前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Beego框架路由规则]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Logstash
...或运行。 2. 过滤规则错误 错误的过滤逻辑可能导致重要信息丢失或误报,影响数据分析的准确性。 3. 目标配置问题 错误的目标配置(如日志存储位置或传输协议)可能导致数据无法正确传递或存储。 4. 性能瓶颈 配置不当可能导致资源消耗过大,影响系统性能或稳定性。 三、案例分析 数据审计失败的场景 假设我们正在审计一家电商公司的用户购买行为数据,目的是识别异常交易模式。配置了如下Logstash管道: json input { beats { port => 5044 } } filter { grok { match => { "message" => "%{TIMESTAMP_ISO8601:time} %{SPACE} %{NUMBER:amount} %{SPACE} %{IPORHOST:host}" } } mutate { rename => { "amount" => "transactionAmount" } add_field => { "category" => "purchase" } } } output { elasticsearch { hosts => ["localhost:9200"] index => "purchase_data-%{+YYYY.MM.dd}" } } 在这段配置中,如果elasticsearch输出配置错误,例如将hosts配置为无效的URL或端口,那么数据将无法被正确地存储到Elasticsearch中,导致审计数据缺失。 四、避免错误的策略 1. 详细阅读文档 了解每个插件的使用方法和限制,避免常见的配置陷阱。 2. 单元测试 在部署前,对Logstash配置进行单元测试,确保所有组件都能按预期工作。 3. 代码审查 让团队成员进行代码审查,可以发现潜在的错误和优化点。 4. 使用模板和最佳实践 借鉴社区中成熟的配置模板和最佳实践,减少自定义配置时的试错成本。 5. 持续监控 部署后,持续监控Logstash的日志和系统性能,及时发现并修复可能出现的问题。 五、总结与展望 通过深入理解Logstash的工作原理和常见错误,我们可以更加有效地利用这一工具,确保数据审计流程的顺利进行。嘿,兄弟!听好了,你得记着,犯错不是啥坏事,那可是咱成长的阶梯。每次摔一跤,都是咱向成功迈进一步的机会。咱们就踏踏实实多练练手,不断调整,优化策略。这样,咱就能打造出让人心头一亮的实时数据处理系统,既高效又稳当,让别人羡慕去吧!哎呀,随着科技这艘大船的航行,未来的Logstash就像个超级多功能的瑞士军刀,越来越厉害了!它能干的事儿越来越多,改进也是一波接一波的,简直就是我们的得力助手,帮咱们轻松搞定大数据这滩浑水,让数据处理变得更简单,更高效!想象一下,未来,它能像魔术师一样,把复杂的数据问题变个无影无踪,咱们只需要坐享其成,享受数据分析的乐趣就好了!是不是超期待的?让我们一起期待Logstash在未来发挥更大的作用,推动数据驱动决策的进程。
2024-09-15 16:15:13
152
笑傲江湖
MyBatis
...,在用MyBatis框架开发的时候,因为对事务隔离级别的理解不够深入,结果搞得自己的操作影响到了别人的事务,真是忙中出乱啊。希望通过这个故事,能够帮助你更好地理解和使用MyBatis中的事务管理。 1. 事务的基本概念 在开始我们的故事之前,让我们先来了解一下什么是事务。嘿,你知道吗?所谓的事务就是一系列的数据库操作,就像一串动作连贯的舞蹈一样,要么这整套动作都完美完成,要么就干脆一个都不做,这样就能保证数据一直保持整齐和准确啦!在很多人同时用一个系统的时候,事务处理得好不好特别关键,因为这关系到系统的稳定不稳,还有数据对不对得准。 2. 事务隔离级别的定义 在数据库中,事务隔离级别是用来控制多个事务并发执行时的行为。不同的隔离级别就像是给每个事务戴上了不同厚度的“眼镜”。有的眼镜让你能看到别人改了啥,有的则让你啥也看不见,只能看到自己改的东西。这样就能控制一个事务能看到另一个事务做了哪些数据修改,以及这些修改对它来说是不是看得见。常见的隔离级别包括: - 读未提交(Read Uncommitted):最低级别,允许一个事务看到另一个事务未提交的数据。 - 读已提交(Read Committed):标准的SQL隔离级别,保证一个事务只能看到另一个事务提交后的数据。 - 可重复读(Repeatable Read):保证在一个事务内多次读取同一数据的结果是一致的,即使其他事务对这些数据进行了更新。 - 串行化(Serializable):最高的隔离级别,它确保所有事务按顺序执行,避免了幻读问题。 3. 设置不当的事务隔离级别 现在,让我们进入正题——当事务隔离级别设置不当会带来什么后果。想象一下,你正在打造一个超级好用的网购平台,里面有个超赞的功能——就是让用户可以把心仪的商品随便往购物车里扔,就跟平时逛超市一样爽!为了保证大家用起来顺心,而且数据别出岔子,在用户往购物车里加东西的时候,得确保其他用户的操作不会搞出乱子。 但是,如果我们在MyBatis的配置文件中设置了不恰当的事务隔离级别,比如说将隔离级别设为Read Uncommitted,那么就可能会遇到一些预料之外的问题。比如说,有个人正打算把东西加到购物车里,结果这时候另一个人正在更新商品信息,而且这更新还没完呢。这时候,第一个用户可能会发现购物车里多了不该有的东西,或者是商品数量莫名其妙增加了,这样一来,数据就乱套了。 4. 如何正确设置事务隔离级别 为了避免上述问题的发生,我们应该根据具体的应用场景选择合适的事务隔离级别。对于大多数Web应用来说,推荐使用Read Committed作为默认的隔离级别。这个隔离级别刚刚好,既能确保数据一致,又不会拖系统并发性能的后腿。 下面,我将通过一个简单的MyBatis配置示例来展示如何设置事务隔离级别: xml 在这个配置中,我们通过标签指定了事务隔离级别为READ_COMMITTED。这样一来,就算你应用里的并发事务多到像是菜市场一样热闹,数据依然能稳得跟老牛一样,不会乱套。 5. 结语 通过今天的分享,我希望你已经对MyBatis中的事务隔离级别有了更深的理解,并且学会了如何正确设置它们来避免潜在的问题。记得啊,在搞数据库操作的时候,给事务隔离级别整得合适特别重要,这样能让咱们的系统变得更稳当、更靠谱。当然啦,这只是一个开始嘛。等你对MyBatis和数据库事务机制越来越熟悉之后,你就会发现更多的窍门来提升系统的性能和保证数据的一致性了。希望你在未来的编程旅程中不断进步,享受每一次技术探索的乐趣! --- 以上就是我为你准备的文章。如果你有任何疑问或想要了解更多关于MyBatis的知识,请随时告诉我!
