前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[run方法实现与数据发送 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Superset
...由Airbnb开源的数据可视化与BI工具,因其强大的数据探索能力和灵活的自定义图表功能广受开发者喜爱。然而,在实际操作中,我们可能经常需要对已创建的SQL查询进行实时更新,而无需重启整个服务。本文将带你深入探讨如何实现这一目标。 1. 理解Superset的工作原理 在开始之前,让我们先理解一下Superset的核心机制。Superset中的SQL查询是和特定的数据源以及仪表板或图表关联的,一旦创建并保存,这些查询就会在用户请求时执行以生成可视化结果。默认情况下,修改查询后需要重新加载相关视图才能看到更新后的结果。 2. 动态更新SQL查询的策略 策略一:直接编辑SQL查询 Superset允许我们在不重启服务的前提下直接编辑已有的SQL查询。 - 步骤1:登录Superset,导航到“数据” -> “SQL Lab”,找到你需要修改的SQL查询。 - 步骤2:点击查询名称进入编辑页面,然后直接在SQL编辑器中修改你的查询语句。 sql -- 原始查询示例: SELECT date, COUNT() as total_events FROM events GROUP BY date; -- 更新后的查询示例: SELECT date, COUNT() as total_events, AVG(time_spent) as avg_time_spent -- 添加新的计算字段 FROM events GROUP BY date; - 步骤3:保存修改,并刷新相关的仪表板或图表视图,即可看到基于新查询的结果。 策略二:利用API动态更新 对于自动化或者批处理场景,你可以通过调用Superset的API来动态更新SQL查询。 python import requests from flask_appbuilder.security.manager import AuthManager 初始化认证信息 auth = AuthManager() headers = auth.get_auth_header() 查询ID query_id = 'your_query_id' 新的SQL查询语句 new_sql_query = """ SELECT ... """ 更新SQL查询API调用 response = requests.put( f'http://your-superset-server/api/v1/sql_lab/{query_id}', json={"query": new_sql_query}, headers=headers ) 检查响应状态码确认更新是否成功 if response.status_code == 200: print("SQL查询已成功更新!") else: print("更新失败,请检查错误信息:", response.json()) 3. 质疑与思考 虽然上述方法可以实现在不重启服务的情况下更新SQL查询,但我们仍需注意,频繁地动态更新可能会对系统的性能和稳定性产生一定影响。所以,在我们设计和实施任何改动的时候,千万记得要全面掂量一下这会对生产环境带来啥影响,而且一定要精心挑选出最合适的时间窗口来进行更新,可别大意了哈。 此外,对于大型企业级应用而言,考虑采用更高级的策略,比如引入版本控制、审核流程等手段,确保SQL查询更改的安全性和可追溯性。 总结来说,Superset的强大之处在于它的灵活性和易用性,它为我们提供了便捷的方式去管理和更新SQL查询。但是同时呢,咱也得慎重对待每一次的改动,让数据带着我们做决策的过程既更有效率又更稳当。就像是开车,每次调整方向都得小心翼翼,才能保证一路既快速又平稳地到达目的地。毕竟,就像咱们人类思维一步步升级进步那样,探寻数据世界的冒险旅途也是充满各种挑战和乐趣的。
2023-12-30 08:03:18
101
寂静森林
MyBatis
...Batis在处理大量数据时的性能瓶颈问题? 当我们使用MyBatis作为持久层框架处理大数据量业务场景时,可能会遇到性能瓶颈。本文将深入探讨这一问题,并通过实例代码和策略性建议来揭示如何有效地优化MyBatis以应对大规模数据处理挑战。 1. MyBatis处理大数据时的常见性能瓶颈 在处理大量数据时,MyBatis可能面临的性能问题主要包括: - 数据库查询效率低下:一次性获取大量数据,可能导致SQL查询执行时间过长。 - 内存消耗过大:一次性加载大量数据到内存,可能导致Java Heap空间不足,甚至引发OOM(Out Of Memory)错误。 - 循环依赖与延迟加载陷阱:在实体类间存在复杂关联关系时,如果不合理配置懒加载,可能会触发N+1查询问题,严重降低系统性能。 2. 针对性优化策略及示例代码 2.1 SQL优化与分页查询 示例代码: java @Select("SELECT FROM large_table LIMIT {offset}, {limit}") List fetchLargeData(@Param("offset") int offset, @Param("limit") int limit); 在实际应用中,尽量避免一次性获取全部数据,而是采用分页查询的方式,通过LIMIT关键字实现数据的分批读取。例如,上述代码展示了一个分页查询的方法定义。 2.2 合理设置批量处理与流式查询 MyBatis 3.4.0及以上版本支持了ResultHandler接口以及useGeneratedKeys、fetchSize等属性,可以用来进行批量处理和流式查询,有效减少内存占用。 示例代码: java @Select("SELECT FROM large_table") @Results(id = "largeTableResult", value = { @Result(property = "id", column = "id") // 其他字段映射... }) void streamLargeData(ResultSetHandler handler); 在这个例子中,我们通过ResultSetHandler接口处理结果集,而非一次性加载到内存,这样就可以按需逐条处理数据,显著降低内存压力。 2.3 精细化配置懒加载与缓存策略 对于实体间的关联关系,应合理配置懒加载以避免N+1查询问题。另外,咱们也可以琢磨一下开启二级缓存这招,或者拉上像Redis这样的第三方缓存工具,这样一来,数据访问的速度就能噌噌噌地往上提了。 示例代码: xml 以上示例展示了如何在实体关联映射中启用懒加载,只有当真正访问LargeTable.detail属性时,才会执行对应的SQL查询。 3. 总结与思考 面对MyBatis处理大量数据时可能出现的性能瓶颈,我们应从SQL优化、分页查询、批量处理、懒加载策略等方面综合施策。同时呢,咱们得在实际操作中不断摸索、改进,针对不同的业务场景,灵活耍起各种技术手段,这样才能保证咱的系统在面对海量数据挑战时,能够轻松应对,游刃有余,就像一把磨得飞快的刀切豆腐一样。 在此过程中,我们需要保持敏锐的洞察力和持续优化的态度,理解并熟悉MyBatis的工作原理,才能逐步克服性能瓶颈,使我们的应用程序在海量数据面前展现出更强大的处理能力。同时,咱也得留意一下性能优化和代码可读性、维护性之间的微妙平衡,目标是追求那种既高效又易于理解和维护的最佳技术方案。
