想着一定要找出个解决办法来。 思考与尝试: 经过一番研究,我发现Sqoop默认情况下并不会对数据进行深度解析,这意味着如果数据本身存在问题,Sqoop可能无法正确处理。所以,为了验证这个假设,我又做了一次测试。 bash sqoop import \ --connect jdbc:mysql://localhost:3306/mydatabase \ --username root \ --password mypassword \ --table problematic_table \ --fields-terminated-by '\t' \ --lines-terminated-by '\n' 这次我特意指定了分隔符和换行符,希望能避免之前遇到的那些麻烦。嘿,没想到这次作业居然被我搞定了!中间经历了不少波折,不过好在最后算是弄懂了个中奥秘,也算没白费功夫。 --- 三、透明性的重要性 Sqoop到底懂不懂我的需求? 说到Sqoop的透明性,我觉得这是一个非常重要的概念。所谓的透明性嘛,简单来说,就是Sqoop能不能明白咱们的心思,然后老老实实地按咱们想的去干活儿,不添乱、不出错!显然,在我遇到的这些问题中,Sqoop的表现并不能让人满意。 举个例子来说,假设你有一个包含多列的大表,其中某些列的数据类型比较复杂(例如数组、嵌套对象等)。在这种情况下,Sqoop可能会因为无法正确识别这些数据类型而失败。更糟糕的是,它并不会给出明确的提示,而是默默地报错,让你一头雾水。 为了更好地应对这种情况,我在后续的工作中加入了更多的调试步骤。比如说啊,你可以先用describe这个命令去看看表的结构,确保所有的字段都乖乖地被正确识别了;接着呢,再用--check-column这个选项去瞅一眼,看看有没有重复的记录藏在里面。这样一来,虽然增加了工作量,但至少能减少不必要的麻烦。 示例代码: bash sqoop job --create my_job \ -- import \ --connect jdbc:mysql://localhost:3306/mydatabase \ --username root \ --password mypassword \ --table employees \ --check-column id \ --incremental append \ --last-value 0 这段代码展示了如何创建一个增量作业,用于定期更新目标目录中的数据。通过这种方式,可以有效避免一次性加载过多数据带来的性能瓶颈。 --- 四、总结与展望 与Sqoop共舞 总的来说,尽管Sqoop在某些场景下表现得不尽人意,但它依然是一个强大的工具。通过不断学习和实践,我相信自己能够更加熟练地驾驭它。未来的计划里,我特别想试试一些更酷的功能,比如说用Sqoop直接搞出Avro文件,或者把Spark整进来做分布式计算,感觉会超级带劲! 最后,我想说的是,技术这条路从来都不是一帆风顺的。遇到困难并不可怕,可怕的是我们因此放弃努力。正如那句话所说:“失败乃成功之母。”只要保持好奇心和求知欲,总有一天我们会找到属于自己的答案。 如果你也有类似的经历,欢迎随时交流!我们一起进步,一起成长! --- 希望这篇文章对你有所帮助,如果有任何疑问或者想要了解更多细节,请随时告诉我哦!
