前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[技术使用 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Python
...随着人工智能与大数据技术的深度融合,网络爬虫技术正面临着新的伦理与法律挑战,如何在合法合规的前提下高效抓取、利用数据成为行业焦点。例如,欧盟推出的GDPR(General Data Protection Regulation)对个人数据保护提出了严格要求,这无疑对全球范围内的网络爬虫开发者提出了更高的法律规范遵循标准。 同时,在技术层面,反爬策略不断升级,如Google等大型网站采用先进的机器学习算法来识别并阻止非授权爬虫。这就需要爬虫工程师掌握更高级的伪装技术和解析手段,如使用代理IP池、设置随机等待时间、模拟登录以及处理JavaScript渲染等方法。 此外,Python爬虫生态也在持续演进,Scrapy框架、Selenium工具等为复杂网页结构的爬取提供了强大的支持。而新兴的无头浏览器技术Headless Chrome,使得爬虫能够更好地适应现代Web应用的动态加载特性,有效提升了数据抓取的准确性和效率。 综上所述,Python爬虫技术的学习与实践不仅需紧跟时下热点,更要关注法律法规约束和技术革新带来的影响,从而确保在合法合规、尊重隐私的前提下,发挥数据的最大价值。
2023-04-21 09:18:01
97
星河万里-t
RabbitMQ
...56 3. 使用SSL/TLS证书管理工具 有一些工具可以帮助你管理和更新你的SSL/TLS证书,例如Certbot、EasyRSA等。这些工具一般都拥有超赞的用户界面,让你能够轻轻松松地管理并更新你的证书,就跟玩儿似的! 四、结论 总的来说,SSL/TLS证书对于我们的网络安全至关重要。咱们得养成习惯,时不时检查一下自家的SSL/TLS证书,确保它们都是最新的。而且,可别忘了正确地配置这些SSL/TLS证书,一步都不能马虎,亲!通过以上这些招数,咱们就能轻松地防止SSL/TLS证书过期或者配置出错引发的安全隐患,让这些问题离咱们远点儿。 在这个数字化的时代,网络安全已经成为了一个不可忽视的问题。作为开发者,咱们可得随时绷紧神经,留意并守护好咱们的网络安全这道防线,毕竟这关乎到咱的个人信息还有设备安全呐。就像是保护自家大门一样,一刻都不能松懈!只有这样,我们才能在网络世界中自由畅游,享受数字化带来的便利。
2023-09-08 22:05:11
95
雪落无痕-t
Material UI
...息的情况,这时就需要使用到SnackBarContent。不过,有时候呢,我们可能得对SnackBarContent这家伙的样式动点手脚,好让它更贴近我们的设计需求,瞧着更顺眼些。那么,我们应该如何在SnackBarContent中添加自定义样式呢?本文将通过实例来讲解。 2. 添加自定义样式的基本步骤 首先,我们需要导入必要的组件,并创建一个新的SnackBar。然后,我们可以设置SnackBarContent的内容和样式。 jsx import React from 'react'; import { makeStyles } from '@material-ui/core/styles'; import Snackbar from '@material-ui/core/Snackbar'; import Button from '@material-ui/core/Button'; const useStyles = makeStyles({ snackbarContent: { backgroundColor: 'f5f5f5', borderRadius: 3, padding: '16px 18px', }, }); export default function CustomSnackbar() { const classes = useStyles(); const [open, setOpen] = React.useState(false); const handleClick = () => { setOpen(true); }; return ( Show Snackbar open={open} autoHideDuration={6000} onClose={() => setOpen(false)} ContentProps={ { 'aria-describedby': 'message-id', className: classes.snackbarContent, } } message={This is a custom styled snackbar.} /> ); } 在这个例子中,我们首先创建了一个名为useStyles的自定义样式的函数,其中包含了我们想要添加的样式。然后,在我们亲手捣鼓出的SnackBar里头,我们把这个自定义样式的类名,就像一个神秘礼物一样,塞进了ContentProps里的className属性中,这样SnackBarContent就能“穿上”我们给它准备的样式啦。 这样,我们就成功地在SnackBarContent中添加了自定义样式。接下来,让我们更深入地了解这些步骤。 3. 使用makeStyles 在Material-UI中,我们可以通过makeStyles来自定义组件的样式。makeStyles,这个听起来可能有点技术感的高阶函数,其实是个挺实用的小工具。它干的活儿就是接收一个对象作为参数,这个对象里的每一个小键值对,都代表着一条CSS样式规则。makeStyles这个小家伙,它干的活儿可有意思啦!当你调用它的时候,它会送你一个函数作为礼物。这个函数有点特别,它喜欢接收一个名叫theme的好朋友。然后呢,它就根据这位theme朋友的“心情”(也就是具体的主题样式),为你精心炮制出一套相应的CSS样式规则,就像魔法师一样神奇。 例如,上面的例子中,我们定义了一个名为snackbarContent的样式: jsx const useStyles = makeStyles({ snackbarContent: { backgroundColor: 'f5f5f5', borderRadius: 3, padding: '16px 18px', }, }); 这个样式包括了背景颜色、边框半径和内填充等属性。然后,我们在SnackBar的ContentProps中使用了这个样式的类名。 4. 结论 总的来说,我们可以在SnackBarContent中添加自定义样式的步骤是:首先,我们需要导入必要的组件并创建一个新的SnackBar;然后,我们可以使用makeStyles来定义自定义样式;最后,我们在SnackBar中将这个样式的类名作为ContentProps中的className属性传递给SnackBarContent。这样,我们就可以成功地在SnackBarContent中添加自定义样式了。 当然,这只是一个基本的示例,实际上我们还可以使用其他方式来调整SnackBarContent的样式,例如使用CSS类名或者媒体查询等。不管咋说,咱都得时刻记着这么个理儿:咱们的目标就是捣鼓出一款让用户称心如意,又能严丝合缝符合设计标准的应用程序。所以呢,咱们就得不断去摸索、学习和实践,好让自己能找到最对味的那个解决方案。就像探险家寻找宝藏那样,咱也得勇往直前,不断尝试,直到找到最适合自己的那条路子。