2023-08-07 09:53:56
56
雪落无痕
RocketMQ
...ocketMQ生产者发送消息过快导致的问题后,我们发现对于消息队列的性能优化与稳定运行具有极高的实际价值。近期,阿里云在2021年发布的《RocketMQ最佳实践白皮书》中,进一步分享了诸多针对高并发场景下消息队列调优及运维的经验。 例如,书中提到了一种基于流量控制策略来防止消息堆积的方法,即通过设置合理的限流阈值和回退策略,在系统压力陡增时,既能保证核心业务不被阻塞,又能避免消息积压。此外,还介绍了如何利用RocketMQ的延迟消息功能,对非实时性要求较高的任务进行异步处理,有效缓解高峰期的压力。 同时,随着云原生技术的发展,Kubernetes等容器编排平台的应用也为消息队列提供了更灵活、高效的部署方式。阿里云RocketMQ团队已实现了与Kubernetes的深度融合,支持弹性伸缩、自动容错等功能,能够在资源利用率和消息处理能力上实现动态平衡。 总之,在面对大规模数据传输和高并发场景时,除了文中提到的基本调优手段外,结合行业前沿的最佳实践与技术创新,能够更好地确保消息队列系统的稳定性与高效性,从而为企业的业务发展保驾护航。
2023-12-19 12:01:57
51
晚秋落叶-t
JQuery
...后台与服务器交换少量数据(异步通信),并在不重新加载整个页面的情况下更新部分网页内容。在本文中,使用jQuery的$.get方法实现的就是一个典型的AJAX GET请求,用于从服务器获取并加载新数据,同时保持当前页面URL不变。 单页应用(SPA) , 单页应用是一种Web应用程序设计模式,用户与该应用交互过程中,仅加载一个HTML页面,然后利用JavaScript和前端框架(如React、Vue等)来动态地替换或修改页面内容,实现页面间的切换而无需重新加载整个页面。在这种模式下,前端路由管理变得至关重要,因为它负责根据URL变化呈现不同视图和数据。 服务器端渲染(SSR) , 服务器端渲染是一种Web应用构建技术,指的是在服务器端生成完整的HTML页面,并将它们发送到浏览器端展示。与纯前端渲染(如SPA)相比,服务器端渲染有利于搜索引擎优化(SEO),因为搜索引擎爬虫可以直接抓取到包含所有内容的HTML,而非依赖于客户端JavaScript执行后的结果。对于依赖AJAX动态加载内容的应用,采用服务器端渲染可以确保爬虫能够正确索引和理解基于URL的内容结构。
2023-02-17 17:07:14
56
红尘漫步_
Netty
...xception解决方法后,我们进一步了解到消息大小限制对于保障网络通信安全和高效的重要性。近期,随着云计算、大数据等领域的飞速发展,服务端应用程序处理的数据量呈指数级增长,这使得合理设置和优化消息大小上限成为开发者关注的焦点。 2022年,Apache Pulsar社区就针对消息尺寸异常问题进行了一次深度优化,通过动态调整其内置的maxMessageSize配置以适应不同场景下的数据流需求,有效防止了因大消息导致的内存溢出及系统稳定性问题。这一改进案例充分说明,在实际生产环境中,不仅要预先设定合理的最大消息尺寸,还需结合实时监控与反馈机制,实现动态调整策略。 另外,Google的gRPC框架也针对大数据包传输进行了优化设计,采用分帧(streaming)技术,允许消息被拆分成多个小块进行发送和接收,从而避免单个过大消息对系统造成冲击。这种设计理念无疑为处理大消息提供了新的思路,并启示我们在使用Netty等工具时,可以考虑结合类似的技术手段,如分块传输或数据压缩,以适应更复杂多变的应用场景。 总之,在面对UnexpectedMessageSizeException这类问题时,除了及时排查并修复代码层面的配置错误,更要紧跟技术发展趋势,将先进的设计理念与最佳实践融入到我们的解决方案中,确保系统的稳定性和性能表现。
2023-11-27 15:28:29
151
林中小径
HessianRPC
...Call, RPC)实现,由Caucho公司开发。HessianRPC通过将对象的状态转换为紧凑的二进制格式在网络上传输,使得客户端和服务器端可以高效地进行远程方法调用和数据交换。 NullPointerException(空指针异常) , 在Java编程中,当应用程序试图访问或操作一个值为null的对象引用时抛出的一种运行时异常。在本文的上下文中,NullPointerException尤其出现在序列化与反序列化过程中,由于对象的属性值可能为空,而客户端在未做空值检查的情况下直接使用这些属性,导致异常发生。 Optional类(Java 8) , Java 8引入的一个容器类,用于表示一个可能为空的值。Optional类可以帮助开发者以更加安全和清晰的方式处理可选值,避免出现NullPointerException。在处理HessianRPC反序列化结果时,可以通过Optional类对可能为null的对象引用进行包装,从而优雅地表达和处理潜在的空值问题。
2023-08-11 10:48:19
481
素颜如水
Etcd
...状态监控的重要性和其实现方法后,我们发现随着分布式系统和云原生技术的快速发展,对Etcd等关键组件的运维要求也在不断提升。近期,开源社区推出了更多高效且功能丰富的监控工具,如OpenTelemetry,它提供了一种统一的标准来收集、传输、处理和可视化各种系统的遥测数据,包括Etcd在内的多种服务都可以通过集成OpenTelemetry来实现更精细化的监控。 与此同时,Kubernetes作为广泛应用的容器编排平台,其自身集成了Etcd以存储集群状态数据。针对这一场景,业界也研发出诸如kube-state-metrics这类工具,它可以暴露关于Kubernetes内部对象的状态信息,其中包括Etcd的相关指标,极大地便利了在Kubernetes环境中Etcd节点的健康状况监控与管理。 此外,对于大规模分布式环境下的Etcd集群,如何设计高可用且实时有效的监控报警策略成为新的挑战。一些云服务商如阿里云、AWS等,结合AIOPS理念,已经推出智能监控服务,能根据历史数据和业务负载动态调整阈值,提前预测并预警潜在问题,从而确保Etcd集群始终保持最优运行状态。 综上所述,在实际运维中,不断跟进最新的监控技术和解决方案,结合具体业务场景灵活运用,是保障Etcd节点健康稳定运行的关键所在。未来,随着技术的持续创新,Etcd监控领域有望呈现更多智能化、自动化的实践案例,进一步提升分布式系统的整体稳定性与可靠性。
2023-12-30 10:21:28
513
梦幻星空-t
ZooKeeper
