前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[MySQL全文索引创建 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
MySQL
如何把MySQL的数据导出到HTML?下面是一些方法和代码例子。 方法: 1.接入到MySQL服务端。 constmysql =require('mysql');constconnection = mysql.createConnection({ host:'localhost', user:'root', password:'password', database:'mydatabase'}); connection.connect(); 2.运行SQL查询并将结果保存在列表中。 letdata = []; connection.query('SELECT FROM mytable', (error, results, fields) =>{if(error) throw error; data = results; }); 3.采用样板工具生成HTML文件。 constejs =require('ejs');constfs =require('fs');consttemplate = fs.readFileSync('template.ejs','utf-8');consthtml = ejs.render(template, { data }); fs.writeFileSync('output.html', html); 在上面的代码例子中,我们采用ejs用作样板工具,将检索结果传送到样板中,并将其生成为HTML文件。
2023-12-22 18:05:58
58
编程狂人
MySQL
MySQL是一种十分普及的开放源代码数据库维护系统,许多网站和应用程序都使用它来保管和维护数据。如果你在自己的电脑上安装了MySQL并设置了口令,有时候需要查阅该口令以供进行其他处理。下面将介绍几种方式来查阅自己电脑上MySQL的口令。 方式一:查阅MySQL设置文件 1. 在电脑上搜索MySQL的设置文件my.cnf或my.ini,并开启文件。 2. 在文件中搜索[client]或[mysqldump]部分,通常口令会在该部分中显示。 3. 在该部分中搜索password或passwd的内容,该内容即为MySQL的口令。 方式二:通过MySQL工具查阅口令 1. 开启MySQL命令行工具或其它MySQL客户端。 2. 使用以下命令登录到MySQL服务器:mysql -u root -p。 3. 输入你自己设置的口令以登录到MySQL服务器。 4. 执行以下命令来查阅口令:SELECT user, host, password FROM mysql.user; 方式三:重置MySQL口令 如果以上方式都不能帮助你找回MySQL口令,那么可以考虑重置口令。以下是重置MySQL口令的基本步骤: 1. 停止MySQL服务。 2. 创建一个备份文件。 3. 启动MySQL服务,并跳过权限验证。 4. 使用UPDATE语句更新用户口令。 5. 停止MySQL服务并重新启动,以使更改生效。 总结 在工作中,有时候需要查阅自己电脑MySQL的口令,可以使用上述方式来实现。无论是通过查阅设置文件还是登录MySQL服务器,都十分简单。如果以上方式都不能找回口令,那么重置口令是最后的手段。希望这篇文章能够帮助到你。
2024-02-18 15:42:33
121
码农
VUE
Vue和MySQL是两个普遍的前端结构和关系型数据库,它们分别用于前端页面的呈现和数据存储。Vue是目前最盛行的前端结构之一,它具有快速的双向数据绑定机制和组件化的设计思路,使得开发人员可以快速构建数据驱动的网页应用。MySQL则是一种快速、稳固的关系型数据库,它被广泛用于数据存储和管理,具有开放源代码、可定制和高度可靠性等特点。 在使用Vue开发网页应用时,经常需要从MySQL数据库中读取数据,供前端页面进行呈现或者做其他处理。此时,我们可以通过Vue的组件导入mysql模块,完成与MySQL数据库的连接和数据读取。 import mysql from 'mysql'; export default { data() { return { users: [] } }, mounted() { const connection = mysql.createConnection({ host: 'localhost', user: 'root', password: '123456', database: 'test' }); connection.connect(); connection.query('SELECT FROM users', (error, results, fields) =>{ if (error) throw error; this.users = results; }); connection.end(); } } 在上面的代码中,我们通过npm安装了mysql模块,并在Vue组件中使用了它。首先,我们创建了一个数据库连接connection,并传入数据库的参数。接着,我们执行了一次数据查询,得到了结果results,并将其关联到Vue组件的data中。最后,我们关闭了数据库连接connection。这样就完成了从MySQL数据库中读取数据,并且将其关联至Vue组件中。 总的来说,Vue和MySQL是两个非常重要的前端结构和关系型数据库,在实际开发中经常被使用。通过学习和掌握Vue和MySQL的使用方法,可以让我们更加快速地进行前端开发和数据存储。
2023-11-04 09:39:55
78
数据库专家
Gradle
...timeOnly 'mysql:mysql-connector-java:8.0.26' } 上述代码中,我们在dependencies块内通过implementation、testImplementation和runtimeOnly等方式分别指定了不同类型的依赖。 2. 控制依赖范围与传递性 2.1 依赖范围 Gradle为依赖提供了多种范围,如implementation、api、compileOnly等,用于控制依赖在编译、测试及运行阶段的作用域。比方说,implementation这个家伙的作用,就好比你有一个小秘密,只告诉自己模块内部的成员,不会跑去跟依赖它的其他模块小伙伴瞎嚷嚷。但是,当你用上api的时候,那就相当于你不仅告诉了自家模块的成员,还大方地把这个接口分享给了所有下游模块的朋友。 2.2 依赖传递性 默认情况下,Gradle具有依赖传递性,即如果A模块依赖B模块,而B模块又依赖C模块,那么A模块间接依赖了C模块。有时我们需要控制这种传递性,可以通过transitive属性进行设置: groovy dependencies { implementation('org.hibernate:hibernate-core:5.6.9.Final') { transitive = false // 禁止传递依赖 } } 3. 