2025-03-22 15:39:31
94
风中飘零
Hadoop
...op支持文件的跨访问控制协议迁移 一、初识Hadoop 为什么它如此重要? 嗨,朋友们!如果你对大数据处理感兴趣,那你一定听说过Hadoop这个名字。嘿,作为一个码农,我跟Hadoop的初次见面真的把我惊呆了!它的功能太牛了,感觉就像发现了一个全新的世界,简直太酷了吧!简单说呢,Hadoop就是一个开源的“大数据管家”,专门负责存东西、弄数据,而且不管数据多到啥程度,它都能应付得漂漂亮亮的!它就像是一个超级仓库,可以轻松应对各种规模的数据任务。 为什么Hadoop这么受欢迎呢?因为它解决了传统数据库在处理大规模数据时的瓶颈问题。比如说啊,你在一家电商公司当数据分析师,每天的工作就是跟上亿条用户的点击、浏览、下单这些行为记录打交道,简直就像在海量的信息海洋里淘宝一样!如果用传统的数据库,可能早就崩溃了。但Hadoop不一样,它可以将这些数据分散到多个服务器上进行并行处理,效率杠杠的! 不过,Hadoop的魅力远不止于此。嘿,大家好!今天我想跟你们分享一个关于Hadoop的超棒功能——它居然能让你在不同的访问控制协议之间轻松切换文件!是不是听着就很带感?哎呀,是不是觉得这事听着有点绕?别慌,我这就用大白话给你说道说道,保证你一听就明白! --- 二、什么是跨访问控制协议迁移? 首先,我们得明白什么是访问控制协议。简单说,就是规定谁可以访问你的数据以及他们能做些什么的规则。好比说啊,你有个公共文件柜,你想让一些人只能打开看看里面的东西,啥都不能动;但另外一些人呢,不仅能看,还能随便改,甚至直接把东西清空或者拿走。这就是访问控制协议的作用。 那么,“跨访问控制协议迁移”又是什么意思呢?想象一下,你有两个不同的系统,它们各自有自己的访问控制规则。比如说,一个是Linux那边的ACL(访问控制列表)系统,另一个则是Windows里的NTFS权限系统,两者各有各的玩法。现在,你要把文件从一个系统迁移到另一个系统,而且你还想保留原来的访问控制设置。这就需要用到跨访问控制协议迁移的技术了。 为什么要关心这个功能呢?因为现实世界中,企业往往会有多种操作系统和存储环境。要是你对文件的权限管理不当,那可就麻烦了,要么重要数据被泄露出去,要么一不小心就把东西给搞砸了。而Hadoop通过其强大的灵活性,完美地解决了这个问题。 --- 三、Hadoop如何实现跨访问控制协议迁移? 接下来,让我们来看看Hadoop是如何做到这一点的。其实,这主要依赖于Hadoop的分布式文件系统(HDFS)和它的API库。为了更好地理解,我们可以一步步来分析。 3.1 HDFS的基本概念 HDFS是Hadoop的核心组件之一,它是用来存储大量数据的分布式文件系统。这就像是一个超大号的硬盘,不过它有点特别,不是集中在一个地方存东西,而是把数据切成小块,分散到不同的“小房间”里去。这样做的好处是即使某个节点坏了,也不会影响整个系统的运行。 HDFS还提供了一套丰富的接口,允许开发者自定义文件的操作行为。这就为实现跨访问控制协议迁移提供了可能性。 3.2 实现步骤 实现跨访问控制协议迁移大致分为以下几个步骤: (1)读取源系统的访问控制信息 第一步是获取源系统的访问控制信息。比如,如果你正在从Linux系统迁移到Windows系统,你需要先读取Linux上的ACL配置。 java // 示例代码:读取Linux ACL import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import java.io.IOException; public class AccessControlReader { public static void main(String[] args) throws IOException { Path path = new Path("/path/to/source/file"); FileSystem fs = FileSystem.get(new Configuration()); // 获取ACL信息 String acl = fs.getAclStatus(path).toString(); System.out.println("Source ACL: " + acl); } } 这段代码展示了如何使用Hadoop API读取Linux系统的ACL信息。可以看到,Hadoop已经为我们封装好了相关的API,调用起来非常方便。 (2)转换为目标系统的格式 接下来,我们需要将读取到的访问控制信息转换为目标系统的格式。比如,将Linux的ACL转换为Windows的NTFS权限。 java // 示例代码:模拟ACL到NTFS的转换 public class AclToNtfsConverter { public static void convert(String linuxAcl) { // 这里可以编写具体的转换逻辑 System.out.println("Converting ACL to NTFS: " + linuxAcl); } } 虽然这里只是一个简单的打印函数,但实际上你可以根据实际需求编写复杂的转换算法。 (3)应用到目标系统 最后一步是将转换后的权限应用到目标系统上。这一步同样可以通过Hadoop提供的API来完成。 java // 示例代码:应用NTFS权限 public class NtfsPermissionApplier { public static void applyPermissions(Path targetPath, String ntfsPermissions) { try { // 模拟应用权限的过程 System.out.println("Applying NTFS permissions to " + targetPath.toString() + ": " + ntfsPermissions); } catch (Exception e) { e.printStackTrace(); } } } 通过这三个步骤,我们就完成了从源系统到目标系统的访问控制协议迁移。 --- 四、实战演练 一个完整的案例 为了让大家更直观地理解,我准备了一个完整的案例。好啦,想象一下,我们现在要干的事儿就是把一个文件从一台Linux服务器搬去Windows服务器,而且还得保证这个文件在新家里的“门禁权限”跟原来一模一样,不能搞错! 4.1 准备工作 首先,确保你的开发环境中已经安装了Hadoop,并且配置好相关的依赖库。此外,还需要准备两台机器,一台装有Linux系统,另一台装有Windows系统。 4.2 编写代码 接下来,我们编写代码来实现迁移过程。首先是读取Linux系统的ACL信息。 java // 读取Linux ACL Path sourcePath = new Path("/source/file.txt"); FileSystem linuxFs = FileSystem.get(new Configuration()); String linuxAcl = linuxFs.getAclStatus(sourcePath).toString(); System.out.println("Linux ACL: " + linuxAcl); 然后,我们将这些ACL信息转换为NTFS格式。 java // 模拟ACL到NTFS的转换 AclToNtfsConverter.convert(linuxAcl); 最后,将转换后的权限应用到Windows系统上。 java // 应用NTFS权限 Path targetPath = new Path("\\\\windows-server\\file.txt"); NtfsPermissionApplier.applyPermissions(targetPath, "Full Control"); 4.3 执行结果 执行完上述代码后,你会发现文件已经被成功迁移到了Windows系统,并且保留了原有的访问控制设置。是不是很神奇? --- 五、总结与展望 通过这篇文章,我相信你对Hadoop支持文件的跨访问控制协议迁移有了更深的理解。Hadoop不仅是一个强大的工具,更是一种思维方式的转变。它就像个聪明的老师,不仅教我们怎么用分布式的思路去搞定问题,还时不时敲打我们:嘿,别忘了数据的安全和规矩可不能丢啊! 未来,随着技术的发展,Hadoop的功能会越来越强大。我希望你能继续探索更多有趣的话题,一起在这个充满挑战的世界里不断前行! 加油吧,程序员们!
2025-04-29 15:54:59
80
风轻云淡
ZooKeeper
...提供的更细粒度的流量控制功能。总之,随着分布式系统规模的不断扩大,如何高效利用现有工具并持续创新将成为未来发展的关键。希望这些前沿技术和最佳实践能为读者带来启发,助力企业在数字化转型中抢占先机。
2025-03-16 15:37:44
11
林中小径
Redis
...分布式锁需要满足哪些条件: 1. 互斥性 同一时刻只能有一个客户端持有锁。 2. 可靠性 即使某个客户端崩溃了,锁也必须自动释放,避免死锁。 3. 公平性 排队等待的客户端应该按照请求顺序获取锁。 4. 可重入性(可选) 允许同一个客户端多次获取同一个锁。 现在我们就来一步步实现这些功能。 示例代码 1:最基本的分布式锁实现 python import redis import time def acquire_lock(redis_client, lock_key, timeout=10): 尝试加锁,设置过期时间为timeout秒 result = redis_client.set(lock_key, "locked", nx=True, ex=timeout) return bool(result) def release_lock(redis_client, lock_key): 使用Lua脚本来保证解锁的安全性 script = """ if redis.call("get", KEYS[1]) == ARGV[1] then return redis.call("del", KEYS[1]) else return 0 end """ redis_client.eval(script, keys=[lock_key], args=["locked"]) 这段代码展示了最基础的分布式锁实现方式。我们用set命令设置了两个参数:一个是NX,意思是“只在key不存在的时候才创建”,这样就能避免重复创建;另一个是EX,给这个锁加了个过期时间,相当于设了个倒计时,万一客户端挂了或者出问题了,锁也能自动释放,就不会一直卡在那里变成死锁啦。最后,解锁的时候我们用了Lua脚本,这样可以保证操作的原子性。 --- 4. 如何解决锁的隔离性问题? 诶,说到这里,问题来了——如果两个不同的业务逻辑都需要用到同一个锁怎么办?比如订单系统和积分系统都想操作同一个用户的数据,这时候就需要考虑锁的隔离性了。换句话说,我们需要确保不同业务逻辑之间的锁不会互相干扰。 