...r中设置和获取节点的数据? 1. 简介 嗨,大家好!今天我们要聊的是Apache ZooKeeper,这是一款超级实用且功能强大的分布式协调服务。这个工具能帮我们搞定集群里头的各种复杂活儿,比如设置管理、名字服务,还有分布式锁这些 tricky 的事情。而今天我们主要讨论的是如何在ZooKeeper中设置和获取节点的数据。这个过程虽然看起来简单,但其中却蕴含了不少技巧和经验。废话不多说,让我们直接进入正题吧! 2. 安装与配置 首先,我们需要确保ZooKeeper已经正确安装并运行。如果你是新手,不妨先看看官方文档,学着自己安装一下。或者,你也可以直接用Docker,几下敲敲代码就搞定了,超级方便! bash docker run -d --name zookeeper -p 2181:2181 zookeeper 这样我们就有了一个本地的ZooKeeper服务。接下来,我们可以开始编写客户端代码了。 3. 设置数据 3.1 使用Java API设置数据 让我们先从Java API开始。想象一下,我们要在系统里建个新家,就叫它/myapp/config吧。然后呢,我们往这个新家里放点儿配置文件,好让它知道该怎么干活。下面是一个简单的代码示例: java import org.apache.zookeeper.ZooKeeper; import org.apache.zookeeper.CreateMode; import org.apache.zookeeper.ZooDefs.Ids; public class ZookeeperExample { public static void main(String[] args) throws Exception { // 创建ZooKeeper实例 ZooKeeper zk = new ZooKeeper("localhost:2181", 5000, watchedEvent -> {}); // 设置节点数据 byte[] data = "some config data".getBytes(); String path = "/myapp/config"; // 创建临时节点 String createdPath = zk.create(path, data, Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT); System.out.println("Created node: " + createdPath); // 关闭连接 zk.close(); } } 在这个例子中,我们首先创建了一个ZooKeeper实例,并指定了连接超时时间。然后呢,我们就用create这个魔法命令变出了一个持久节点,还往里面塞了一些配置信息。最后,我们关闭了连接。 3.2 使用Python API设置数据 如果你更喜欢Python,也可以使用Python客户端库kazoo来操作ZooKeeper。下面是一个简单的示例: python from kazoo.client import KazooClient zk = KazooClient(hosts='127.0.0.1:2181') zk.start() 设置节点数据 zk.create('/myapp/config', b'some config data', makepath=True) print("Node created") zk.stop() 这段代码同样创建了一个持久节点,并写入了一些配置信息。这里我们使用了makepath=True参数来自动创建父节点。 4. 获取数据 4.1 使用Java API获取数据 接下来,我们来看看如何获取节点的数据。假设我们要读取刚刚创建的那个节点中的配置信息,可以这样做: java import org.apache.zookeeper.ZooKeeper; public class ZookeeperExample { public static void main(String[] args) throws Exception { // 创建ZooKeeper实例 ZooKeeper zk = new ZooKeeper("localhost:2181", 5000, watchedEvent -> {}); // 获取节点数据 byte[] data = zk.getData("/myapp/config", false, null); System.out.println("Data: " + new String(data)); // 关闭连接 zk.close(); } } 在这个例子中,我们使用getData方法读取了节点/myapp/config中的数据,并将其转换为字符串打印出来。 4.2 使用Python API获取数据 同样地,使用Python的kazoo库也可以轻松完成这一操作: python from kazoo.client import KazooClient zk = KazooClient(hosts='127.0.0.1:2181') zk.start() 获取节点数据 data, stat = zk.get('/myapp/config') print("Node data: " + data.decode()) zk.stop() 这里我们使用了get方法来获取节点数据,同时返回了节点的状态信息。 5. 总结与思考 通过上面的代码示例,我们可以看到,无论是使用Java还是Python,设置和获取ZooKeeper节点数据的过程都非常直观。但实际上,在真实使用中可能会碰到一些麻烦,比如说网络卡顿啊,或者有些节点突然不见了之类的。这就得在开发时不断地调整和改进,确保系统又稳又靠谱。 希望今天的分享对你有所帮助!如果你有任何问题或建议,欢迎随时交流。
2025-01-25 15:58:48
45
桃李春风一杯酒
SpringBoot
...且能够在任意一端主动发送数据,实现实时、双向的数据传输。相较于HTTP协议,WebSocket避免了频繁的请求-响应交互,尤其适用于在线游戏、即时聊天等需要低延迟、高效率实时通讯的场景。 全双工(Full-duplex) , 在网络通信中,全双工是指通信双方能够同时进行收发操作,即通信链路能够在同一时刻承载双向的数据流。在WebSocket协议中,全双工特性意味着服务器与客户端都能主动发起数据传输,无需等待对方回应或发起新的请求。 WebSocketServletRegistrationBean , 在Spring Boot框架中,WebSocketServletRegistrationBean是一个用于配置和注册WebSocket endpoint的类。通过扩展此类并覆盖相关方法,开发者可以灵活设置WebSocket连接的各种属性,例如允许的跨域来源、消息缓冲区大小等,从而实现对WebSocket连接数及性能的控制管理。在文章示例代码中,通过配置WebSocketServletRegistrationBean来间接限制WebSocket连接的数量。
2023-03-10 23:24:02
175
月影清风-t
Logstash