使用定制化仓库 除了标准的Maven中央仓库,我们还可以添加自定义的仓库地址来下载依赖包: groovy repositories { mavenCentral() // 默认的Maven中央仓库 maven { url 'https://maven.example.com/repo' } // 自定义仓库 } 4. 打包时包含依赖 当执行gradle build命令时,Gradle会自动处理并包含所有已声明的依赖。对于Java应用,使用jar任务打包时,默认并不会将依赖打进生成的jar文件中。若需将依赖包含进去,可采用如下方式: groovy task fatJar(type: Jar) { archiveBaseName = 'my-fat-app' from { configurations.runtimeClasspath.collect { it.isDirectory() ? it : zipTree(it) } } with jar } 这段代码创建了一个名为fatJar的任务,它将运行时依赖一并打包进同一个jar文件中,便于部署和运行。 总结来说,掌握Gradle依赖管理的核心在于理解其声明式依赖配置以及对依赖范围、传递性的掌控。同时,咱们在打包的时候,得瞅准实际情况,灵活选择最合适的策略把依赖项一并打包进去,这样才能保证咱们的项目构建既一步到位,又快马加鞭,准确高效没商量。在整个开发过程中,Gradle就像个超级灵活、无比顺手的工具箱,让开发者能够轻轻松松解决各种乱七八糟、错综复杂的依赖关系难题,真可谓是个得力小助手。
2023-06-09 14:26:29
408
凌波微步_
Gradle
...项目 首先,我们需要创建一个新的Gradle项目。这里我们采用的是初始化一个简单的Java项目为例: bash mkdir my_project cd my_project gradle init --type java-application 这将在当前目录下生成一个基本的Gradle Java应用项目结构,其中build.gradle文件就是我们用来配置项目依赖的地方。 2. 添加依赖到build.gradle文件 2.1 添加本地库依赖 如果你有一个本地的JAR包需要添加为依赖,可以如下操作: groovy dependencies { implementation files('libs/my-local-library.jar') } 上述代码意味着Gradle在编译和打包时会自动将'libs/my-local-library.jar'包含进你的项目中。 2.2 添加远程仓库依赖 通常情况下,我们会从Maven Central或JCenter等远程仓库获取依赖。例如,要引入Apache Commons Lang库,我们可以这样做: groovy repositories { mavenCentral() // 或者 jcenter() } dependencies { implementation 'org.apache.commons:commons-lang3:3.9' } 在这里,Gradle会在mavenCentral仓库查找指定groupId(org.apache.commons)、artifactId(commons-lang3)和version(3.9)的依赖,并将其包含在最终的打包结果中。 3. 理解依赖范围 Gradle中的依赖具有不同的范围,如implementation、api、runtime等,它们会影响依赖包在不同构建阶段是否被包含以及如何传递给其他模块。例如: groovy dependencies { implementation 'com.google.guava:guava:29.0-jre' // 只对本模块编译和运行有效 api 'junit:junit:4.13' // 不仅对本模块有效,还会暴露给依赖此模块的其他模块 runtime 'mysql:mysql-connector-java:8.0.25' // 只在运行时提供,编译阶段不需 } 4. 执行打包并验证依赖 完成依赖配置后,我们可以通过执行gradle build命令来编译并打包项目。Gradle会根据你在build.gradle中声明的依赖进行解析和下载,最后将依赖与你的源码一起打包至输出的.jar或.war文件中。 为了验证依赖是否已成功包含,你可以解压生成的.jar文件(或者查看.war文件中的WEB-INF/lib目录),检查相关的依赖库是否存在。 结语 Gradle的依赖管理机制使得我们在打包项目时能轻松应对各种复杂场景下的依赖问题。掌握这项技能,可不只是提升开发效率那么简单,更能像给项目构建上了一层双保险,让其稳如磐石,始终如一。在整个捣鼓配置和打包的过程中,如果你能时刻把握住Gradle构建逻辑的脉络,一边思考一边调整优化,你就会发现Gradle这家伙在应对个性化需求时,展现出了超乎想象的灵活性和强大的力量,就像一个无所不能的变形金刚。所以,让我们带着探索和实践的热情,深入挖掘Gradle更多的可能性吧!
2024-01-15 18:26:00
435
雪落无痕_
Spark
...以下几个步骤: 一、创建Spark会话 在Spark中,我们通常会使用SparkSession来与Spark进行交互。首先,我们需要创建一个SparkSession实例: python from pyspark.sql import SparkSession spark = SparkSession.builder.appName('MyApp').getOrCreate() 二、读取SQL数据库中的数据 在Spark中,我们可以使用read.jdbc()函数来读取SQL数据库中的数据。这个函数需要提供一些参数,包括数据库URL、表名、用户名、密码等: python df = spark.read.format("jdbc").options( url="jdbc:mysql://localhost:3306/mydatabase", driver="com.mysql.jdbc.Driver", dbtable="mytable", user="root", password="password" ).load() 以上代码会读取名为"mydatabase"的MySQL数据库中的"mytable"表,并将其转换为DataFrame对象。 三、查看读取的数据 我们可以使用show()函数来查看读取的数据: python df.show() 四、对数据进行处理 读取并加载数据后,我们就可以对其进行处理了。例如,我们可以使用select()函数来选择特定的列: python df = df.select("column1", "column2") 我们也可以使用filter()函数来过滤数据: python df = df.filter(df.column1 > 10) 五、将处理后的数据保存到文件或数据库中 最后,我们可以使用write()函数将处理后的数据保存到文件或数据库中。例如,我们可以将数据保存到CSV文件中: python df.write.csv("output.csv") 或者将数据保存回原来的数据库: python df.write.jdbc(url="jdbc:mysql://localhost:3306/mydatabase", table="mytable", mode="overwrite") 以上就是将数据从SQL数据库导入到Spark中的全部流程。敲黑板,划重点啦!要知道,不同的数据库类型就像是不同口味的咖啡,它们可能需要各自的“咖啡伴侣”——也就是JDBC驱动程序。所以当你打算用read.jdbc()这个小工具去读取数据时,千万记得先检查一下,对应的驱动程序是否已经乖乖地安装好啦~ 总结一下,Spark提供了简单易用的API,让我们能够方便地将数据从各种数据源导入到Spark中进行处理和分析。无论是进行大规模数据处理还是复杂的数据挖掘任务,Spark都能提供强大的支持。希望这篇文章能对你有所帮助,让你更好地掌握Spark。