2023-10-21 13:18:01
265
百转千回-t
Scala
...cala中,我们可以使用枚举类型来实现这一目标。不过呢,在动手实现枚举类型的时候,咱们还得琢磨琢磨这个枚举类型的“变脸”问题——也就是它的可变性和不可变性。在这篇文章里,咱们要掰开揉碎了讲一讲如何在Scala这个编程语言中玩转可变和不可变的枚举类型,让你明明白白、清清楚楚。 2. 可变枚举类型 在Scala中,我们可以使用枚举类型来定义一组常量,这些常量可以是可变的或不可变的。对于可变枚举类型,我们可以随时修改它们的值。例如,假设我们需要定义一个表示天气状况的枚举类型。这个枚举类型应该包含四种不同的状态:晴天、多云、阴天和雨天。为了实现这个枚举类型,我们可以使用以下代码: scala object Weather { sealed trait Status { def toInt: Int } case object Sunny extends Status { override def toInt = 0 } case object Cloudy extends Status { override def toInt = 1 } case object Rainy extends Status { override def toInt = 2 } case object Windy extends Status { override def toInt = 3 } } 在这个例子中,我们使用了sealed trait来创建一个密封的枚举类型。这个枚举类型包含了四个子类型,分别对应晴天、多云、阴天和雨天。每个子类型都包含了一个toInt方法,用于将子类型转换为整数值。 由于Weather枚举类型是可变的,因此我们可以随时修改它的值。例如,如果我们想要修改晴天的状态,只需要这样做: scala object Weather { sealed trait Status { def toInt: Int } case object Sunny extends Status { override def toInt = 0 } with S变动... 在这个例子中,我们在Sunny子类型后面添加了with关键字,并指定了一个新的父类型。这个新的老爸角色,可能是个全新的小弟类型,也有可能是另一种变幻莫测的枚举成员。 3. 不可变枚举类型 与可变枚举类型不同,不可变枚举类型一旦创建就无法再修改。这意味着我们不能改变不可变枚举类型的值。在Scala中,我们可以使用case class来创建不可变枚举类型。例如,假设我们需要定义一个表示颜色的枚举类型。这个枚统类型应该包含三种不同的状态:红色、绿色和蓝色。为了实现这个枚举类型,我们可以使用以下代码: scala object Color { sealed abstract class Color private (name: String) { val name: String = this.name } object Red extends Color("red") object Green extends Color("green") object Blue extends Color("blue") } 在这个例子中,我们使用了sealed abstract class来创建一个密封的抽象枚举类型。这个枚举类型包含了三个子类型,分别对应红色、绿色和蓝色。每个子类型都包含了一个name属性,用于存储颜色的名称。 由于Color枚举类型是不可变的,因此我们不能改变它的值。例如,如果我们尝试修改红色的颜色,将会抛出一个错误: scala object Color { sealed abstract class Color private (name: String) { val name: String = this.name } object Red extends Color("red") { override val name = "yellow" } } 在这个例子中,我们在Red子类型后面添加了一段代码,试图修改其name属性的值。然而,这将会抛出一个错误,因为我们正在尝试修改一个不可变的对象。 4. 总结 总的来说,Scala提供了两种方式来实现枚举类型:可变枚举类型和不可变枚举类型。对于可变的枚举类型,就像是你手里的橡皮泥,你可以随时根据需要改变它的形状;而不可变的枚举类型呢,就好比是已经雕塑完成的艺术品,一旦诞生,就不能再对它做任何改动了。所以呢,当我们决定要用哪种枚举类型的时候,就得根据自己的实际需求来挑,就像逛超市选商品一样,得看自己需要啥才决定买啥。要是我们常常需要对枚举类型的数值进行改动,那倒是可以考虑选择使用那种可以变来变去的枚举类型,这样会更灵活些。要不这样讲,如果我们不是那种动不动就要修改枚举类型里边值的情况,大可以安心选择用不可变的枚举类型,这样一来就妥妥的了。
2023-05-13 16:18:49
74
青春印记-t
VUE