...ic 公司开发的开源数据收集引擎,主要用于实时处理、过滤和转发来自不同来源的数据。在日志管理和监控领域中广泛应用,它可以收集包括系统日志、应用程序日志、数据库记录等各类数据源的日志信息,并通过一系列插件进行数据解析、转换和输出,最终将这些处理后的数据高效地发送到如Elasticsearch、Kafka、Solr等多种存储或分析系统中。 输出插件 , 在Logstash框架中,输出插件是负责将经过输入和中间阶段处理过的数据传输至目标系统的组件。输出插件具备特定的功能,比如可以将数据写入文件、数据库,或者发送到消息队列、搜索引擎等不同的目的地。由于每个插件设计和支持的目标各异,并非所有输出插件都兼容所有类型的输出目标,因此在实际应用时需要根据需求选择合适的输出插件以确保数据能正确送达指定位置。 HTTP 插件 , HTTP插件是Logstash众多输出插件之一,它允许用户将数据通过HTTP协议发送到任何支持HTTP接口的目标地址。在本文中,HTTP插件作为一个通用解决方案被提及,当用户无法找到直接支持所需输出目标的插件时,可以通过配置HTTP插件,定义URL、请求方法(如POST)以及请求体内容,从而实现将数据灵活推送到自定义API或其他HTTP服务的目的。
2023-11-18 22:01:19
303
笑傲江湖-t
Kafka
...随着企业规模的增长,数据量也在不断增加,单一数据中心的数据处理能力已经无法满足需求,因此需要将数据复制到多个数据中心进行分布式处理。Kafka这款分布式流处理神器,本身就自带了跨数据中心数据复制的绝活儿。这篇文会手把手教你如何玩转Kafka,通过调整它的那些配置参数,再配上灵活运用Kafka的API接口,就能轻松实现让数据在不同数据中心之间复制、传输,就像变魔术一样简单有趣。 二、Kafka的跨数据中心复制原理 Kafka的跨数据中心复制是基于它的Replication(复制)机制实现的。在Kafka中,每个Topic下的每个Partition都会有一个Leader和多个Follower。Leader负责接收生产者发送的消息,并将消息传递给Follower进行复制。当Leader节点突然撂挑子罢工了,Follower里的小弟们可不会干瞪眼,它们会立马推选出一个新的Leader,这样一来,咱们整个系统的稳定性和可用性就能得到妥妥的保障啦。而跨数据中心复制这回事儿,其实就像是把Leader节点这位“数据大队长”派到其他的数据中心去,这样一来,各个数据中心之间的数据就能手牵手、肩并肩地保持同步啦。 三、如何设置Kafka的跨数据中心复制 1. 设置Zookeeper 在进行跨数据中心复制之前,需要先在Zookeeper中设置好复制组(Cluster)。复制组就像是由一群手拉手的好朋友组成的,这些好朋友其实是一群Kafka集群。每个Kafka集群都是这个大家庭中的一个小分队,它们彼此紧密相连,共同协作。咱们现在得在Zookeeper这家伙里头建一个新的复制小组,然后把所有参与跨数据中心数据同步的Kafka集群小伙伴们都拽进这个小组里去。 2. 配置Kafka服务器 在每个Kafka服务器中,都需要配置复制组相关的参数。其中包括: - bootstrap.servers: 用于指定复制组中各个Kafka服务器的地址。 - group.id: 每个客户端在加入复制组时必须指定的唯一标识符。 - replication.factor: 用于指定每个Partition的副本数量,也就是在一个复制组中,每个Partition应该有多少个副本。 - inter.broker.protocol.version: 用于指定跨数据中心复制时使用的网络协议版本。 四、使用Kafka API进行跨数据中心复制 除了通过配置文件进行跨数据中心复制之外,还可以直接使用Kafka的API进行手动操作。具体步骤如下: 1. 在生产者端,调用send()方法发送消息到Leader节点。 2. Leader节点接收到消息后,将其复制到所有的Follower节点。 3. 在消费者端,从Follower节点获取消息并进行处理。 五、总结 总的来说,通过设置Kafka的复制组参数和使用Kafka的API接口,我们可以轻松地实现在跨数据中心之间的数据复制。而且你知道吗,Kafka有个超赞的Replication机制,这玩意儿就像给数据上了个超级保险,让数据的安全性和稳定性杠杠的。哪怕某个地方突然出了状况,单点故障了,也能妥妥地防止数据丢失,可牛掰了! 六、致谢 感谢阅读这篇关于如何确保Kafka的跨数据中心复制的文章,如果您有任何疑问或建议,请随时与我联系,我将竭诚为您服务!
2023-03-17 20:43:00
531
幽谷听泉-t
Consul
...一个服务实例都会定期发送心跳信息给 Consul 服务器。比如说,如果某个服务实例在一分钟内没给咱“报平安”(发送心跳信息),Consul 这个小机灵鬼就会觉得这个服务实例可能是出状况了,然后就会把它标记为“不健康”,表示它现在可能没法正常工作啦。 然而,这种方法并不总是准确的。比如,假如你的服务实例碰巧因为某些原因,暂时和 Consul 服务器“失联”了(就像网络突然抽风),Consul 就可能会误判这个服务实例为“病怏怏”的不健康状态。这就是我们今天要讨论的问题。 四、解决问题的方法 为了避免这种情况发生,我们可以使用 Consul 提供的 API 来手动设置服务实例的状态。这样,就算Consul服务器收到的服务实例心跳信号有点小毛病,咱们也能通过API接口手到病除,轻松解决这个问题。 以下是一个使用 Consul Python SDK 设置服务实例状态的例子: python import consul 创建一个 Consul 客户端 client = consul.Consul(host='localhost', port=8500) 获取服务实例的信息 service_id = 'my-service' service_instance = client.agent.service(service_id, token='') 手动设置服务实例的状态为健康 service_instance.update({'status': 'passing'}) 在这个例子中,我们首先创建了一个 Consul 客户端,然后获取了名为 my-service 的服务实例的信息。接着,我们调用 update 方法来手动设置服务实例的状态为健康。 通过这种方式,我们可以避免 Consul 错误地标记服务实例为不健康的情况。但是,这也带来了一些问题。比方说,如果我们老是手动去改动服务实例的状态,就很可能让 Consul 的表现力大打折扣。因此,在使用这种方法时,我们需要谨慎考虑其可能带来的影响。 五、结论 总的来说,虽然 Consul 的健康检查机制可以帮助我们监控服务实例的状态,但是在某些情况下可能会出现问题。瞧,发现了这些问题之后,我们完全可以动手利用 Consul 提供的 API 来亲自给服务实例调整状态,这样一来,这个问题就能被我们妥妥地搞定啦! 但是,我们也需要注意到,频繁地手动修改服务实例的状态可能会对 Consul 的性能产生影响。因此,在使用这种方法时,我们需要谨慎考虑其可能带来的影响。同时呢,咱们也得时刻把 Consul 的动态揣在心窝里,好随时掌握最新的解决方案和尖端技术哈。
2023-03-02 12:43:04
804
林中小径-t
Netty
...作系统到应用层的双向数据传输路径。它可以是客户端发起的连接,也可以是服务端接受的连接。Channel负责数据的读取和写入,并可通过添加不同的Handler实现对数据的编码、解码以及业务逻辑处理等功能。如果Channel没有被正确地注册到EventLoopGroup,那么在网络通信过程中就可能发生ChannelNotRegisteredException异常。
