前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[MongoDB数据库的高级查询技巧 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Kibana
...ibana中如何设置数据保留策略? 1. 前言 为什么我们需要数据保留策略? 嗨朋友们!今天咱们聊聊一个非常实用的话题——在Kibana中如何设置数据保留策略。先问问大家,你们有没有遇到过这样的情况?存储空间告急,系统提示“磁盘已满”;或者不小心存了太多无用的数据,导致查询速度慢得像乌龟爬……这些问题是不是让你头疼?别担心,Kibana可以帮助我们轻松管理数据,而数据保留策略就是其中的重要一环。 其实,数据保留策略的核心思想很简单:只保留必要的数据,删除那些不再需要的垃圾信息。这不仅能够节省宝贵的存储资源,还能提高系统的运行效率。所以,今天咱们就来深入探讨一下,如何在Kibana中搞定这个事儿! --- 2. 数据保留策略是什么?为什么要用它? 2.1 什么是数据保留策略? 简单来说,数据保留策略就是定义数据的生命周期。比如说,“只留最近30天的记录”,或者是“超过一年的就自动清掉”。你可以根据业务需求灵活设置这些规则。 2.2 为什么我们需要它? 想象一下,如果你是一家电商平台的数据分析师,每天都会生成大量的日志文件。这些日志里可能包含了用户的购买记录、浏览行为等重要信息。不过呢,日子一长啊,那些早期的日志就变得没啥分析的意义了,反而是白白占着磁盘空间,挺浪费的。这时候,数据保留策略就能帮你解决这个问题。 再比如,如果你是一家医院的IT管理员,医疗设备产生的监控数据可能每秒都在增加。要是不赶紧把那些旧数据清理掉,系统非但会变得越来越卡,还可能出大问题,甚至直接“翻车”!所以,合理规划数据的生命周期是非常必要的。 --- 3. 如何在Kibana中设置数据保留策略? 接下来,咱们进入正题——具体操作步骤。相信我,这并不复杂,只要跟着我的节奏走,你一定能学会! 3.1 第一步:创建索引模式 首先,我们需要确保你的数据已经被正确地存储到Elasticsearch中,并且可以通过Kibana访问。如果还没有创建索引模式,可以按照以下步骤操作: bash 登录Kibana界面 1. 点击左侧菜单栏中的“Management”。 2. 找到“Stack Management”部分,点击“Index Patterns”。 3. 点击“Create index pattern”按钮。 4. 输入你的索引名称(例如 "logstash-"),然后点击“Next step”。 5. 选择时间字段(通常是@timestamp),点击“Create index pattern”完成配置。 > 思考点:这里的关键在于选择合适的索引名称和时间字段。如果你的时间字段命名不规范,后续可能会导致数据无法正确筛选哦! 3.2 第二步:设置索引生命周期策略 接下来,我们要为索引创建生命周期策略。这是Kibana中最核心的部分,直接决定了数据的保留方式。 示例代码: javascript PUT _ilm/policy/my_policy { "policy": { "phases": { "hot": { "actions": { "rollover": { "max_size": "50gb", "max_age": "30d" } } }, "delete": { "min_age": "1y", "actions": { "delete": {} } } } } } 这段代码的意思是: - 热阶段(Hot Phase):当索引大小达到50GB或者超过30天时,触发滚动操作。 - 删除阶段(Delete Phase):超过1年后,自动删除该索引。 > 小贴士:这里的max_size和max_age可以根据你的实际需求调整。比如,如果你的服务器内存较小,可以将max_size调低一点。 3.3 第三步:将策略应用到索引 设置好生命周期策略后,我们需要将其绑定到具体的索引上。具体步骤如下: bash POST /my-index/_settings { "index.lifecycle.name": "my_policy", "index.lifecycle.rollover_alias": "my_index" } 这段代码的作用是将之前创建的my_policy策略应用到名为my-index的索引上。同时,通过rollover_alias指定滚动索引的别名。 --- 4. 实战案例 数据保留策略的实际效果 为了让大家更直观地理解数据保留策略的效果,我特意准备了一个小案例。假设你是一名电商公司的运维工程师,每天都会收到大量的订单日志,格式如下: json { "order_id": "123456789", "status": "success", "timestamp": "2023-09-01T10:00:00Z" } 现在,你想对这些日志进行生命周期管理,具体要求如下: - 最近3个月的数据需要保留。 - 超过3个月的数据自动归档到冷存储。 - 超过1年的数据完全删除。 实现方案: 1. 创建索引模式,命名为orders-。 2. 定义生命周期策略 javascript PUT _ilm/policy/orders_policy { "policy": { "phases": { "hot": { "actions": { "rollover": { "max_size": "10gb", "max_age": "3m" } } }, "warm": { "actions": { "freeze": {} } }, "delete": { "min_age": "1y", "actions": { "delete": {} } } } } } 3. 将策略绑定到索引 bash POST /orders-/_settings { "index.lifecycle.name": "orders_policy", "index.lifecycle.rollover_alias": "orders" } 运行以上代码后,你会发现: - 每隔3个月,新的订单日志会被滚动到一个新的索引中。 - 超过3个月的旧数据会被冻结,存入冷存储。 - 超过1年的数据会被彻底删除,释放存储空间。 --- 5. 总结与展望 通过今天的分享,相信大家对如何在Kibana中设置数据保留策略有了更深的理解。虽然设置过程看似繁琐,但实际上只需要几步就能搞定。而且啊,要是咱们好好用数据保留这招,不仅能让系统跑得更快、更顺畅,还能帮咱们把那些藏在数据里的宝贝疙瘩给挖出来,多好呀! 最后,我想说的是,技术学习是一个不断探索的过程。如果你在实践中遇到问题,不妨多查阅官方文档或者向社区求助。毕竟,我们每个人都是技术路上的探索者,一起努力才能走得更远! 好了,今天的分享就到这里啦!如果你觉得这篇文章有用,记得点赞支持哦~咱们下次再见!
2025-04-30 16:26:33
19
风轻云淡
Groovy
...饰符,并且支持闭包等高级特性。 闭包 , Groovy中的闭包是一种可以像函数一样被调用的代码块,同时还能捕获其定义时所在的作用域中的变量。文章中提到闭包是Groovy的一大亮点,它与Java中的匿名内部类不同,Groovy的闭包更加简洁,允许省略参数类型甚至整个参数列表。 动态类型 , 指在运行时才确定变量的数据类型的编程语言特性。文章中提到Groovy支持动态类型,意味着变量可以在运行过程中改变其类型,但同时也需要注意类型转换的问题。这种特性使得Groovy具有较高的灵活性,但在使用时需要开发者对类型系统有清晰的认识以避免潜在错误。
2025-03-13 16:20:58
62
笑傲江湖
转载文章
...配置后,读者可能对大数据存储与处理领域的最新进展和相关技术动态产生兴趣。实际上,随着数据量的持续增长和技术迭代,HDFS也在不断发展以适应更复杂的应用场景。 近期,Apache Hadoop 3.3.0版本发布,引入了一系列新功能和改进。例如,HDFS现在支持EC(Erasure Coding)策略的进一步优化,能够在保证数据可靠性的同时,显著降低存储开销。此外,NameNode的高可用性和故障切换机制得到增强,确保了大规模集群的稳定运行。 另一方面,为应对云原生时代的挑战,Hadoop社区正积极将HDFS与Kubernetes等容器编排平台进行整合。如Open Data Hub项目就提供了在Kubernetes上部署HDFS及整个Hadoop生态系统的解决方案,使企业能够更加灵活高效地构建和管理基于云的大数据服务。 同时,对于那些寻求超越HDFS局限性的用户,可以关注到像Apache Hudi、Iceberg这样的开源项目,它们在HDFS之上构建了事务性数据湖存储层,支持ACID事务、时间旅行查询等功能,极大地丰富了大数据处理的可能性。 总之,掌握HDFS是理解和使用大数据技术的基础,而关注其演进路径以及相关的创新技术和解决方案,则有助于我们在实际应用中更好地利用HDFS及其生态系统的力量,解决日益复杂的数据管理和分析需求。
2023-12-05 22:55:20
279
转载
转载文章
...容。 你知道程序员、高级程序员、架构师、技术经理、技术总监之间有什么区别吗?他们的工作职责又是什么? 小编带大家了解一下,不同等级的程序员之间到底有什么差别。 程序员 程序员,英文名coder/programmer,大家常自嘲叫码农的阶段。这个角色职责是把需求或产品实现为用户可用的软件产品。 此职位为执行级别。另外因为经验较少,一般需要求助别人,或与别人一起完(ban)成(zhuan)一个任务。 此阶段大概要经历3年,程序员的职责如下: 1、对项目经理负责,负责软件项目的详细设计、编码和内部测试的组织实施。 2、协助项目经理和相关人员同客户进行沟通,保持良好的客户关系。 3、参与需求调研、项目可行性分析、技术可行性分析和需求分析。 4、熟悉并熟练掌握交付软件部开发的软件项目的相关软件技术。 5、负责向项目经理及时反馈软件开发中的情况,并根据实际情况提出改进建议。 6、负责对业务领域内的技术发展动态进行分析研究。 高级程序员 高级程序员学名,工程师。 到了这个level,英文名可改叫做 engineer 或 developer。此时你的功力开始增强,这与你平时的积累努力是分不开的,祝贺你~ 此时的你不仅可以完成任务,开始注重代码的质量,能够写出工业级的代码。你的经验可胜任模块级的系统设计,承担完成较为复杂的技术,能有效的自我管理,有帮助别人快速解决问题(trouble shooting)的能力。 此阶段你需要经历到7、8年左右的体验,中间要经历一段深刻自我历练的过程。 有时给人致命一击其实是心里的小蟊贼。一般人在5年前后遇到一个门槛,碰到天花板+彷徨期,或者你打心眼里不在喜欢编程,可尝试转为其它角色,如产品经理,售前售后支持等岗位,也不失为好选择。 当我们熬过这段儿,就会“山随平野尽,江入大荒流“,渐入佳境矣。 高级程序员定义软件功能、做开发计划推进和管理。可以带几个个帮手把产品规划的功能实现,你是团队中的”大手“,遇到难题也是你亲自攻艰克难。 所以,一个高级程序员,他的职责很清晰: 1、负责产品核心复杂功能的方案设计、编码实现 2、负责疑难BUG分析诊断、攻关解决 架构师 到了架构师级别,想必你已经学会降龙十八掌,可登堂入世,成为一位准(lao)专(you)家(tiao)。 我们大喊声:“单打独斗,老衲谁也不惧!“,遂开始领导一众技术高手,指点武功,来设计和完成一个系统,大多是分布式,高并发的系统架构平台。 架构师的任务是为公司产品的业务问题提供高质量技术解决方案,主要着眼于系统的"技术实现" 。 架构师的主要分类: 可能每条产品线都设置了架构师,也可能多条生产品线的的后端是由一个架构师设计的平台提供,所以架构师也是有所不同的,其分类如下: 软件架构师 信息架构师 网站架构师 其主要职责如下: 1、需求分析:“知彼”有时比“知已”还重要。管理市场,产品等的需求,确立关键需求。坚持技术上的优秀与需求的愿景统一,提升技术负债意识,提供技术选项,风险预判,工期等解决方案。 2、架构设计:在产品功能中抽取中非功能的需求,由关键需求变成概念型架构。列出功能树,分层治之,如用户界面层、系统交互层,数据管理层。