...t UI 分步表单中使用 v-show 控制显示:如何避免页面刷新后回到第一步? 在开发Vue项目时,Element UI的分步表单组件为用户提供了清晰、流畅的操作流程。然而,在实际操作中,用v-show控制不同步骤的表单显示时,经常会遇到这么个不大不小的麻烦:假设用户已经一路过关斩将,完成了第二步甚至更后面的步骤,还进行了不少操作。可一旦网页不小心刷新一下,啪,瞬间又跳回了第一步,这体验对用户来说真心不咋地,有点儿小尴尬呢~本文将探讨这个问题,并提供一种有效的解决方案。 1. 首先理解问题场景 假设我们正在构建一个多步骤表单,使用Element UI的steps组件和v-show指令来切换不同的表单部分: vue 此时,currentStep变量用于记录当前步骤,但它的值在页面刷新后会重置,导致表单状态丢失。 2. 理解Vue的状态管理 在Vue应用中,组件的状态是响应式的,但它们并不会持久化存储。为了让大家在页面刷新后,之前的操作进度不会丢失,我们得把这个叫做currentStep的状态数据,像小秘密一样存到浏览器的localStorage或者那些专门用来管理状态的工具里,比如Vuex。这样,无论页面怎么刷新,你的操作进度都能被完好地保存下来。 示例代码:利用localStorage保存当前步骤 javascript // 在 Vue 实例的 data 或 computed 中定义 currentStep data() { return { currentStep: localStorage.getItem('currentStep') || 1 // 初始状态下从localStorage获取,否则默认为1 }; }, watch: { currentStep(newVal) { localStorage.setItem('currentStep', newVal); // 当currentStep改变时,同步更新到localStorage } } 3. 解决方案与实现 通过上述代码,我们实现了在用户进行步骤切换时自动将当前步骤保存到localStorage中。现在,就算页面突然刷新了,我们也能像变魔术一样从localStorage这个小仓库里把上次的步骤进度给拽出来,这样一来,就不用担心会一下子跳回起点重新来过了。 总结一下整个过程,首先,我们在初始化Vue实例时从localStorage加载currentStep的值;其次,通过watch监听器实时更新localStorage中的值。这样一来,哪怕页面突然刷个新,也能稳稳地让用户留在他们最后操作的那个环节上,这可真是把用户体验往上提了一大截呢! 这种处理方式体现了Vue在状态管理上的灵活性和高效性,同时也提醒我们在设计交互流程时,不仅要关注功能实现,更要注重用户在实际使用过程中的体验细节。对于开发者而言,每一次思考和优化都是一次对技术深入理解和运用的实践。
2023-08-05 21:43:30
98
岁月如歌_
Docker
...容器引擎,通过容器化技术实现软件的标准化打包、分发和部署。在文中,Docker被用于将SpringBoot应用及其依赖环境封装在一个轻量级、可移植的容器中,使得开发、测试和部署流程更为便捷高效。 Nginx反向代理 , Nginx是一个高性能的HTTP和反向代理服务器,能够处理大量并发连接。在本文场景下,Nginx作为反向代理服务器,其功能是接收来自客户端的HTTP请求,并根据配置将这些请求转发到内部运行的多个SpringBoot应用实例上,同时对外提供统一的服务入口和负载均衡能力。 SpringBoot应用 , SpringBoot是由Pivotal公司提供的一个基于Java的开源框架,用于简化Spring应用程序的初始搭建以及开发过程。它内嵌了Tomcat等Web容器,允许开发者快速构建独立运行、生产级别的基于Spring框架的应用程序。在本文中,SpringBoot应用指的是开发者使用SpringBoot框架开发并需要通过Docker和Nginx进行部署管理的Web服务。
2024-01-24 15:58:35
617
柳暗花明又一村_t
ElasticSearch
...ch的特性,以及如何使用ListItem.Expandable来显示一个可以扩展的列表。首先,咱们得先来唠唠啥是Elasticsearch,接着咱再深入地挖一挖怎么巧妙利用这个Elasticsearch的牛逼功能。最后呢,咱们还会手把手教你怎么用代码把这一切变成现实。 1. Elasticsearch是什么? Elasticsearch是一个基于Lucene的全文搜索引擎。Lucene是一个非常强大的文本搜索引擎库,它可以提供高效的全文搜索和分析能力。Elasticsearch呢,你可以把它理解成Lucene的大升级版,它把Lucene的本事发扬光大了,现在能够更牛气地在多台机器上搭建分布式的索引和搜索功能,让你找东西嗖嗖快,贼给力! 2. 如何利用Elasticsearch? 利用Elasticsearch,我们可以轻松地创建一个可以处理大量数据的搜索引擎。首先,咱们得把数据搬进Elasticsearch这个大家伙里头。这一步操作,你有俩种接地气的方式可选:一是通过API接口来传输,二是借助一些现成的工具完成导入任务。然后,我们可以使用Elasticsearch提供的API来进行查询和检索操作。最后,我们可以通过前端界面展示查询结果。 下面,我们将通过一个具体的例子来演示如何使用Elasticsearch进行数据查询。 java // 创建一个新的索引 IndexRequest indexRequest = new IndexRequest("my_index"); indexRequest.source(jsonMapper.writeValueAsString(product), XContentType.JSON); client.index(indexRequest); // 查询索引中的数据 GetResponse response = client.get(new GetRequest("my_index", "product_id")); Map source = response.getSource(); 以上代码展示了如何向Elasticsearch中添加一条数据,并且查询索引中的数据。你瞧,Elasticsearch这玩意儿真心好用,压根没那么多复杂的步骤,就那么几个基础操作,轻轻松松就能搞定。 3. ListItem.Expandable ListItem.Expandable是Android Studio中的一种控件,它可以用来显示一个可以展开和收起的内容区域。用上这个小玩意儿,咱们就能轻轻松松展示大量信息,而且还不用担心占满屏幕空间的问题! 下面,我们将通过一个具体的例子来演示如何使用ListItem.Expandable。 