示例代码 2:基于命名空间的隔离策略 python def acquire_namespace_lock(redis_client, namespace, lock_name, timeout=10): 构造带命名空间的锁名称 lock_key = f"{namespace}:{lock_name}" result = redis_client.set(lock_key, "locked", nx=True, ex=timeout) return bool(result) def release_namespace_lock(redis_client, namespace, lock_name): lock_key = f"{namespace}:{lock_name}" script = """ if redis.call("get", KEYS[1]) == ARGV[1] then return redis.call("del", KEYS[1]) else return 0 end """ redis_client.eval(script, keys=[lock_key], args=["locked"]) 在这个版本中,我们在锁的名字前面加上了命名空间前缀,比如orders:place_order和points:update_score。这样一来,不同业务逻辑就可以使用独立的锁,避免相互影响。 --- 5. 进阶 如何处理锁竞争与性能优化? 当然啦,现实中的分布式锁并不会总是那么顺利,有时候会出现大量请求同时争抢同一个锁的情况。这时我们可能需要引入队列机制或者批量处理的方式来降低系统的压力。 示例代码 3:使用Redis的List模拟队列 python def enqueue_request(redis_client, queue_key, request_data): redis_client.rpush(queue_key, request_data) def dequeue_request(redis_client, queue_key): return redis_client.lpop(queue_key) def process_queue(redis_client, lock_key, queue_key): while True: 先尝试获取锁 if not acquire_lock(redis_client, lock_key): time.sleep(0.1) 等待一段时间再重试 continue 获取队列中的第一个请求并处理 request = dequeue_request(redis_client, queue_key) if request: handle_request(request) 释放锁 release_lock(redis_client, lock_key) 这段代码展示了如何利用Redis的List结构来管理请求队列。想象一下,好多用户一起抢同一个东西,场面肯定乱哄哄的对吧?这时候,咱们就让他们老老实实排成一队,然后派一个专门的小哥挨个儿去处理他们的请求。这样一来,大家就不会互相“打架”了,事情也能更顺利地办妥。 --- 6. 总结与反思 兄弟们,通过今天的讨论,我相信大家都对如何在Redis中实现分布式锁有了更深刻的理解了吧?虽然Redis本身已经足够强大,但我们仍然需要根据实际需求对其进行适当的扩展和优化。比如刚才提到的命名空间隔离、队列机制等,这些都是非常实用的小技巧。 不过呢,我也希望大家能记住一点——技术永远不是一成不变的。业务越做越大,技术也日新月异的,咱们得不停地充电,学点新鲜玩意儿,试试新招数才行啊!就像今天的分布式锁一样,也许明天就会有更高效、更优雅的解决方案出现。所以,保持好奇心,勇于探索未知领域,这才是程序员最大的乐趣所在! 好了,今天就聊到这里啦,祝大家在编程的路上越走越远!如果有任何疑问或者想法,欢迎随时找我交流哦~
2025-04-22 16:00:29
59
寂静森林
ElasticSearch
...表示集群存在某种阻塞条件的异常类,通常会在集群状态异常(如缺乏活跃节点或资源不足)时抛出。文章中提到的blocked by: SERVICE_UNAVAILABLE/2/no active shards 即是一种ClusterBlockException的表现形式。当磁盘空间耗尽或节点宕机时,Elasticsearch会阻止写入或查询操作,直到问题得到解决。这种机制旨在保护数据完整性和避免进一步的资源消耗,因此需要运维人员密切关注集群状态并采取相应措施,例如释放磁盘空间或重启受影响的节点。 磁盘水位阈值 , 这是Elasticsearch中用于监控磁盘使用率的一组配置参数,主要包括low、high和flood_stage三个级别。当磁盘使用率低于low阈值时,Elasticsearch不会采取任何行动;达到high阈值时,集群会限制写入操作以保护剩余空间;超过flood_stage阈值时,所有写入操作将被完全禁止,直到磁盘空间得到释放。文章中提到的cluster.routing.allocation.disk.watermark配置项正是用来定义这些阈值的,默认值分别为85%、90%和95%。合理设置这些参数能够有效预防磁盘空间耗尽引发的NodeNotActiveException,从而保障集群的稳定运行。
2025-03-14 15:40:13
64
林中小径
转载文章
