前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Micrometer性能监控 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Gradle
...,为了更好地实现构建性能优化,社区不断涌现出关于Gradle构建缓存策略、并行构建配置以及依赖管理等方面的深度文章和技术分享。例如,《Gradle实战:最大化利用并行构建与缓存》一文详尽解读了如何结合任务优先级与并行构建策略,最大程度地提高大型项目的构建效能。 因此,对于Gradle用户而言,紧跟官方更新步伐,了解业界最新实践,并针对自身项目特点进行精细化构建流程优化,是持续提升开发效率、保障项目稳定的关键所在。
2023-09-01 22:14:44
476
雪域高原-t
Mahout
...类,这不仅提升了分类性能,还在一定程度上简化了特征工程的工作流程。 同时,随着隐私保护和合规要求日益严格,如何在保证数据安全性和用户隐私的前提下进行大规模文本分类成为新的挑战。近期的研究论文和实践案例中,可以看到同态加密、差分隐私等技术与Mahout等机器学习框架结合,为解决这一问题提供了新的思路。 因此,对Mahout及其在大规模文本分类领域的发展保持关注,并结合前沿技术和实践策略,将有助于我们在实际工作中更有效地应对各类文本分析任务,推动业务发展与创新。读者可以进一步阅读《Apache Mahout与Spark MLlib在大规模文本分类中的应用实践》等相关文献和技术博客,深入了解并掌握这一领域的最新趋势和技术细节。
2023-03-23 19:56:32
109
青春印记-t
ElasticSearch
...擎,具有高可用性、高性能和丰富的功能。在实际操作中,我们经常会遇到要处理海量数据并进行分页展示的情况,这时候,Elasticsearch 提供的这个叫 search_after 的参数就派上大用场啦。 一、什么是 search_after 参数 search_after 参数是 Elasticsearch 5.0 版本引入的一个新的分页方式,它允许我们在前一页的基础上,根据排序字段的值获取下一页的结果。search_after 参数的核心思想是在每一页查询结束时,记录下最后一条记录的排序字段值,并将这个值作为下一页查询的开始点,以此类推,直到达到我们需要的分页数量为止。 二、为什么需要使用 search_after 参数 使用传统的 from + size 方式进行分页,如果数据量很大,那么每一页都需要加载所有满足条件的记录到内存中,这样不仅消耗了大量的内存,而且会导致 CPU 资源的浪费。用 search_after 参数来实现分页的话,操作起来就像是这样:只需要轻轻拽住满足条件的最后一项记录,就能嗖地一下翻到下一页的结果。这样做,就像给内存和CPU减负瘦身一样,能大大降低它们的工作压力和损耗。 三、如何使用 search_after 参数 使用 search_after 参数非常简单,我们只需要在 Search API 中添加 search_after 参数即可。例如,如果我们有一个商品列表,我们想要获取第一页的商品列表,我们可以这样做: bash GET /products/_search { "from": 0, "size": 10, "sort": [ { "name": { "order": "asc" } } ], "search_after": [ { "name": "Apple" } ] } 在这个查询中,我们设置了 from 为 0,size 为 10,表示我们要获取第一页的商品列表,排序字段为 name,排序顺序为升序,最后,我们设置了 search_after 参数为 {"name": "Apple"},表示我们要从名为 Apple 的商品开始查找下一页的结果。 四、实战示例 为了更好地理解和掌握 search_after 参数的使用,我们来看一个实战示例。想象一下,我们运营着一个用户评论平台,现在呢,我们特别想瞅瞅用户们最新的那些精彩评论。不过,这里有个小插曲,就是这评论数量实在多得惊人,所以我们没法一股脑儿全捞出来看个遍哈。这时,我们就需要使用 search_after 参数来进行深度分页。 首先,我们需要创建一个 user_comment 文档类型,包含用户 id、评论内容和评论时间等字段。然后,我们可以编写如下的代码来获取最新的用户评论: python from datetime import datetime import requests 设置 Elasticsearch 的地址和端口 es_url = "http://localhost:9200" 创建 Elasticsearch 集群 es = Elasticsearch([es_url]) 获取最新的用户评论 def get_latest_user_comments(): 设置查询参数 params = { "index": "user_comment", "body": { "query": { "match_all": {} }, "sort": [ { "created_at": { "order": "desc" } } ], "size": 1, "search_after": [] } } 获取第一条记录 response = es.search(params) if not response["hits"]["hits"]: return [] 