2023-12-24 19:04:25
162
风轻云淡-t
c#
...eworkCore.MySql的连接池功能,也在持续优化性能,确保高并发场景下的稳定性和资源利用率。 再者,关于数据类型的严格校验,很多现代数据库系统开始支持更强的数据验证特性,如PostgreSQL的check约束、MySQL 8.0的generated columns等功能,能够在数据库层面就对插入数据进行严格的格式和内容检查,从而减少因数据类型不匹配引发的问题。 综上所述,紧跟技术发展潮流,关注数据库领域的最新研究动态与最佳实践,将有助于我们在日常开发工作中更好地运用SqlHelper类或其他数据库操作工具,实现更加安全高效的数据存储与访问。
2023-08-29 23:20:47
508
月影清风_
Go Iris
...型。假设我们正在使用MySQL数据库,我们可以这样配置: go import ( "github.com/kataras/iris/v12" "github.com/go-sql-driver/mysql" ) func main() { app := iris.New() // 配置MySQL连接 config := mysql.NewConfig() config.User = "root" config.Passwd = "password" config.Net = "tcp" config.Addr = "localhost:3306" config.DBName = "testdb" // 设置锁类型 config.InterpolateParams = true config.Params = map[string]string{ "charset": "utf8mb4", "parseTime": "True", "loc": "Local", "sql_mode": "STRICT_TRANS_TABLES,NO_ZERO_IN_DATE,NO_ZERO_DATE,ERROR_FOR_DIVISION_BY_ZERO,NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION", "tx_isolation": "READ-COMMITTED", // 这里设置为读提交,你可以根据需求调整 } // 创建数据库连接池 db, err := sql.Open("mysql", config.FormatDSN()) if err != nil { panic(err) } // 使用数据库连接池 app.Use(func(ctx iris.Context) { ctx.Values().Set("db", db) ctx.Next() }) // 定义路由 app.Get("/", func(ctx iris.Context) { db := ctx.Values().Get("db").(sql.DB) // 开始事务 tx, err := db.Begin() if err != nil { ctx.StatusCode(iris.StatusInternalServerError) ctx.WriteString("Error starting transaction") return } defer tx.Rollback() // 执行查询 stmt, err := tx.Prepare("SELECT FROM users WHERE id = ? FOR UPDATE") if err != nil { ctx.StatusCode(iris.StatusInternalServerError) ctx.WriteString("Error preparing statement") return } defer stmt.Close() var user User err = stmt.QueryRow(1).Scan(&user.ID, &user.Name, &user.Email) if err != nil { ctx.StatusCode(iris.StatusInternalServerError) ctx.WriteString("Error executing query") return } // 更新数据 _, err = tx.Exec("UPDATE users SET name = ? WHERE id = ?", "New Name", user.ID) if err != nil { ctx.StatusCode(iris.StatusInternalServerError) ctx.WriteString("Error updating data") return } // 提交事务 err = tx.Commit() if err != nil { ctx.StatusCode(iris.StatusInternalServerError) ctx.WriteString("Error committing transaction") return } ctx.WriteString("Data updated successfully!") }) // 启动服务器 app.Run(iris.Addr(":8080")) } 5. 实际应用中的考虑 在实际应用中,我们需要根据具体的业务场景选择合适的锁类型。比如说,如果有好几个小伙伴得同时查看数据,又不想互相打扰,那我们就用共享锁来搞定。要是你想保证数据一致,防止同时有人乱改,那就得用排他锁了。 另外,要注意的是,过度使用锁可能会导致性能问题,因为锁会阻塞其他事务的执行。因此,在设计系统时,我们需要权衡数据一致性和性能之间的关系。 6. 结语 通过今天的讨论,希望大家对Iris框架中的数据库锁类型配置有了更深入的理解。虽然设置锁类型会让事情变得稍微复杂一点,但这样做真的能帮我们更好地应对多任务同时进行时可能出现的问题,确保系统稳稳当当的不掉链子。 最后,我想说的是,技术的学习是一个不断积累的过程。有时候,我们会觉得某些概念很难理解,但这都是正常的。只要我们保持好奇心和探索精神,总有一天会豁然开朗。希望你们能够持续学习,不断进步! 谢谢大家!