...IME_GE'])控制器def main(page):if config['TYPE']==1:print('~~~~~按用户ID采集~~~~~')listurl = 'https://v.douyu.com/video/author/getAuthorVideoListByNew?up_id={0}&cate2_id=0&limit=30&page={1}'.format(config['UID'],page)get_list_html = get_content_requests(listurl)if get_list_html:list_json = get_list(get_list_html.text,1)if list_json:list_get_kong(list_json)else:print('~~~~~按列表ID采集~~~~~')listurl = 'https://v.douyu.com/video/video/listData?page={1}&cate2Id={0}&action=new'.format(config['CID'],page)get_list_html = get_content_requests(listurl)if get_list_html:list_json = get_list(get_list_html.text,2)if list_json:list_get_kong(list_json)初始化if __name__=='__main__':if config['POOL']:groups = [x for x in range(config['PAGE_START'],config['PAGE_END']+1)]pool = Pool()pool.map(main, groups)else:for item in range(config['PAGE_START'],config['PAGE_END']+1):main(item)print('~~~~~已经完成【所有操作】~~~~~') 总结:众所周知,BiliBili是一个学习的网站! 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_35875470/article/details/89857445。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-18 11:34:00
119
转载
转载文章
...SQL的定义、操作、控制、查询语言的用法 MongoDB入门学习(三):MongoDB的增删查改 赋值、浅复制和深复制解析 以及get/set应用 他是吴恩达导师,被马云聘为「达摩院」首座 Jordan 标准型定理 列主元的Gauss-Jordan消元法-python实现 Jordan 块的几何 若尔当型(The Jordan form) 第七章 其他神经网络类型 解决迁移系统后无法配置启用WindowsRE环境的问题 宝塔面板迁移系统盘/www到数据盘/home 使用vmware vconverter从物理机迁移系统到虚拟机P2V 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_62695120/article/details/124510157。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-08 20:01:49
68
转载
转载文章
...方式,并指出其在版本控制和功能扩展方面的灵活性。 MariaDB主从复制 , MariaDB主从复制是数据库高可用性架构的一种实现方式,它通过将主数据库(Master)的数据变化实时同步到一个或多个从数据库(Slave),从而达到数据备份、负载均衡和故障恢复的目的。在实际操作中,需要在主库上配置二进制日志记录所有更改,并在从库上设置为读取并执行这些日志文件中的变更,确保主从数据库间的数据一致性。在文中,作者详细描述了如何在Mariadb中配置主从复制环境,包括修改配置文件、授权复制权限以及查看主库状态等关键步骤。
2023-07-12 10:11:01
311
转载
转载文章
...合原理,能够通过精确控制红、绿、蓝(RGB)三原色光源的强度比,实时生成并调整数百万种颜色,这项技术对于显示器制造、舞台灯光设计以及印刷行业等领域具有重大意义。 同时,在教育领域,美国麻省理工学院的研究者们正将类似的颜色叠加实验引入到K-12科学课程中,以培养学生的跨学科思维能力,通过动手实验让学生直观理解光学原理,并与数学计算相结合,提升他们解决实际问题的能力。 此外,艺术家和设计师也在利用颜色叠加的原理进行创新实践。例如,荷兰艺术家埃舍尔借助颜色叠加创作出视错觉艺术作品,展示出二维空间内不同颜色相互作用产生的神奇效果。而在时尚界,设计师们通过面料上的颜色叠加与透明度变化,营造出丰富多变且极具层次感的视觉体验。 总的来说,颜色叠加这一基本原理不仅在科普实验中有生动体现,更在科技、教育、艺术等多个领域发挥着重要作用,不断推动着人类对色彩世界的深入理解和广泛利用。
2024-01-20 16:20:26
468
转载
转载文章
...rface portproxy show all 1) 第三方软件PortTunnel。 2) ICS(Internet Connection Sharing)是NAT的简化版。 3) showcase: USB Reverse Tethering 3.6 route命令用法 route [-f] [-p] [command [destination] [mask netmask] [gateway] [metric metric] [if interface]] route print ::增加一条到192.168.0.10/24网络的路由,网关是192.168.0.1,最后一个if参数是数字,可以使用route print查询,类似于Android的NetId。 