记录最后一条记录的排序字段值 last_record = response["hits"]["hits"][0] search_after = [last_record["_source"]["id"], last_record["_source"]["created_at"]] 获取下一条记录 while True: params["body"]["size"] += 1 params["body"]["search_after"] = search_after response = es.search(params) 如果没有更多记录,则返回所有记录 if not response["hits"]["hits"]: return [hit["_source"] for hit in response["hits"]["hits"]] else: last_record = response["hits"]["hits"][0] search_after = [last_record["_source"]["id"], last_record["_source"]["created_at"]] 在这段代码中,我们首先设置了一个空的 search_after 列表,然后执行了一次查询,获取了第一条记录,并将其存储在 last_record 变量中。接着,我们将 last_record 中的 id 和 created_at 字段的值添加到 search_after 列表中,再次执行查询,获取下一条记录。如此反复,直到获取到我们需要的所有记录为止。 五、总结 search_after 参数是 Elasticsearch 5.0 版本引入的一个新的分页方式,它可以让我们在每一页查询结束时,记录下最后一条记录的排序字段值,并将这个值作为下一页查询的开始点,以此类推广多获取我们需要的分页数量为止。这种方法不仅可以减少内存和 CPU 的消耗,而且还能够提高查询的效率,是一个非常值得使用的分页方式。
2023-03-26 18:17:46
577
人生如戏-t
Apache Pig
...队发布了新版本,针对性能优化、兼容性和易用性进行了多项改进,以更好地适应大规模数据处理需求,并实现与最新Hadoop生态系统的无缝对接。 与此同时,随着云计算服务的普及,诸如AWS EMR、Azure HDInsight等云平台已全面支持Apache Pig,使得用户无需自建集群就能便捷地在云端运行Pig脚本,极大地降低了大数据分析的入门门槛和运维成本。 此外,在实际应用层面,Apache Pig在实时流数据处理、机器学习模型训练、以及大规模日志分析等领域展现出巨大潜力。例如,结合Apache Flink或Spark Streaming,可利用Pig对实时数据进行预处理;而在数据挖掘场景中,科研人员成功借助Pig构建复杂的数据转换管道,用于训练深度学习模型,取得了显著成果。 因此,持续关注Apache Pig及其相关领域的最新进展和技术实践,对于提升个人在大数据处理与分析领域的专业技能至关重要。同时,了解并掌握如何结合其他大数据工具和框架来扩展Pig的功能边界,无疑将使您在解决现实世界复杂问题时具备更强的竞争优势。
2023-03-06 21:51:07
364
岁月静好-t
Apache Pig
...挥霍资源,那不仅会让性能像滑滑梯一样下滑,还可能把整个系统搞得摇摇晃晃、乱七八糟,就像一座没有稳固根基的大楼,随时可能崩塌。因此,我们应该在保证任务完成的前提下,尽可能地优化资源使用。
2023-03-26 22:00:44
506
桃李春风一杯酒-t
Golang
...者能够更高效地构建高性能网络服务。 此外,Go社区在包管理器方面也取得了显著进展。2021年发布的Go Modules(模块)已经成为官方推荐的依赖管理方案,它解决了长期困扰开发者的版本依赖问题,并为大型项目提供了一种更为稳定、可复现的依赖管理方式。 深入探究Go语言生态,我们会发现开源社区贡献了大量的第三方库,如GORM(用于数据库操作)、Gin(Web框架)、Cobra(命令行工具生成器)等,这些库大大丰富了Golang的应用场景并提升了开发效率。与此同时,遵循良好的包设计原则,比如单一职责原则,也成为优秀Go程序员的重要素养之一。 综上所述,在Golang的世界里,库和包的概念不仅体现在语言设计层面,更是通过不断发展的生态系统和实践来展现其价值,值得广大开发者关注和深入研究。
2023-01-22 13:27:31
498
时光倒流-t
转载文章
...8系列,并引入了大量性能优化和安全补丁,进一步增强了系统稳定性与安全性。 对于Linux内核升级的具体实践,管理员不仅需要关注如何正确安装新内核以及相关firmware包,还需要了解如何妥善管理启动项配置以应对可能的新内核故障。此外,遵循Linux社区的最佳实践,如通过订阅官方的安全公告、定期执行yum或dnf更新命令获取最新的内核版本,也是确保系统长期稳定运行的关键。 值得一提的是,随着容器技术的广泛应用,Linux内核在Kubernetes集群环境下的升级也愈发重要。例如,利用工具如kured实现自动检测并重启使用旧内核的节点,能够有效提高集群整体的安全性和一致性。 另外,对于企业级用户,红帽提供了一套完善的内核生命周期管理和技术支持体系,包括定期发布的内核增强更新和长期支持服务。这为企业用户提供了在遇到类似内核bug导致的问题时,有条不紊地进行内核升级与回滚的操作指导,从而最大限度地降低业务中断风险。 总之,无论是对单个服务器还是大规模部署的云环境,深入理解和执行合理的内核升级策略都是保持Linux系统高效、安全运行的核心要素之一。持续关注Linux内核开发动态和安全更新通知,结合专业文档及社区经验分享,将有助于运维人员更好地应对各种内核相关的挑战。