2024-11-12 16:08:06
33
烟雨江南
Kafka
...od亲和性和反亲和性规则,可以确保Kafka相关Pod部署在满足特定条件(如网络拓扑、硬件资源等)的节点上,从而优化网络通信路径,降低网络延迟。
2023-10-14 15:41:53
467
寂静森林
Mahout
...作,建立跨国数据治理框架,促进全球数据安全与隐私保护的统一标准。 总的来说,大数据时代下的隐私保护与数据伦理问题需要全社会的共同努力。技术革新、政策引导、公众意识提升三方面齐头并进,才能有效应对这一系列挑战,确保数据在促进社会发展的同时,也能维护个人的基本权利。
2024-09-01 16:22:51
63
海阔天空
RabbitMQ
... 2.3 权限规则 权限控制通过正则表达式来定义,这意味着你可以非常灵活地控制哪些用户能做什么,不能做什么。比如说,你可以设定某个用户只能看到名字以特定字母开头的队列,或者干脆不让某些用户碰特定的交换机。 3. 实战演练 动手配置权限控制 理论讲完了,接下来就让我们一起动手,看看如何在RabbitMQ中配置权限控制吧! 3.1 创建用户 首先,我们需要创建一些用户。假设我们有两个用户:alice 和 bob。打开命令行工具,输入以下命令: bash rabbitmqctl add_user alice password rabbitmqctl set_user_tags alice administrator rabbitmqctl add_user bob password 这里,alice 被设置为管理员,而 bob 则是普通用户。注意,这里的密码都设为 password,实际使用时可要改得复杂一点哦! 3.2 设置vhost 接着,我们需要创建一个虚拟主机,并分配给这两个用户: bash rabbitmqctl add_vhost my-vhost rabbitmqctl set_permissions -p my-vhost alice "." "." "." rabbitmqctl set_permissions -p my-vhost bob "." "." "." 这里,我们给 alice 和 bob 都设置了通配符权限,也就是说他们可以在 my-vhost 中做任何事情。当然,这只是个示例,实际应用中你肯定不会这么宽松。 3.3 精细调整权限 现在,我们来试试更精细的权限控制。假设我们只想让 alice 能够管理队列,但不让 bob 做这件事。我们可以这样设置: bash rabbitmqctl set_permissions -p my-vhost alice "." "." "." rabbitmqctl set_permissions -p my-vhost bob "." "^bob-queue-" "^bob-queue-" 在这个例子中,alice 可以对所有资源进行操作,而 bob 只能对以 bob-queue- 开头的队列进行读写操作。 3.4 使用API进行权限控制 除了命令行工具外,RabbitMQ还提供了HTTP API来管理权限。例如,要获取特定用户的权限信息,可以发送如下请求: bash curl -u admin:admin-password http://localhost:15672/api/permissions/my-vhost/alice 这里的 admin:admin-password 是你的管理员账号和密码,my-vhost 和 alice 分别是你想要查询的虚拟主机名和用户名。 4. 总结与反思 通过上面的操作,相信你已经对RabbitMQ的权限控制有了一个基本的认识。不过,值得注意的是,权限控制并不是一劳永逸的事情。随着业务的发展,你可能需要不断调整权限设置,以适应新的需求。所以,在设计权限策略的时候,咱们得想远一点,留有余地,这样系统才能长久稳定地运转下去。 最后,别忘了,安全永远是第一位的。就算是再简单的消息队列系统,我们也得弄个靠谱的权限管理,不然咱们的数据安全可就悬了。希望这篇文章对你有所帮助,如果你有任何疑问或建议,欢迎留言交流! --- 这就是今天的分享了,希望大家能够从中获得灵感,并在自己的项目中运用起来。记住啊,不管多复杂的系统,到最后不就是为了让人用起来更方便,生活过得更舒心嘛!加油,程序员朋友们!
2024-12-18 15:31:50
103
梦幻星空
Netty
...个超级能打的网络应用框架,用它来开发那种异步又事件驱动的应用简直不要太轻松,分分钟让你的程序飞起来!说到消息队列,其实就是怎么高效地处理和盯紧那些在各个网络间跑来跑去的信息啦。 为什么我们需要监控消息队列呢?想象一下,当你正在处理大量数据或者需要确保通信的可靠性时,消息队列的健康状态直接关系到系统的稳定性和性能。因此,了解如何监控它们是至关重要的。 2. Netty中的消息队列基础 在深入探讨之前,让我们先了解一下Netty中的消息队列是如何工作的。Netty通过ChannelPipeline来处理网络数据流,而ChannelHandler则是Pipeline中的处理单元。当数据到达或从Channel发出时,会依次通过这些处理器进行处理。你可以把消息队列想象成一个大大的“数据篮子”,放在这些处理器之间。当处理器忙不过来或者还没准备好处理新数据时,就可以先把数据暂存在这个“篮子”里,等它们空闲了再拿出来处理。这样就能让整个流程更顺畅啦! 例如,假设我们有一个简单的EchoServer,在这个服务器中,客户端发送一条消息,服务器接收并返回同样的消息给客户端。在这个过程中,消息队列充当了存储待处理消息的角色。 java public class EchoServerInitializer extends ChannelInitializer { @Override protected void initChannel(SocketChannel ch) throws Exception { ChannelPipeline pipeline = ch.pipeline(); // 添加编码器和解码器 pipeline.addLast(new StringEncoder()); pipeline.addLast(new StringDecoder()); // 添加业务处理器 pipeline.addLast(new EchoServerHandler()); } } 在这个例子中,虽然没有直接展示消息队列,但通过ChannelPipeline和ChannelHandler,我们可以间接地理解消息是如何被处理的。 3. 实现消息队列的监控 现在,让我们进入正题,看看如何实现对Netty消息队列的监控。要达到这个目的,我们可以用一些现成的东西,比如说自己定义的ChannelInboundHandler和ChannelOutboundHandler,再加上Netty自带的一些监控工具,比如Metrics。这样操作起来会方便很多。 3.1 自定义Handler 首先,我们需要创建自定义的ChannelHandler来记录消息的入队和出队情况。你可以试试在处理方法里加点日志记录,这样就能随时掌握每条消息的动态啦。 java public class MonitorHandler extends SimpleChannelInboundHandler { @Override protected void channelRead0(ChannelHandlerContext ctx, String msg) throws Exception { System.out.println("Received message: " + msg); // 记录消息入队时间 long enqueueTime = System.currentTimeMillis(); // 处理消息... // 记录消息出队时间 long dequeueTime = System.currentTimeMillis(); System.out.println("Message processed in " + (dequeueTime - enqueueTime) + " ms"); } } 3.2 使用Metrics Netty本身并不直接提供监控功能,但我们可以通过集成第三方库(如Micrometer)来实现这一目标。Micrometer让我们能轻松把应用的性能数据秀出来,这样后面分析和监控就方便多了。 java import io.micrometer.core.instrument.MeterRegistry; import io.micrometer.core.instrument.Timer; // 初始化MeterRegistry MeterRegistry registry = new SimpleMeterRegistry(); // 在自定义Handler中使用Micrometer public class MicrometerMonitorHandler extends SimpleChannelInboundHandler { private final Timer timer; public MicrometerMonitorHandler() { this.timer = Timer.builder("message.processing") .description("Time taken to process messages") .register(registry); } @Override protected void channelRead0(ChannelHandlerContext ctx, String msg) throws Exception { Timer.Sample sample = Timer.start(registry); // 处理消息 sample.stop(timer); } } 4. 总结与反思 通过上述步骤,我们已经成功地为Netty中的消息队列添加了基本的监控能力。然而,这只是一个起点。在实际操作中,你可能会遇到更多需要处理的事情,比如说怎么应对错误,怎么监控那些不正常的状况之类的。另外,随着系统变得越来越复杂,你可能得找一些更高级的工具来解决问题,比如说用分布式追踪系统(比如Jaeger或者Zipkin),这样你才能更好地了解整个系统的运行状况和性能表现。 最后,我想说的是,技术总是在不断进步的,保持学习的心态是非常重要的。希望这篇文章能够激发你对Netty和消息队列监控的兴趣,并鼓励你在实践中探索更多可能性! --- 这就是我们的文章,希望你喜欢这种更有人情味的叙述方式。如果你有任何疑问或想要了解更多细节,请随时提问!