xml android:id="@+id/listView" android:layout_width="match_parent" android:layout_height="match_parent"> android:id="@+id/myExpandableLayout" android:layout_width="wrap_content" android:layout_height="wrap_content" android:background="FFFFFF" /> 以上代码展示了如何在ListView中使用MyExpandableLayout。通过这种方式,我们可以轻松地显示一个可以展开和收起的内容区域。 4. 总结 本文介绍了如何利用Elasticsearch的强大功能,以及如何使用ListItem.Expandable来显示一个可以扩展的列表。读完这篇文章,咱们就能掌握如何用Elasticsearch这个利器来对付海量数据,同时还能学到怎么运用ListItem.Expandable这个小窍门,让用户体验噌噌往上涨。 总的来说,Elasticsearch是一款非常强大的工具,它可以帮助我们高效地处理大量数据。而ListItem.Expandable则是一个非常实用的控件,它可以帮助我们优化用户体验。这两款产品都是非常值得推荐的。
2023-10-25 21:34:42
532
红尘漫步-t
c++
...布与普及,模板元编程技术正迎来新的发展机遇。例如,最新版本的C++引入了概念(Concepts)这一新特性,它为函数模板提供了更严格的类型约束和更精确的控制手段,使得模板具体化的边界更加清晰,有助于减少潜在的编译错误和运行时异常。 同时,在高性能计算、游戏引擎开发等领域,函数模板结合模板元编程被广泛应用于优化代码执行效率,通过编译期计算生成针对性强、执行速度快的代码。近期一篇发表于《ACM通讯》的研究文章深入探讨了函数模板在实时渲染引擎中的实践应用,展示了如何利用模板特化实现对不同数据类型的高效处理,从而显著提升图形渲染性能。 此外,函数模板在泛型编程库如STL(Standard Template Library)的设计和使用中更是不可或缺,新版C++标准库也不断优化和新增模板类与函数以适应更多复杂场景的需求。因此,对于热衷于提升代码质量、追求极致性能以及探索现代C++编程技巧的开发者来说,持续关注函数模板及其相关领域的最新研究进展具有极高的价值和时效性。
2023-09-27 10:22:50
553
半夏微凉_t
JQuery
...画 , CSS动画是使用CSS(层叠样式表)来创建动画的一种技术,可以实现元素从一种样式逐渐变化到另一种样式的视觉效果。虽然文章主要介绍了基于JQuery的animate函数实现鼠标点动画,但在对比中提及,手动编写CSS动画可能更为复杂,而JQuery的animate函数则简化了这一过程,使开发者能更方便快捷地为元素添加动画效果。
2023-07-31 19:06:58
615
月影清风-t
Go Gin
...的情况。这时候就需要使用到动态路由了。在使用Gin的时候,我们可以这样设置动态路由:Router.GET("/path/:param", func(c gin.Context) { ... }),就像跟朋友聊天那样说,就是给Router安排个任务,当GET请求遇到"/path/后面跟着任意参数"这种路径时,就执行那个匿名函数,这个函数会接收一个gin.Context参数,然后你就可以在这个函数里面自由发挥,对不同的参数做出不同的响应啦。 例如,如果我们想要创建一个可以接收GET请求的接口,当路径为"/users/:id"时,返回用户信息,我们可以这样做: go r := gin.Default() r.GET("/users/:id", func(c gin.Context) { id := c.Param("id") // 从数据库或其他数据源获取用户信息 user, err := getUserById(id) if err != nil { c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()}) return } c.JSON(http.StatusOK, gin.H{"user": user}) }) 三、参数捕获 在动态路由中,我们已经看到如何通过:param来捕获路径中的参数。除了这种方式,Gin还提供了其他几种方法来捕获参数。 1. 使用c.Params 这个变量包含了所有的参数,包括路径上的参数和URL查询字符串中的参数。例如: go r := gin.Default() r.GET("/users/:id", func(c gin.Context) { id := c.Params.ByName("id") // 获取by name的方式 fmt.Println("User ID:", id) user, err := getUserById(id) if err != nil { c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()}) return } c.JSON(http.StatusOK, gin.H{"user": user}) }) 2. 使用c.Request.URL.Query().Get(":param"):这种方式只适用于查询字符串中的参数。例如: go r := gin.Default() r.GET("/search/:query", func(c gin.Context) { query := c.Request.URL.Query().Get("query") // 获取query的方式 fmt.Println("Search Query:", query) results, err := search(query) if err != nil { c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()}) return } c.JSON(http.StatusOK, gin.H{"results": results}) }) 四、总结 通过这篇文章,我们了解了如何在Go Gin中实现动态路由和参数捕获。总的来说,Gin这玩意儿就像个神奇小帮手,它超级灵活地帮咱们处理那些HTTP请求,这样一来,咱们就能把更多的精力和心思花在编写核心业务逻辑上,让工作变得更高效、更轻松。如果你正在寻觅一款既简单易上手,又蕴藏着强大功能的web框架,我强烈推荐你试试看Gin,它绝对会让你眼前一亮,大呼过瘾!