2023-09-08 16:48:38
88
转载
Go Iris
...own)? 在开发高性能的Web服务时,我们常常需要考虑如何在服务器收到停止信号时,能够安全地完成所有正在处理的请求后再退出程序,这就是所谓的“优雅停机”。这篇内容,咱们打算借助Go语言里的Iris Web框架,实实在在地探索并且动手实践一下如何把那个特性给整出来。 1. 什么是Graceful Shutdown? Graceful Shutdown,顾名思义,即“优雅的关闭”,是指当Web服务器接收到系统终止信号时,它不会立即停止运行,而是会等待所有正在进行的HTTP请求完成后再结束进程。这样一来,我们既能让大家使用得舒舒服服的,又能确保数据安全无虞,不会无缘无故消失或者变得七零八落。 2. Go Iris简介 Go Iris是一个高性能、轻量级且功能丰富的Go Web框架,以其卓越的性能和易用性而受到广大开发者的喜爱。它内置支持Graceful Shutdown,让我们可以轻松实现这一特性。 3. 使用Go Iris实现Graceful Shutdown 3.1 设置监听系统信号 在Go中,我们可以使用os/signal包来捕获操作系统的终止信号,如SIGINT(Ctrl+C)或者SIGTERM。下面是一个基本示例: go package main import ( "github.com/kataras/iris/v12" "os" "os/signal" "syscall" ) func main() { app := iris.New() // ... 这里添加你的路由和中间件配置... // 启动服务器 server := app.Run(iris.Addr(":8080")) // 监听系统信号 sigCh := make(chan os.Signal, 1) signal.Notify(sigCh, syscall.SIGINT, syscall.SIGTERM) // 等待信号 <-sigCh // 停止服务器,执行Graceful Shutdown ctx, cancel := context.WithTimeout(context.Background(), 5time.Second) // 可以设置一个超时时间 defer cancel() if err := server.Shutdown(ctx); err != nil { log.Fatalf("Server shutdown failed: %v", err) } fmt.Println("Server has gracefully stopped.") } 上述代码中,我们首先启动了一个Iris应用并监听8080端口。接着,我们创建了一个通道用于接收操作系统发出的终止信号。当你给程序发送SIGINT或者SIGTERM信号的时候,我们就会启动一个小操作,也就是调用server.Shutdown()这个方法。这个方法呢,就像一位耐心的管理员,会一直等到所有正在热闹忙碌的连接都圆满完成后,才轻轻把服务器的小门关上,让它安全地停止运行。 3.2 Graceful Shutdown的工作原理 在调用Shutdown方法后,Iris会开始拒绝新的连接请求,并等待当前所有的活跃请求处理完毕。如果有些请求在规定的时间内还没搞定,那么服务器就会果断地“啪”一下关掉自己,这样一来,就能保证服务不会一直卡在那里不动弹,无休止地挂着。 思考与探讨: - 考虑到实际生产环境,你可能需要根据业务需求调整context.WithTimeout的超时时间。 - 对于资源释放和清理工作,可以在Shutdown之后添加自定义逻辑,确保在服务器关闭前完成所有必要的清理任务。 总结起来,在Go Iris中实现Graceful Shutdown非常简单,只需要几行代码即可实现。这种优雅停机的方式不仅提升了系统的稳定性,也体现了对用户请求的尊重和对服务质量的承诺。所以,在构建高可用性的Web服务时,充分理解和利用Graceful Shutdown机制至关重要。
2023-02-05 08:44:57
479
晚秋落叶
Scala
...统来提升代码的质量和性能。例如,最近Apache Spark框架的更新中,引入了一些新的API设计,这些设计充分利用了Scala的泛型和类型别名功能,从而使得Spark应用程序的开发变得更加安全和高效。这一改进不仅减少了运行时错误,还显著提升了代码的可读性和可维护性。 另一个值得关注的例子是,Netflix公司在其内部项目中大量使用Scala,特别是在构建微服务架构时。Netflix工程师们发现,通过深度利用Scala的类型系统,他们能够更好地管理和维护大规模分布式系统。特别是在处理复杂的数据流和实时数据处理任务时,类型安全成为确保系统稳定性和可靠性的关键因素之一。 此外,一些研究机构和开源社区也在不断探索Scala类型系统的新用法。例如,近期发布的一篇论文详细分析了如何结合Scala的类型系统和函数式编程范式,以优化大数据处理算法的性能。该论文指出,通过精确的类型定义和模式匹配,可以显著减少内存消耗和计算时间,这对于处理海量数据集尤为重要。 这些实例不仅展示了Scala类型系统的强大功能,也为广大开发者提供了宝贵的实践经验。对于希望深入理解和应用Scala类型安全特性的开发者来说,持续关注这些前沿技术和实际案例将大有裨益。