2024-11-04 16:34:13
317
青春印记
Kotlin
...持续加速,各种工具、框架和库的丰富为开发者提供了更加便捷、高效的工作环境。 趋势一:多平台开发能力的强化 Kotlin的多平台开发能力是其一大亮点,不仅支持Android开发,还扩展到了iOS、JavaScript、服务器端Java应用程序等领域。这种跨平台能力使得开发者能够使用统一的语言进行不同平台的应用开发,大大提升了开发效率和代码复用性。例如,通过Kotlin/Native技术,开发者可以将Kotlin编写的代码直接编译为原生应用,实现高性能的同时保持代码的一致性。 趋势二:社区活跃度与生态建设 随着Kotlin社区的不断壮大,各种开源项目层出不穷,从基础库到高级框架,从工具到文档,形成了一个完善的生态系统。这不仅降低了新开发者的学习门槛,也为现有开发者提供了丰富的资源和技术支持。活跃的社区氛围鼓励了知识分享和问题解决,促进了技术的快速迭代和创新。 挑战一:迁移成本与学习曲线 对于已有大量Java代码的项目,迁移至Kotlin可能会面临较高的成本,包括代码转换、团队培训以及适应新语言特性的过程。此外,Kotlin的一些新特性,如函数式编程支持和协程,对于习惯于传统编程范式的开发者来说,可能需要一定时间去理解和掌握。 挑战二:生态系统成熟度 尽管Kotlin的生态系统正在迅速发展,但与成熟的Java生态相比,某些高级库和工具可能仍处于起步阶段。这可能会影响大型项目的开发效率,尤其是对于依赖于特定框架或库的项目而言。 解决方案与展望 针对上述挑战,开发者可以从多个角度寻找解决方案。首先,利用现有的迁移工具和服务,逐步将现有代码迁移到Kotlin,同时进行团队培训,提升整体技能水平。其次,积极利用社区资源,参与开源项目,既可以获得技术支持,也能加深对Kotlin的理解。最后,随着Kotlin生态的不断完善,预期未来会有更多高质量的库和工具出现,为开发者提供更强大的支持。 总之,Kotlin作为一门功能强大、易于学习的编程语言,正以其独特的魅力和强大的生态系统,引领着现代软件开发的趋势。面对挑战,通过持续学习、优化工作流程和利用社区资源,开发者能够最大化地发挥Kotlin的优势,推动项目和自身技术能力的共同成长。
2024-08-23 15:40:12
95
幽谷听泉
Netty
...e , 在Netty框架中,ChannelFuture是异步I/O操作的结果容器。当对网络连接执行诸如建立连接、读写数据等操作时,这些操作通常是异步的,不会立即返回结果,而是返回一个ChannelFuture对象。通过注册监听器到这个对象上,开发者可以在操作完成或失败时得到通知,并进一步处理成功或异常情况。 FutureListener , FutureListener是Netty中的一个接口,它定义了一个方法operationComplete(ChannelFuture future)。当与之关联的ChannelFuture的状态发生变化(例如,连接成功或失败)时,该方法会被调用。通过实现FutureListener并将其添加到ChannelFuture中,开发者可以实时监控和响应网络事件,如在网络中断后采取相应的恢复措施。 NIO (Non-blocking Input/Output) , NIO是一种编程模型,允许Java程序进行非阻塞式的输入输出操作。相较于传统的阻塞式I/O,NIO可以让单个线程同时处理多个通道(Channel)上的事件,提高系统的并发性能。在Netty中,NIO作为底层基石,使得服务器能够在一个线程中高效地处理大量并发连接请求,避免了为每个连接创建单独线程带来的资源消耗问题。 心跳检测机制 , 心跳检测机制是一种用于检测网络连接是否正常的策略。在网络通信过程中,客户端和服务端会定期发送心跳包(一种特殊的、通常包含简单信息的数据包),以确认对方仍处于活跃状态。如果在一定时间内未收到心跳包回应,则可推断网络连接可能已经中断,进而触发重新连接或其他故障恢复流程。 重连机制 , 在出现网络中断的情况下,重连机制是指系统自动尝试重新建立网络连接的过程。在本文中,当Netty服务器检测到网络中断或者心跳检测失败时,会启动重连机制,通过循环尝试连接,直到成功建立新的连接为止,从而保证服务的连续性和可用性。
2023-02-27 09:57:28
137
梦幻星空-t
c++
...择。特别是在深度学习框架中,如TensorFlow和PyTorch的底层实现,C++的高效性发挥了关键作用。此外,C++在区块链技术、物联网(IoT)和安全软件开发中的应用也逐渐增加,展示了其在不同技术领域的广泛适应性。 未来展望 展望未来,C++将继续在高性能计算、嵌入式系统、游戏开发以及需要高安全性应用的开发中发挥重要作用。随着开源社区的持续发展和标准组织如ISO/IEC JTC1/SC22/WG21(C++标准委员会)的不断努力,C++标准将持续演进,引入新的特性,提高语言的可读性、可维护性和跨平台兼容性。同时,C++的社区将不断探索与新兴技术的结合,如与云计算、大数据分析、虚拟现实(VR)和增强现实(AR)等领域的融合,以推动更多创新应用的诞生。 总之,C++作为一门经典而又充满活力的语言,其在现代软件开发中的地位不容忽视。随着技术的不断进步和应用场景的拓展,C++有望在未来的软件生态系统中扮演更加多元化和重要的角色。 --- 以上内容基于C++在当前技术环境下的现状和未来发展趋势进行撰写,旨在提供关于C++在现代软件开发中角色的全面视角及对其未来的展望。
2024-10-06 15:36:27
113
雪域高原
Maven
...个使用Express框架的简单Node.js应用。用npm,我们就能超级方便地装和管这些依赖,让项目的维护变得简单多了。 4. 跨平台部署的挑战与解决方案 尽管Maven和npm各自在其领域内表现出色,但在跨平台部署时,我们仍然会遇到一些挑战。例如,不同操作系统之间的差异可能会导致构建失败。为了应对这些问题,我们可以采取以下几种策略: - 标准化构建环境:确保所有开发和生产环境都使用相同的工具版本和配置。 - 容器化技术:利用Docker等容器技术来封装整个应用及其依赖,从而实现真正的跨平台一致性。 - 持续集成/持续部署(CI/CD):通过Jenkins、GitLab CI等工具实现自动化的构建和部署流程,减少人为错误。 5. 结语 拥抱变化,享受技术带来的乐趣 在这次旅程中,我们不仅了解了Maven和npm的基本概念和使用方法,还探讨了如何利用它们进行跨平台部署。技术这东西啊,变化莫测,但只要你保持好奇心,愿意不断学习,就能一步步往前走,还能从中找到不少乐子呢!不管是搞Java的小伙伴还是喜欢Node.js的朋友,都能用上这些给力的工具,让你的项目管理技能更上一层楼!希望这篇分享能够激发你对技术的好奇心,让我们一起在编程的海洋中畅游吧! --- 通过这样的结构和内容安排,我们不仅介绍了Maven和npm的基本知识,还穿插了个人思考和实际操作的例子,力求让文章更加生动有趣。希望这样的方式能让你感受到技术背后的温度和乐趣!
2024-12-07 16:20:37
31
青春印记
Apache Atlas
...在请求失败后按照预设规则自动重新发起请求。例如,在Python requests库中,可以通过配置Retry对象来设定总重试次数、重试间隔以及针对特定HTTP状态码进行重试,以增加在不稳定网络环境下成功获取数据的概率。