route add 192.168.0.0 mask 255.255.255.0 192.168.0.1 metric 1 if 11 ::删除192.168.0.10这条路由 route delete 192.168.0.0 3.7 VLAN PowerShell Get-NetAdapter PowerShell Set-NetAdapterAdvancedProperty -Name \"Ethernet 3\" -DisplayName \"VLAN ID\" -DisplayValue 24 PowerShell Reset-NetAdapterAdvancedProperty -Name \"Ethernet 3\" -DisplayName \"VLAN ID\" 3.8 WiFi AP 1) get password netsh wlan show profiles netsh wlan show profiles name="FAST_ABCD" key=clear 2) enable Soft AP netsh wlan show drivers ::netsh wlan set hostednetwork mode=allow netsh wlan set hostednetwork mode=allow ssid=myWIFI key=12345678 netsh wlan start hostednetwork ::netsh wlan stop hostednetwork 3.9 Malicious software Task Manager Find process name, open file location, remove xxx.exe, rename empty xxx.txt to xxx.exe 4 Office 4.1 Excel Insert Symbol More Symbols Wingdings 2 4.2 Outlook 4.2.1 邮箱清理 点击 自己的邮件名字 Data File Properties(数据文件属性) Folder Size(文件夹大小) Server Data(服务器数据) 从左下角“导航选项”中切换到“日历” View(视图) Change View(更改视图) List(列表) 删除“日历”中过期的项目。 Calendar (Left Bottom) - View (Change View to Calendar) - Choose Menu Month 4.2.2 TCAM filter rule Home - ... - Rules - Create Rule (Manage Rules & Alerts) - Title 4.3 Powerpoint画图 插入 - > 形状 Insert - > Shapes 4.4 Word 升级目录 [References][Update Table] 5 Sprax EA 5.1 Basic Design - Toolbox Message/Argument/Return Value Publish - Save - Save to Clipboard 5.2 Advanced Copy/Paste - Copy to Clipboard - Full Structure for Duplication Copy/Paste - Paste Package from Clipboard 6 USB Win7 CMD: wmic path Win32_PnPSignedDriver | find "Android" wmic path Win32_PnPSignedDriver | find "USB" :: similar to Linux lsusb wmic path Win32_USBControllerDevice get Dependent 7 Abbreviations CAB: Capacity Approval Board NPcap: Nmap Packet Capture wmic: Windows Management Instrumentation Command-line 本篇文章为转载内容。原文链接:https://blog.csdn.net/zoosenpin/article/details/118596813。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-10 16:27:10
271
转载
Ruby
...ncurrent::CachedThreadPool,它会根据当前的任务数量自动调整线程的数量。 修正后的代码: ruby 使用缓存线程池 require 'concurrent' pool = Concurrent::CachedThreadPool.new 20.times do |i| pool.post do sleep(1) puts "Task {i} completed" end end sleep(10) 给线程池足够的时间完成任务 pool.shutdown pool.wait_for_termination 总结: 线程池就像一把双刃剑,用得好可以提升效率,用不好则会成为负担。记住,线程池的大小要根据实际情况灵活调整。 --- 6. 示例四 忽略异常的代价 场景描述: 并发编程的一个常见问题是,线程中的异常不容易被察觉。如果你没有妥善处理这些异常,程序可能会因为一个小错误而崩溃。 问题出现: 假设你有一个线程在执行某个操作时抛出了异常,但你没有捕获它,那么整个线程池可能会因此停止工作。 代码示例: ruby 忽略异常的代码 threads = [] 5.times do |i| threads << Thread.new do raise "Error in thread {i}" if i == 2 puts "Thread {i} completed" end end threads.each(&:join) 分析: 在这个例子中,当i == 2时,线程会抛出一个异常。哎呀糟糕!