2025-01-05 16:17:00
83
追梦人
HessianRPC
...开发,因其小巧轻便且性能优异而受到广泛使用。然而,在我们实际动手开发的时候,常常会遇到一个让人挠头的常见问题——“NullPointerException”,特别是在进行序列化或反序列化操作时,一不小心碰到空引用的情况,那家伙,可就尴尬了。本文将围绕这一主题,通过实例代码探讨其产生的原因以及解决策略。 2. HessianRPC的工作原理与序列化/反序列化 2.1 工作原理简述 在HessianRPC中,服务端将对象的状态转化为二进制流发送给客户端,客户端再将接收到的二进制流还原为对象状态,这个过程就涉及到了序列化和反序列化。 java // 服务器端示例 public class Server { public MyObject serve() { return new MyObject("Some Value"); } } // 客户端通过HessianProxyFactory创建代理对象进行远程调用 HessianProxyFactory factory = new HessianProxyFactory(); MyService service = (MyService) factory.create(MyService.class, "http://localhost:8080/myService"); MyObject obj = service.serve(); 2.2 序列化与反序列化过程中的空引用问题 当对象中包含null值属性时,Hessian可以正常处理并将其序列化为二进制数据。在反序列化这个环节,假如服务器那边传回来的对象里,某个属性值是空的(null),然后客户端这边呢,拿到这个属性后,不管三七二十一就直接进行非空判断或者动手操作了,这时候,“啪”一下,NullPointerException就会冒出来啦。 java // 假设服务端返回的对象包含可能为null的字段 public class MyObject { private String value; // 构造函数省略... public String getValue() { return value; } } // 客户端直接访问可能为null的字段 String receivedValue = service.serve().getValue(); // 可能抛出NullPointerException 3. 深入剖析NullPointerException的原因 出现上述异常的根本原因在于,我们在设计和使用对象时,没有对可为空的成员变量做充分的防御性编程。拿到反序列化出来的对象,你要是不检查一下引用是否为空就直接动手操作,这就跟走钢丝还不看脚下似的。万一不小心一脚踩空了,那程序可就得立马“扑街”了。 4. 针对HessianRPC中NullPointerException的防范措施 4.1 空值检查 在客户端使用反序列化后的对象时,务必对每个可能为null的引用进行检查: java MyObject obj = service.serve(); if (obj != null && obj.getValue() != null) { // 安全操作 } 4.2 使用Optional类包装可能为null的值 Java 8引入了Optional类,它可以优雅地表达和处理可能存在的空值: java Optional optionalValue = Optional.ofNullable(service.serve().getValue()); optionalValue.ifPresent(value -> System.out.println(value)); 4.3 设计合理的业务逻辑与数据模型 从源头上避免产生空引用,例如在服务端确保返回的对象其关键字段不为null,或者提供默认值。 5. 结论 尽管HessianRPC以其高效便捷著称,但在使用过程中,我们仍需关注并妥善处理可能出现的NullPointerException问题。只有深入理解序列化和反序列化的机制,并结合良好的编程习惯,才能在享受技术便利的同时,确保系统的健壮性和稳定性。记住了啊,每一次我们认真对付那些空引用的时候,其实就是在给系统的质量添砖加瓦呢,同时这也是咱作为开发者不断琢磨、持续优化的过程,可重要了!
2023-08-11 10:48:19
483
素颜如水
NodeJS
...特性,这些不仅能优化性能,还能增强代码的健壮性。综上所述,与时俱进地掌握NodeJS模块系统的最新动态与最佳实践,将助力我们编写出更加稳定、高效的JavaScript应用程序。
2023-12-17 19:06:53
60
梦幻星空-t
Nginx
...Nginx作为一款高性能的HTTP和反向代理服务器,除了可以用于隐藏端口号外,还可以实现更复杂的负载均衡策略,提高系统的可用性和响应速度。 例如,近期有媒体报道,某知名电商平台在其最新版本中采用了基于Nginx的动态负载均衡方案,成功应对了“双十一”期间的流量高峰。通过智能分析用户请求来源和应用状态,Nginx能够自动调整不同服务器间的请求分配比例,有效避免了单点过载的风险,保证了用户体验的一致性和流畅性。 此外,随着IPv6的普及和物联网设备数量的激增,如何在大规模网络环境中高效管理端口资源也成为了亟待解决的问题。在这方面,Nginx提供了丰富的模块支持,如ngx_http_v2_module,使得基于HTTP/2协议的通信更加稳定可靠,同时也简化了端口管理流程。 总之,无论是为了提升性能、增强安全性还是优化用户体验,Nginx都展现出了强大的功能和灵活性。对于从事软件开发和系统运维的专业人士而言,掌握Nginx的相关知识和技能,无疑将成为未来职业生涯中的一个重要优势。