2024-01-10 17:08:06
412
冬日暖阳
转载文章
...park等大数据处理框架也广泛应用了元组的概念,以高效地表示和处理多维数据。在处理大规模数据分析任务时,用户可以通过创建不同类型的元组来表达复杂的键值对或更丰富的数据结构,从而更好地适应多样化的大数据场景。 在未来,随着JDK的发展和社区对数据结构需求的深入挖掘,元组类库可能会进一步丰富和完善,提供更为灵活且高性能的API,使得开发者能够更加自如地在各类项目中运用元组这一强大的工具,解决更多类型安全和数据组合的问题。而随着Java模块化系统(JPMS)的成熟,对于元组库的依赖管理也将更加便捷,有助于推动其在更多实际项目中的落地应用。
2023-09-17 17:43:51
258
转载
Tomcat
...了一种灵活的任务执行框架,支持线程池、任务提交、任务取消等功能,极大地简化了并发编程的实现过程。理解这些工具的工作原理和适用场景,是构建并发系统的第一步。 实践应用:案例分析与最佳实践 实践是检验理论的唯一标准。通过分析经典的并发编程案例,如生产者-消费者模型、银行账户余额更新等,可以深入了解并发控制的难点和解决方案。例如,在生产者-消费者模型中,通过合理使用信号量、锁等机制,可以避免资源竞争和死锁的发生。此外,遵循一些最佳实践,如使用原子变量、避免过早同步、合理设计线程间的通信方式等,可以在实践中有效减少并发编程的复杂性。 时效性与实时更新:并发编程的新趋势 随着云计算、大数据、人工智能等领域的快速发展,多线程编程的应用场景不断扩展,同时也带来了新的挑战。例如,异步编程、非阻塞算法、无锁编程等新兴技术正在逐步改变传统的并发编程范式。同时,JDK的不断迭代也引入了诸如NIO、Stream API、CompletableFuture等新特性,为并发编程提供了更多便利。因此,持续关注并发编程领域的最新研究动态和技术发展,对于提升系统性能、增强软件鲁棒性具有重要意义。 结语:从理论到实践的桥梁 Java并发编程是一门深奥且实用的技术,它既考验着开发者对语言特性的深刻理解,又要求具备良好的工程实践能力。通过理论学习与实践探索相结合的方式,可以逐步掌握并发编程的核心技巧,构建出既高效又稳定的多线程系统。在这个过程中,不断积累经验、反思错误、优化方案,是通往高手之路的必经之路。 通过本文的探讨,希望能激发读者对Java并发编程的兴趣,鼓励他们在实践中不断探索,最终成为精通并发编程的高手。
2024-08-07 16:07:16
54
岁月如歌
CSS
...就是一种挺实用的命名规则,你可以把函数名想象成一只可爱的小骆驼,每个单词首字母都像驼峰一样高高地耸起来,这样一来,不仅看起来顺眼,读起来也朗朗上口,更容易让人记住。这样可以让我们的代码更加清晰易懂,也可以减少出错的可能性。 其次是要注意作用域的限制。在JavaScript这个编程语言里,每个函数都拥有自己的独立小天地,也就是作用域。这就意味着,当我们呼唤一个函数来干活的时候,得留个心眼儿,千万要注意别跨出这个小天地去调用还没被定义过的函数,否则就可能闹出“函数未定义”的乌龙事件。 最后是要注意版本兼容性。假如我们正在玩转一些最新的JavaScript黑科技,但心里也得惦记着那些还在用老旧浏览器的用户群体。这就意味着,咱们还得琢磨琢磨怎么在这些老爷爷级别的浏览器上,找到能兼容这些新特性的备选方案,让它们也能顺畅运行起来。这就意味着咱们得摸清楚各个浏览器的不同版本之间是怎么个兼容法,还有学会如何运用各种小工具和技巧来对付这些可能出现的兼容性问题。 总之,“js函数未定义”的问题是一个比较常见的问题,但是只要我们注意一些基本的原则和技巧,就能够有效地避免这个问题。希望本文能够对你有所帮助,如果你还有其他的问题,欢迎随时联系我。
2023-08-12 12:30:02
429
岁月静好_t
转载文章
...@是自动化变量,表示规则中的目标文件集。我们知道OBJECTDIR为obj_native,所以$@为obj_native。 mkdir $@生成obj_native目录。 但是这个依赖关系链,怎么会涉及到obj_native的? 调试了一下: 在生成CONTIKI_OBJECTFILES所代表的文件时,目录不存在,会先找依赖关系生成目录,再生成具体文件。 所以mkdir obj_native会被执行。 (2) ifdef APPSAPPDS = ${wildcard ${foreach DIR, $(APPDIRS), ${addprefix $(DIR)/, $(APPS)} }} \${wildcard ${addprefix $(CONTIKI)/apps/, $(APPS)} \${addprefix $(CONTIKI)/platform/$(TARGET)/apps/, $(APPS)} \$(APPS)}APPINCLUDES = ${foreach APP, $(APPS), ${wildcard ${foreach DIR, $(APPDS), $(DIR)/Makefile.$(APP)} }}-include $(APPINCLUDES)APP_SOURCES = ${foreach APP, $(APPS), $($(APP)_src)}DSC_SOURCES = ${foreach APP, $(APPS), $($(APP)_dsc)}CONTIKI_SOURCEFILES += $(APP_SOURCES) $(DSC_SOURCES)endif The project's makefile can also define in the APPS variable a list of applications from the apps/ directory that should be included in the Contiki system. hello-world这个例子没有定义APPS变量,故这段不会执行。 我们假设定义了APPS变量,其值为APPS += antelope unit-test。 相关知识点: wildcard函数: 返回所有符合pattern的文件名,以空格隔开。 $(wildcard pattern) The argument pattern is a file name pattern, typically containing wildcard characters (as in shell file name patterns). The result of wildcard is a space-separated list of the names of existing files that match the pattern. foreach函数: The syntax of the foreach function is: $(foreach var,list,text) The first two arguments, var and list, are expanded before anything else is done; note that the last argument, text, is not expanded at the same time. Then for each word of the expanded value of list, the variable named by the expanded value of var is set to that word, and text is expanded. Presumably text contains references to that variable, so its expansion will be different each time. The result is that text is expanded as many times as there are whitespace-separated words in list. The multiple expansions of text are concatenated, with spaces between them, to make the result of foreach. 