2023-01-16 08:55:08
434
月影清风-t
Datax
...尤为重要了。然而,在使用Datax的过程中,我们可能会遇到一些问题。这篇文章,咱们就来唠唠“读取HDFS文件时NameNode联系不上的那些事儿”,我会把这个难题掰开揉碎了,给你细细讲明白,并且还会附上解决这个问题的小妙招。 二、问题现象及分析 1. 问题现象 我们在使用Datax进行数据迁移时,突然出现“读取HDFS文件时NameNode不可达”的错误信息。这个问题啊,其实挺常见的,就比如说当我们用的那个大数据存储的地方,比方说Hadoop集群啦,出了点小差错,或者网络它不太给力、时不时抽风的时候,就容易出现这种情况。 2. 分析原因 当我们的NameNode服务不可用时,Datax无法正常连接到HDFS,因此无法读取文件。这可能是由于NameNode服务器挂了,网络抽风,或者防火墙设置没整对等原因造成的。 三、解决方案 1. 检查NameNode状态 首先,我们需要检查NameNode的状态。我们可以登录到NameNode节点,查看是否有异常日志。如果有异常,可以根据日志信息进行排查。如果没有异常,那么我们需要考虑网络问题。 2. 检查网络连接 如果NameNode状态正常,那么我们需要检查网络连接。我们可以使用ping命令测试网络是否畅通。如果网络有问题,那么我们需要联系网络管理员进行修复。 3. 调整防火墙设置 如果网络没有问题,那么我们需要检查防火墙设置。有时候,防火墙会阻止Datax连接到HDFS。我们需要打开必要的端口,以便Datax可以正常通信。 四、案例分析 以下是一个具体的案例,我们将使用Datax读取HDFS文件: python 导入Datax模块 import dx 创建Datax实例 dx_instance = dx.Datax() 设置参数 dx_instance.set_config('hdfs', 'hdfs://namenode:port/path/to/file') 执行任务 dx_instance.run() 在运行这段代码时,如果我们遇到“读取HDFS文件时NameNode不可达”的错误,我们需要根据上述步骤进行排查。 五、总结 “读取HDFS文件时NameNode不可达”是我们在使用Datax过程中可能遇到的问题。当咱们碰上这个问题,就得像个侦探那样,先摸摸NameNode的状态是不是正常运转,再瞧瞧网络连接是否顺畅,还有防火墙的设置有没有“闹脾气”。得找到问题背后的真正原因,然后对症下药,把它修复好。学习这些问题的解决之道,就像是解锁Datax使用秘籍一样,这样一来,咱们就能把Datax使得更溜,工作效率嗖嗖往上涨,简直不要太棒!
2023-02-22 13:53:57
552
初心未变-t
Hadoop
...dk 如果你使用的是其他操作系统,可以参考官方文档进行安装。 2. 下载并解压Hadoop源码 你可以从Hadoop官网下载最新版本的Hadoop源码。以下是在Ubuntu上下载和解压Hadoop源码的命令: bash wget https://www.apache.org/dist/hadoop/common/hadoop-3.3.0/hadoop-3.3.0.tar.gz tar -xvf hadoop-3.3.0.tar.gz cd hadoop-3.3.0 3. 配置环境变量 Hadoop需要在PATH环境变量中添加bin目录,以便能够执行Hadoop脚本。另外,你还需要把JAVA_HOME这个环境变量给设置好,让它指向你安装JDK的那个路径。以下是Ubuntu上的配置命令: bash export PATH=$PATH:$PWD/bin export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64 4. 启动Hadoop守护进程 启动Hadoop守护进程,包括NameNode、DataNode和JobTracker等服务。以下是Ubuntu上的启动命令: bash ./sbin/start-dfs.sh ./sbin/start-yarn.sh 三、停止Hadoop集群 与启动相反,停止Hadoop集群也非常简单,只需关闭相关守护进程即可。以下是停止Hadoop守护进程的命令: bash ./sbin/stop-dfs.sh ./sbin/stop-yarn.sh 四、总结 启动和停止Hadoop集群并不复杂,但需要注意的是,这些命令需要在Hadoop安装目录下执行。另外,在实际生产环境中,你可能需要添加更多的安全性和监控功能,例如防火墙规则、SSH密钥认证、Hadoop日志监控等。希望这篇文章能对你有所帮助!