2025-02-07 15:35:30
112
翡翠梦境_
Mongo
...是在不断寻找提高应用性能的方法。最近我在捣鼓MongoDB的时候,碰到了个头疼的问题。这问题就出在检查数据一致性的时候,花的时间实在是太长啦,让人等得有点儿小焦急。这个问题不仅影响了应用程序的响应速度,还可能影响到用户的体验。 一、问题背景 在我正在开发的一个项目中,我们需要保证用户的数据一致性。所以呢,每次你要往里头塞新的数据时,都得先给现存的数据做个“体检”,确认一下新来的数据和已有的数据能和睦相处,不打架,这样才稳妥。 二、问题表现 然而,当我们尝试在数据库中增加大量数据时,发现这个一致性检查的过程非常慢。即使使用了大量的索引优化策略,也无法显著提高检查的速度。这就导致了我们的应用程序在处理大量数据时,响应速度明显下降。 三、解决方案探索 面对这个问题,我首先想到的是可能是查询语句的问题。为了找到原因,我开始查看我们使用的查询语句,并进行了各种优化尝试。但结果并不理想,无论怎样调整查询语句,都不能显著提高检查速度。 然后,我又考虑到了索引的问题。我想,如果能够合理地建立索引,也许可以加快查询速度。于是,我开始为数据字段创建索引,希望能够提升检查效率。 四、代码示例 以下是我对一些重要字段创建索引的代码示例: javascript // 对用户ID创建唯一索引 db.users.createIndex({ _id: 1 }, { unique: true }) // 对用户名创建普通索引 db.users.createIndex({ username: 1 }) 虽然我对这些字段都创建了索引,但是数据一致性检查的速度并没有显著提高。这让我感到很困惑,因为这些索引都是根据业务需求精心设计的。 五、深入分析 在进一步研究后,我发现原来我们在进行数据一致性检查时,需要同时考虑多个字段的组合,而不仅仅是单个字段。这意味着,我们需要使用复合索引来加速检查。 六、优化策略 为此,我决定采用MongoDB的复合索引来解决这个问题。以下是我创建复合索引的代码示例: javascript // 对用户ID和用户名创建复合索引 db.users.createIndex({ _id: 1, username: 1 }) 通过添加这个复合索引,我发现数据一致性检查的速度有了明显的提升。这是因为复合索引就像是一本超级详细的目录,它能帮我们火速找到想找的信息,这样一来,查询所需的时间就大大缩短啦! 七、总结 总的来说,通过这次经历,我深刻体会到了索引对于提高查询速度的重要性。特别是在应对海量数据的时候,如果巧妙地利用索引,那简直就是给应用程序插上翅膀,能让它的运行速度嗖嗖地提升一大截儿,效果显著得很呐! 当然,这只是一个简单的例子,实际的应用场景可能会更复杂。但我相信,只要我们持续学习和探索,总会找到适合自己的解决方案。毕竟,作为开发者,我们的终极目标就是为了让用户爽翻天,让咱们的应用程序跑得更溜、更稳当,用户体验一级棒!
2023-02-20 23:29:59
137
诗和远方-t
Scala
...化和反序列化过程中的性能优化做了大量工作,使得使用case类构建的消息系统更加高效稳定。 不仅如此,一些开发者分享的最佳实践中,提倡在构建领域驱动设计(Domain-Driven Design, DDD)模型时采用case类作为值对象(Value Object),以充分利用其不可变性特质保证业务逻辑的一致性和安全性。 综上所述,Scala的case类不仅是简化代码结构的重要工具,而且在最新的语言特性和生态系统支持下,其应用深度和广度正不断拓展,为现代软件工程实践提供了有力支撑。对于热衷于追求代码简洁和高性能的开发者而言,持续关注并深入研究Scala case类的应用场景与最佳实践,无疑具有很高的时效性和针对性。
2024-01-24 08:54:25
69
柳暗花明又一村
Kotlin
...n以其简洁、安全和高性能的特性深受开发者喜爱。而在UI设计中,我们经常需要为CardView内的元素添加圆角以提升视觉效果。不过在实际动手捣鼓的时候,你可能会碰上这么个情况:当你把一个LinearLayout或者其他布局塞进了CardView里头,这时候你如果只给CardView单方面设置了radius属性,你会发现内嵌的那个布局并没有跟着一起变得圆角化,达不到你想要的“圆润”效果。那么,面对这种情况,我们该如何利用Kotlin来巧妙地解决呢?下面,我将通过几个实例一步步带你解开这个谜团。 1. 初步尝试与问题重现 首先,让我们先来看看一个基础的XML布局示例: xml xmlns:card_view="http://schemas.android.com/apk/res-auto" android:layout_width="match_parent" android:layout_height="wrap_content" card_view:cardCornerRadius="16dp"> android:layout_width="match_parent" android:layout_height="wrap_content" android:orientation="vertical"> 如你所见,虽然CardView设置了圆角,但其内部的LinearLayout并不会因此获得圆角效果,它仍然会是矩形形状。 