每次从list中取出一个词(空格分隔),赋给var变量,然后text(一般有var变量)被拓展开来。 只要list中还有空格分隔符就会一直循环下去,每一次text返回的结果都会以空格分隔开。 ${wildcard ${foreach DIR, $(APPDIRS), ${addprefix $(DIR)/, $(APPS)} }} 先分析${foreach DIR, $(APPDIRS), ${addprefix $(DIR)/, $(APPS)} } 其中DIR是变量(var),$(APPDIRS)是列表(list),这个例子中没有定义APPDIRS这个变量,估计是用于定义除了$CONTIKI/apps/之外的apps目录。 ${addprefix $(DIR)/, $(APPS)}是text。我们假设定义了APPDIRS为a b。 那么第一次:DIR 会被赋值为a,${addprefix $(DIR)/, $(APPS)},又我们假定APPS为antelope unit-test,所以最终会被拓展为a/antelope a/unit-test。 DIR 会被赋值为b,${addprefix $(DIR)/, $(APPS)},又我们假定APPS为antelope unit-test,所以最终会被拓展为b/antelope b/unit-test。 最终这两次结果会以空格分隔开,即a/antelope a/unit-test b/antelope b/unit-test ${wildcard a/antelope a/unit-test b/antelope b/unit-test} 返回空,因为找不到符合这样的目录。 所以最终这句语句,实现的功能是,返回$APPDIRS目录中,所有符合$APPS的目录。 ${wildcard ${addprefix $(CONTIKI)/apps/, $(APPS)} 这句语句返回$(CONTIKI)/apps/目录下所有符合$APPS的目录,即contiki-release-2-7/apps/antelope contiki-release-2-7/apps/unit-test ${addprefix $(CONTIKI)/platform/$(TARGET)/apps/, $(APPS)} 这句语句返回$(CONTIKI)/platform/$(TARGET)/apps/目录下所有$APPS的目录,即contiki-release-2-7/platform/native/apps/antelope contiki-release-2-7/platform/native/apps/unit-test。 在contiki-release-2-7/platform/native目录下,并没有apps目录,后边有差错处理机制。 $(APPS) 在当前目录下的所有$APPS目录,即antelope unit-test。 在hello-world例子中,并没有这些目录。 所以APPDS变量是包含所有与$APPS有关的目录。 APPINCLUDES变量是所有需要导入的APP Makefile文件。 在所有APPDS目录下,所有Makefile.$(APPS)文件。 在我们的假设条件APPS = antelope unit-test, APPDIRS = 只会导入contiki-release-2-7/apps/antelope/Makefile.antelope contiki-release-2-7/apps/unit-test/Makefile.unit-test 其余的均不存在,所以在include指令前要有符号-,即出错继续执行后续指令。 contiki-release-2-7/apps/antelope/Makefile.antelope: 分别定义了两个变量,antelope_src用于保存antelope这个app的src文件,antelope_dsc用于保存antelope这个app的dsc文件。 contiki-release-2-7/apps/unit-test/Makefile.unit-test: 分别定义了两个变量,unit-test_src用于保存unit-test这个app的src文件,unit-tes_dsc用于保存unit-test这个app的dsc文件。 变量APP_SOURCES APP_SOURCES = ${foreach APP, $(APPS), $($(APP)_src)} 取出所有APPS中的src文件变量,这个例子是$(antelope_src) 和$(unit-test_src) 变量APP_SOURCES DSC_SOURCES = ${foreach APP, $(APPS), $($(APP)_dsc)} 取出所有APPS中的dsc文件变量,这个例子是$(antelope_dsc) 和$(unit-test_dsc) CONTIKI_SOURCEFILES += $(APP_SOURCES) $(DSC_SOURCES) 这段话的最终目的: 将$APPS相关的所有源文件添加进CONTIKI_SOURCEFILES变量中。 (3) target_makefile := $(wildcard $(CONTIKI)/platform/$(TARGET)/Makefile.$(TARGET) ${foreach TDIR, $(TARGETDIRS), $(TDIR)/$(TARGET)/Makefile.$(TARGET)}) Check if the target makefile exists, and create the object directory if necessary.ifeq ($(strip $(target_makefile)),)${error The target platform "$(TARGET)" does not exist (maybe it was misspelled?)}elseifneq (1, ${words $(target_makefile)})${error More than one TARGET Makefile found: $(target_makefile)}endifinclude $(target_makefile)endif 这断代码主要做的就是,找到在所有TAGET目录下找到符合的Makefile.