2025-02-23 16:37:04
75
追梦人
转载文章
...和下单的总金额,存入MySQL数据库shtd_store的nationeverymonth表(表结构如下)中,然后在Linux的MySQL命令行中根据订单总数、消费总额、国家表主键三列均逆序排序的方式,查询出前5条,将SQL语句与执行结果截图粘贴至对应报告中; spark.sql("select nationkey,regexp_replace(nationname,'\'','') as nationname,regionkey,regexp_replace(regionname,'\'','') as regionname,sum(totalnum) as totalorder,sum(totalprice) as totalconsumption,year,month from nationeverymonth group by nationkey,regionkey,month,nationname,year,regionname;") 我为了方便查询和之后的操作,将上面的查询结果导入到新表nationeverymonths 查表 接下来将hive中的数据导入mysql中 package com.atguigu.spark.sqlimport org.apache.spark.SparkConfimport org.apache.spark.sql.SparkSessionimport java.util.Propertiesobject DataHiveToMySQL {def main(args: Array[String]): Unit = {val sparkConf = new SparkConf().setMaster("local[]").setAppName("sparkSQL")val spark = SparkSession.builder().enableHiveSupport().config(sparkConf).getOrCreate()val result=spark.sql("select from ods.nationeverymonths")val props=new Properties()props.setProperty("user","root")props.setProperty("password","123456")props.setProperty("driver","com.mysql.jdbc.Driver")result.write.mode("overwrite").jdbc("jdbc:mysql://192.168.230.132:3306/user?serverTimezone=UTC&characterEncoding=UTF-8&useSSL=false", "nationeverymonth", props)println("导入成功")spark.stop()} } 运行可见导入成功 进入MySQL中查看结果 可见数据成功导入 接下来按照要求查询: 2.请根据dwd层表计算出某年每个国家的平均消费额和所有国家平均消费额相比较结果(“高/低/相同”),存入MySQL数据库shtd_store的nationavgcmp表(表结构如下)中,然后在Linux的MySQL命令行中根据订单总数、消费总额、国家表主键三列均逆序排序的方式,查询出前5条,将SQL语句与执行结果截图粘贴至对应报告中; 在解这道题的时候遇见一个问题,在求所有国家平均消费额的时候一直报错,由于没有数据这道题的题意还是有点没看明白,于是我就用了最简单的办法先新增一列,再单独将所有国家平均消费额求出来然后再插入,如果各位大佬有解决这个问题的办法希望能指导一下 先将每个国家的平均消费额求出来 spark.sql("select nationkey,nationname,avg(totalconsumption) as nationavgconsumption from nationeverymonths group by nationkey,nationname") 再新增一列所有国家平均消费额 spark.sql("alter table nationeverymonths add columns(avg_allstring)") 再将查询到的所有国家平均消费额导入进去 spark.sql("insert overwrite table nationeverymonths1 select nationkey,nationname,avg_totalconsumpt,1500 from nationeverymonths1") 再次查表 按照题意添加比较结果字段 spark.sql("select ,case when avg_totalconsumpt>avg_all then '高' when avg_totalconsumpt<avg_all then '低' when avg_totalconsumpt=avg_all then '相同' else 'null' end as comparison from nationeverymonths1").show 最后的排序语句和题一一样 本篇文章为转载内容。原文链接:https://blog.csdn.net/guo_0423/article/details/126352162。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-01 10:55:33
319
转载
转载文章
...个数据库,这里推荐 MySQL。搭建之后,再下载一个数据库客户端管理工具,如 Navicat,DataGrip。弄完这些基础设施之后,我们这里接着去学会 SQL 的语法。这里着重学习单表增删改查的语法,跨表的连接查询等。网上找一个例子,如可以自己构建一个学生课程信息表,做到可以用以上学习到的语法。 学习完数据库,接着我们就需要学习Java JDBC 的知识。学习的 JDBC 就是让我们了解,如何使用 Java 操作数据库,运行 Mybatis的增删改查的语句。 接着我们可以去学习相关 ORM 的框架,如 Hibernate 或 Mybatis,这里推荐 Mybatis。学习框架,我们要做到掌握框架的使用技巧就可以。 这个过程你可能会发现,Mybatis 这类框架这么如此简化开发,为什么我们不直接学习 Mybatis ? 学习 JDBC 的目的,其实就是让你了解这些 ORM 的基础。 学完这个阶段,我们接下去就要进入 WEB 开发。 WEB 开发 这个过程我们首先学习一些前端知识,如 HTML,CSS,JavaScript,然后再去 Jquery 等前端框架,做到能实现一些简单的功能。我们不需要跟你上面一样精通,我们只要了解一些概念即可。 接下去我们学习 Servlet,做到能使用原生 Servlet + Jsp 能运行一个 WEB 程序。 后面我们再去学习 Spring 框架,使用 SpringMVC 了解 MVC 的概念。最后用 SpringMVC+Spring+Mybatis+MySQL 完成一个简单的管理系统。 其他 学完以上内容,基本上已经学习完工作中学习到的技术栈。这个过程你还需要额外学习一些工作中用到其他知识。 你需要去学习协同开发的工具,如 Git,SVN。做到了解如何新建分支,如何拉取代码,如何合并代码即可。 你还需要去学习一些 Linux 的命令。 总结 学完上述内容,你实际就已经掌握初级开发所需要的技术,已经基本上可以从事一个初级开发的岗位。我们上面讲的都是使用技巧,但是面试的时候可能会问你一些原理性的内容,所以在我们去找工作之前我们还需要去了解一些原理性知识。这方面的内容通过搜索引擎搜索即可。 这个过程你可能会碰到很多问题,这个过程一定善于使用搜索引擎。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_35006660/article/details/115610534。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-02 23:59:06
60
转载
转载文章
...jar还不够,还需要MySQL数据库与驱动,log4j的jar等等。下面我们开始今天的旅行: 第一步:创建数据库表 在Navicat下执行如下sql命令创建数据库mybatis和表t_user [sql] view plaincopy print? CREATE DATABASE IF NOT EXISTS mybatis; [sql] view plaincopy print? USE mybatis; [sql] view plaincopy print? create table t_user ( user_id int(11) NOT NULL AUTO_INCREMENT, user_name varchar(20) not null, user_age varchar(20) not null, PRIMARY KEY (user_id) )ENGINE=InnoDB DEFAULT CHARSET=utf8; 我们先看一下项目的完整目录,再继续下面的内容 第二步:添加jar包 对于下面代码的内容,我们就不再一一贴出来,只是把最重要的内容贴出来,大家可以下载源码。 第三步:创建model 创建一个model包并在其下创建一个User.Java文件。 [java] view plaincopy print? package com.tgb.model; / 用户 @author liang / public class User { private int id; private String age; private String userName; public User(){ super(); } public int getId() { return id; } public void setId(int id) { this.id = id; } public String getAge() { return age; } public void setAge(String age) { this.age = age; } public String getUserName() { return userName; } public void setUserName(String userName) { this.userName = userName; } public User(int id, String age, String userName) { super(); this.id = id; this.age = age; this.userName = userName; } } 第四步:创建DAO接口 创建一个包mapper,并在其下创建一个UserMapper.java文件作为DAO接口。 [java] view plaincopy print? package com.tgb.mapper; import java.util.List; import com.tgb.model.User; public interface UserMapper { void save(User user); boolean update(User user); boolean delete(int id); User findById(int id); List<User> findAll(); } 第五步:实现DAO接口 在dao包下创建一个UserMapper.xml文件作为上一步创建的DAO接口的实现。 [html] view plaincopy print? <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE mapper PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN" "http://mybatis.org/dtd/mybatis-3-mapper.dtd"> <!-- namespace:必须与对应的接口全类名一致 id:必须与对应接口的某个对应的方法名一致 --> <mapper namespace="com.tgb.mapper.UserMapper"> <insert id="save" parameterType="User"> insert into t_user(user_name,user_age) values({userName},{age}) </insert> <update id="update" parameterType="User"> update t_user set user_name={userName},user_age={age} where user_id={id} </update> <delete id="delete" parameterType="int"> delete from t_user where user_id={id} </delete> <!-- mybsits_config中配置的alias类别名,也可直接配置resultType为类路劲 --> <select id="findById" parameterType="int" resultType="User"> select user_id id,user_name userName,user_age age from t_user where user_id={id} </select> <select id="findAll" resultType="User"> select user_id id,user_name userName,user_age age from t_user </select> </mapper> 这里对这个xml文件作几点说明: 1、namespace必须与对应的接口全类名一致。 2、id必须与对应接口的某个对应的方法名一致即必须要和UserMapper.java接口中的方法同名。 第六步:Mybatis和Spring的整合 对于Mybatis和Spring的整合是这篇博文的重点,需要配置的内容在下面有详细的解释。 [html] view plaincopy print? <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:p="http://www.springframework.org/schema/p" xmlns:context="http://www.springframework.org/schema/context" xmlns:tx="http://www.springframework.org/schema/tx" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-4.0.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context-4.0.xsd http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-4.0.xsd"> <!-- 1. 数据源 : DriverManagerDataSource --> <bean id="dataSource" class="org.springframework.jdbc.datasource.DriverManagerDataSource"> <property name="driverClassName" value="com.mysql.jdbc.Driver" /> <property name="url" value="jdbc:mysql://localhost:3306/mybatis" /> <property name="username" value="root" /> <property name="password" value="123456" /> </bean> <!-- 2. mybatis的SqlSession的工厂: SqlSessionFactoryBean dataSource:引用数据源 MyBatis定义数据源,同意加载配置 --> <bean id="sqlSessionFactory" class="org.mybatis.spring.SqlSessionFactoryBean"> <property name="dataSource" ref="dataSource"></property> <property name="configLocation" value="classpath:config/mybatis-config.xml" /> </bean> <!-- 3. mybatis自动扫描加载Sql映射文件/接口 : MapperScannerConfigurer sqlSessionFactory basePackage:指定sql映射文件/接口所在的包(自动扫描) --> <bean class="org.mybatis.spring.mapper.MapperScannerConfigurer"> <property name="basePackage" value="com.tgb.mapper"></property> <property name="sqlSessionFactory" ref="sqlSessionFactory"></property> </bean> <!-- 4. 事务管理 : DataSourceTransactionManager dataSource:引用上面定义的数据源 --> <bean id="txManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager"> <property name="dataSource" ref="dataSource"></property> </bean> <!-- 5. 使用声明式事务 transaction-manager:引用上面定义的事务管理器 --> <tx:annotation-driven transaction-manager="txManager" /> </beans> 第七步:mybatis的配置文件 [html] view plaincopy print? <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE configuration PUBLIC "-//mybatis.org//DTD Config 3.0//EN" "http://mybatis.org/dtd/mybatis-3-config.dtd"> <configuration> <!-- 实体类,简称 -设置别名 --> <typeAliases> <typeAlias alias="User" type="com.tgb.model.User" /> </typeAliases> <!-- 实体接口映射资源 --> <!-- 说明:如果xxMapper.xml配置文件放在和xxMapper.java统一目录下,mappers也可以省略,因为org.mybatis.spring.mapper.MapperFactoryBean默认会去查找与xxMapper.java相同目录和名称的xxMapper.xml --> <mappers> <mapper resource="com/tgb/mapper/userMapper.xml" /> </mappers> </configuration> 总结 Mybatis和Spring的集成相对而言还是很简单的,祝你成功。 源码下载:SpringMVC+Spring4+Mybatis3 下篇博文我们将Hibernate和Mybatis进行一下详细的对比。 本篇文章为转载内容。原文链接:https://blog.csdn.net/konglongaa/article/details/51706991。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-05 11:56:25