2. 解决方案一 自定义背景drawable 针对这个问题,我们可以创建一个带有圆角的drawable作为LinearLayout的背景。下面是一个使用Kotlin动态生成ShapeDrawable的示例: kotlin val radius = resources.getDimension(R.dimen.corner_radius).toInt() // 获取圆角大小 val shapeDrawable = GradientDrawable().apply { setShape(GradientDrawable.RECTANGLE) setColor(Color.WHITE) // 设置背景颜色 cornerRadii = floatArrayOf(radius, radius, radius, radius, radius, radius, radius, radius) // 设置圆角 } // 将drawable设置给LinearLayout yourLinearLayout.background = shapeDrawable 这里需要注意的是,cornerRadii数组中的四个值分别代表左上、右上、右下、左下的圆角半径。 3. 解决方案二 使用ClipPath或CornerCutBitmap 对于更复杂的情况,比如需要剪裁出不规则的圆角,可以考虑使用ClipPath或者自定义Bitmap并进行圆角切割。但由于这两种方法性能开销较大且兼容性问题较多,一般情况下并不推荐。若确实有此需求,可参考以下简单的ClipPath示例: kotlin val path = Path().apply { addRoundRect(RectF(0f, 0f, yourLinearLayout.width.toFloat(), yourLinearLayout.height.toFloat()), resources.getDimension(R.dimen.corner_radius).toFloat(), resources.getDimension(R.dimen.corner_radius).toFloat(), Path.Direction.CW) } yourLinearLayout.clipToOutline = true yourLinearLayout.outlineProvider = ViewOutlineProvider { _, _ -> it.setConvexPath(path) } 4. 总结与思考 以上两种解决方案均能帮助我们在Kotlin环境下实现CardView内嵌LinearLayout的圆角效果。当然啦,每种方案都有它最适合的使用场合,选择哪一种方式,这完全取决于你的具体设计需求,还有你对性能和兼容性这两个重要因素的权衡考虑。就比如我们买衣服,不同的场合穿不同的款式,关键得看咱们的需求和衣服的质量、合身程度等因素是不是匹配。同时呢,这也正是编程让人着迷的地方:当我们遇到问题时,得先摸清背后的原理,然后灵活耍弄手头的工具,再结合实际情况,做出最棒的决策。就像是在玩一场烧脑又刺激的解谜游戏一样,是不是超带感?希望这篇文章能够帮你解决实际开发中遇到的问题,同时也激发你在Kotlin世界里不断探索创新的热情。
2023-01-31 18:23:07
326
飞鸟与鱼_
Hibernate
...化实体映射配置,提高性能,并减少此类运行时异常的发生。 例如,新版Hibernate支持了注解驱动的元数据处理,开发者无需在XML配置文件中逐一声明属性,而是可以通过@Entity、@Table和@property等注解直接在实体类中定义属性与数据库表字段的映射关系,从而降低因配置疏忽导致的属性找不到问题。 同时,为了提升开发体验,许多集成开发环境(如IntelliJ IDEA, Eclipse等)已针对Hibernate进行了深度优化,提供更为精准的代码提示和自动补全功能,能够在编写实体类时实时检测并避免拼写错误及大小写不一致的问题。 此外,对于企业级项目,采用领域驱动设计(DDD)进行架构规划也是预防这类问题的有效手段之一。通过明确领域模型与数据库模型之间的边界,可以更清晰地定义实体对象及其属性,进而减少由于模型混淆而引发的持久化异常。 综上所述,紧跟技术发展趋势,掌握最新框架特性,并结合最佳实践,是解决和预防“org.hibernate.PropertyNotFoundException”等类似问题的关键所在,这也将有助于我们不断提升Java企业级应用开发的效率与质量。
2023-06-23 12:49:40
552
笑傲江湖-t
PostgreSQL