2023-05-16 14:50:43
34
青春印记-t
MyBatis
...yBatis批量插入数据,MyBatis拦截器为何失效? 在Java开发领域中,MyBatis作为一款优秀的持久层框架,以其高度灵活和可定制的特性广受开发者喜爱。然而,在实际操作的时候,尤其是当你在进行批量数据插入这种场景时,你可能会冒出一个常见又让人挠头的问题:那个之前在单条数据插入时表现得相当给力的MyBatis拦截器,怎么到了批量插入这儿,好像就突然歇菜了呢?别急,本文就要围着这个接地气的话题,通过大量鲜活的代码实例和咱们一起抽丝剥茧地探讨分析,一步步揭开这背后的真相,并且给你提供实实在在的解决方案。 1. MyBatis拦截器的基本概念 首先,让我们回顾一下MyBatis拦截器的基本概念。MyBatis拦截器是基于Java的动态代理机制实现的一种插件化设计,它允许我们在执行SQL映射语句前或后添加额外的操作。例如,我们可以利用拦截器进行日志记录、权限校验、性能监控等任务。 java @Intercepts({@Signature(type = Executor.class, method = "update", args = {MappedStatement.class, Object.class})}) public class MyInterceptor implements Interceptor { // 拦截方法的具体实现... } 2. MyBatis批量插入数据的方式 对于批量插入数据,MyBatis提供了BatchExecutor来支持这一功能。我们可以通过SqlSession的beginTransaction()开启批处理模式,然后连续调用insert()方法,最后再调用commit()提交事务。 java try (SqlSession session = sqlSessionFactory.openSession(ExecutorType.BATCH)) { for (int i = 0; i < dataList.size(); i++) { User user = dataList.get(i); session.insert("com.example.mapper.UserMapper.insert", user); } session.commit(); } 3. 批量插入时拦截器为何失效? 然而,在这种批量插入场景下,细心的开发者会发现预设的拦截器并未按预期执行。这主要是因为MyBatis在批量模式下为了优化性能,采用了延迟加载的策略,即在真正执行commit()方法时才会一次性将所有待插入的数据发送到数据库,而不是每次调用insert()方法时就立即执行SQL。 因此,当我们在拦截器中监听Executor.update()方法时,由于在批量模式下此方法并没有实际执行SQL,只是将SQL命令缓存起来,所以导致了拦截器看似“失效”。 4. 解决方案 调整拦截器触发时机 为了解决这个问题,我们需要调整拦截器的触发时机,使其能够在批量操作最终提交时执行。一个切实可行的招儿是,咱们在拦截器那里“埋伏”一下,盯紧那个Transaction.commit()方法。这样一来,每当大批量数据要提交的时候,咱们就能趁机把自定义的逻辑给顺手执行了,保证不耽误事儿。 java @Intercepts({@Signature(type = Transaction.class, method = "commit", args = {})}) public class BatchInterceptor implements Interceptor { // 在事务提交时执行自定义逻辑... } 总结来说,理解MyBatis拦截器的工作原理,以及其在批量插入场景下的行为表现,有助于我们更好地应对各种复杂情况,让拦截器在提升应用灵活性和扩展性的同时,也能在批量操作这类特定场景下发挥应有的作用。在实际编程实战中,咱们得瞅准需求的实际情况,灵活机智地调整和设计拦截器启动的时机点,这样才能让它发挥出最大的威力,达到最理想的使用效果。
2023-05-12 21:47:49
152
寂静森林_
SeaTunnel
一、引言 数据传输是我们日常生活中的常见操作,尤其是在商业环境中,大量的数据需要在各种设备、系统之间传递。不过,这些数据里面常常隐藏着一些要紧的隐私内容,比如你的个人信息啦、财务账单啥的,都是些敏感玩意儿。因此,保证数据的安全传输就显得尤为重要。 二、SeaTunnel简介 SeaTunnel是阿里云推出的一款大数据实时处理工具。它能够提供低延迟、高吞吐量、高可用性和强一致性的数据传输服务。SeaTunnel采用了流式处理的方式,就像把大块头的数据切分成一小块一小块的“数据碎片”,然后逐个击破进行高效处理,这样一来,处理速度嗖嗖地提升,效果那是相当显著! 三、如何在SeaTunnel中安全地传输数据? 3.1 使用加密传输 SeaTunnel提供了SSL/TLS协议的支持,可以在传输过程中对数据进行加密。这样即使数据被截获,也无法直接阅读其内容。下面是一个使用SSL/TLS进行加密传输的例子: python import seata.tunnel as tunnel 创建一个通道 channel = tunnel.Channel('localhost', 8091) 创建一个请求,指定加密方式为SSL/TLS request = tunnel.Request() request.set_encryption_type(tunnel.EncryptionType.SSL_TLS) 发送请求 response = channel.send(request) 3.2 数据脱敏 除了加密传输外,我们还可以对数据进行脱敏处理,例如将敏感信息替换为模拟值。下面是一个使用Python进行数据脱敏的例子: python def desensitize_data(data): 这里只是一个简单的例子,实际的脱敏策略会更复杂 if isinstance(data, str): return '' else: return data 对数据进行脱敏 sensitive_data = {'name': 'John Doe', 'ssn': '123-45-6789'} desensitized_data = {k: desensitize_data(v) for k, v in sensitive_data.items()} 四、结论 在SeaTunnel中,我们可以利用加密传输和数据脱敏两种方法来保护我们的敏感信息。这两种方法虽然各有优缺点,但结合起来可以大大提高数据的安全性。在实际应用中,我们需要根据具体的需求和环境选择合适的方法。 五、后续研究 随着数据泄露事件的频发,数据安全性的重要性日益凸显。今后的研究重点,很可能就是琢磨怎么把数据安全这块搞得更上一层楼。比如捣鼓出全新的加密技术,构思出更加机智的数据脱敏方案啥的,这些都是大有搞头的方向! 以上就是本文的内容了,希望通过这篇文章,读者们能更好地了解如何在SeaTunnel中安全地传输数据。