111
转载
转载文章
... git 7. 安装MySQL MySQL :: Download MySQL Community Server 下载Debian版DEB Bundle 解压 进入目录,执行 sudo dpkg -i mysql-{common,community-client,client,community-server,server}_.deb 如果报错,执行 sudo apt-get -f install 中途设置root用户密码 8. 安装PostgreSQL 安装PostgreSQL sudo apt-get install -y postgresql-11 修改postgres用户密码 sudo -u postgres psql 进入后执行SQL ALTER USER postgres WITH PASSWORD 'postgres'; 退出 exit; 9. 安装Redis sudo apt-get install -y redis-server 修改配置文件 sudo vim /etc/redis/redis.conf 重启 sudo systemctl restart redis sudo systemctl enable redis-server 10. 安装Nginx sudo apt-get install -y nginx 修改配置文件 sudo vim /etc/nginx/nginx.conf 重启 sudo systemctl restart nginx sudo systemctl enable nginx 11. 安装VMWare Workstation 下载 https://www.vmware.com/go/getworkstation-linux 放到文件夹,进入,执行 sudo chmod +x VMware-Workstation-Full-17.0.0-20800274.x86_64.bundle sudo ./VMware-Workstation-Full-17.0.0-20800274.x86_64.bundle 安装gcc sudo apt-get install -y gcc 进入控制台,找到VMWare,开始安装,安装过程同Windows 如果如果遇到build environment error错误,执行下列命令后再重新在控制台打开图标 sudo apt-get install -y libcanberra 如果还不行,执行 sudo vmware-modconfig --console --install-all 看看还缺什么 12. 安装百度网盘 官网下载Linux版本的软件:百度网盘 客户端下载 deepin的软件包格式为deb。安装: sudo dpkg -i baidunetdisk_3.5.0_amd64.deb 最新版本 sudo dpkg -i baidunetdisk_4.17.7_amd64.deb 如果报错,执行 sudo apt-get -f install 13. 安装WPS 官网下载Linux版本的软件:WPS Office 2019 for Linux-支持多版本下载_WPS官方网站 deepin的软件包格式为deb。安装: sudo dpkg -i wps-office_11.1.0.10702_amd64.deb 最新版本 sudo dpkg -i wps-office_11.1.0.11691_amd64.deb 如果报错执行 sudo apt-get -f install wps有可能会报缺字体,缺的字体如下,双击安装 百度网盘 请输入提取码 提取码:lexo 14. 安装VS Code 官网下载Linux版本的软件:Visual Studio Code - Code Editing. Redefined deepin的软件包格式为deb。安装: sudo dpkg -i code_1.61.1-1634175470_amd64.deb 最新版本 sudo dpkg -i code_1.76.0-1677667493_amd64.deb 如果报错执行 sudo apt-get -f install 15. 安装微信、QQ、迅雷 微信 sudo apt-get install -y com.qq.weixin.deepin QQ sudo apt-get install -y com.qq.im.deepin 迅雷 sudo apt-get install -y com.xunlei.download 16. 安装视频播放器 sudo apt-get -y install smplayer sudo apt-get -y install vlc 17. 安装SSH工具electerm 下载electerm的deb版本 deepin的软件包格式为deb。安装: https://github.com/electerm/electerm/releases/download/v1.25.16/electerm-1.25.16-linux-amd64.deb sudo dpkg -i electerm-1.25.16-linux-amd64.deb 18.安装FTP/SFTP工具FileZilla sudo apt-get -y install filezilla 19. 安装edge浏览器 下载edge浏览器 deepin的软件包格式为deb。安装: 下载 Microsoft Edge sudo apt-get -y install fonts-liberation sudo apt-get -y install libu2f-udev sudo dpkg -i microsoft-edge-beta_95.0.1020.30-1_amd64.deb 最新版本 sudo dpkg -i microsoft-edge-stable_110.0.1587.63-1_amd64.deb 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_42173947/article/details/119973703。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-15 19:14:44
54
转载
Docker
...能是手动下载PHP、MySQL、Nginx等一堆软件,再逐一配置。而如果你用Docker,只需要一条命令就能搞定: bash docker run --name wordpress -d -p 80:80 \ -v /path/to/wordpress:/var/www/html \ -e WORDPRESS_DB_HOST=db \ -e WORDPRESS_DB_USER=root \ -e WORDPRESS_DB_PASSWORD=yourpassword \ wordpress 这段代码的意思是:启动一个名为wordpress的容器,并将本地目录/path/to/wordpress挂载到容器内的/var/www/html路径下,同时设置数据库连接信息。是不是比传统的安装方式简洁多了? 不过,单独使用Docker虽然强大,但对于不熟悉命令行的人来说还是有点门槛。这时候就需要一些辅助工具来帮助我们更好地管理和调度容器了。 --- 3. Portainer 可视化管理Docker的好帮手 Portainer绝对是我最近发现的一颗“宝藏”。它的界面非常直观,几乎不需要学习成本。不管是想看看现有的容器啥情况,还是想启动新的容器,甚至连网络和卷的管理,都只需要动动鼠标拖一拖、点一点就行啦! 比如,如果你想快速创建一个新的MySQL容器,只需要打开Portainer的Web界面,点击“Add Container”,然后填写几个基本信息即可: yaml image: mysql:5.7 name: my-mysql ports: - "3306:3306" volumes: - /data/mysql:/var/lib/mysql environment: MYSQL_ROOT_PASSWORD: rootpassword 这段YAML配置文件描述了一个MySQL容器的基本参数。Portainer会自动帮你解析并生成对应的Docker命令。是不是超方便? 另外,Portainer还有一个特别棒的功能——实时监控。你打开页面就能看到每个“小房子”(就是容器)里用掉的CPU和内存情况,而且还能像穿越空间一样,去访问别的机器上跑着的那些“小房子”(Docker实例)。这种功能对于运维人员来说简直是福音! --- 4. Rancher 企业级的容器编排利器 如果你是一个团队协作的开发者,或者正在运营一个大规模的服务集群,那么Rancher可能是你的最佳选择。