...要通过索引来优化查询性能的需求。那么,如何创建一个可以显示值出来的索引呢?接下来,我将详细阐述这一过程,并给出一些实例代码。 创建索引 在PostgreSQL中,我们可以使用CREATE INDEX语句来创建索引。首先,咱们得先搞清楚到底要给哪个表格建索引,还有具体打算对哪些字段进行索引设置。例如,如果我们有一个名为"articles"的表,其中包含"a", "b", "c"三个字段,我们可以使用以下代码来创建一个基于"a"字段的索引: sql CREATE INDEX idx_articles_a ON articles(a); 上述代码将会在"articles"表的"a"字段上创建一个名为"idx_articles_a"的索引。嘿,你知道吗?索引名这个家伙其实可以任你自由定制!不过在大多数情况下,我们会倾向于选择一个跟字段名“沾亲带故”的命名方式,这样一来,不仅能让我们更轻松地理解索引是干嘛的,还能方便我们日后的管理和维护工作,是不是听起来更人性化、更好理解啦? 除了基本的CREATE INDEX语句外,PostgreSQL还支持一些高级的索引创建选项。例如,我们可以使用CLUSTER BY子句来指定哪些字段应该被用作聚簇键。你知道吗,聚簇键其实是个挺神奇的小东西,它就像是数据库里的超级分类员。这个特殊的索引能帮我们飞快地找到那些拥有相同数值的一堆记录,就像一个魔法师挥挥魔杖,唰的一下就把同类项全部给召唤出来一样!以下是创建一个基于"a"字段的聚簇索引的示例代码: sql CLUSTER articles USING idx_articles_a; 上述代码将会把"articles"表中的所有行按照"a"字段的值重新排列,并且在这个新的顺序下创建一个新的索引(名为"idx_articles_a")。这样一来,当我们想找带有特定"a"字段值的那些行时,就完全可以跳过翻完整个表的繁琐过程,直接在我们新建的这个索引里轻松找到啦! 显示索引 一旦我们创建了一个索引,我们可以通过EXPLAIN或EXPLAIN ANALYZE语句来查看其详细信息。这两个语句都可以用来查看查询的执行计划,包括哪些索引被使用了,以及它们的效率如何等信息。以下是使用EXPLAIN语句查看索引的示例代码: sql EXPLAIN SELECT FROM articles WHERE a = 'value'; 上述代码将会返回一个查询执行计划,其中包含了索引"idx_articles_a"的相关信息。如果索引被正确地使用了,那么查询的速度就会大大提高。 总结 总的来说,创建一个可以显示值出来的索引并不复杂,只需要使用CREATE INDEX语句指定要创建索引的表和字段即可。但是,想要构建一个恰到好处的索引真心不是个轻松活儿,这中间要考虑的因素可多了去了,像什么表的大小啊、查询的频率和复杂程度啊、数据分布的情况等等,都得琢磨透彻才行。所以在实际操作里头,咱们往往得不断试错、反复调校,才能摸清最高效的索引方法。这就像炒菜一样,不经过多次实践尝试,哪能调出最美味的佐料比例呢?同时呢,咱们也得时刻留意着索引的使用状况,一旦发现有啥苗头不对劲的地方,就得赶紧出手把它解决掉,避免出现更大的麻烦。
2023-07-04 17:44:31
346
梦幻星空_t
ActiveMQ
...间件之一,不断优化其性能并增加新特性以适应现代IT环境的需求。 2021年,Apache软件基金会宣布了ActiveMQ Artemis的重大更新,该版本不仅增强了对JMS 2.0规范的支持,还提供了对AMQP、MQTT等更多协议的支持,使得跨语言、跨平台的消息传递更加便捷高效。此外,ActiveMQ Artemis进一步提升了高可用性和灾难恢复能力,通过内置的集群和镜像存储功能,确保了即使在部分节点故障的情况下,系统也能持续稳定地处理消息队列。 而在实际应用中,诸如金融交易系统、物联网(IoT)设备通信、实时大数据处理等领域,ActiveMQ凭借其出色的异步消息处理能力和可扩展性得到了广泛应用。例如,在大型电商系统中,利用ActiveMQ实现订单处理、库存同步等任务的异步解耦,显著提高了系统的响应速度和吞吐量。 综上所述,无论是从技术演进还是实际落地层面,Apache ActiveMQ都在持续创新和发展,为构建高性能、高可靠的消息驱动架构提供有力支撑。对于有意向或正在使用消息中间件的企业及开发者而言,关注ActiveMQ的最新进展与最佳实践无疑具有极高的价值。
2023-03-11 08:23:45
431
心灵驿站-t
Logstash
...的数据。在日志管理和监控领域中广泛应用,它可以收集包括系统日志、应用程序日志、数据库记录等各类数据源的日志信息,并通过一系列插件进行数据解析、转换和输出,最终将这些处理后的数据高效地发送到如Elasticsearch、Kafka、Solr等多种存储或分析系统中。 输出插件 , 在Logstash框架中,输出插件是负责将经过输入和中间阶段处理过的数据传输至目标系统的组件。输出插件具备特定的功能,比如可以将数据写入文件、数据库,或者发送到消息队列、搜索引擎等不同的目的地。由于每个插件设计和支持的目标各异,并非所有输出插件都兼容所有类型的输出目标,因此在实际应用时需要根据需求选择合适的输出插件以确保数据能正确送达指定位置。 HTTP 插件 , HTTP插件是Logstash众多输出插件之一,它允许用户将数据通过HTTP协议发送到任何支持HTTP接口的目标地址。在本文中,HTTP插件作为一个通用解决方案被提及,当用户无法找到直接支持所需输出目标的插件时,可以通过配置HTTP插件,定义URL、请求方法(如POST)以及请求体内容,从而实现将数据灵活推送到自定义API或其他HTTP服务的目的。
2023-11-18 22:01:19
305
笑傲江湖-t
NodeJS
...化内存使用,提高应用性能,更是体现了良好的编程习惯和对资源管理的重视。就像咱们平时收拾房间那样,得及时把那些没啥用的玩意儿丢掉,这样才能让我们的“数字空间”始终保持干净利落、井井有条,高效运转起来。 记住,每个监听器都是宝贵的内存资源,让我们善待它们,合理利用,以达到最佳的应用效果。在玩转Node.js的天地里,摸透并巧妙摆平事件监听器这家伙的生命周期,那可真是咱们修炼开发大法、写出牛掰代码的必修一课啊!