达成高扩展,高可用,高性能,高安全,易运维,易部署,易接入等能力。 3、功能设计与实现:对架构设计的底层代码级别实现。如公共核心类,接口实现,应用发现规则、接口变更等。 技术经理 人生就是不断上升的过程,你已经到达经理的层次了。如今的你,需要不断提高领导力,需要定期召开团队会议讨论问题。 首先我们要更加自信,在工作中显示自己的功力,给讲话增添力量。如:“本次项目虽然有很大的困难,我们也需苦战到底。当然示先垂范,身先士卒,方能成功!” 技术经理有时候也可能叫系统分析员,一些小公司可能会整个公司或者部门有一个技术经理。技术经理承担的角色主要是系统分析、架构搭建、系统构建、代 码走查等工作,如果说项目经理是总统,那么技术经理就是总理。当然不是所有公司都是这样的,有些公司项目经理是不管技术团队的,只做需求、进度和同客户沟 通,那么这个时候的项目经理就好像工厂里的跟单人员了,这种情况在外包公司比较多。对于技术经理来说,着重于技术方面,你需要知道某种功能用哪些技术合 适,需要知道某项功能需要多长的开发时间等。同时,技术经理也应该承担提高团队整体技术水平的工作。 你需要和大家站在一起,因为人们也都有解决问题的能力,更需要有以下的能力与责任: 1、任务管理:开发工作量评估、定立开发流程、分配和追踪开发任务 2、质量管理:代码review、开发风险判断/报告/协调解决 3、效率提升:代码底层研发和培训、最佳代码实践规范总结与推广、自动化生产工具、自动化部署工具 4、技术能力提升:招聘面试、试题主拟、新人指导、项目复盘与改进 技术总监 如果一个研发团队超过20人,有多条产品线或业务量很大,这时已经有多个技术经理在负责每个业务,这时需要一位技术总监。 主要职责: 1、组建平台研发部,与架构师共建软件公共平台,方便各条产品业务线研发。 2、通过技术平台、通过高一层的职权,管理和协调公司各个部门与本部门各条线。现在每个产品线都应该有合格的技术经理和高级程序员。 结语:我们相信,每个人都能成为IT大神。现在开始,找个师兄带你入门,让你的学习之路不再迷茫。 这里推荐我们的前端学习交流圈:784783012,里面都是学习前端的从最基础的HTML+CSS+JS【炫酷特效,游戏,插件封装,设计模式】到移动端HTML5的项目实战的学习资料都有整理,送给每一位前端小伙伴。 最新技术,与企业需求同步。好友都在里面学习交流,每天都会有大牛定时讲解前端技术! 点击:前端技术分享 本篇文章为转载内容。原文链接:https://blog.csdn.net/webDk/article/details/88917912。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-05-10 13:13:48
756
转载
RabbitMQ
...回的东西就像是个装满数据的盒子,但这个盒子是那种普通的字典格式的。可到了4.x版本呢,这玩意儿就有点变了味儿,返回的不再是那个简单的字典盒子了,而是一个“高级定制版”的对象实例,感觉像是升级成了一个有专属身份的小家伙。 因此,每次引入新工具之前,一定要先查阅官方文档,确认其最新的API规范。要是不太确定,不妨试试跑一下官方给的例程代码,看看有没有啥奇怪的表现。 (2)版本锁定的重要性 为了避免类似的问题再次发生,我在后续项目中采取了严格的版本管理策略。例如,在requirements.txt文件中明确指定依赖库的具体版本号,而不是使用通配符(如>=)。这样做的好处是,即使未来出现了更高级别的版本,也不会意外破坏现有功能。 下面是一段示例代码,展示了如何在pip中固定pika的版本为1.2.0: python requirements.txt pika==1.2.0 当然,这种方法也有缺点,那就是升级依赖时可能会比较麻烦。不过嘛,要是咱们团队人不多,但手头的项目特别讲究稳当性,那这个方法绝对值得一试! --- 4. 实战演练 修复旧代码,拥抱新世界 既然明白了问题所在,接下来就是动手解决问题了。嘿,为了让大家更清楚地知道怎么把旧版的API换成新版的,我打算用一段代码来给大家做个示范,保证一看就懂! 假设我们有一个简单的RabbitMQ生产者程序,如下所示: python import pika connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() channel.queue_declare(queue='hello') channel.basic_publish(exchange='', routing_key='hello', body='Hello World!') print(" [x] Sent 'Hello World!'") connection.close() 如果你直接运行这段代码,很可能会遇到如下警告: DeprecationWarning: This method will be removed in future releases. Please use the equivalent method on the Channel class. 这是因为queue_declare方法现在已经被重新设计为返回一个包含元数据的对象,而不是单纯的字典。我们需要将其修改为如下形式: python import pika connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() result = channel.queue_declare(queue='', exclusive=True) queue_name = result.method.queue channel.basic_publish(exchange='', routing_key=queue_name, body='Hello World!') print(" [x] Sent 'Hello World!'") connection.close() 可以看到,这里新增了一行代码来获取队列名称,同时调整了routing_key参数的赋值方式。这种改动虽然简单,但却能显著提升程序的健壮性和可读性。 --- 5. 总结与展望 从失败中学习,向成功迈进 回想起这次经历,我既感到懊恼又觉得幸运。真后悔啊,当时要是多花点时间去了解API的新变化,就不会在这上面浪费那么多精力了。不过话说回来,这次小挫折也让我学到了教训,以后会更注意避免类似的错误,而且也会更加重视代码的质量。 最后想对大家说一句:技术的世界瞬息万变,没有人能够永远站在最前沿。但只要保持好奇心和学习热情,我们就一定能找到通往成功的道路。毕竟,正如那句经典的话所说:“失败乃成功之母。”只要勇敢面对挑战,总有一天你会发现,那些曾经让你头疼不已的问题,其实都是成长路上不可或缺的一部分。 希望这篇文章对你有所帮助!如果你也有类似的经历或者见解,欢迎随时交流哦~
2025-03-12 16:12:28
106
岁月如歌
MemCache
...存系统,主要用于减轻数据库的压力,提升应用的响应速度。其实说白了就是这么个事儿——把数据都存到内存里,用的时候直接拿出来,省得每次都要跑去数据库翻箱倒柜找一遍,多麻烦啊! 举个例子,假设你正在做一个电商网站,用户点击商品详情页时,如果每次都要从数据库拉取商品信息,那服务器负载肯定爆表。但如果我们将这些数据缓存在MemCache中,用户访问时直接从内存读取,岂不是快如闪电? 不过呢,事情可没那么简单。MemCache这小子虽然挺能干的,但也不是省油的灯啊!比如说吧,你老是疯狂地去请求数据,结果服务器偏偏不给面子,连个响应都没有,那它就直接给你来个“服务连接超时”的报错,气得你直跺脚。这就像你去餐厅点菜,服务员一直不在,你说能不急吗? --- 2. 服务连接超时到底是个啥? 服务连接超时,简单来说就是你的程序试图与MemCache服务器建立连接,但因为某些原因(比如网络延迟、服务器过载等),连接请求迟迟得不到回应,最终超时失败。这种错误通常会伴随着一条令人沮丧的信息:“连接超时”。 让我分享一个小故事:有一次我在调试一个项目时,发现某个接口总是返回“服务连接超时”,我当时的第一反应是“天啊,是不是MemCache崩了?”于是我赶紧登录服务器检查日志,结果发现MemCache运行正常,只是偶尔响应慢了一点。后来我才意识到,可能是客户端配置的问题。 所以,当遇到这种错误时,不要慌!我们得冷静下来,分析一下可能的原因。 --- 2.1 可能的原因有哪些? 1. 网络问题 MemCache服务器和客户端之间的网络不稳定。 2. MemCache配置不当 比如设置了太短的超时时间。 3. 服务器负载过高 MemCache服务器被太多请求压垮。 4. 客户端代码问题 比如没有正确处理异常情况。 --- 3. 如何解决服务连接超时? 接下来,咱们就从代码层面入手,看看如何优雅地解决这个问题。我会结合实际例子,手把手教你如何避免“服务连接超时”。 --- 3.1 检查网络连接 首先,确保你的MemCache服务器和客户端之间网络通畅。你可以试试用ping命令测试一下: bash ping your-memcache-server 如果网络不通畅,那就得找运维同事帮忙优化网络环境了。不过,如果你确定网络没问题,那就继续往下看。 --- 3.2 调整超时时间 很多时候,“服务连接超时”是因为你设置的超时时间太短了。默认情况下,MemCache的超时时间可能比较保守,你需要根据实际情况调整它。 在Java中,可以这样设置超时时间: java import net.spy.memcached.AddrUtil; import net.spy.memcached.MemcachedClient; public class MemCacheExample { public static void main(String[] args) throws Exception { // 创建MemCache客户端,设置超时时间为5秒 MemcachedClient memcachedClient = new MemcachedClient(AddrUtil.getAddresses("localhost:11211"), 5000); System.out.println("成功连接到MemCache服务器!"); } } 这里的关键是5000,表示超时时间为5秒。你可以根据实际情况调整这个值,比如改成10秒或者20秒。 --- 3.3 使用重试机制 有时候,一次连接失败并不代表MemCache服务器真的挂了。在这种情况下,我们可以加入重试机制,让程序自动尝试重新连接。 下面是一个简单的Python示例: python import time from pymemcache.client.base import Client def connect_to_memcache(): attempts = 3 while attempts > 0: try: client = Client(('localhost', 11211)) print("成功连接到MemCache服务器!") return client except Exception as e: print(f"连接失败,重试中... ({attempts}次机会)") time.sleep(2) attempts -= 1 raise Exception("无法连接到MemCache服务器,请检查配置!") client = connect_to_memcache() 在这个例子中,程序会尝试三次连接MemCache服务器,每次失败后等待两秒钟再重试。如果三次都失败,就抛出异常提示用户。 --- 3.4 监控MemCache状态 最后,建议你定期监控MemCache服务器的状态。你可以通过工具(比如MemAdmin)查看服务器的健康状况,包括内存使用率、连接数等指标。 如果你发现服务器负载过高,可以考虑增加MemCache实例数量,或者优化业务逻辑减少不必要的请求。 --- 4. 总结 服务连接超时不可怕,可怕的是不去面对 好了,到这里,关于“服务连接超时”的问题基本就说完了。虽然MemCache确实容易让人踩坑,但只要我们用心去研究,总能找到解决方案。 最后想说的是,技术这条路没有捷径,遇到问题不要急躁,多思考、多实践才是王道。希望我的分享对你有所帮助,如果你还有什么疑问,欢迎随时来找我讨论!😄 祝大家编码愉快!