$(TARGET)文件,放到target_makefile变量中。 再检查是否存在或者重复。并做相应的错误提示信息。 ${error The target platform "$(TARGET)" does not exist (maybe it was misspelled?)} ${error More than one TARGET Makefile found: $(target_makefile)} 我们这个例子中 TARGET = native 并且 TARGETDIRS为空 所以最后会导入$(CONTIKI)/platform/native/Makefile.native 接下去要开始分析target和cpu的makefile文件了。 转载于:https://www.cnblogs.com/songdechiu/p/6012718.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_34399060/article/details/94095820。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-28 09:49:23
283
转载
转载文章
...pring Boot框架中,自动装配是一种能够根据项目类路径中的类自动配置Bean的行为。当Spring Boot应用启动时,会扫描项目的类路径并查找META-INF/spring.factories文件中的自动配置类列表。这些配置类通常使用@Configuration注解,它们会依据项目已有的依赖及配置信息来自动创建、配置和注入Bean。在本文中,我们通过实现DbCountAutoConfiguration类实现了对DbCountRunner的自动装配。 CommandLineRunner , CommandLineRunner是Spring Boot提供的一个接口,任何实现该接口的类在Spring Boot应用启动完成后都会运行其run(String... args)方法。这使得开发者可以在应用启动后执行一些初始化或一次性任务。在本例中,我们创建了DbCountRunner类来实现CommandLineRunner接口,以便在Spring Boot应用启动时收集所有Repository实例的数量并打印出来。
2023-02-10 20:49:04
270
转载
Dubbo
...性能Java RPC框架,一直备受青睐。不过嘛,在实际用起来的时候,服务一多啊,咱们就难免要跟分布式追踪系统打交道,各种问题接踵而至。这篇文章主要是想聊聊Dubbo怎么和Zipkin、Jaeger这些分布式追踪系统打交道,以及怎么优化它们的合作。我们会用一些真实的例子来说明,怎样才能更好地应对分布式追踪中遇到的各种问题。 1. 分布式追踪系统的重要性 首先,让我们来谈谈为什么需要分布式追踪系统。想想看,当你得照顾一大堆微服务组成的复杂系统时,每个请求都像是个大冒险,得穿梭在好几个服务之间打交道。在这种情况下,要准确地定位问题所在变得极其困难。而分布式追踪系统就像一双眼睛,能够帮助我们清晰地看到每一次请求的完整路径,包括它经过了哪些服务、耗时多少、是否有错误发生等关键信息。这对于提升系统性能、快速定位故障以及优化用户体验都至关重要。 2. Dubbo集成分布式追踪系统的初步探索 Dubbo本身并不直接支持分布式追踪功能,但可以通过集成第三方工具来实现这一目标。比如说Zipkin吧,这是Twitter推出的一个开源工具,专门用来追踪应用程序在分布式环境中的各种请求路径和数据流动情况。用它就像是给你的系统搭建了一个超级详细的导航地图,让你能一眼看清楚每个请求走过了哪些地方。接下来,我们将通过几个步骤来演示如何在Dubbo项目中集成Zipkin。 2.1 添加依赖 首先,我们需要向项目的pom.xml文件中添加Zipkin客户端的依赖。这步超级重要,因为得靠它让我们的Dubbo服务乖乖地把追踪信息发给Zipkin服务器,不然出了问题我们可找不到北啊。 xml io.zipkin.java zipkin-reporter-brave 2.7.5 2.2 配置Dubbo服务端 然后,在Dubbo服务端配置文件(如application.properties)中加入必要的配置项,让其知道如何连接到Zipkin服务器。 properties dubbo.application.qos-enable=false dubbo.registry.address=multicast://224.5.6.7:1234 指定Zipkin服务器地址 spring.zipkin.base-url=http://localhost:9411/ 使用Brave作为追踪库 brave.sampler.probability=1.0 这里,spring.zipkin.base-url指定了Zipkin服务器的URL,而brave.sampler.probability=1.0则表示所有请求都会被追踪。 2.3 编写服务接口与实现 假设我们有一个简单的服务接口,用于处理用户订单: java public interface OrderService { String placeOrder(String userId); } 服务实现类如下: java @Service("orderService") public class OrderServiceImpl implements OrderService { @Override public String placeOrder(String userId) { // 模拟业务逻辑 System.out.println("Order placed for user: " + userId); return "Your order has been successfully placed!"; } } 2.4 启动服务并测试 完成上述配置后,启动Dubbo服务端。你可以试试调用placeOrder这个方法,然后看看在Zipkin的界面上有没有出现相应的追踪记录。 3. 深入探讨 从Dubbo到Jaeger的转变 虽然Zipkin是一个优秀的解决方案,但在某些场景下,你可能会发现它无法满足你的需求。例如,如果你需要更高级别的数据采样策略或是对追踪数据有更高的控制权。这时,Jaeger就成为一个不错的选择。Jaeger是Uber开源的分布式追踪系统,它提供了更多的定制选项和更好的性能表现。 将Dubbo与Jaeger集成的过程与Zipkin类似,主要区别在于依赖库的选择和一些配置细节。这里就不详细展开,但你可以按照类似的思路去尝试。 4. 结语 持续优化与未来展望 集成分布式追踪系统无疑为我们的Dubbo服务增添了一双“慧眼”,使我们能够在复杂多变的分布式环境中更加从容不迫。然而,这只是一个开始。随着技术日新月异,咱们得不停地充电,学些新工具新技能,才能跟上这变化的脚步嘛。别忘了时不时地检查和调整你的追踪方法,确保它们跟得上你生意的发展步伐。 希望这篇文章能为你提供一些有价值的启示,让你在Dubbo与分布式追踪系统的世界里游刃有余。记住,每一次挑战都是成长的机会,勇敢地迎接它们吧!