因为我们没抓住这个异常,程序直接就挂掉了,别的线程啥的也别想再跑了。 解决方案: 为了防止这种情况发生,我们应该在每个线程中添加异常捕获机制。比如,可以用begin-rescue-end结构来捕获异常并进行处理。 修正后的代码: ruby 捕获异常的代码 threads = [] 5.times do |i| threads << Thread.new do begin raise "Error in thread {i}" if i == 2 puts "Thread {i} completed" rescue => e puts "Thread {i} encountered an error: {e.message}" end end end threads.each(&:join) 总结: 异常就像隐藏在暗处的敌人,稍不注意就会让你措手不及。学会捕获和处理异常,是成为一个优秀的并发编程者的关键。 --- 7. 结语 好了,今天的分享就到这里啦!并发编程确实是一项强大的技能,但也需要谨慎对待。大家看看今天这个例子,是不是觉得有点隐患啊?希望能引起大家的注意,也学着怎么避开这些坑,别踩雷了! 最后,我想说的是,编程是一门艺术,也是一场冒险。每次遇到新挑战,我都觉得像打开一个神秘的盲盒,既兴奋又紧张。不过呢,光有好奇心还不够,还得有点儿耐心,就像种花一样,得一点点浇水施肥,不能急着看结果。相信只要我们不断学习、不断反思,就一定能写出更加优雅、高效的代码! 祝大家编码愉快!
2025-04-25 16:14:17
33
凌波微步
转载文章
...O过程提供准确的初始条件。这个过程中要求IMU在采集这些数据时处于静止状态,以便准确提取出重力分量。
2023-09-13 20:38:56
310
转载
转载文章
...SpringBoot控制器中,就利用了Range请求头的信息来判断并执行文件的切片下载操作。
2023-01-19 08:12:45
546
转载
Kafka
...nt.bytes来控制。默认值是1GB,你可以根据实际情况调整。要是日志文件太大了,查个东西就像在大海捞针一样慢吞吞的;但要是弄得太小吧,又老得换新的日志文件,麻烦得很,还费劲。 --- 4. 实战演练 从零搭建一个Kafka环境 说了这么多理论,咱们来实际操作一下吧!假设我们要搭建一个简单的Kafka环境,用来收集用户的登录日志。 4.1 安装Kafka和Zookeeper 首先,我们需要安装Kafka和Zookeeper。可以从官网下载最新的二进制包,解压后按照文档配置即可。 bash 下载Kafka wget https://downloads.apache.org/kafka/3.4.0/kafka_2.13-3.4.0.tgz 解压 tar -xzf kafka_2.13-3.4.0.tgz 4.2 创建主题和消费者 接下来,我们创建一个名为login_logs的主题,并启动一个消费者来监听消息。 bash 创建主题 bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 3 --topic login_logs 启动消费者 bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic login_logs --from-beginning 4.3 生产消息 最后,我们可以编写一个简单的Java程序来生产消息。 java import org.apache.kafka.clients.producer.KafkaProducer; import org.apache.kafka.clients.producer.ProducerRecord; import java.util.Properties; public class KafkaProducerExample { public static void main(String[] args) { Properties props = new Properties(); props.put("bootstrap.servers", "localhost:9092"); props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer"); props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); KafkaProducer producer = new KafkaProducer<>(props); for (int i = 0; i < 10; i++) { producer.send(new ProducerRecord<>("login_logs", "key" + i, "value" + i)); } producer.close(); } } 这段代码会向login_logs主题发送10条消息,每条消息都有一个唯一的键和值。 --- 5. 总结 Kafka的魅力在于细节 好了,到这里咱们的Kafka之旅就告一段落了。通过这篇文章,我希望大家能更好地理解Kafka的命名规范和组织结构。Kafka为啥这么牛?因为它在设计的时候真是把每个小细节都琢磨得特别透。就像给主题起名字吧,分个区啦,还有消费者组怎么配合干活儿,这些地方都能看出人家确实是下了一番功夫的,真不是随便凑合出来的! 当然,Kafka的学习之路还有很多内容需要探索,比如监控、调优、安全等等。其实我觉得啊,只要你把命名的规矩弄明白了,东西该怎么放也心里有数了,那你就算是走上正轨啦,成功嘛,它就已经在向你招手啦!加油吧,朋友们! --- 希望这篇文章对你有所帮助,如果有任何疑问,欢迎随时交流哦!