2025-04-08 15:44:16
88
雪落无痕
Go Gin
...会返回JSON格式的数据{"message": "pong"}。 个人感悟 刚接触这段代码的时候,我有点被惊到了——这么少的代码竟然能完成如此多的功能!当然,这也得益于Gin的设计理念:尽可能简化开发流程,让程序员专注于业务逻辑而不是框架细节。 --- 三、实时处理的核心 WebSocket支持 既然我们要讨论实时处理,那么就不得不提WebSocket。WebSocket就像是一个永不掉线的“聊天热线”,能让浏览器和服务器一直保持着畅通的联系。跟传统的请求-响应模式不一样,它可以让双方随时自由地“唠嗑”,想发啥就发啥,特别适合那些需要实时互动的应用,比如聊天室里你一言我一语,或者股票行情那种分分钟都在变化的东西,用它简直太合适了! Gin内置了对WebSocket的支持,我们可以直接通过中间件来实现这一功能。下面是一个完整的WebSocket示例: go package main import ( "log" "net/http" "github.com/gin-gonic/gin" "github.com/gorilla/websocket" ) var upgrader = websocket.Upgrader{ ReadBufferSize: 1024, WriteBufferSize: 1024, CheckOrigin: func(r http.Request) bool { return true // 允许跨域 }, } func handleWebSocket(c gin.Context) { ws, err := upgrader.Upgrade(c.Writer, c.Request, nil) if err != nil { log.Println("Failed to upgrade:", err) return } defer ws.Close() for { messageType, msg, err := ws.ReadMessage() if err != nil { log.Println("Error reading message:", err) break } log.Printf("Received: %s\n", string(msg)) err = ws.WriteMessage(messageType, msg) if err != nil { log.Println("Error writing message:", err) break } } } func main() { r := gin.Default() r.GET("/ws", handleWebSocket) r.Run(":8080") } 在这段代码中,我们利用gorilla/websocket包实现了WebSocket升级,并在handleWebSocket函数中处理了消息的读取与发送。你可以试着在浏览器里输入这个地址:ws://localhost:8080/ws,然后用JavaScript发个消息试试,看能不能马上收到服务器的回应。 深入探讨 说实话,刚开始写这部分代码的时候,我还担心WebSocket的兼容性问题。后来发现,只要正确设置了CheckOrigin方法,大多数现代浏览器都能正常工作。这让我更加坚定了对Gin的信心——它虽然简单,但足够强大! --- 四、进阶技巧 并发与性能优化 在实际项目中,我们可能会遇到高并发的情况。为了保证系统的稳定性,我们需要合理地管理线程池和内存分配。Gin提供了一些工具可以帮助我们做到这一点。 例如,我们可以使用sync.Pool来复用对象,减少垃圾回收的压力。下面是一个示例: go package main import ( "sync" "time" "github.com/gin-gonic/gin" ) var pool sync.Pool func init() { pool = &sync.Pool{ New: func() interface{} { return make([]byte, 1024) }, } } func handler(c gin.Context) { data := pool.Get().([]byte) defer pool.Put(data) copy(data, []byte("Hello World!")) time.Sleep(100 time.Millisecond) // 模拟耗时操作 c.String(http.StatusOK, string(data)) } func main() { r := gin.Default() r.GET("/", handler) r.Run(":8080") } 在这个例子中,我们定义了一个sync.Pool来存储临时数据。每次处理请求时,从池中获取缓冲区,处理完毕后再放回池中。这样可以避免频繁的内存分配和释放,从而提升性能。 反思与总结 其实,刚开始学习这段代码的时候,我对sync.Pool的理解还停留在表面。直到后来真正用它解决了性能瓶颈,我才意识到它的价值所在。这也让我明白,优秀的框架只是起点,关键还是要结合实际需求去探索和实践。 --- 五、未来展望 Gin与实时处理的无限可能 Gin的强大之处不仅仅在于它的易用性和灵活性,更在于它为开发者提供了广阔的想象空间。无论是构建大型分布式系统,还是打造小型实验项目,Gin都能胜任。 如果你也想尝试用Gin构建实时处理系统,不妨从一个小目标开始——比如做一个简单的在线聊天室。相信我,当你第一次看到用户实时交流的画面时,那种成就感绝对会让你欲罢不能! 最后的话 写这篇文章的过程,其实也是我自己重新审视Gin的过程。其实这个东西吧,说白了挺简单的,但让我学到了一个本事——用最利索的办法搞定事情。希望能这篇文章也能点醒你,让你在今后的开发路上,慢慢琢磨出属于自己的那套玩法!加油吧,程序员们!
2025-04-07 16:03:11
66
时光倒流
转载文章
...SM) USM语法 数据依赖 wait() depends_on in_order queue property 练习1:事件依赖 练习2:事件依赖 UMS实验 oneAPI编程模型 oneAPI编程模型提供了一个全面、统一的开发人员工具组合,可用于各种硬件设备,其中包括跨多个工作负载领域的一系列性能库。这些库包括面向各目标架构而定制化代码的函数,因此相同的函数调用可为各种支持的架构提供优化的性能。DPC++基于行业标准和开放规范,旨在鼓励生态系统的协作和创新。 多架构编程面临的挑战 在以数据为中心的环境中,专用工作负载的数量不断增长。专用负载通常因为没有通用的编程语言或API而需要使用不同的语言和库进行编程,这就需要维护各自独立的代码库。 由于跨平台的工具支持不一致,因此开发人员必须学习和使用一整套不同的工具。单独投入精力给每种硬件平台开发软件。 oneAPI则可以利用一种统一的编程模型以及支持并行性的库,支持包括CPU、GPU、FPGA等硬件等同于原生高级语言的开发性能,并且可以与现有的HPC编程模型交互。 SYCL SYCL支持C++数据并行编程,SYCL和OpenCL一样都是由Khronos Group管理的,SYCL是建立在OpenCL之上的跨平台抽象层,支持用C++用单源语言方式编写用于异构处理器的与设备无关的代码。 DPC++ DPC++(Data Parallel C++)是一种单源语言,可以将主机代码和异构加速器内核写在同一个文件当中,在主机中调用DPC++程序,计算由加速器执行。DPC++代码简洁且效率高,并且是开源的。现有的CUDA应用、Fortran应用、OpenCL应用都可以用不同方式很方便地迁移到DPC++当中。 下图显示了原来使用不同架构的HPC开发人员的一些推荐的转换方法。 编译和运行DPC++程序 编译和运行DPC++程序主要包括三步: 初始化环境变量 编译DPC++源代码 运行程序 例如本地运行,在本地系统上安装英特尔基础工具套件,使用以下命令编译和运行DPC++程序。 source /opt/intel/inteloneapi/setvars.shdpcpp simple.cpp -o simple./simple 编程实例 实现矢量加法 以下实例描述了使用DPC++实现矢量加法的过程和源代码。 queue类 queue类用来提交给SYCL执行的命令组,是将作业提交到运算设备的一种机制,多个queue可以映射到同一个设备。 Parallel kernel Parallel kernel允许代码并行执行,对于一个不具有相关性的循环数据操作,可以用Parallel kernel并行实现 在C++代码中的循环实现 for(int i=0; i < 1024; i++){a[i] = b[i] + c[i];}); 在Parallel kernel中的并行实现 h.parallel_for(range<1>(1024), [=](id<1> i){A[i] = B[i] + C[i];}); 通用的并行编程模板 h.parallel_for(range<1>(1024), [=](id<1> i){// CODE THAT RUNS ON DEVICE }); range用来生成一个迭代序列,1为步长,在循环体中,i表示索引。 Host Accessor Host Accessor是使用主机缓冲区访问目标的访问器,它使访问的数据可以在主机上使用。通过构建Host Accessor可以将数据同步回主机,除此之外还可以通过销毁缓冲区将数据同步回主机。 buf是存储数据的缓冲区。 host_accessor b(buf,read_only); 除此之外还可以将buf设置为局部变量,当系统超出buf生存期,buf被销毁,数据也将转移到主机中。 矢量相加源代码 根据上面的知识,这里展示了利用DPC++实现矢量相加的代码。 //第一行在jupyter中指明了该cpp文件的保存位置%%writefile lab/vector_add.cppinclude <CL/sycl.hpp>using namespace sycl;int main() {const int N = 256;// 初始化两个队列并打印std::vector<int> vector1(N, 10);std::cout<<"\nInput Vector1: "; for (int i = 0; i < N; i++) std::cout << vector1[i] << " ";std::vector<int> vector2(N, 20);std::cout<<"\nInput Vector2: "; for (int i = 0; i < N; i++) std::cout << vector2[i] << " ";// 创建缓存区buffer vector1_buffer(vector1);buffer vector2_buffer(vector2);// 提交矢量相加任务queue q;q.submit([&](handler &h) {// 为缓存区创建访问器accessor vector1_accessor (vector1_buffer,h);accessor vector2_accessor (vector2_buffer,h);h.parallel_for(range<1>(N), [=](id<1> index) {vector1_accessor[index] += vector2_accessor[index];});});// 创建主机访问器将设备中数据拷贝到主机当中host_accessor h_a(vector1_buffer,read_only);std::cout<<"\nOutput Values: ";for (int i = 0; i < N; i++) std::cout<< vector1[i] << " ";std::cout<<"\n";return 0;} 运行结果 统一共享内存 (Unified Shared Memory USM) 统一共享内存是一种基于指针的方法,是将CPU内存和GPU内存进行统一的虚拟化方法,对于C++来说,指针操作内存是很常规的方式,USM也可以最大限度的减少C++移植到DPC++的代价。 下图显示了非USM(左)和USM(右)的程序员开发视角。 类型 函数调用 说明 在主机上可访问 在设备上可访问 设备 malloc_device 在设备上分配(显式) 否 是 主机 malloc_host 在主机上分配(隐式) 是 是 共享 malloc_shared 分配可以在主机和设备之间迁移(隐式) 是 是 USM语法 初始化: int data = malloc_shared<int>(N, q); int data = static_cast<int >(malloc_shared(N sizeof(int), q)); 释放 free(data,q); 使用共享内存之后,程序将自动在主机和运算设备之间隐式移动数据。 数据依赖 使用USM时,要注意数据之间的依赖关系以及事件之间的依赖关系,如果两个线程同时修改同一个内存区,将产生不可预测的结果。 我们可以使用不同的选项管理数据依赖关系: 内核任务中的 wait() 使用 depends_on 方法 使用 in_queue 队列属性 wait() q.submit([&](handler &h) {h.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 2; });}).wait(); // <--- wait() will make sure that task is complete before continuingq.submit([&](handler &h) {h.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 3; });}); depends_on auto e = q.submit([&](handler &h) { // <--- e is event for kernel taskh.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 2; });});q.submit([&](handler &h) {h.depends_on(e); // <--- waits until event e is completeh.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 3; });}); in_order queue property queue q(property_list{property::queue::in_order()}); // <--- this will make sure all the task with q are executed sequentially 练习1:事件依赖 以下代码使用 USM,并有三个提交到设备的内核。每个内核修改相同的数据阵列。三个队列之间没有数据依赖关系 为每个队列提交添加 wait() 在第二个和第三个内核任务中实施 depends_on() 方法 使用 in_order 队列属性,而非常规队列: queue q{property::queue::in_order()}; %%writefile lab/usm_data.cppinclude <CL/sycl.hpp>using namespace sycl;static const int N = 256;int main() {queue q{property::queue::in_order()};//用队列限制执行顺序std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n";int data = static_cast<int >(malloc_shared(N sizeof(int), q));for (int i = 0; i < N; i++) data[i] = 10;q.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 2; });q.