它不仅仅是一个Docker管理工具,更是一个完整的容器编排平台。 Rancher的核心优势在于它的“多集群管理”能力。想象一下,你的公司有好几台服务器,分别放在地球上的不同角落,有的在美国,有的在欧洲,还有的在中国。每台服务器上都跑着各种各样的服务,比如网站、数据库啥的。这时候,Rancher就派上用场了!它就像一个超级贴心的小管家,让你不用到处切换界面,在一个地方就能轻松搞定所有服务器和服务的管理工作,省时又省力! 举个例子,如果你想在Rancher中添加一个新的节点,只需要几步操作即可完成: 1. 登录Rancher控制台。 2. 点击“Add Cluster”按钮。 3. 输入目标节点的信息(IP地址、SSH密钥等)。 4. 等待几分钟,Rancher会自动为你安装必要的组件。 一旦节点加入成功,你就可以直接在这个界面上部署应用了。比如,用Kubernetes部署一个Redis集群: bash kubectl create deployment redis --image=redis:alpine kubectl expose deployment redis --type=LoadBalancer --port=6379 虽然这条命令看起来很简单,但它背后实际上涉及到了复杂的调度逻辑和网络配置。而Rancher把这些复杂的事情封装得很好,让我们可以专注于业务本身。 --- 5. Traefik 反向代理与负载均衡的最佳拍档 最后要介绍的是Traefik,这是一个轻量级的反向代理工具,专门用来处理HTTP请求的转发和负载均衡。它最厉害的地方啊,就是能跟Docker完美地融为一体,还能根据容器上的标签,自动调整路由规则呢! 比如说,你有两个服务分别监听在8080和8081端口,现在想通过一个域名访问它们。只需要给这两个容器加上相应的标签: yaml labels: - "traefik.enable=true" - "traefik.http.routers.service1.rule=Host(service1.example.com)" - "traefik.http.services.service1.loadbalancer.server.port=8080" - "traefik.http.routers.service2.rule=Host(service2.example.com)" - "traefik.http.services.service2.loadbalancer.server.port=8081" 这样一来,当用户访问service1.example.com时,Traefik会自动将请求转发到监听8080端口的容器;而访问service2.example.com则会指向8081端口。这种方式不仅高效,还极大地减少了配置的工作量。 --- 6. 总结 找到最适合自己的工具 好了,到这里咱们已经聊了不少关于服务器管理工具的话题。从Docker到Portainer,再到Rancher和Traefik,每一种工具都有其独特的优势和适用场景。 我的建议是,先根据自己的需求确定重点。要是你只想弄个小玩意儿,图个省事儿快点搞起来,那用Docker配个Portainer就完全够用了。但要是你们团队一起干活儿,或者要做大范围的部署,那Rancher这种专业的“老司机工具”就得安排上啦! 当然啦,技术的世界永远没有绝对的答案。其实啊,很多时候你会发现,最适合你的工具不一定是最火的那个,而是那个最合你心意、用起来最顺手的。就像穿鞋一样,别人觉得好看的根本不合脚,而那双不起眼的小众款却让你走得又稳又舒服!所以啊,在用这些工具的时候,别光顾着看,得多动手试试,边用边记下自己的感受和想法,这样你才能真的搞懂它们到底有啥门道! 好了,今天的分享就到这里啦!如果你还有什么问题或者想法,欢迎随时留言交流哦~咱们下次再见啦!
2025-04-16 16:05:13
97
月影清风_
转载文章
...放入到持久化系统中(MySQL) 广告点击系统实时分析的意义:因为可以在线实时的看见广告的投放效果,就为广告的更大规模的投入和调整打下了坚实的基础,从而为公司带来最大化的经济回报。 核心需求: 1、实时黑名单动态过滤出有效的用户广告点击行为:因为黑名单用户可能随时出现,所以需要动态更新; 2、在线计算广告点击流量; 3、Top3热门广告; 4、每个广告流量趋势; 5、广告点击用户的区域分布分析 6、最近一分钟的广告点击量; 7、整个广告点击Spark Streaming处理程序724小时运行; 数据格式: 时间、用户、广告、城市等 技术细节: 在线计算用户点击的次数分析,屏蔽IP等; 使用updateStateByKey或者mapWithState进行不同地区广告点击排名的计算; Spark Streaming+Spark SQL+Spark Core等综合分析数据; 使用Window类型的操作; 高可用和性能调优等等; 流量趋势,一般会结合DB等; Spark Core / /package com.tom.spark.SparkApps.sparkstreaming;import java.util.Date;import java.util.HashMap;import java.util.Map;import java.util.Properties;import java.util.Random;import kafka.javaapi.producer.Producer;import kafka.producer.KeyedMessage;import kafka.producer.ProducerConfig;/ 数据生成代码,Kafka Producer产生数据/public class MockAdClickedStat {/ @param args/public static void main(String[] args) {final Random random = new Random();final String[] provinces = new String[]{"Guangdong", "Zhejiang", "Jiangsu", "Fujian"};final Map<String, String[]> cities = new HashMap<String, String[]>();cities.put("Guangdong", new String[]{"Guangzhou", "Shenzhen", "Dongguan"});cities.put("Zhejiang", new String[]{"Hangzhou", "Wenzhou", "Ningbo"});cities.put("Jiangsu", new String[]{"Nanjing", "Suzhou", "Wuxi"});cities.put("Fujian", new String[]{"Fuzhou", "Xiamen", "Sanming"});final String[] ips = new String[] {"192.168.112.240","192.168.112.239","192.168.112.245","192.168.112.246","192.168.112.247","192.168.112.248","192.168.112.249","192.168.112.250","192.168.112.251","192.168.112.252","192.168.112.253","192.168.112.254",};/ Kafka相关的基本配置信息/Properties kafkaConf = new Properties();kafkaConf.put("serializer.class", "kafka.serializer.StringEncoder");kafkaConf.put("metadeta.broker.list", "Master:9092,Worker1:9092,Worker2:9092");ProducerConfig producerConfig = new ProducerConfig(kafkaConf);final Producer<Integer, String> producer = new Producer<Integer, String>(producerConfig);new Thread(new Runnable() {public void run() {while(true) {//在线处理广告点击流的基本数据格式:timestamp、ip、userID、adID、province、cityLong timestamp = new Date().getTime();String ip = ips[random.nextInt(12)]; //可以采用网络上免费提供的ip库int userID = random.nextInt(10000);int adID = random.nextInt(100);String province = provinces[random.nextInt(4)];String city = cities.get(province)[random.nextInt(3)];String clickedAd = timestamp + "\t" + ip + "\t" + userID + "\t" + adID + "\t" + province + "\t" + city;producer.send(new