2023-06-02 09:39:44
479
月影清风-t
Flink
... API中,我们可以使用DataStream API或者Table API来定义状态。比如说,如果我们想在写一个Stream程序的时候,有一个能被所有地方都看到的全局变量,我们可以在开启源代码编辑时,创建一个所谓的“StateObject”对象,就像是搭建舞台前先准备好道具一样。 java env.setStateBackend(new MemoryStateBackend()); DataStream stream = env.addSource(new RichParallelSourceFunction() { private transient ValueState state; @Override public void open(Configuration parameters) throws Exception { super.open(parameters); state = getRuntimeContext().getState(TypedKey.of("my-state", Types.STRING)); } @Override public void run(SourceContext ctx) throws Exception { for (int i = 0; i < 10; i++) { String value = "value" + i; state.update(value); ctx.collect(value); } } }); 在这个例子中,我们在open方法中创建了一个名为"my-state"的ValueState对象。然后,在run这个方法里头,咱们就不断地给这个状态“刷新”最新的信息,同时把这些新鲜出炉的数值一股脑儿地塞进输出流里去。 三、Flink的容错机制 1. checkpointing checkpointing是Flink的一种容错机制,它可以确保在任务失败后可以从上一次检查点恢复。Flink会在预定义的时间间隔内自动进行checkpoint,也可以通过设置maxConcurrentCheckpoints参数手动控制并发的checkpoint数量。 java env.enableCheckpointing(500); // 每500ms做一次checkpoint 2. savepoint savepoint是另一种Flink的容错机制,它不仅可以保存任务的状态,还可以保存数据的完整图。跟checkpoint不一样的地方在于,savepoint有个大优点:它不会打扰到当前任务的运行。而且你知道吗?恢复savepoint就像按下了快进键,比从checkpoint那里恢复起来速度嗖嗖的,可快多了! java env.getSavepointDirectory(); 四、结论 总的来说,Flink的状态管理和容错机制都是非常强大和灵活的。它们使得Flink能够应对各种复杂的实时和批处理场景。如果你想真正摸透Flink的运行机制,还有它在实际场景中的应用门道,我真心实意地建议你,不妨花点时间钻研一下它的官方文档和教程,保准收获满满!
2023-06-05 11:35:34
463
初心未变-t
Apache Solr
...数为200。 2. 使用合适的索引策略 选择合适的索引策略也可以帮助解决问题。例如,可以选择分片策略,这样就可以将索引分布在多台机器上,从而提高并发能力。 3. 异步处理更新请求 如果更新请求的数量非常多,而且大部分请求都不需要立即返回结果,那么可以选择异步处理这些请求。这样可以大大提高系统的并发能力。 四、总结 总的来说,ConcurrentUpdateRequestHandlerNotAvailableCheckedException是一个比较常见的Solr异常,主要出现在并发更新请求的时候。处理这个问题,咱们有好几种招儿可以用。比如说,可以动动手调整一下Solr服务器的配置,让它更对症下药;再者,采用更合适的索引策略也能派上大用场,就像给你的数据找了个精准的目录一样;还有啊,把那些更新请求采取异步处理的方式,这样一来,不仅能让系统更加流畅高效,还能避免卡壳的情况出现。希望这篇文章能对你有所帮助。
2023-07-15 23:18:25
470
飞鸟与鱼-t
转载文章
...int等。例如,通过使用Office JavaScript API,不仅可以实现从网页内容到Word格式的转换,还能实现实时协作编辑、智能模板填充等功能。 与此同时,随着Web技术的发展和跨平台需求的增长,开源社区对类似HtmlExportToWord.js这样的工具关注度日益提高。许多开发者正致力于构建更高效、兼容性更强的解决方案,以满足不同场景下从Web页面直接生成高质量文档的需求。这些方案不仅限于Word,还涵盖了PDF、Excel等多种格式,极大地拓宽了Web内容离线应用的可能性。 此外,对于那些需要精确控制样式及布局的企业级应用而言,诸如Puppeteer、Headless Chrome等无头浏览器技术也在文档生成领域发挥了关键作用。它们能确保在渲染和导出过程中准确还原Web页面样式,并提供更为细致的定制化选项,使得从HTML向Word或PDF等格式的转换更为精准且可控。 总结来说,在Web开发中,JavaScript在文档处理方面的应用越来越广泛,无论是通过官方API还是第三方库,都为开发者提供了更多便捷高效的手段来实现HTML内容与传统办公文档间的无缝对接。未来,随着Web生态系统的不断进化,我们可以预见JavaScript将在文档处理领域扮演更加重要的角色,帮助企业用户和开发者解决各类复杂场景下的文档转换与管理工作。
2023-11-27 14:07:31
75
转载
Apache Solr
... 近期,InfoQ等技术媒体也报道了多个成功解决大型企业级搜索服务中Solr相关问题的实际案例,其中涉及到了对Solr日志的有效分析、自定义插件开发以适应特定业务需求等方面的经验分享,值得广大Solr使用者借鉴参考。
2023-03-23 18:45:13
463
凌波微步-t
Hadoop