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 3; });q.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 5; });q.wait();//wait阻塞进程for (int i = 0; i < N; i++) std::cout << data[i] << " ";std::cout << "\n";free(data, q);return 0;} 执行结果 练习2:事件依赖 以下代码使用 USM,并有三个提交到设备的内核。前两个内核修改了两个不同的内存对象,第三个内核对前两个内核具有依赖性。三个队列之间没有数据依赖关系 %%writefile lab/usm_data2.cppinclude <CL/sycl.hpp>using namespace sycl;static const int N = 1024;int main() {queue q;std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n";//设备选择int data1 = malloc_shared<int>(N, q);int data2 = malloc_shared<int>(N, q);for (int i = 0; i < N; i++) {data1[i] = 10;data2[i] = 10;}auto e1 = q.parallel_for(range<1>(N), [=](id<1> i) { data1[i] += 2; });auto e2 = q.parallel_for(range<1>(N), [=](id<1> i) { data2[i] += 3; });//e1,e2指向两个事件内核q.parallel_for(range<1>(N),{e1,e2}, [=](id<1> i) { data1[i] += data2[i]; }).wait();//depend on e1,e2for (int i = 0; i < N; i++) std::cout << data1[i] << " ";std::cout << "\n";free(data1, q);free(data2, q);return 0;} 运行结果 UMS实验 在主机中初始化两个vector,初始数据为25和49,在设备中初始化两个vector,将主机中的数据拷贝到设备当中,在设备当中并行计算原始数据的根号值,然后将data1_device和data2_device的数值相加,最后将数据拷贝回主机当中,检验最后相加的和是否是12,程序结束前将内存释放。 %%writefile lab/usm_lab.cppinclude <CL/sycl.hpp>include <cmath>using namespace sycl;static const int N = 1024;int main() {queue q;std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n";//intialize 2 arrays on hostint data1 = static_cast<int >(malloc(N sizeof(int)));int data2 = static_cast<int >(malloc(N sizeof(int)));for (int i = 0; i < N; i++) {data1[i] = 25;data2[i] = 49;}// STEP 1 : Create USM device allocation for data1 and data2int data1_device = static_cast<int >(malloc_device(N sizeof(int),q));int data2_device = static_cast<int >(malloc_device(N sizeof(int),q));// STEP 2 : Copy data1 and data2 to USM device allocationq.memcpy(data1_device, data1, sizeof(int) N).wait();q.memcpy(data2_device, data2, sizeof(int) N).wait();// STEP 3 : Write kernel code to update data1 on device with sqrt of valueauto e1 = q.parallel_for(range<1>(N), [=](id<1> i) { data1_device[i] = std::sqrt(25); });auto e2 = q.parallel_for(range<1>(N), [=](id<1> i) { data2_device[i] = std::sqrt(49); });// STEP 5 : Write kernel code to add data2 on device to data1q.parallel_for(range<1>(N),{e1,e2}, [=](id<1> i) { data1_device[i] += data2_device[i]; }).wait();// STEP 6 : Copy data1 on device to hostq.memcpy(data1, data1_device, sizeof(int) N).wait();q.memcpy(data2, data2_device, sizeof(int) N).wait();// verify resultsint fail = 0;for (int i = 0; i < N; i++) if(data1[i] != 12) {fail = 1; break;}if(fail == 1) std::cout << " FAIL"; else std::cout << " PASS";std::cout << "\n";// STEP 7 : Free USM device allocationsfree(data1_device, q);free(data1);free(data2_device, q);free(data2);// STEP 8 : Add event based kernel dependency for the Steps 2 - 6return 0;} 运行结果 本篇文章为转载内容。原文链接:https://blog.csdn.net/MCKZX/article/details/127630566。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-22 10:28:50
322
转载
Logstash
...h与时间戳问题:一场数据处理的时空迷局 嗨,朋友们!今天咱们聊聊Logstash和它最让人头疼的问题之一——时间戳。嘿,大家有没有这种经历啊?用Logstash的时候,日志明明都已经处理好了,可那时间戳就是不听话,老是跟我们玩“捉迷藏”。有时候它蹦得早,有时候又跳得晚,搞得整个时间轴乱七八糟的,连带着后面的数据分析也跟着闹心。这谁顶得住啊!这就像一场时空迷局,搞得人头大。别慌啊,今天咱们就把它扒开来看看,到底怎么解决这些麻烦事儿! --- 1. 时间戳的重要性 为什么它这么关键? 首先,咱们得明白时间戳到底是什么。简单来说,时间戳就是用来标记事件发生的具体时刻。日志的时间戳啊,就好比它的“出生证明”或者“身份证号”,专门用来标记这条日志是啥时候产生的。要是没有这个时间戳,日志自己都搞不清楚东南西北了,简直就像个迷路的小孩儿一样没方向! 为什么时间戳如此重要呢?因为它决定了日志的先后顺序,直接影响到数据分析的结果。要是时间戳搞混了,你那些日志数据就全成了一群没头苍蝇,到处乱窜,啥用都没有了,后面想统计、监控,甚至报警都玩不转了。 --- 2. Logstash中的时间戳 它是怎么工作的? Logstash本身是一个强大的日志处理工具,它可以通过输入插件收集日志,通过过滤器插件对日志进行处理,最后再通过输出插件将处理好的日志发送到目标存储系统。在这个过程中,时间戳扮演着非常重要的角色。 默认情况下,Logstash会从日志源中提取时间戳,并将其保存为@timestamp字段。这个字段是Logstash内部的核心字段之一,用于表示日志事件发生的时间。哎呀,有时候你会发现,Logstash搞出来的时间戳 totally 不靠谱,要么跟你想的差太远,要么干脆就是错的,简直让人头大!这是怎么回事呢? 2.1 日志源中的时间戳格式不统一 最常见的问题是日志源中的时间戳格式不统一。比如说啊,有些日志的时间戳长得很正式,用的是ISO 8601这种格式,看起来就像2023-09-25T10:30:00Z这样;有些就比较简单随意了,直接就是2023-09-25 10:30:00这种日期加时间的样式;更夸张的是,有些干脆啥时间戳都没有,简直让人摸不着头脑。在这种情况下,Logstash会尝试自动解析时间戳,但如果格式不匹配,它就会抓瞎。 解决方法:手动指定时间戳格式 这时候,我们可以使用Logstash的date过滤器插件来手动指定时间戳格式。比如: plaintext filter { date { match => [ "timestamp", "yyyy-MM-dd HH:mm:ss" ] } } 这段代码告诉Logstash,日志中的时间戳字段叫timestamp,并且它的格式是yyyy-MM-dd HH:mm:ss。这样,Logstash就能正确解析时间戳了。 --- 3. 时间戳的调整与重置 让数据更符合需求 有时候,我们不仅仅需要提取时间戳,还需要对它进行一些调整。比如说,你可能想把时间戳改成UTC时间,或者是转成某个特定的时区,这样用起来更方便。再比如,你想在日志里加个新玩意儿,弄个时间戳啥的,专门用来记录现在是啥时候,方便以后找茬儿不迷路呗。 3.1 调整时区 假设你的日志时间戳是本地时间,而你需要将其转换为UTC时间。你可以使用date过滤器插件的timezone选项来实现: plaintext filter { date { match => [ "@timestamp", "ISO8601" ] timezone => "UTC" } } 这段代码会让Logstash将@timestamp字段的值转换为UTC时间。 3.2 添加新的时间戳字段 如果你希望在日志中添加一个新的时间戳字段,比如记录日志处理的时间,可以使用ruby过滤器插件: plaintext filter { ruby { code => " event.set('processing_time', Time.now.strftime('%Y-%m-%d %H:%M:%S')) " } } 这段代码会在日志中添加一个名为processing_time的新字段,记录当前的日志处理时间。 --- 4. 遇到问题怎么办?调试技巧分享 当然,在实际操作中,我们可能会遇到各种各样的问题。比如,时间戳始终无法正确提取,或者日志时间戳格式复杂到让人崩溃。这时候该怎么办呢? 4.1 使用Logstash的日志查看功能 Logstash本身提供了一个非常有用的调试工具,叫做stdout输出插件。你可以通过它实时查看日志的处理过程,检查时间戳是否正确提取: plaintext output { stdout { codec => rubydebug } } 运行Logstash后,你会看到每条日志的详细信息,包括时间戳字段。通过这种方式,你可以快速定位问题所在。 4.2 逐步排查问题 如果时间戳仍然有问题,可以尝试以下步骤逐步排查: 1. 检查日志源 确保日志中的时间戳字段存在且格式正确。 2. 检查Logstash配置 确保date过滤器插件的match选项与日志时间戳格式匹配。 3. 测试时间戳解析 使用在线工具或脚本测试时间戳格式是否能被正确解析。 --- 5. 总结 时间戳问题并不可怕 经过这一番折腾,你会发现时间戳问题虽然看起来很复杂,但实际上只要掌握了正确的工具和方法,一切都能迎刃而解。Logstash这工具啊,插件多得不得了,配置起来也特别灵活,简直就是对付各种时间戳问题的小能手,用起来超顺手! 希望这篇文章对你有所帮助!如果你还有其他问题,欢迎随时交流。毕竟,技术的世界就是这样,大家一起探索才能走得更远。😄 --- 好了,今天的分享就到这里啦!记得点赞支持哦,下次再见!
2025-05-13 15:58:22
30
林中小径
转载文章
...大约有18%的DNS查询从我家出来。 一度超过23%被阻止。 哦 NOTE: If you're using an Amplifi HD or any "clever" router, you'll want to change the setting "Bypass DNS cache" otherwise the Amplifi will still remain the DNS lookup of choice on your network. This setting will also confuse the Pi-hole and you'll end up with just one "client" of the Pi-hole - the router itself. 注意:如果您使用Amplifi HD或任何“智能”路由器,则需要更改设置“绕过DNS缓存”,否则Amplifi仍将是您网络上首选的DNS查找。 此设置还会混淆PiKong,您最终只会得到PiKong的一个“客户端”,即路由器本身。 For me it's less about advertising - especially on small blogs or news sites I want to support - it's about just obnoxious tracking cookies and JavaScript. I'm going to keep using Pi-hole for a few months and see how it goes. Do be aware that some things WILL break. Could be a kid's iPhone free-to-play game that won't work unless it can download an add, could be your company's VPN. You'll need to log into http://pi.hole/admin (make sure you save your password when you first install, and you can only change it at the SSH command line with "pihole -a -p") and sometimes disable it for a few minutes to test, then whitelist certain domains. I suspect after a few weeks I'll have it nicely dialed in. 对我来说,它与广告无关,尤其是在我要支持的小型博客或新闻网站上,它只是关于令人讨厌的跟踪cookie和JavaScript。 我将继续使用Pi-hole几个月,看看效果如何。 请注意,有些事情会中断。 可能是一个孩子的iPhone免费游戏,除非可以下载附件,否则它将无法正常工作,可能是您公司的VPN。 您需要登录http://pi.hole/admin (确保在首次安装时保存密码,并且只能在SSH命令行中使用“ pihole -a -p”更改密码),有时将其禁用几分钟以进行测试,然后将某些域列入白名单。 我怀疑几周后我会拨好电话。 翻译自: https://www.hanselman.com/blog/blocking-ads-before-they-enter-your-house-at-the-dns-level-with-pihole-and-a-cheap-raspberry-pi pi-hole 本篇文章为转载内容。原文链接:https://blog.csdn.net/cunfusq0176/article/details/109051003。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-12 20:49:59