2025-04-05 15:38:52
96
彩虹之上
转载文章
...述的(有一个参数可以控制对象最小对齐的大小,默认是8字节,实际上Java在JVM中还有一些附加信息,所以对齐后最小的Java对象是16字节),很多Java对象可能是几十个字节或者几百个字节,所以用一个字节描述一个区域是有意义的。但是我没有找到512的来源,为什么512效果最好?没有相应的数据来支持这个数字,而且这个值不可以配置,不能修改,但是有理由相信512字节的区域是为了节约内存额外开销。按照这个值,1MB的内存只需要2KB的额外空间就能描述引用关系。这又带来另一个问题,就是512字节里面的内存可能被引用多次,所以这是一个粗略的关系描述,那么在使用的时候需要遍历这512字节。 再举一个例子,假设有两个对象B、C都在这512字节的区域内。为了方便处理,记录对象引用关系的时候,都使用对象的起始位置,然后用这个地址和512对齐,因此B和C对象的卡表指针都指向这一个卡表的位置。那么对于引用处理也有可有两种处理方法:·处理的时候会以堆分区为处理单位,遍历整个堆分区,在遍历的时候,每次都会以对象大小为步长,结合卡表,如果该卡表中对应的位置被设置,则说明对象和其他分区的对象发生了引用。具体内容在后文中介绍Refine的时候还会详细介绍。·处理的时候借助于额外的数据结构,找到真正对象的位置,而不需要从头开始遍历。在后文的并发标记处理时就使用了这种方法,用于找到第一个对象的起始位置。在G1除了512字节粒度的卡表之外,还有bitMap,例如使用bitMap可以描述一个分区对另外一个分区的引用情况。在JVM中bitMap使用非常多,例如还可以描述内存的分配情况。 在G1除了512字节粒度的卡表之外,还有bitMap,例如使用bitMap可以描述一个分区对另外一个分区的引用情况。在JVM中bitMap使用非常多,例如还可以描述内存的分配情况。G1在混合收集算法中用到了并发标记。在并发标记的时候使用了bitMap来描述对象的分配情况。例如1MB的分区可以用16KB(16KB×ObjectAlignmentInBytes×8=1MB)来描述,即16KB额外的空间。其中ObjectAlignmentInBytes是8字节,指的是对象对齐,第二个8是指一个字节有8位。即每一个位可以描述64位。例如一个对象长度对齐之后为24字节,理论上它占用3个位来描述这个24字节已被使用了,实际上并不需要,在标记的时候只需要标记这3个位中的第一个位,再结合堆分区对象的大小信息就能准确找出。其最主要的目的是为了效率,标记一个位和标记3个位相比能节约不少时间,如果对象很大,则更划算。这些都是源码的实现细节,大家在阅读源码时需要细细斟酌。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_16500963/article/details/132133125。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-16 20:37:50
247
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
lsof -i :port_number
- 查找占用指定端口的进程。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"