2023-11-20 20:42:37
261
醉卧沙场-t
ZooKeeper
...性、持久性和实时性的数据存储服务,并通过其特有的watch机制实现分布式环境下的状态同步与协调管理,广泛应用于诸如数据发布/订阅、分布式锁、集群选主、命名服务等多种场景。 心跳机制 , 在计算机网络通信中,心跳机制是一种常见的连接保持和健康检查手段。在本文语境下,ZooKeeper客户端通过定时向服务器发送心跳包(通常为一个简单的数据包)来确认连接的有效性。如果服务器在预定时间内未收到客户端的心跳消息,就会认为客户端已经断开连接,从而释放相关资源;同样,客户端若连续一段时间未收到服务器对心跳包的回应,也会判断连接已失效并尝试重新连接。 分布式系统 , 分布式系统是由多个独立的计算机通过网络进行通信和协作,共同完成一项任务或提供一种服务的计算系统。在这样的系统中,各个节点相对独立且地理位置可能分散,但它们通过一定的协议和算法相互协调以实现高可用性、可扩展性和容错性。文章中的ZooKeeper正是作为此类系统的协调工具,负责管理和维护分布式系统中的各种状态信息和服务协调工作。
2024-01-15 22:22:12
66
翡翠梦境-t
Docker
...sh docker run -it --log-driver=json-file --log-opt max-size=10m --log-opt max-file=3 --log-opt labels=info your-image-name 上述命令设置了日志驱动为json-file(这是Docker默认的日志驱动),同时限制了单个日志文件最大10M,最多保存3个文件,并且只记录info及以上级别的日志。 三、查看Docker容器日志的几种方式 1. 使用docker logs命令 Docker提供了一个内置命令docker logs来查看容器的日志,默认情况下,它会显示容器的所有输出。 bash docker logs -f --tail 100 your-container-id-or-name 上述命令中的-f表示实时(follow)输出日志,--tail 100则表示仅显示最后100行日志内容。这就是咱们今天讨论主题的重点操作环节,说白了,就是用来快速瞅一眼某个容器最近都干了啥。 2. 结合journalctl查看systemd驱动的日志 若你配置了Docker使用journald日志驱动,可以借助journalctl工具查看: bash journalctl -u docker.service --since "1 hour ago" _COMM=docker 这里并没有直接实现查看容器最后100行日志,但你可以根据实际需要调整journalctl的查询条件以达到类似效果。 四、深入思考 为什么我们需要查看日志最后100行? 当我们面对复杂的系统环境或突发的问题时,快速定位到问题发生的时间窗口至关重要。瞧瞧Docker容器日志最后的100条信息,就像是翻看最近发生的故事一样,能让我们闪电般地抓住最新的动态,更快地寻找到解决问题的关键线索。这就好比侦探破案,总是先从最新的线索入手,逐步揭开谜团。 五、实践探索 自定义日志输出格式与存储 除了基础的日志查看功能外,Docker还支持丰富的自定义日志处理选项。例如,我们可以将日志发送至syslog服务器,或者对接第三方日志服务如Logstash等。对于资深用户来说,这种灵活性简直就是个宝藏,它意味着无限多的可能性。你可以根据自家业务的具体需求,随心所欲地打造一套最适合自己的日志管理系统,就像私人订制一般,让一切都变得恰到好处。 总结来说,理解和熟练掌握Docker日志管理,尤其是如何便捷地查看日志最后100行,是每个Docker使用者必备技能之一。经过不断动手尝试和摸爬滚打,我们定能把Docker这玩意儿玩得溜起来,让它在咱们的开发运维工作中大显身手,发挥出更大的价值。下次当你面对茫茫日志海洋时,希望这篇指南能助你快速锁定目标,犹如海上的灯塔照亮前行的方向。
2024-01-02 22:55:08
507
青春印记
PHP
...中,能够有效地与各种数据库进行交互,并处理表单数据、文件上传等功能,从而实现动态网页内容的生成和管理。 异常处理(try-catch语句) , 在PHP编程中,异常处理是一种用来捕获并处理程序运行时可能出现的错误或异常情况的方法。它通过try关键字包裹可能抛出异常的代码块,当该代码块内出现异常时,系统会自动跳转至相应的catch语句块执行,catch块中可以定义如何处理特定类型的异常,以此确保程序即使在遇到问题时也能维持基本的功能运行,并给出有意义的错误信息。 日志记录(如error_log()函数) , 日志记录是在软件开发过程中用于追踪系统行为、错误信息以及其他重要事件的过程。在PHP中,error_log()函数是一个内置的记录错误信息到服务器错误日志或其他指定位置的函数,开发者可以利用此功能将程序运行过程中的详细信息记录下来,便于后期分析排查问题,尤其是在处理HTTP响应状态码不匹配或错误这类复杂情况时尤为关键。
2023-01-24 18:55:06
75
岁月静好-t
Netty
...在互联网时代,大量的数据交换和信息传递是必不可少的,而网络通信协议就是这一过程中至关重要的桥梁。其实呢,Netty是个超级厉害的网络应用框架,它干起活来异步事件驱动,效率贼高。别看它就一个框架,本事可大了去了,不仅能轻松应对TCP、UDP这些协议,还自带各种贴心高级功能。比如,像咱们体检时的心跳检测,还有数据传输过程中的重传机制,都是人家Netty手到擒来的小技能。今天,我们就来聊聊如何在Netty中实现客户端连接池。 二、什么是客户端连接池? 客户端连接池是一种在应用程序启动时预先建立一批连接,并将这些连接存储在一个池子中,然后应用程序在需要的时候从这个池子中获取一个可用的连接来发送请求的技术。这种方式能够超级有效地缩短新建连接的时间,让整个系统的运行表现和反应速度都像火箭一样嗖嗖提升。 三、在Netty中如何实现客户端连接池? 实现客户端连接池的方式有很多,我们可以使用Java内置的并发工具类ExecutorService或者使用第三方库如HikariCP等。这里我们主要讲解一下如何使用Netty自带的Bootstrap来实现客户端连接池。 四、使用Bootstrap创建连接池 首先,我们需要创建一个Bootstrap对象: java Bootstrap b = new Bootstrap(); b.group(new NioEventLoopGroup()) // 创建一个新的线程池 .channel(NioSocketChannel.class) // 使用NIO Socket Channel作为传输层协议 .option(ChannelOption.SO_KEEPALIVE, true) // 设置Keepalive属性 .handler(new ChannelInitializer() { @Override public void initChannel(SocketChannel ch) throws Exception { ch.pipeline().addLast(new HttpClientCodec()); // 添加编码解码器 ch.pipeline().addLast(new HttpObjectAggregator(65536)); // 合并Http报文 ch.pipeline().addLast(new HttpResponseDecoder()); ch.pipeline().addLast(new HttpRequestEncoder()); ch.pipeline().addLast(new MyHandler()); // 添加自定义处理程序 } }); 在这个例子中,我们创建了一个新的线程池,并设置了NIO Socket Channel作为传输层协议。