62
转载
转载文章
...的,比如JAVA、大数据、算法等,下图从BOSS上截取的: 蚂蚁金服不在望京,在环球金融中心。 美团 美团是望京第二大互联网公司,技术氛围浓厚。事业部很多,包括酒店事业部、闪购、美团金融、优选事业部、美团买菜等。 美团的福利常常被叫做白开水福利,不过比普通公司还是要好一些,六险一金、15薪、餐补、下午茶等。 面试比阿里容易一些,不过算法和八股文也是必须要准备的。 常年招聘,岗位很多,下面岗位来自BOSS: Lazada 东南亚头部电商,而且业务还囊括了娱乐、金融和物流,业务主要服务于东南亚。工作地点在朝阳区阿里中心。 福利待遇包括六险一金、年终奖、股权、餐补交通补等。 主要招聘岗位包括java开发、游戏开发、前端、UI等。 bilibili bilibili也是非常不错的一家互联网公司,总部在上海,北京的工作地点在朝阳区东煌大厦10层。截至2021年第一季度,B站月活用户达2.23亿 福利待遇比较完备,包括六险一金、餐补、全勤奖、下午茶、股权等。 招聘岗位包括游戏服务端开发、java开发、C++开发、TA、linux内核开发等。从招聘岗位来看,java 开发并不是bilibili的热门岗位。 每日优鲜 每日优鲜近几年的发展是非常快速的,也是一家非常值得加入的公司。工作地点在万科时代中心。 工作强度比较大,工作内容也比较有挑战,晋升也比较快。建议想在技术上成长的朋友们加入。 福利待遇包括六险一金,股票期权。 招聘岗位以java为主,架构、资深、中高级都有。 BIGO BIGO主要业务在音视频领域,主要产品有Bigo Live、Likee、Hello,目前全球月活用户近4亿,产品和服务覆盖超过150个国家和地区。 福利待遇也是非常不错的,六险一金、年终奖、住房补贴、股票期权等。 主要招聘岗位包括JAVA、音视频领域后端开发。 coupang 韩国电商平台,总部在首尔,成立于2010年,是一家成熟的老牌公司,在2021年3月上市。目前国内研发团队主要在上海,在北京也有研发团队。工作地点在颐堤港。 coupang工作强度不大,不加班不内卷。福利待遇也是很不错的,包括六险一金、餐补、补充公积金、节日福利等。 招聘岗位主要包括JAVA、IOS、搜索工程师、全栈工程师等。 面试难度比较大,前后包括五轮以上面试,第一轮是电话面试,后面线程面试会有手写代码环节。 水滴公司 水滴这两年发展很快,工作地点在望京科技园。 福利待遇方面,属于互联公司中等偏上的水平,包括六险一金、补充公积金、免费健身房等。 招聘岗位JAVA居多,各种级别的都有,还有一些中间件的岗位。 据面试过水滴的求职者反馈,面试很难,对基础要求高,可能会问一些平时不太关注的非常细的问题。 keep 爱运动的小伙伴相信都熟悉keep这款软件,目前keep的用户量已经破3亿。工作地点在万科时代中心。 薪资待遇行业中等,不过该有的服务也基本都有,包括六险一金、年终奖、股权等。 招聘岗位以java为主,各种级别都有。 雪球 国内知名的投资交流平台,2020年底完成1.2亿美元 E 轮融资,发展潜力巨大。工作地点在融新科技中心。 福利待遇在行业内属于中等水平,包括六险一金、年终奖、餐补、零食下午茶等。 招聘岗位以java为主,还有搜索研发、全栈开发等。 陌陌 陌生人社交平台,深受年轻人喜爱,18年陌陌全资收购了探探,规模进一步扩大,目前月活用户在1亿+,出海业务也做的非常好。 福利待遇属于行业中等偏上,互联网有的福利基本都有,包括六险一金、年终奖等。 招聘岗位很多,包括java、中间件、推荐算法、自然语言处理、安全、游戏开发、IOS等。 面试难度中等,会有手写sql、算法、linux命令的环节。 松果出行 松果出行主要业务是构建国内县域城市交通出行网络,目前主要是共享电单车和共享新能源汽车服务。目前业务已经覆盖全国21个省,5000个县。 福利待遇属于行业中等,五险一金、年终奖等,没有补充医疗保险。 招聘岗位很多,以JAVA为主,各种级别都有。也有物联网、传感器硬件相关的岗位。 小桔科技 目前研发团队主要做推荐、搜索系统,注册地在大连。 福利待遇行业中等,五险一金、年终奖,没有补充医疗保险。 招聘岗位包括JAVA、PHP、搜索算法、前端、数仓等。 理想汽车 智能电动车品牌,这两年在行业内名气比较大。 福利待遇行业中等偏上,六险一金、交通补贴等。 招聘岗位很多,以JAVA为主,各种级别都有。另外也招聘PaaS平台研发、搜索、车载语音、大数据等。 参加过理想汽车面试的同学反馈面试体验不太好,面试官没有耐心,给大家一个参考。 狮桥 智慧物流+普惠金融融资租赁业务。 福利待遇中等偏下,五险一金、年终奖,没有补充医疗保险。 招聘岗位主要是JAVA开发。 领创集团 海外金融业务,主要做印度市场。 福利待遇中等偏下,六险一金,年终奖,工作节奏慢。 招聘岗位主要是JAVA,招聘岗位主要是java。 面试过的同学反馈体验比较好,面试官比较nice,有手写代码环节。 总结 今天主要推荐了望京的16家值得加入的互联网公司,事实上,望京区域的互联网公司和其他科技公司至少有几百家,由于个人精力有限,主要梳理了业界比较知名和自己熟悉的公司。相信还有好多非常不错的公司值得加入,欢迎大家跟我交流讨论。 欢迎关注个人公众号,一起学习进步 本篇文章为转载内容。原文链接:https://blog.csdn.net/zjj2006/article/details/121412370。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-11 22:59:19
530
转载
ElasticSearch
...索和分析引擎,它在大数据领域里可是大名鼎鼎。无论是日志分析、全文检索还是数据分析,Elasticsearch都能帮你搞定。 不过呢,凡事都有两面性。Elasticsearch虽然强大,但也存在一些安全隐患。如果你的集群暴露在公网下,或者权限设置不当,那可就麻烦了。你可以想想啊,要是你的数据被人偷走了,或者被乱改得面目全非,甚至整个系统都直接崩了,那可真是够呛,绝对不是闹着玩的! 所以,今天我们来聊聊如何优化Elasticsearch的安全性。我会用一些接地气的例子和代码片段,让你轻松理解这些概念。别担心,咱们会一步步来,保证你听得懂! --- 2. 配置SSL/TLS加密通信 首先,咱们得确保数据在传输过程中是安全的。SSL/TLS加密就是用来干这个的。 2.1 为什么需要SSL/TLS? 简单来说,SSL/TLS就像是一层保护罩,让别人即使截获了你的数据包,也看不懂里面的内容。想象一下,你的Elasticsearch集群要是直接暴露在网上,还不设防,那可就相当于把家里保险箱的密码和存折都摆在了大马路上。黑客轻轻松松就能闻到“香味”,啥用户的密码啊、查询出来的机密信息啊,通通被他们盯上,那后果简直不敢想!这简直太可怕了! 2.2 实现步骤 2.2.1 生成证书 首先,我们需要生成自签名证书。虽然自签名证书不能用于生产环境,但它能帮助我们快速测试。 bash openssl req -x509 -newkey rsa:4096 -keyout elastic.key -out elastic.crt -days 365 -nodes 这段命令会生成一个有效期为一年的证书文件elastic.crt和私钥文件elastic.key。 2.2.2 修改配置文件 接下来,我们需要在Elasticsearch的配置文件elasticsearch.yml中启用SSL/TLS。找到以下配置项: yaml xpack.security.http.ssl: enabled: true keystore.path: "/path/to/elastic.keystore" 这里的keystore.path指向你刚刚生成的证书和私钥文件。 2.2.3 启动Elasticsearch 启动Elasticsearch后,客户端连接时必须提供对应的证书才能正常工作。例如,使用curl命令时可以这样: bash curl --cacert elastic.crt https://localhost:9200/ 2.3 小结 通过SSL/TLS加密,我们可以大大降低数据泄露的风险。不过,自签名证书只适合开发和测试环境。如果是在生产环境中,建议购买由权威机构签发的证书。 --- 3. 用户认证与授权 接下来,咱们谈谈用户认证和授权。想象一下,如果没有身份验证机制,任何人都可以访问你的Elasticsearch集群,那简直是噩梦! 3.1 背景故事 有一次,我在调试一个项目时,无意间发现了一个未设置密码的Elasticsearch集群。我当时心里一惊,心想:“乖乖,要是有谁发现这个漏洞,那可就麻烦大了!”赶紧招呼团队的小伙伴们注意一下,提醒大家赶紧加上用户认证功能,别让问题溜走。 3.2 使用内置角色管理 Elasticsearch自带了一些内置角色,比如superuser和read_only。你可以根据需求创建自定义角色,并分配给不同的用户。 3.2.1 创建用户 假设我们要创建一个名为admin的管理员用户,可以使用以下命令: bash curl -X POST "https://localhost:9200/_security/user/admin" \ -H 'Content-Type: application/json' \ -u elastic \ -d' { "password" : "changeme", "roles" : [ "superuser" ] }' 这里的-u elastic表示使用默认的elastic用户进行操作。 3.2.2 测试用户权限 创建完用户后,我们可以尝试登录并执行操作。例如,使用admin用户查看索引列表: bash curl -X GET "https://localhost:9200/_cat/indices?v" \ -u admin:changeme 如果一切正常,你应该能看到所有索引的信息。 3.3 RBAC(基于角色的访问控制) 除了内置角色外,Elasticsearch还支持RBAC。你可以给每个角色设定超级详细的权限,比如说准不准用某个API,能不能访问特定的索引之类的。 json { "role": "custom_role", "cluster": ["monitor"], "indices": [ { "names": [ "logstash-" ], "privileges": [ "read", "view_index_metadata" ] } ] } 这段JSON定义了一个名为custom_role的角色,允许用户读取logstash-系列索引的数据。 --- 4. 日志审计与监控 最后,咱们得关注日志审计和监控。即使你做了所有的安全措施,也不能保证万无一失。定期检查日志和监控系统可以帮助我们及时发现问题。 4.1 日志审计 Elasticsearch自带的日志功能非常强大。你可以通过配置日志级别来记录不同级别的事件。例如,启用调试日志: yaml logger.org.elasticsearch: debug 将这条配置添加到logging.yml文件中即可。 4.2 监控工具 推荐使用Kibana来监控Elasticsearch的状态。装好Kibana之后,你就能通过网页界面瞅一眼你的集群健不健康、各个节点都在干嘛,还能看看性能指标啥的,挺直观的! 4.2.1 配置Kibana 在Kibana的配置文件kibana.yml中,添加以下内容: yaml elasticsearch.hosts: ["https://localhost:9200"] elasticsearch.username: "kibana_system" elasticsearch.password: "changeme" 然后重启Kibana服务,打开浏览器访问http://localhost:5601即可。 --- 5. 总结 好了,朋友们,今天的分享就到这里啦!优化Elasticsearch的安全性并不是一件容易的事,但只要我们用心去做,就能大大降低风险。从SSL/TLS加密到用户认证,再到日志审计和监控,每一个环节都很重要。 我希望这篇文章对你有所帮助,如果你还有其他问题或者经验分享,欢迎随时留言交流!让我们一起打造更安全、更可靠的Elasticsearch集群吧!
2025-05-12 15:42:52
100
星辰大海
转载文章
...状。 近年来,随着大数据和人工智能等领域的飞速发展,对计算能力的需求日益增长,MPI作为并行计算的重要通信接口标准,在解决大规模科学计算、机器学习等问题上发挥着关键作用。最新版本的MPICH已支持更多的优化策略和特性,如更好的多核CPU利用、对GPU加速计算的支持以及更高效的网络传输协议,以适应不断变化的高性能计算环境需求。 同时,微软Azure云平台和AWS Amazon EC2等云服务提供商也相继推出了预装MPI的高性能计算实例,用户无需在本地搭建复杂环境,即可直接在云端进行MPI并行程序开发与测试,极大地降低了使用门槛,促进了并行计算技术的普及与应用。 另外,随着跨平台开发需求的增长,开源社区也在积极推动MPICH在Linux、macOS等其他操作系统上的兼容性和性能优化。例如,Microsoft Research团队合作推出的Open MPI项目,旨在提供一个高度可扩展且跨平台的MPI实现,为开发者提供更多选择和灵活性。 此外,对于希望深入了解MPI编程原理及其实战技巧的读者,可以参考《Using MPI - 3rd Edition》这本书,作者详细解析了MPI的各种函数用法,并提供了大量实例代码,是MPI编程入门到精通的绝佳教程资源。 综上所述,无论是从MPI技术的最新进展、云计算环境下的并行计算解决方案,还是深入学习MPI编程的专业书籍推荐,都为那些想要在并行计算领域持续探索和实践的读者提供了丰富的延伸阅读内容。
2023-04-09 11:52:38
114
转载
Nacos
...就会加载一堆东西,像数据库连接池啦,缓存配置啦,各种各样的“装备”都得准备好,这样它才能顺利开工干活呀! “会不会是某个配置项的加载顺序影响了Nacos的读取?”我突然想到这一点。我琢磨着这事儿,干脆把所有的配置加载顺序仔仔细细捋了一遍,就为了确保Nacos的配置能在服务刚启动的时候就给安排上,别拖到后面出了幺蛾子。 同时,我还加强了异常处理逻辑,给Nacos的读取操作加上了try-catch块,以便捕获具体的异常信息: java try { String content = configService.getConfig(dataId, group, timeoutMs); System.out.println("Config loaded successfully: " + content); } catch (NacosException e) { System.err.println("Failed to load config: " + e.getMessage()); } 经过一番调整后,我再次启动服务,终于看到了一条令人振奋的消息:“Config loaded successfully”。 “太好了!”我长舒一口气,“原来问题就出在这里啊。” --- 五、总结与感悟 经过这次折腾,我对Nacos有了更深的理解。Nacos这东西确实挺牛的,是个超棒的配置管理工具,但用着用着你会发现,它也不是完美无缺的,各种小问题啊、坑啊,时不时就冒出来折腾你一下。其实吧,这些问题真不一定是Nacos自己惹的祸,八成是咱们的代码写得有点问题,或者是环境配错了,带偏了Nacos。 “其实啊,调试的过程就像侦探破案一样,需要耐心和细心。我坐在电脑前忍不住感慨:“哎,有时候觉得这问题看起来平平无奇的,可谁知道背后可能藏着啥惊天大秘密呢!”” 总之,这次经历让我明白了一个道理:遇到问题不要慌,要冷静分析,逐步排查。只有这样,才能找到问题的根本原因,解决问题。希望我的经验能对大家有所帮助,如果有类似的问题,不妨按照这个思路试试看!