2024-11-16 16:11:57
55
山涧溪流
Docker
...要实现通信,就得依靠路由器或者三层交换机这位“信使”,帮忙传递信息才行。VLAN的主要作用是提高网络安全性和资源利用率。 2. Docker与VLAN结合示例 在Docker中,我们可以利用network配置选项启用VLAN网络模式。下面是一个创建带VLAN标签的Docker网络的示例: bash docker network create --driver=vlan \ --subnet=172.16.80.0/24 --gateway=172.16.80.1 \ --opt parent=eth0.10 my_vlan_network 上述命令创建了一个名为my_vlan_network的网络,其基于宿主机的VLAN 10 (parent=eth0.10)划分子网172.16.80.0/24并设置了默认网关。 三、IP地址与Docker容器 1. IP地址基础概念 IP地址(Internet Protocol Address)是互联网协议的核心组成部分,用于唯一标识网络中的设备。根据IPv4协议,IP地址由32位二进制组成,通常被表示为四个十进制数,如192.168.1.1。在Docker这个大家庭里,每个小容器都会被赋予一个独一无二的IP地址,这样一来,它们之间就可以像好朋友一样自由地聊天交流,不仅限于此,它们还能轻松地和它们所在的主机大哥,甚至更远的外部网络世界进行沟通联络。 2. Docker容器IP地址分配 在Docker默认的桥接网络(bridge)模式中,每个容器会获取一个属于172.17.0.0/16范围的私有IP地址。另外,你还可以选择自己动手配置一些个性化的网络设置,像是“host”啦、“overlay”啦,或者之前我们提到的那个“vlan”,这样就能给容器分配特定的一段IP地址,让它们各用各的,互不干扰。 四、VLAN与IP地址在Docker网络中的关系 1. IP地址在VLAN网络中的角色 当Docker容器运行在一个包含VLAN网络中时,它们会继承VLAN网络的IP地址配置,从而在同一VLAN内相互通信。比如,想象一下容器A和容器B这两个家伙,他们都住在VLAN 10这个小区里面,虽然住在不同的单元格,但都能通过各自专属的“门牌号”(也就是VLAN标签)和“电话号码”(IP地址)互相串门聊天,完全不需要经过小区管理员——宿主机的同意或者帮忙。 2. 跨VLAN通信 若想让VLAN网络内的容器能够与宿主机或其他VLAN网络内的容器通信,就需要配置多层路由或者使用VXLAN等隧道技术,使得数据包穿越不同的VLAN标签并在相应的IP地址空间内正确路由。 五、结论 综上所述,VLAN与IP地址在Docker网络场景中各有其核心作用。VLAN这个小家伙,就像是咱们物理网络里的隐形隔离墙和保安队长,它在幕后默默地进行逻辑分割和安全管理工作。而IP地址呢,更像是虚拟化网络环境中的邮差和导航员,主要负责在各个容器间传递信息,同时还能带领外部的访问者找到正确的路径,实现内外的互联互通。当这两者联手一起用的时候,就像是给网络装上了灵动的隔断墙,既能灵活分区,又能巧妙地避开那些可能引发“打架”的冲突风险。这样一来,咱们微服务架构下的网络环境就能稳稳当当地高效运转了,就像一台精密调校过的机器一样。在咱们实际做项目开发这事儿的时候,要想把Docker网络策略设计得合理、实施得妥当,就得真正理解并牢牢掌握这两者之间的关系,这可是相当关键的一环。
2024-02-12 10:50:11
479
追梦人_t
MyBatis
... 是一个强大的持久层框架,它可以方便地管理数据库连接,提高应用程序的性能。然而,在使用 MyBatis 时,我们也需要注意一些问题。首先,我们应该合理使用数据库连接,避免长时间占用数据库连接。其次,我强烈建议大家伙尽可能多用 PreparedStatement 类型的 SQL 查询语句,为啥呢?因为它比 Statement 那种类型的 SQL 查询语句可安全多了。就像是给你的查询语句戴上了防护口罩,能有效防止SQL注入这类安全隐患,让数据处理更稳当、更保险。最后,我强烈推荐你们在处理预编译的 SQL 查询语句时,用上 PreparedStatementCache 这种缓存技术。为啥呢?因为它能超级有效地提升咱应用程序的运行速度和性能,让整个系统更加流畅、响应更快,就像给程序装上了涡轮增压器一样。
2023-01-11 12:49:37
98
冬日暖阳_t
Hadoop
...处理大规模数据的开源框架。它的主要目标是解决海量数据存储和处理的问题。Hadoop这家伙,处理大数据的能力贼溜,现在早就是业界公认的大数据处理“扛把子”了! 3. Hadoop的主要组件有哪些? Hadoop的主要组件包括以下几个部分: 3.1 Hadoop Distributed File System (HDFS) HDFS是Hadoop的核心组件之一,它是基于Google的GFS文件系统的分布式文件系统。HDFS这小家伙可机灵了,它知道大文件是个难啃的骨头,所以就耍了个聪明的办法,把大文件切成一块块的小份儿,然后把这些小块分散存到不同的服务器上,这样一来,不仅能储存得妥妥当当,还能同时在多台服务器上进行处理,效率杠杠滴!这种方式可以大大提高数据的读取速度和写入速度。 3.2 MapReduce MapReduce是Hadoop的另一个核心组件,它是用于处理大量数据的一种编程模型。MapReduce的运作方式就像这么回事儿:它先把一个超大的数据集给剁成一小块一小块,然后把这些小块分发给一群计算节点,大家一起手拉手并肩作战,同时处理各自的数据块。最后,将所有结果汇总起来得到最终的结果。 下面是一段使用MapReduce计算两个整数之和的Java代码: java import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WordCount { public static class TokenizerMapper extends Mapper { private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(LongWritable key, Text value, Context context ) throws IOException, InterruptedException { String line = value.toString(); StringTokenizer itr = new StringTokenizer(line); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); context.write(word, one); } } } public static class IntSumReducer extends Reducer { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable values, Context context ) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf, "word count"); job.setJarByClass(WordCount.class); job.setMapperClass(TokenizerMapper.class); job.setCombinerClass(IntSumReducer.class); job.setReducerClass(IntSumReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } } 在这个例子中,我们首先定义了一个Mapper类,它负责将文本切分成单词,并将每个单词作为一个键值对输出。然后呢,我们捣鼓出了一个Reducer类,它的职责就是把所有相同的单词出现的次数统统加起来。 以上就是Hadoop的一些基本信息以及它的主要组件介绍。如果你对此还有任何疑问或者想要深入了解,欢迎留言讨论!