...doop中,我们可以使用HDFS的hdfs dfs -get命令来完成数据的完整备份。 例如: bash hdfs dfs -get /data/hadoop/data /backup/data 上述命令表示将HDFS目录/data/hadoop/data下的所有文件复制到本地目录/backup/data下。 优点:全面保护数据安全,可以避免因系统故障导致的数据丢失。 缺点:备份操作耗时较长,且在数据量大的情况下,占用大量存储空间。 2. 差异备份 差异备份是在已有备份的基础上,只备份自上次备份以来发生改变的部分数据。在用Hadoop的时候,我们有一个超好用的小工具叫Hadoop DistCp,它可以帮我们轻松实现数据的差异备份,就像是给大数据做个“瘦身”运动一样。 例如: css hadoop distcp hdfs://namenode:port/oldpath newpath 上述命令表示将HDFS目录oldpath下的所有文件复制到新路径newpath下。 优点:可以减少备份所需的时间和存储空间,提高备份效率。 缺点:如果已经有多个备份,则每次都需要比较和找出不同的部分进行备份,增加了备份的复杂性。 三、数据恢复策略 1. 点对点恢复 点对点恢复是指直接从原始存储设备上恢复数据,不需要经过任何中间环节。在Hadoop中,我们可以通过Hadoop自带的工具Hadoop fsck来实现数据恢复。 例如: bash hadoop fsck /data/hadoop/data 上述命令表示检查HDFS目录/data/hadoop/data下的所有文件是否完好。 优点:可以直接恢复原始数据,恢复速度快,不会因为中间环节出现问题而导致数据丢失。 缺点:只能用于单节点故障恢复,对于大规模集群无法有效应对。 2. 复制恢复 复制恢复是指通过备份的数据副本来恢复原始数据。在Hadoop中,我们可以使用Hadoop自带的工具Hadoop DistCp来实现数据恢复。 例如: bash hadoop distcp hdfs://namenode:port/source newpath 上述命令表示将HDFS目录source下的所有文件复制到新路径newpath下。 优点:可以用于大规模集群恢复,恢复速度较快,无需等待数据传输。 缺点:需要有足够的存储空间存放备份数据,且恢复过程中需要消耗较多的网络带宽。 四、结论 在Hadoop中实现数据备份和恢复是一个复杂的过程,需要根据实际情况选择合适的备份策略和恢复策略。同时呢,咱们也得把数据备份的频次和备份数据的质量这两点重视起来。想象一下,就像咱们定期存钱进小金库,而且每次存的都是真金白银,这样在遇到突发情况需要用到的时候,才能迅速又准确地把“财产”给找回来,对吧?所以,确保数据备份既及时又靠谱,关键时刻才能派上大用场。希望通过这篇文章,能让你对Hadoop中的数据备份和恢复有更深入的理解和认识。
2023-09-08 08:01:47
401
时光倒流-t
Element-UI
...体验设计的不断演进与技术栈的更新迭代,越来越多的前端开发者开始关注如何优化界面交互与功能拓展。 近期,Vue.js 官方团队发布了 Vue 3.2 版本,引入了更多性能优化与新特性,使得自定义和扩展 UI 组件更为便捷高效。例如,Teleport、Suspense 等新特性让组件的布局和异步加载逻辑有了更多可能,而 Composition API 则提供了更强大且灵活的组件内部状态管理方式,这无疑为 Element UI 这类基于 Vue.js 的 UI 库的深度定制打开了新的思路和技术空间。 同时,Material Design、Ant Design 等知名设计体系也在持续推动着 UI 组件库的体验升级,提倡“清晰、直观、反馈及时”的设计理念,这也为开发者在实现类似“清空”、“确认”按钮等个性化功能时提供了设计原则上的参考依据。 综上所述,在实际项目中,结合最新的前端技术和设计理论,不仅能够丰富 Element UI 等组件库的功能,更能提升整体产品的用户体验,使用户在操作过程中感受到更加贴心、流畅的互动过程。进一步探索这些技术和理念的实际应用,将有助于广大开发者更好地应对未来的前端开发挑战,打造真正符合用户需求的高质量产品。
2023-06-14 08:55:36
438
月下独酌_
RabbitMQ
...人不晓,被广泛地投入使用。 二、RabbitMQ的交换机绑定规则是什么? RabbitMQ的交换机绑定规则是指RabbitMQ如何将消息路由到相应的队列上。RabbitMQ有两种类型的交换机:直接交换机和扇出交换机。 1. 直接交换机 直接交换机是最常用的交换机类型。当消息到达RabbitMQ服务器时,它首先会被路由到相应的交换机。然后呢,交换机就会像个聪明的邮差一样,根据每条消息上的“路由地址”(就是那个Routing Key),把消息精准地投递到对应的队列里去。如果几个队列碰巧有相同的路由键,交换机就会像一个超级广播员一样,把消息一视同仁地发送给所有符合条件的队列。 下面是一个简单的示例,展示了如何使用RabbitMQ的Python客户端发送消息: python import pika 创建连接 connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) 创建频道 channel = connection.channel() 声明交换机 channel.exchange_declare(exchange='direct_logs', type='direct') 声明队列 queue_name = 'hello' channel.queue_declare(queue=queue_name) 绑定队列到交换机 channel.queue_bind(exchange='direct_logs', queue=queue_name, routing_key='info') 发送消息 message = "Hello World!" channel.basic_publish(exchange='direct_logs', routing_key='info', body=message) print(" [x] Sent %r" % message) 关闭连接 connection.close() 在这个示例中,我们首先创建了一个到本地主机的连接和一个通道。然后,我们捣鼓出了一个名叫“direct_logs”的直接交换器和一个叫“hello”的队列。接着,我们将队列hello绑定到交换机direct_logs,并指定了路由键为info。最后,我们使出大招,用了一个叫做basic_publish()的神奇小工具,给交换机发送了一条消息。这条消息呢,它的路由键也正好是info,就像是找到了正确的传送门一样被送出去啦! 2. 