2025-04-06 15:56:57
68
清风徐来
转载文章
...d stub//进行数据校验,长度6~15位 if(username.trim().length()<6||username.trim().length()>15||username==null) {this.addFieldError("username", "用户名长度不合法!");}if(password.trim().length()<6||password.trim().length()>15||password==null) {this.addFieldError("password", "密码长度不合法!");} }//登陆业务逻辑public String loginMethod() {if(username.equals("chenghaoran")&&password.equals("12345678")) {ActionContext.getContext().getSession().put("user", username);return "loginOK";}else {this.addFieldError("err","用户名或密码不正确!");return "loginFail";} }//手动校验validateXxxpublic void validateLoginMethod() {//使用正则校验if(username==null||username.trim().equals("")) {this.addFieldError("username","用户名不能为空!");}else {if(!Pattern.matches("[a-zA-Z]{6,15}", username.trim())) {this.addFieldError("username", "用户名格式错误!");} }if(password==null||password.trim().equals("")) {this.addFieldError("password","密码不能为空!");}else {if(!Pattern.matches("\\d{6,15}", password.trim())) {this.addFieldError("password", "密码格式错误!");} }} } /20171105_shiyan_upanddown/src/nuc/sw/interceptor/LoginInterceptor.java package nuc.sw.interceptor;import com.opensymphony.xwork2.Action;import com.opensymphony.xwork2.ActionContext;import com.opensymphony.xwork2.ActionInvocation;import com.opensymphony.xwork2.ActionSupport;import com.opensymphony.xwork2.interceptor.AbstractInterceptor;public class LoginInterceptor extends AbstractInterceptor {@Overridepublic String intercept(ActionInvocation arg0) throws Exception {// TODO Auto-generated method stub//判断是否登陆,通过ActionContext访问SessionActionContext ac=arg0.getInvocationContext();String username=(String)ac.getSession().get("user");if(username!=null&&username.equals("chenghaoran")) {return arg0.invoke();//放行}else {((ActionSupport)arg0.getAction()).addActionError("请先登录!");return Action.LOGIN;} }} /20171105_shiyan_upanddown/src/struts.xml <?xml version="1.0" encoding="UTF-8"?><!DOCTYPE struts PUBLIC "-//Apache Software Foundation//DTD Struts Configuration 2.1.7//EN""http://struts.apache.org/dtds/struts-2.1.7.dtd"><struts><constant name="struts.i18n.encoding" value="utf-8"/><package name="default" extends="struts-default"><interceptors><interceptor name="login" class="nuc.sw.interceptor.LoginInterceptor"></interceptor></interceptors> <action name="docUpload" class="nuc.sw.action.DocUploadAction"><!-- 使用fileUpload拦截器 --><interceptor-ref name="fileUpload"><!-- 指定允许上传的文件大小最大为50000字节 --><param name="maximumSize">50000</param></interceptor-ref><!-- 配置默认系统拦截器栈 --><interceptor-ref name="defaultStack"/><!-- param子元素配置了DocUploadAction类中savePath属性值为/upload --><param name="savePath">/upload</param><result>/showFile.jsp</result><!-- 指定input逻辑视图,即不符合上传要求,被fileUpload拦截器拦截后,返回的视图页面 --><result name="input">/uploadFile.jsp</result></action> <action name="docDownload" class="nuc.sw.action.DocDownloadAction"><!-- 指定结果类型为stream --><result type="stream"><!-- 指定下载文件的文件类型 text/plain表示纯文本 --><param name="contentType">application/msword,text/plain</param><!-- 指定下载文件的入口输入流 --><param name="inputName">inputStream</param><!-- 指定下载文件的处理方式与文件保存名 attachment表示以附件形式下载,也可以用inline表示内联即在浏览器中直接显示,默认值为inline --><param name="contentDisposition">attachment;filename="${downloadFileName}"</param><!-- 指定下载文件的缓冲区大小,默认为1024 --><param name="bufferSize">40960</param></result></action><action name="loginAction" class="nuc.sw.action.LoginAction" method="loginMethod"><result name="loginOK">/uploadFile.jsp</result><result name="loginFail">/login.jsp</result><result name="input">/login.jsp</result></action> </package></struts> /20171105_shiyan_upanddown/WebContent/login.jsp <%@ page language="java" contentType="text/html; charset=UTF-8"pageEncoding="UTF-8"%><%@ taglib prefix="s" uri="/struts-tags" %> <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"><html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>登录页</title><s:head/></head><body><s:actionerror/><s:fielderror fieldName="err"></s:fielderror><s:form action="loginAction" method="post"> <s:textfield label="用户名" name="username"></s:textfield><s:password label="密码" name="password"></s:password><s:submit value="登陆"></s:submit></s:form></body></html> /20171105_shiyan_upanddown/WebContent/showFile.jsp <%@ page language="java" contentType="text/html; charset=UTF-8"pageEncoding="UTF-8"%><%@ taglib prefix="s" uri="/struts-tags" %><!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"><html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>显示上传文档</title></head><body><center><font style="font-size:18px;color:red">上传者:<s:property value="name"/></font><table width="45%" cellpadding="0" cellspacing="0" border="1"><tr><th>文件名称</th><th>上传者</th><th>上传时间</th></tr><s:iterator value="uploadFileName" status="st" var="doc"><tr><td align="center"><a href="docDownload.action?downPath=upload/<s:property value="doc"/>"><s:property value="doc"/> </a></td><td align="center"><s:property value="name"/></td><td align="center"><s:date name="createTime" format="yyyy-MM-dd HH:mm:ss"/></td></tr></s:iterator></table></center></body></html> /20171105_shiyan_upanddown/WebContent/uploadFile.jsp <%@ page language="java" contentType="text/html; charset=UTF-8"pageEncoding="UTF-8"%><%@ taglib prefix="s" uri="/struts-tags" %><!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"><html><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><title>多文件上传</title></head><body><center><s:form action="docUpload" method="post" enctype="multipart/form-data"><s:textfield name="name" label="姓名" size="20"/><s:file name="upload" label="选择文档" size="20"/><s:file name="upload" label="选择文档" size="20"/><s:file name="upload" label="选择文档" size="20"/><s:submit value="确认上传" align="center"/></s:form></center></body></html> 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_34101492/article/details/78811741。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-12 20:53:42
141
转载
Beego
...模块,包括路由管理、数据库 ORM、配置文件解析等,旨在帮助开发者快速构建高效稳定的 Web 应用。文中提到的配置文件解析错误主要涉及 Beego 框架对配置文件的加载和读取过程,当配置文件格式不正确时,会导致程序无法正常启动。Beego 提供了 LoadAppConfig 和 AppConfig 等工具,方便开发者管理和操作配置文件。 配置文件 , 配置文件是一种存储应用程序运行所需参数的文件,通常采用特定的格式(如 ini、json 或 yaml)。文中提到的配置文件是 Beego 框架使用的 ini 格式,包含键值对的形式定义各种配置项。例如,appname 和 port 分别定义了应用名称和监听端口号。配置文件的正确性和完整性直接影响程序的运行状态,因此需要严格检查其格式和内容。Beego 提供了专门的方法来加载和解析配置文件,确保程序能够顺利读取必要的参数。 日志记录 , 日志记录是指将程序运行过程中的重要信息(如错误、警告或调试信息)保存到文件或输出到控制台的过程。文中提到的日志记录主要用于监控配置文件加载是否成功。通过使用 Beego 提供的日志模块,开发者可以设置日志的格式和级别,例如记录日期、时间和错误发生的具体位置。当配置文件加载失败时,日志会输出详细的错误信息,帮助开发者快速定位问题。这种机制对于复杂系统的维护和故障排查至关重要,能够显著提高开发效率。
2025-04-13 15:33:12
25
桃李春风一杯酒
Apache Lucene
...的角色与挑战 随着大数据时代的到来,数据量的激增对信息检索系统提出了更高的要求。Apache Lucene,作为一款开源的全文检索库,长期以来在文本检索领域扮演着核心角色。本文旨在深入探讨Apache Lucene在现代搜索引擎架构中的地位、面临的挑战及未来的发展趋势。 当前应用与优势 Apache Lucene因其高效、可扩展性和灵活性,被广泛应用于各类搜索引擎和大数据处理系统中。它不仅支持多种语言的分词和索引构建,还能提供强大的查询解析和匹配算法,使得在大规模数据集上的实时搜索成为可能。此外,Lucene的社区活跃度高,持续更新与优化,使其在处理复杂查询、支持多语言和适应不同应用场景方面具有显著优势。 面临的挑战 尽管Apache Lucene表现突出,但随着技术的快速发展和用户需求的多样化,它也面临着一些挑战。首先,随着数据规模的不断扩大,如何在保持高性能的同时降低资源消耗成为关键。其次,面对实时性要求越来越高的应用场景,如何实现快速响应和低延迟成为了亟待解决的问题。再者,随着AI和机器学习技术的融合,如何将这些先进算法集成到Lucene中,提升检索精度和智能化水平,也是未来研究的重点。 未来发展展望 展望未来,Apache Lucene有望在以下几个方向上实现突破: 1. 性能优化与资源管理:通过算法优化和硬件加速技术,进一步提高处理速度和资源利用率,满足大流量、高并发场景的需求。 2. 集成AI与机器学习:引入深度学习、自然语言处理等AI技术,增强检索系统的智能性和个性化推荐能力。 3. 跨语言与多模态搜索:随着全球化的进程加快,支持更多语言的处理和多模态(文本、图像、语音等)搜索将成为重要发展方向。 4. 隐私保护与安全:在数据安全和个人隐私日益受到重视的背景下,开发基于差分隐私、同态加密等技术的检索系统,保障用户数据的安全性。 结语 Apache Lucene作为一款成熟且仍在不断演进的全文检索库,在现代搜索引擎架构中发挥着不可或缺的作用。面对未来的挑战,它不仅需要持续优化现有功能,还需不断创新,以适应不断变化的市场需求和技术发展趋势。通过融合前沿技术,Apache Lucene有望在未来的信息检索领域中继续引领创新,为用户提供更高效、更智能、更安全的搜索体验。 --- 这篇“延伸阅读”旨在讨论Apache Lucene在当前及未来可能面临的技术挑战与发展方向,强调其在现代搜索引擎架构中的核心地位,并提出可能的解决方案和展望。通过深入分析当前应用优势、面临的挑战及未来发展趋势,为读者提供了一个全面而前瞻性的视角。