同时呢,我们还贴心地塞进来一些不可或缺的通道功能选项,比如那个Keepalive属性啦,还有些超级实用的通道处理器,就像HTTP的编码解码小能手、聚合器大哥、解码器小弟和编码器老弟等等。 接下来,我们可以使用bootstrap.connect(host, port)方法来创建一个新的连接。不过呢,如果我们打算创建多个连接的话,直接用这个方法就不太合适啦。为啥呢?因为这样会让我们一个个手动去捯饬这些连接,那工作量可就海了去了,想想都头疼!所以,我们需要一种方式来批量创建连接。 五、批量创建连接 为了批量创建连接,我们可以使用ChannelFutureGroup和allAsList()方法。ChannelFutureGroup是一个接口,它的实现类代表一组ChannelFuture(用于表示一个连接的完成状态)。我们可以将所有需要创建的连接的ChannelFuture都添加到同一个ChannelFutureGroup中,然后调用futureGroup.allAsList().awaitUninterruptibly();方法来等待所有的连接都被成功创建。 六、使用连接池 当我们有了一个包含多个连接的ChannelFutureGroup之后,我们就可以从中获取连接来发送请求了。例如: java for (Future future : futureGroup) { if (!future.isDone()) { // 如果连接还没有被创建 continue; } try { final SocketChannel ch = (SocketChannel) future.get(); // 获取连接 // 使用ch发送请求... } catch (Exception e) { e.printStackTrace(); } } 七、总结 总的来说,通过使用Bootstrap和ChannelFutureGroup,我们可以很方便地在Netty中实现客户端连接池。这种方法不仅可以大大提高系统的性能,还可以简化我们的开发工作。当然啦,要是你的需求变得复杂起来,那估计你得进一步深入学习Netty的那些门道和技巧,这样才能妥妥地满足你的需求。
2023-12-01 10:11:20
85
岁月如歌-t
转载文章
...并通过模拟命令行操作实现WiFi的切换。 subprocess.Popen , subprocess是Python的一个标准库,其中Popen类用于创建新的子进程,执行指定的命令或程序,并可以控制子进程的输入输出以及获取其返回状态。在文章中,作者通过调用subprocess.Popen方法执行Windows系统命令netsh wlan show interfaces来获取当前连接的WiFi信息。 netsh wlan , netsh(网络外壳)是Windows操作系统中提供网络配置和故障排除功能的命令行工具,wlan子命令集主要用于无线局域网(Wi-Fi)的管理,包括查看、创建、修改和删除无线网络接口及配置。文中提到的几个命令如netsh wlan show interfaces用于查看当前无线网络接口的状态,而netsh wlan connect name=wifi名称则是用于连接特定名称的无线网络。 ping命令 , ping是一种常用的网络诊断工具,在Linux/Unix系统和Windows系统中均有实现。它通过发送ICMP(Internet Control Message Protocol,互联网控制消息协议)回显请求数据包到目标主机并监听回应,以此判断两台计算机之间的网络连通性。在该篇文章中,作者编写了一个check_ping函数,利用ping命令对百度服务器IP地址进行连通性测试,如果无法ping通则认为网络存在问题,需要进行WiFi切换。
2024-01-14 10:28:12
80
转载
Apache Atlas
...时响应机制探讨 在大数据领域,Apache Atlas作为一款强大的元数据管理系统,对于诸如Hadoop、HBase等组件的元数据管理具有重要作用。在本文里,我们打算好好唠唠Atlas究竟是怎么做到实时监测并灵活应对HBase表结构的那些变更,这个超重要的功能点。 1. Apache Atlas概述 Apache Atlas是一款企业级的元数据管理框架,它能够提供一套完整的端到端解决方案,实现对数据资产的搜索、分类、理解和治理。特别是在大数据这个大环境里,它就像个超级侦探一样,能时刻盯着HBase这类数据仓库的表结构动态,一旦表结构有什么风吹草动、发生变化,它都能第一时间通知相关的应用程序,让它们及时同步更新,保持在“信息潮流”的最前沿。 2. HBase表结构变更的实时响应挑战 在HBase中,表结构的变更包括但不限于添加或删除列族、修改列属性等操作。不过,要是这些改动没及时同步到Atlas的话,就很可能让那些依赖这些元数据的应用程序闹罢工,或者获取的数据视图出现偏差,不准确。因此,实现Atlas对HBase表结构变更的实时响应机制是一项重要的技术挑战。 3. Apache Atlas的实时响应机制 3.1 实现原理 Apache Atlas借助HBase的监听器机制(Coprocessor)来实现实时监控表结构变更。Coprocessor,你可以把它想象成是HBase RegionServer上的一位超级助手,这可是用户自己定义的插件。它的工作就是在数据读写操作进行时,像一位尽职尽责的“小管家”,在数据被读取或写入前后的关键时刻,灵活介入处理各种事务,让整个过程更加顺畅、高效。 java public class HBaseAtlasHook implements RegionObserver, WALObserver { //... @Override public void postModifyTable(ObserverContext ctx, TableName tableName, TableDescriptor oldDescriptor, TableDescriptor currentDescriptor) throws IOException { // 在表结构变更后触发,将变更信息发送给Atlas publishSchemaChangeEvent(tableName, oldDescriptor, currentDescriptor); } //... } 上述代码片段展示了一个简化的Atlas Coprocessor实现,当HBase表结构发生变化时,postModifyTable方法会被调用,然后通过publishSchemaChangeEvent方法将变更信息发布给Atlas。 