2023-12-28 18:43:58
95
冬日暖阳
SpringBoot
...规模实时通信场景下的性能表现和稳定性。 因此,对于面临WebSocket连接数限制问题的开发者而言,除了常规的资源扩容和配置调整外,关注并采用前沿研究和技术趋势,将有助于更加高效地解决这一挑战。
2023-03-10 23:24:02
178
月影清风-t
ClickHouse
...ndex开发的一个高性能列存储查询引擎,用于在线分析处理(OLAP)。它的最大亮点就是速度贼快,能够瞬间处理海量数据,而且超级贴心,支持多种查询语言,SQL什么的都不在话下。 三、实时数据流处理的重要性 实时数据流处理是指对实时生成的数据进行及时处理,以便于用户能够获取到最新的数据信息。这对于许多实际的业务操作而言,那可是相当关键的呢,比如咱平时的金融交易啦,还有电商平台给你推荐商品这些场景,都离不开这个重要的因素。 四、ClickHouse的实时数据流处理能力 ClickHouse能够高效地处理实时数据流,其主要原因在于以下几个方面: 1. 列式存储 ClickHouse采用列式存储方式,这意味着每一列数据都被独立存储,这样可以大大减少磁盘I/O操作,从而提高查询性能。 2. 分布式架构 ClickHouse采用分布式架构,可以在多台服务器上并行处理数据,进一步提高了处理速度。 3. 内存计算 ClickHouse支持内存计算,这意味着它可以将数据加载到内存中进行处理,避免了频繁的磁盘I/O操作。 五、如何在ClickHouse中实现高效的实时数据流处理? 下面我们将通过一些具体的示例来讲解如何在ClickHouse中实现高效的实时数据流处理。 1. 数据导入 首先,我们需要将实时数据导入到ClickHouse中。这其实可以这么办,要么直接用ClickHouse的客户端进行操作,要么选择其他你熟悉的方式实现,就像我们平常处理问题那样,灵活多变,总能找到适合自己的路径。例如,我们可以通过以下命令将CSV文件中的数据导入到ClickHouse中: sql CREATE TABLE my_table (id UInt32, name String) ENGINE = MergeTree() ORDER BY id; INSERT INTO my_table SELECT toUInt32(number), format('%.3f', number) FROM system.numbers LIMIT 1000000; 这个例子中,我们首先创建了一个名为my_table的表,然后从system.numbers表中选择了前一百万个数字,并将它们转换为整型和字符串类型,最后将这些数据插入到了my_table表中。 2. 实时查询 接下来,我们可以使用ClickHouse的实时查询功能来处理实时数据。例如,我们可以通过以下命令来查询my_table表中的最新数据: sql SELECT FROM my_table ORDER BY id DESC LIMIT 1; 这个例子中,我们首先按照id字段降序排列my_table表中的所有数据,然后返回排名最高的那条数据。 3. 实时聚合 除了实时查询之外,我们还可以使用ClickHouse的实时聚合功能来处理实时数据。例如,我们可以通过以下命令来统计my_table表中的数据数量: sql SELECT count(), sum(id) FROM my_table GROUP BY id ORDER BY id; 这个例子中,我们首先按id字段对my_table表中的数据进行分组,然后统计每组的数量和id总和。 六、总结 通过以上的内容,我们可以看出ClickHouse在处理实时数据流方面具有很大的优势。无论是数据导入、实时查询还是实时聚合,都可以通过ClickHouse来高效地完成。如果你现在正琢磨着找一个能麻溜处理实时数据的神器,那我跟你说,ClickHouse绝对值得你考虑一下。它在处理实时数据流方面表现可圈可点,可以说是相当靠谱的一个选择!
2024-01-17 10:20:32
537
秋水共长天一色-t
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
cd -
- 在最近访问过的两个目录之间快速切换。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"