2024-07-25 00:52:37
393
青山绿水
Hadoop
近年来,随着大数据技术的快速发展,Hadoop作为分布式计算和存储的经典框架,依然在许多行业中发挥着重要作用。然而,面对云计算、容器化等新兴技术的崛起,Hadoop也在不断适应新的趋势。例如,云原生时代的到来促使像Apache Hudi和Delta Lake这样的新一代数据湖格式逐渐流行起来,它们在数据存储、更新和查询方面提供了更高的效率和更低的成本。与此同时,Kubernetes作为容器编排的事实标准,也正在改变传统Hadoop集群的管理模式。越来越多的企业开始尝试将Hadoop与Kubernetes结合,通过容器化部署来简化运维工作,提高资源利用率。 此外,隐私保护法规的变化也为Hadoop的应用带来了新挑战。随着《个人信息保护法》等法律法规在全球范围内的实施,企业在处理敏感数据时必须更加谨慎。在这种背景下,如何在保证数据安全的同时实现高效的大数据分析成为了一个亟待解决的问题。一些公司正在探索使用加密技术和联邦学习等方法,以确保数据在传输和处理过程中不被泄露。 另一方面,尽管Hadoop本身仍在持续迭代更新,但社区的关注点已经开始向边缘计算转移。边缘计算能够有效缓解中心化数据中心的压力,特别是在物联网设备数量激增的情况下。通过在靠近数据源的地方进行预处理,不仅可以降低延迟,还能减少带宽消耗。这为Hadoop未来的发展指明了一条新的路径。 总之,虽然Hadoop面临诸多挑战,但凭借其成熟的技术体系和广泛的应用基础,它仍然是许多企业和组织不可或缺的选择。未来,Hadoop可能会与其他新兴技术深度融合,共同推动大数据产业的进步。
2025-03-26 16:15:40
98
冬日暖阳
NodeJS
...!服务器跑得怎么样、数据库忙不忙,这些事儿一下子就清清楚楚地摆在眼前,还能隔空摆弄一下设备呢!这感觉,简直爽到飞起有木有? 但问题是,要实现这种功能并不简单。想象一下,以前我们用老式的网页加载方式,就像打电话问朋友“嘿,有啥新鲜事儿没?”然后挂掉电话等对方回拨告诉你答案。问题是,如果你想知道最新消息,就得一直重复这个过程——不停地挂电话再拨号,也就是不停刷新页面,才能看到有没有新东西蹦出来。这显然不是最优解。而 WebSocket 就不一样了,它是一种全双工通信协议,可以让客户端和服务端随时互相推送消息,简直是实时应用的最佳拍档! 说到 Node.js,它天生就擅长处理异步事件流,再加上强大的生态系统(比如 Express、Socket.IO 等),简直就是为实时应用量身定制的工具。所以,今天我们就用 Node.js + WebSocket 来做一个简单的实时监控面板,顺便分享一下我的一些心得。 --- 2. 第一步 搭建基础环境 首先,我们需要准备开发环境。Node.js 的安装非常简单,去官网下载对应版本就行。安装完后,用 node -v 和 npm -v 验证是否成功。如果这两个命令都能正常输出版本号,那就说明环境配置好了。 接下来,我们创建项目文件夹,并初始化 npm: bash mkdir real-time-monitor cd real-time-monitor npm init -y 然后安装必要的依赖包。这里我们用到两个核心库:Express 和 ws(WebSocket 库)。Express 是用来搭建 HTTP 服务的,ws 则专门用于 WebSocket 通信。 bash npm install express ws 接下来,我们写一个最基础的 HTTP 服务,确保环境能正常工作: javascript // server.js const express = require('express'); const app = express(); app.get('/', (req, res) => { res.send('Hello World!'); }); const PORT = process.env.PORT || 3000; app.listen(PORT, () => { console.log(Server is running on port ${PORT}); }); 保存文件后运行 node server.js,然后在浏览器输入 http://localhost:3000,应该能看到 “Hello World!”。到这里,我们的基本框架已经搭好了,是不是感觉还挺容易的? --- 3. 第二步 引入 WebSocket 现在我们有了一个 HTTP 服务,接下来该让 WebSocket 上场了。WebSocket 的好处就是能在浏览器和服务器之间直接搭起一条“高速公路”,不用老是像发短信那样频繁地丢 HTTP 请求过去,省时又高效!为了方便,我们可以直接用 ws 库来实现。 修改 server.js 文件,添加 WebSocket 相关代码: javascript // server.js const express = require('express'); const WebSocket = require('ws'); const app = express(); const wss = new WebSocket.Server({ port: 8080 }); wss.on('connection', (ws) => { console.log('A client connected!'); // 接收来自客户端的消息 ws.on('message', (message) => { console.log(Received message => ${message}); ws.send(You said: ${message}); }); // 当客户端断开时触发 ws.on('close', () => { console.log('Client disconnected.'); }); }); app.get('/', (req, res) => { res.sendFile(__dirname + '/index.html'); }); const PORT = process.env.PORT || 3000; app.listen(PORT, () => { console.log(HTTP Server is running on port ${PORT}); }); 这段代码做了几件事: 1. 创建了一个 WebSocket 服务器,监听端口 8080。 2. 当客户端连接时,打印日志并等待消息。 3. 收到消息后,会回传给客户端。 4. 如果客户端断开连接,也会记录日志。 为了让浏览器能连接到 WebSocket 服务器,我们还需要一个简单的 HTML 页面作为客户端入口: html Real-Time Monitor WebSocket Test Send Message 这段 HTML 代码包含了一个简单的聊天界面,用户可以在输入框中输入内容并通过 WebSocket 发送到服务器,同时也能接收到服务器返回的信息。跑完 node server.js 之后,别忘了打开浏览器,去 http://localhost:3000 看一眼,看看它是不是能正常转起来。 --- 4. 第三步 扩展功能——实时监控数据 现在我们的 WebSocket 已经可以正常工作了,但还不能算是一个真正的监控面板。为了让它更实用一点,咱们不妨假装弄点监控数据玩玩,像CPU用得多不多、内存占了百分之多少之类的。 首先,我们需要一个生成随机监控数据的函数: javascript function generateRandomMetrics() { return { cpuUsage: Math.random() 100, memoryUsage: Math.random() 100, diskUsage: Math.random() 100 }; } 然后,在 WebSocket 连接中定时向客户端推送这些数据: javascript wss.on('connection', (ws) => { console.log('A client connected!'); setInterval(() => { const metrics = generateRandomMetrics(); ws.send(JSON.stringify(metrics)); }, 1000); // 每秒发送一次 ws.on('close', () => { console.log('Client disconnected.'); }); }); 客户端需要解析接收到的数据,并动态更新页面上的信息。我们可以稍微改造一下 HTML 和 JavaScript: html CPU Usage: Memory Usage: Disk Usage: javascript socket.onmessage = (event) => { const metrics = JSON.parse(event.data); document.getElementById('cpuProgress').value = metrics.cpuUsage; document.getElementById('memoryProgress').value = metrics.memoryUsage; document.getElementById('diskProgress').value = metrics.diskUsage; const messagesDiv = document.getElementById('messages'); messagesDiv.innerHTML += Metrics updated. ; }; 这样,每秒钟都会从服务器获取一次监控数据,并在页面上以进度条的形式展示出来。是不是很酷? --- 5. 结尾 总结与展望 通过这篇文章,我们从零开始搭建了一个基于 Node.js 和 WebSocket 的实时监控面板。别看它现在功能挺朴素的,但这东西一出手就让人觉得,WebSocket 在实时互动这块儿真的大有可为啊!嘿,听我说!以后啊,你完全可以接着把这个项目捯饬得更酷一些。比如说,弄点新鲜玩意儿当监控指标,让用户用起来更爽,或者直接把它整到真正的生产环境里去,让它发挥大作用! 其实开发的过程就像拼图一样,有时候你会遇到困难,但只要一点点尝试和调整,总会找到答案。希望这篇文章能给你带来灵感,也欢迎你在评论区分享你的想法和经验! 最后,如果你觉得这篇文章对你有帮助,记得点个赞哦!😄 --- 完
2025-05-06 16:24:48
80
清风徐来
Docker
...l路径下,同时设置数据库连接信息。是不是比传统的安装方式简洁多了? 不过,单独使用Docker虽然强大,但对于不熟悉命令行的人来说还是有点门槛。这时候就需要一些辅助工具来帮助我们更好地管理和调度容器了。 --- 3. Portainer 可视化管理Docker的好帮手 Portainer绝对是我最近发现的一颗“宝藏”。它的界面非常直观,几乎不需要学习成本。不管是想看看现有的容器啥情况,还是想启动新的容器,甚至连网络和卷的管理,都只需要动动鼠标拖一拖、点一点就行啦! 比如,如果你想快速创建一个新的MySQL容器,只需要打开Portainer的Web界面,点击“Add Container”,然后填写几个基本信息即可: yaml image: mysql:5.7 name: my-mysql ports: - "3306:3306" volumes: - /data/mysql:/var/lib/mysql environment: MYSQL_ROOT_PASSWORD: rootpassword 这段YAML配置文件描述了一个MySQL容器的基本参数。Portainer会自动帮你解析并生成对应的Docker命令。是不是超方便? 另外,Portainer还有一个特别棒的功能——实时监控。你打开页面就能看到每个“小房子”(就是容器)里用掉的CPU和内存情况,而且还能像穿越空间一样,去访问别的机器上跑着的那些“小房子”(Docker实例)。这种功能对于运维人员来说简直是福音! --- 4. Rancher 企业级的容器编排利器 如果你是一个团队协作的开发者,或者正在运营一个大规模的服务集群,那么Rancher可能是你的最佳选择。它不仅仅是一个Docker管理工具,更是一个完整的容器编排平台。 Rancher的核心优势在于它的“多集群管理”能力。想象一下,你的公司有好几台服务器,分别放在地球上的不同角落,有的在美国,有的在欧洲,还有的在中国。每台服务器上都跑着各种各样的服务,比如网站、数据库啥的。这时候,Rancher就派上用场了!它就像一个超级贴心的小管家,让你不用到处切换界面,在一个地方就能轻松搞定所有服务器和服务的管理工作,省时又省力! 举个例子,如果你想在Rancher中添加一个新的节点,只需要几步操作即可完成: 1. 登录Rancher控制台。 2. 点击“Add Cluster”按钮。 3. 输入目标节点的信息(IP地址、SSH密钥等)。 4. 等待几分钟,Rancher会自动为你安装必要的组件。 一旦节点加入成功,你就可以直接在这个界面上部署应用了。比如,用Kubernetes部署一个Redis集群: bash kubectl create deployment redis --image=redis:alpine kubectl expose deployment redis --type=LoadBalancer --port=6379 虽然这条命令看起来很简单,但它背后实际上涉及到了复杂的调度逻辑和网络配置。而Rancher把这些复杂的事情封装得很好,让我们可以专注于业务本身。 --- 5. Traefik 反向代理与负载均衡的最佳拍档 最后要介绍的是Traefik,这是一个轻量级的反向代理工具,专门用来处理HTTP请求的转发和负载均衡。它最厉害的地方啊,就是能跟Docker完美地融为一体,还能根据容器上的标签,自动调整路由规则呢! 比如说,你有两个服务分别监听在8080和8081端口,现在想通过一个域名访问它们。只需要给这两个容器加上相应的标签: yaml labels: - "traefik.enable=true" - "traefik.http.routers.service1.rule=Host(service1.example.com)" - "traefik.http.services.service1.loadbalancer.server.port=8080" - "traefik.http.routers.service2.rule=Host(service2.example.com)" - "traefik.http.services.service2.loadbalancer.server.port=8081" 这样一来,当用户访问service1.example.com时,Traefik会自动将请求转发到监听8080端口的容器;而访问service2.example.com则会指向8081端口。这种方式不仅高效,还极大地减少了配置的工作量。 --- 6. 总结 找到最适合自己的工具 好了,到这里咱们已经聊了不少关于服务器管理工具的话题。从Docker到Portainer,再到Rancher和Traefik,每一种工具都有其独特的优势和适用场景。 我的建议是,先根据自己的需求确定重点。要是你只想弄个小玩意儿,图个省事儿快点搞起来,那用Docker配个Portainer就完全够用了。但要是你们团队一起干活儿,或者要做大范围的部署,那Rancher这种专业的“老司机工具”就得安排上啦! 当然啦,技术的世界永远没有绝对的答案。其实啊,很多时候你会发现,最适合你的工具不一定是最火的那个,而是那个最合你心意、用起来最顺手的。就像穿鞋一样,别人觉得好看的根本不合脚,而那双不起眼的小众款却让你走得又稳又舒服!所以啊,在用这些工具的时候,别光顾着看,得多动手试试,边用边记下自己的感受和想法,这样你才能真的搞懂它们到底有啥门道! 好了,今天的分享就到这里啦!如果你还有什么问题或者想法,欢迎随时留言交流哦~咱们下次再见啦!