扇出交换机 扇出交换机是一种特殊的交换机,它会将收到的所有消息都路由到所有的队列。甭管队列有多少个,扇出交换机都超级负责,保证每一条消息都能找到自己的“家”,准确无误地送到每一个队列的手上。 下面是一个简单的示例,展示了如何使用RabbitMQ的Python客户端发送消息: python import pika 创建连接 connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) 创建频道 channel = connection.channel() 声明交换机 channel.exchange_declare(exchange='fanout_logs', type='fanout') 声明队列 queue_name = 'hello' channel.queue_declare(queue=queue_name) 绑定队列到交换机 channel.queue_bind(exchange='fanout_logs', queue=queue_name) 发送消息 message = "Hello World!" channel.basic_publish(exchange='fanout_logs', routing_key='', body=message) print(" [x] Sent %r" % message) 关闭连接 connection.close() 在这个示例中,我们首先创建了一个到本地主机的连接和一个通道。接着,我们捣鼓出了一个名叫“fanout_logs”的扇出型交换机,还有一个叫“hello”的队列。接着,我们将队列hello绑定到交换机fanout_logs,并且没有指定路由键。最后,我们使出“basic_publish()”这个大招,给交换机发送了一条消息。这条消息的路由键嘛,就是个空字符串,啥也没有哈~ 三、总结 总之,RabbitMQ的交换机绑
2023-07-27 13:55:03
361
草原牧歌-t
Hadoop
...重复的方法: 1. 使用ID生成器 当写入数据时,可以使用一个唯一的ID来标识每个数据项。这样就可以确保每个数据项只被写入一次。 python import uuid 生成唯一ID id = str(uuid.uuid4()) 2. 使用事务 在某些情况下,可以使用数据库事务来确保数据的一致性。这可以通过设置数据库的隔离级别来实现。 sql START TRANSACTION; INSERT INTO table_name (column1, column2) VALUES ('value1', 'value2'); COMMIT; 3. 使用MapReduce的输出去重特性 Hadoop提供了MapReduce的输出去重特性,可以在Map阶段就去除重复的数据,然后再进行Reduce操作。 java public static class MyMapper extends Mapper { private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String[] words = value.toString().split(" "); for (String word : words) { word = word.toLowerCase(); if (!word.isEmpty()) { context.write(new Text(word), one); } } } } 以上就是关于Hadoop中的数据写入重复的一些介绍和解决方案。希望对你有所帮助。
2023-05-18 08:48:57
508
秋水共长天一色-t
Apache Lucene
...能相当给力地把控内存使用,不过呢,也可能让搜索速度没那么快了。 3. ConcurrentMergeScheduler:这个策略是并发的,它可以在不同的线程上同时进行合并,从而提高合并的速度。不过要注意,要是咱们把并发数量调得太大,可能会让CPU过于忙碌,忙到“火力全开”,这样一来,CPU使用率就嗖嗖地往上升啦。 四、如何优化Lucene索引段合并策略? 那么,我们如何根据自己的需求,选择合适的合并策略呢?以下是一些优化建议: 1. 根据内存大小调整合并阈值 如果你的服务器内存较小,可以考虑使用LogByteSizeMergePolicy,并降低其合并阈值,以减少内存占用。 2. 根据查询频率调整并发数量 如果你的应用程序需要频繁地进行搜索,可以考虑使用ConcurrentMergeScheduler,并增加其并发数量,以加快搜索速度。 3. 使用自定义的合并策略 如果你想实现更复杂的合并策略,例如先合并某些特定的段,再合并其他段,你可以编写自己的合并策略,并将其注册给Lucene。 总的来说,Lucene的索引段合并策略是一个复杂但又非常重要的问题。了解并巧妙运用合并策略后,咱们就能让Lucene这位搜索大神发挥出更强大的威力,这样一来,应用程序的性能也能蹭蹭地往上提升,用起来更加流畅顺滑,一点儿也不卡壳。
2023-03-19 15:34:42
397
岁月静好-t
转载文章
...oper网站上的一篇技术文章就详细讨论了如何在现代化环境中优化Swing应用,包括性能调优、与JavaFX组件的混合使用策略以及利用最新JVM特性进行兼容性升级。 此外,随着现代IDE如IntelliJ IDEA功能的不断丰富和完善,GUI设计工具链也在持续迭代,使得开发者能够更加便捷高效地设计和实现复杂用户界面。例如,JetBrains官方博客中关于使用IntelliJ IDEA GUI Designer设计Swing和JavaFX应用程序的文章,提供了大量实用技巧和最佳实践,值得开发者深入阅读和学习。 最后,针对ScrcpyController这一具体应用场景,可以关注其背后的开源项目Scrcpy的发展动态。Scrcpy作为一款流行的Android设备无线控制工具,已通过众多开发者为其开发GUI前端来提升用户体验,这其中就涉及到了Swing和JavaFX等技术的实际运用,而这些实践经验和代码示例无疑为Java GUI开发者提供了宝贵的学习资源。
2023-05-01 10:38:51
438
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
journalctl
- 查看系统日志。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"