3.2 变更通知与同步 收到变更通知的Atlas会根据接收到的信息更新其内部的元数据存储,并通过事件发布系统向订阅了元数据变更服务的客户端发送通知。这样,所有依赖于Atlas元数据的服务或应用程序都能实时感知到HBase表结构的变化。 3.3 应用场景举例 假设我们有一个基于Atlas元数据查询HBase表的应用,当HBase新增一个列族时,通过Atlas的实时响应机制,该应用无需重启或人工干预,即可立即感知到新的列族并开始进行相应的数据查询操作。 4. 结论与思考 Apache Atlas通过巧妙地利用HBase的Coprocessor机制,成功构建了一套对HBase表结构变更的实时响应体系。这种设计可不简单,它就像给元数据做了一次全面“体检”和“精准调校”,让它们变得更整齐划一、更精确无误。同时呢,也像是给整个大数据生态系统打了一剂强心针,让它既健壮得像头牛,又灵活得像只猫,可以说是从内到外都焕然一新了。随着未来大数据应用场景越来越广泛,我们热切期盼Apache Atlas能够在多元数据管理的各个细微之处持续发力、精益求精,这样一来,它就能够更好地服务于各种对数据依赖度极高的业务场景啦。 --- 请注意,由于篇幅限制和AI生成能力,这里并没有给出完整的Apache Atlas与HBase集成以及Coprocessor实现的详细代码,真实的开发实践中需要参考官方文档和社区的最佳实践来编写具体代码。在实际工作中,咱们的情感化交流和主观洞察也得实实在在地渗透到团队合作、问题追踪解决以及方案升级优化的各个环节。这样一来,技术才能更好地围着业务需求转,真正做到服务于实战场景。
2023-03-06 09:18:36
442
草原牧歌
SpringBoot
...y:轻松装配JSON数据 SpringBoot作为Java生态中的一款强大且高效的开发框架,以其简洁的配置和强大的功能深受开发者喜爱。在平常处理HTTP请求这事儿上,我们常常遇到这么个情况:得把请求内容里的JSON数据给捯饬成Java对象,这样一来,接下来的操作才能更顺手、更方便。本文将以“@RequestBody 装配json数据”为主题,通过生动详尽的代码示例和探讨性话术,带你深入了解SpringBoot如何优雅地实现这一过程。 1. @RequestBody 简介 在SpringMVC(SpringBoot基于此构建)中,@RequestBody注解扮演了至关重要的角色。这个东西呢,主要就是在方法的参数那儿发挥作用,告诉Spring框架,你得把HTTP请求里边那个大段的内容,对号入座地塞进我指定的对象参数里头去。这就意味着,当我们平常发送一个POST或者PUT请求,并且这个请求里面包含了JSON格式的数据时,“@RequestBody”这个小家伙就像个超级翻译员,它可以自动把我们提交的JSON数据给神奇地变成相应的Java对象。这样一来,我们的工作流程就轻松简单多了,省去了不少麻烦步骤。 例如,假设我们有一个名为User的Java类: java public class User { private String username; private String email; // getters and setters... } 2. 如何使用@RequestBody装配JSON数据 现在,让我们在Controller层创建一个处理POST请求的方法,利用@RequestBody接收并解析JSON数据: java import org.springframework.web.bind.annotation.PostMapping; import org.springframework.web.bind.annotation.RequestBody; import org.springframework.web.bind.annotation.RestController; @RestController public class UserController { @PostMapping("/users") public String createUser(@RequestBody User user) { System.out.println("Creating user with username: " + user.getUsername() + ", email: " + user.getEmail()); // 这里实际上会调用持久层逻辑进行用户创建,这里为了简单演示只打印信息 return "User created successfully!"; } } 在这个例子中,当客户端向"/users"端点发送一个带有JSON格式数据的POST请求时,如 {"username": "testUser", "email": "test@example.com"},SpringBoot会自动将JSON数据转换成User对象,并将其传递给createUser方法的参数user。 3. 深入理解@RequestBody的工作原理 那么,你可能会好奇,@RequestBody是如何做到如此神奇的事情呢?其实背后离不开Spring的HttpMessageConverter机制。HttpMessageConverter是一个接口,Spring为其提供了多种实现,如MappingJackson2HttpMessageConverter用于处理JSON格式的数据。当你在方法参数上用上@RequestBody这个小家伙的时候,Spring这家伙就会超级智能地根据请求里边的Content-Type,挑一个最合适的HttpMessageConverter来帮忙。它会把那些请求体里的内容,咔嚓一下,变成我们Java对象需要的那种类型,是不是很神奇? 这个过程就像是一个聪明的翻译官,它能识别不同的“语言”(即各种数据格式),并将其转换为我们熟悉的Java对象,这样我们就能够直接操作这些对象,而无需手动解析JSON字符串,极大地提高了开发效率和代码可读性。 4. 总结与探讨 在实际开发过程中,@RequestBody无疑是我们处理HTTP请求体中JSON数据的强大工具。然而,值得注意的是,对于复杂的JSON结构,确保你的Java模型类与其匹配至关重要。另外,你知道吗?SpringBoot在处理那些出错的或者格式不合规矩的JSON数据时,也相当有一套。比如,我们可以自己动手定制异常处理器,这样一来,当出现错误的时候,就能返回一些让人一看就明白的友好提示信息,是不是很贴心呢? 总而言之,在SpringBoot的世界里,借助@RequestBody,我们得以轻松应对JSON数据的装配问题,让API的设计与实现更为流畅、高效。这不仅体现了SpringBoot对开发者体验的重视,也展示了其设计理念——简化开发,提升生产力。希望这次深入浅出的讨论能帮助你在日常开发中更好地运用这一特性,让你的代码更加健壮和优雅。
2024-01-02 08:54:06
101
桃李春风一杯酒_
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
last reboot
- 显示最近的系统重启记录。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"