2025-04-16 16:05:13
98
月影清风_
Sqoop
...Sqoop作业在特定数据处理透明性下失败 一、Sqoop初体验 为什么我选择了它? 嗨,朋友们!作为一个热爱折腾数据的技术爱好者,最近我在尝试用Sqoop来完成一些数据迁移任务。哈哈,Sqoop这个名字一听就觉得挺酷的,对不?它就像个超级厉害的“中间人”,一边连着Hadoop那个大数据的世界,另一边又搭在传统的数据库上,两边都能玩得转! 说到Sqoop,它的主要功能就是从关系型数据库中抽取数据并导入到Hadoop生态系统中,或者反过来把Hadoop中的数据导出到关系型数据库里。对我来说,这简直就是个救星啊!毕竟我天天都要跟一堆 structured data(结构化数据)打交道,没有它,我的日子能过得下去才怪呢! 不过呢,事情并没有想象中那么顺利。话说有一次我用 Sqoop 做数据迁移的时候,发现了个让人挠头的问题——只要碰到某些特别的数据处理任务,作业就突然“罢工”了,也不知道是啥原因。这事儿可把我给整郁闷了,我都觉得自己的水平挺过关的了,没想到被一个看起来超简单的题目给绊住了,真是有点糗啊! 示例代码: bash sqoop import \ --connect jdbc:mysql://localhost:3306/mydatabase \ --username root \ --password mypassword \ --table employees \ --target-dir /user/hadoop/employees 这段代码看起来挺正常的,但我后来发现,当表中的数据量过大或者存在一些复杂的约束条件时,Sqoop就表现得不太友好。 --- 二、Sqoop作业失败的背后 接下来,让我们一起深入探讨一下这个问题。说实话,刚开始接触Sqoop那会儿,我对它是怎么工作的压根儿没弄明白,稀里糊涂的。我以为只要配置好连接信息,然后指定源表和目标路径就行了。但实际上,Sqoop并不是这么简单的工具。 当我第一次遇到作业失败的情况时,内心是崩溃的。屏幕上显示的错误信息密密麻麻,但仔细一看,其实都是些常见的问题。打个比方啊,Sqoop这家伙一碰到一些特别的符号,比如空格或者换行符,就容易“翻车”,直接给你整出点问题来。还有呢,有时候因为网络卡了一下,延迟太高,Sqoop就跟服务器说拜拜了,连接就这么断了,挺烦人的。 有一次,我在尝试将一张包含大量JSON字段的表导出到HDFS时,Sqoop直接报错了。我当时就在心里嘀咕:“为啥别的工具处理起来轻轻松松的事儿,到Sqoop这儿就变得这么棘手呢?”后来,我一咬牙,开始翻遍各种资料,想着一定要找出个解决办法来。 思考与尝试: 经过一番研究,我发现Sqoop默认情况下并不会对数据进行深度解析,这意味着如果数据本身存在问题,Sqoop可能无法正确处理。所以,为了验证这个假设,我又做了一次测试。 bash sqoop import \ --connect jdbc:mysql://localhost:3306/mydatabase \ --username root \ --password mypassword \ --table problematic_table \ --fields-terminated-by '\t' \ --lines-terminated-by '\n' 这次我特意指定了分隔符和换行符,希望能避免之前遇到的那些麻烦。嘿,没想到这次作业居然被我搞定了!中间经历了不少波折,不过好在最后算是弄懂了个中奥秘,也算没白费功夫。 --- 三、透明性的重要性 Sqoop到底懂不懂我的需求? 说到Sqoop的透明性,我觉得这是一个非常重要的概念。所谓的透明性嘛,简单来说,就是Sqoop能不能明白咱们的心思,然后老老实实地按咱们想的去干活儿,不添乱、不出错!显然,在我遇到的这些问题中,Sqoop的表现并不能让人满意。 举个例子来说,假设你有一个包含多列的大表,其中某些列的数据类型比较复杂(例如数组、嵌套对象等)。在这种情况下,Sqoop可能会因为无法正确识别这些数据类型而失败。更糟糕的是,它并不会给出明确的提示,而是默默地报错,让你一头雾水。 为了更好地应对这种情况,我在后续的工作中加入了更多的调试步骤。比如说啊,你可以先用describe这个命令去看看表的结构,确保所有的字段都乖乖地被正确识别了;接着呢,再用--check-column这个选项去瞅一眼,看看有没有重复的记录藏在里面。这样一来,虽然增加了工作量,但至少能减少不必要的麻烦。 示例代码: bash sqoop job --create my_job \ -- import \ --connect jdbc:mysql://localhost:3306/mydatabase \ --username root \ --password mypassword \ --table employees \ --check-column id \ --incremental append \ --last-value 0 这段代码展示了如何创建一个增量作业,用于定期更新目标目录中的数据。通过这种方式,可以有效避免一次性加载过多数据带来的性能瓶颈。 --- 四、总结与展望 与Sqoop共舞 总的来说,尽管Sqoop在某些场景下表现得不尽人意,但它依然是一个强大的工具。通过不断学习和实践,我相信自己能够更加熟练地驾驭它。未来的计划里,我特别想试试一些更酷的功能,比如说用Sqoop直接搞出Avro文件,或者把Spark整进来做分布式计算,感觉会超级带劲! 最后,我想说的是,技术这条路从来都不是一帆风顺的。遇到困难并不可怕,可怕的是我们因此放弃努力。正如那句话所说:“失败乃成功之母。”只要保持好奇心和求知欲,总有一天我们会找到属于自己的答案。 如果你也有类似的经历,欢迎随时交流!我们一起进步,一起成长! --- 希望这篇文章对你有所帮助,如果有任何疑问或者想要了解更多细节,请随时告诉我哦!
2025-03-22 15:39:31
94
风中飘零
Hadoop
...,朋友们!如果你对大数据处理感兴趣,那你一定听说过Hadoop这个名字。嘿,作为一个码农,我跟Hadoop的初次见面真的把我惊呆了!它的功能太牛了,感觉就像发现了一个全新的世界,简直太酷了吧!简单说呢,Hadoop就是一个开源的“大数据管家”,专门负责存东西、弄数据,而且不管数据多到啥程度,它都能应付得漂漂亮亮的!它就像是一个超级仓库,可以轻松应对各种规模的数据任务。 为什么Hadoop这么受欢迎呢?因为它解决了传统数据库在处理大规模数据时的瓶颈问题。比如说啊,你在一家电商公司当数据分析师,每天的工作就是跟上亿条用户的点击、浏览、下单这些行为记录打交道,简直就像在海量的信息海洋里淘宝一样!如果用传统的数据库,可能早就崩溃了。但Hadoop不一样,它可以将这些数据分散到多个服务器上进行并行处理,效率杠杠的! 不过,Hadoop的魅力远不止于此。嘿,大家好!今天我想跟你们分享一个关于Hadoop的超棒功能——它居然能让你在不同的访问控制协议之间轻松切换文件!是不是听着就很带感?哎呀,是不是觉得这事听着有点绕?别慌,我这就用大白话给你说道说道,保证你一听就明白! --- 二、什么是跨访问控制协议迁移? 首先,我们得明白什么是访问控制协议。简单说,就是规定谁可以访问你的数据以及他们能做些什么的规则。好比说啊,你有个公共文件柜,你想让一些人只能打开看看里面的东西,啥都不能动;但另外一些人呢,不仅能看,还能随便改,甚至直接把东西清空或者拿走。这就是访问控制协议的作用。 那么,“跨访问控制协议迁移”又是什么意思呢?想象一下,你有两个不同的系统,它们各自有自己的访问控制规则。比如说,一个是Linux那边的ACL(访问控制列表)系统,另一个则是Windows里的NTFS权限系统,两者各有各的玩法。现在,你要把文件从一个系统迁移到另一个系统,而且你还想保留原来的访问控制设置。这就需要用到跨访问控制协议迁移的技术了。 为什么要关心这个功能呢?因为现实世界中,企业往往会有多种操作系统和存储环境。要是你对文件的权限管理不当,那可就麻烦了,要么重要数据被泄露出去,要么一不小心就把东西给搞砸了。而Hadoop通过其强大的灵活性,完美地解决了这个问题。 --- 三、Hadoop如何实现跨访问控制协议迁移? 接下来,让我们来看看Hadoop是如何做到这一点的。其实,这主要依赖于Hadoop的分布式文件系统(HDFS)和它的API库。为了更好地理解,我们可以一步步来分析。 3.1 HDFS的基本概念 HDFS是Hadoop的核心组件之一,它是用来存储大量数据的分布式文件系统。这就像是一个超大号的硬盘,不过它有点特别,不是集中在一个地方存东西,而是把数据切成小块,分散到不同的“小房间”里去。这样做的好处是即使某个节点坏了,也不会影响整个系统的运行。 HDFS还提供了一套丰富的接口,允许开发者自定义文件的操作行为。这就为实现跨访问控制协议迁移提供了可能性。 3.2 实现步骤 实现跨访问控制协议迁移大致分为以下几个步骤: (1)读取源系统的访问控制信息 第一步是获取源系统的访问控制信息。比如,如果你正在从Linux系统迁移到Windows系统,你需要先读取Linux上的ACL配置。 java // 示例代码:读取Linux ACL import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import java.io.IOException; public class AccessControlReader { public static void main(String[] args) throws IOException { Path path = new Path("/path/to/source/file"); FileSystem fs = FileSystem.get(new Configuration()); // 获取ACL信息 String acl = fs.getAclStatus(path).toString(); System.out.println("Source ACL: " + acl); } } 这段代码展示了如何使用Hadoop API读取Linux系统的ACL信息。可以看到,Hadoop已经为我们封装好了相关的API,调用起来非常方便。 (2)转换为目标系统的格式 接下来,我们需要将读取到的访问控制信息转换为目标系统的格式。比如,将Linux的ACL转换为Windows的NTFS权限。 java // 示例代码:模拟ACL到NTFS的转换 public class AclToNtfsConverter { public static void convert(String linuxAcl) { // 这里可以编写具体的转换逻辑 System.out.println("Converting ACL to NTFS: " + linuxAcl); } } 虽然这里只是一个简单的打印函数,但实际上你可以根据实际需求编写复杂的转换算法。 (3)应用到目标系统 最后一步是将转换后的权限应用到目标系统上。这一步同样可以通过Hadoop提供的API来完成。 java // 示例代码:应用NTFS权限 public class NtfsPermissionApplier { public static void applyPermissions(Path targetPath, String ntfsPermissions) { try { // 模拟应用权限的过程 System.out.println("Applying NTFS permissions to " + targetPath.toString() + ": " + ntfsPermissions); } catch (Exception e) { e.printStackTrace(); } } } 通过这三个步骤,我们就完成了从源系统到目标系统的访问控制协议迁移。 --- 四、实战演练 一个完整的案例 为了让大家更直观地理解,我准备了一个完整的案例。好啦,想象一下,我们现在要干的事儿就是把一个文件从一台Linux服务器搬去Windows服务器,而且还得保证这个文件在新家里的“门禁权限”跟原来一模一样,不能搞错! 4.1 准备工作 首先,确保你的开发环境中已经安装了Hadoop,并且配置好相关的依赖库。此外,还需要准备两台机器,一台装有Linux系统,另一台装有Windows系统。 4.2 编写代码 接下来,我们编写代码来实现迁移过程。首先是读取Linux系统的ACL信息。 java // 读取Linux ACL Path sourcePath = new Path("/source/file.txt"); FileSystem linuxFs = FileSystem.get(new Configuration()); String linuxAcl = linuxFs.getAclStatus(sourcePath).toString(); System.out.println("Linux ACL: " + linuxAcl); 然后,我们将这些ACL信息转换为NTFS格式。 java // 模拟ACL到NTFS的转换 AclToNtfsConverter.convert(linuxAcl); 最后,将转换后的权限应用到Windows系统上。 java // 应用NTFS权限 Path targetPath = new Path("\\\\windows-server\\file.txt"); NtfsPermissionApplier.applyPermissions(targetPath, "Full Control"); 4.3 执行结果 执行完上述代码后,你会发现文件已经被成功迁移到了Windows系统,并且保留了原有的访问控制设置。是不是很神奇? --- 五、总结与展望 通过这篇文章,我相信你对Hadoop支持文件的跨访问控制协议迁移有了更深的理解。Hadoop不仅是一个强大的工具,更是一种思维方式的转变。它就像个聪明的老师,不仅教我们怎么用分布式的思路去搞定问题,还时不时敲打我们:嘿,别忘了数据的安全和规矩可不能丢啊! 未来,随着技术的发展,Hadoop的功能会越来越强大。我希望你能继续探索更多有趣的话题,一起在这个充满挑战的世界里不断前行! 加油吧,程序员们!
2025-04-29 15:54:59
80
风轻云淡
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
dig +short myip.opendns.com @resolver1.opendns.com
- 快速获取本机公网IP地址。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"