2023-12-06 17:03:26
410
红尘漫步-t
转载文章
...如今开源的优秀RPC框架很多,例如 thrift、dubbo 、grpc等 本人公司也有两套自主研发的RPC框架,通读之后受益匪浅,下面分享一下,远程调用第三方服务超时中断机制的实现。在调用第三方服务时,如果服务提供方处理过于缓慢,会拖垮调用方,使调用方夯住,所以调用超时中断机制很有必要,是保证服务的可用性的重要手段 典型的微服务项目,一次用户请求,可能在后台的调用流程会历经多个服务,每个服务的可靠性是整个调用流程的前提 客户端调用服务端流程: 本文不再过多的讲解RPC调用流程,直接讲解客户端调用超时中断的代码实现。 原理也不复杂,利用ReentrantLock的Condition进行等待阻塞,等待相应的超时时间后,发现依然没有收到服务端的响应结果后,判断为超时! 代码实现: 首先定义一个netty客户端,用于请求服务端,获取返回结果 public class InvokerClient {private static Channel channel;public void init() throws Exception {Bootstrap bootstrap = new Bootstrap();bootstrap.group(new NioEventLoopGroup()).channel(NioSocketChannel.class).option(ChannelOption.SO_KEEPALIVE, true).handler(new ChannelInitializer<SocketChannel>() {@Overrideprotected void initChannel(SocketChannel socketChannel) throws Exception {// 处理来自服务端的返回结果socketChannel.pipeline().addLast(new ReceiveHandle());} });ChannelFuture cf = bootstrap.connect("127.0.0.1", 3344).sync();channel = cf.channel();}//请求服务端public Object call(Request request) {//此类是保证调用超时中断的核心类RequestTask requestTask = new RequestTask();//将请求放入请求工厂,使用请求唯一标识seq,用于辨识服务端返回的对应的响应结果RequestFactory.put(request.getSeq(), requestTask);channel.writeAndFlush("hello");//此步是返回response,超时即中断return requestTask.getResponse(request.getTimeOut());} } 其中Request是请求参数,里面有timeout超时时间,以及向服务端请求的参数 public class Request {private static final UUID uuid = UUID.randomUUID();private String seq = uuid.toString();private Object object;private long timeOut;public Object getObject() {return object;}public Request setObject(Object object) {this.object = object;return this;}public String getSeq() {return seq;}public long getTimeOut() {return timeOut;}public Request setTimeOut(long timeOut) {this.timeOut = timeOut;return this;} } 核心的RequestTask类,用于接受服务端的返回结果,超时中断 public class RequestTask {private boolean isDone = Boolean.FALSE;private ReentrantLock lock = new ReentrantLock();private Condition condition = lock.newCondition();Object response;//客户端请求服务端后,立即调用此方法获取返回结果,timeout为超时时间public Object getResponse(long timeOut) {if (!isDone) {try {lock.lock();//此步等待timeout时间,阻塞,时间达到后,自动执行,此步是超时中断的关键步骤if (condition.await(timeOut, TimeUnit.MILLISECONDS)) {if (!isDone) {return new TimeoutException();}return response;} } catch (InterruptedException e) {e.printStackTrace();} finally {lock.unlock();} }return response;}public RequestTask setResponse(Object response) {lock.lock();try{//此步是客户端收到服务端的响应结果后,写入responsethis.response = response;//并唤起上面方法的阻塞状态,此时阻塞结束,结果正常返回condition.signal();isDone = true;}finally{lock.unlock();}return this;}public boolean isDone() {return isDone;}public RequestTask setDone(boolean done) {isDone = done;return this;} } ReceiveHandle客户端接收到服务端的响应结果处理handle public class ReceiveHandle extends SimpleChannelInboundHandler {protected void channelRead0(ChannelHandlerContext channelHandlerContext, Object o) throws Exception {Response response = (Response) o;//通过seq从请求工厂找到请求的RequestTaskRequestTask requestTask = RequestFactory.get(response.getSeq());//将响应结果写入RequestTaskrequestTask.setResponse(response);} } RequestFactory请求工厂 public class RequestFactory {private static final Map<String, RequestTask> map = new ConcurrentHashMap<String, RequestTask>();public static void put(String uuid, RequestTask requestTask) {map.put(uuid, requestTask);}public static RequestTask get(String uuid) {return map.get(uuid);} } 注: 本人利用业余时间手写了一套轻量级的rpc框架,里面有用到 https://github.com/zhangta0/bigxiang 本篇文章为转载内容。原文链接:https://blog.csdn.net/CSDNzhangtao5/article/details/103075755。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-05 16:28:16
84
转载
SpringBoot
... 一种开源的Java框架,简化了构建企业级Web应用程序的过程,提供了一套约定优于配置的原则,使得开发者可以快速地开发和部署应用,尤其适合微服务架构。 @Scheduled注解 , Spring框架中的一个注解,用于标记方法,使其在特定的时间间隔内自动执行。开发者可以配置注解的属性,如执行频率(固定延迟或固定速率)和cron表达式,以实现定时任务的功能。 Redis分布式锁 , 一种在分布式系统中实现锁机制的方法,通过在Redis中存储一个键值对来标识锁的状态。当多个节点尝试获取同一把锁时,只有最先成功设置键值对的节点获得锁,其他节点等待。这在处理并发任务时确保了任务的执行顺序和一致性。 RabbitMQ , 一个开源的消息队列系统,用于在分布式系统中实现异步通信。通过将任务发布到队列中,多个消费者可以按照消息的到达顺序进行处理,从而实现了任务的解耦和高可用性。 Zookeeper , 一个分布式协调服务,常用于配置管理、服务发现和分布式锁等场景。它允许多个节点之间共享状态信息,确保任务在多节点环境中的正确执行和同步。 Consul , 一个开源的服务发现和配置平台,帮助管理分布式系统的节点和服务。通过Consul,SpringBoot应用可以动态注册和注销自己,确保服务发现的可靠性。 微服务化 , 一种软件开发模式,将单一大型应用拆分成一组小的、独立的服务,每个服务运行在其自己的进程中,通过API接口互相通信。这种模式有利于扩展性、容错性和独立部署。 Kubernetes , 一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用。在微服务环境中,Kubernetes可以帮助管理和调度定时任务服务的容器实例。 Prometheus , 一个开源的监控系统,用于收集、存储和查询时间序列数据。在微服务架构中,它有助于追踪和分析定时任务的性能指标。 Jaeger , 一个分布式追踪系统,用于收集和展示服务间调用链路的信息。在微服务环境中,Jaeger有助于诊断和优化服务间的通信性能。
2024-06-03 15:47:34
47
梦幻星空_
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
tail -f /var/log/syslog
- 实时查看系统日志文件。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"