KeyedMessage<Integer, String>("AdClicked", clickedAd));try {Thread.sleep(50);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }} }).start();} } package com.tom.spark.SparkApps.sparkstreaming;import java.sql.Connection;import java.sql.DriverManager;import java.sql.PreparedStatement;import java.sql.ResultSet;import java.sql.SQLException;import java.util.ArrayList;import java.util.Arrays;import java.util.HashMap;import java.util.HashSet;import java.util.Iterator;import java.util.List;import java.util.Map;import java.util.Set;import java.util.concurrent.LinkedBlockingQueue;import kafka.serializer.StringDecoder;import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaPairRDD;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.api.java.JavaSparkContext;import org.apache.spark.api.java.function.Function;import org.apache.spark.api.java.function.Function2;import org.apache.spark.api.java.function.PairFunction;import org.apache.spark.api.java.function.VoidFunction;import org.apache.spark.sql.DataFrame;import org.apache.spark.sql.Row;import org.apache.spark.sql.RowFactory;import org.apache.spark.sql.hive.HiveContext;import org.apache.spark.sql.types.DataTypes;import org.apache.spark.sql.types.StructType;import org.apache.spark.streaming.Durations;import org.apache.spark.streaming.api.java.JavaDStream;import org.apache.spark.streaming.api.java.JavaPairDStream;import org.apache.spark.streaming.api.java.JavaPairInputDStream;import org.apache.spark.streaming.api.java.JavaStreamingContext;import org.apache.spark.streaming.api.java.JavaStreamingContextFactory;import org.apache.spark.streaming.kafka.KafkaUtils;import com.google.common.base.Optional;import scala.Tuple2;/ 数据处理,Kafka消费者/public class AdClickedStreamingStats {/ @param args/public static void main(String[] args) {// TODO Auto-generated method stub//好处:1、checkpoint 2、工厂final SparkConf conf = new SparkConf().setAppName("SparkStreamingOnKafkaDirect").setMaster("hdfs://Master:7077/");final String checkpointDirectory = "hdfs://Master:9000/library/SparkStreaming/CheckPoint_Data";JavaStreamingContextFactory factory = new JavaStreamingContextFactory() {public JavaStreamingContext create() {// TODO Auto-generated method stubreturn createContext(checkpointDirectory, conf);} };/ 可以从失败中恢复Driver,不过还需要指定Driver这个进程运行在Cluster,并且在提交应用程序的时候制定--supervise;/JavaStreamingContext javassc = JavaStreamingContext.getOrCreate(checkpointDirectory, factory);/ 第三步:创建Spark Streaming输入数据来源input Stream: 1、数据输入来源可以基于File、HDFS、Flume、Kafka、Socket等 2、在这里我们指定数据来源于网络Socket端口,Spark Streaming连接上该端口并在运行的时候一直监听该端口的数据 (当然该端口服务首先必须存在),并且在后续会根据业务需要不断有数据产生(当然对于Spark Streaming 应用程序的运行而言,有无数据其处理流程都是一样的) 3、如果经常在每间隔5秒钟没有数据的话不断启动空的Job其实会造成调度资源的浪费,因为并没有数据需要发生计算;所以 实际的企业级生成环境的代码在具体提交Job前会判断是否有数据,如果没有的话就不再提交Job;///创建Kafka元数据来让Spark Streaming这个Kafka Consumer利用Map<String, String> kafkaParameters = new HashMap<String, String>();kafkaParameters.put("metadata.broker.list", "Master:9092,Worker1:9092,Worker2:9092");Set<String> topics = new HashSet<String>();topics.add("SparkStreamingDirected");JavaPairInputDStream<String, String> adClickedStreaming = KafkaUtils.createDirectStream(javassc, String.class, String.class, StringDecoder.class, StringDecoder.class,kafkaParameters, topics);/因为要对黑名单进行过滤,而数据是在RDD中的,所以必然使用transform这个函数; 但是在这里我们必须使用transformToPair,原因是读取进来的Kafka的数据是Pair<String,String>类型, 另一个原因是过滤后的数据要进行进一步处理,所以必须是读进的Kafka数据的原始类型 在此再次说明,每个Batch Duration中实际上讲输入的数据就是被一个且仅被一个RDD封装的,你可以有多个 InputDStream,但其实在产生job的时候,这些不同的InputDStream在Batch Duration中就相当于Spark基于HDFS 数据操作的不同文件来源而已罢了。/JavaPairDStream<String, String> filteredadClickedStreaming = adClickedStreaming.transformToPair(new Function<JavaPairRDD<String,String>, JavaPairRDD<String,String>>() {public JavaPairRDD<String, String> call(JavaPairRDD<String, String> rdd) throws Exception {/ 在线黑名单过滤思路步骤: 1、从数据库中获取黑名单转换成RDD,即新的RDD实例封装黑名单数据; 2、然后把代表黑名单的RDD的实例和Batch Duration产生的RDD进行Join操作, 准确的说是进行leftOuterJoin操作,也就是说使用Batch Duration产生的RDD和代表黑名单的RDD实例进行 leftOuterJoin操作,如果两者都有内容的话,就会是true,否则的话就是false 我们要留下的是leftOuterJoin结果为false; /final List<String> blackListNames = new ArrayList<String>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();jdbcWrapper.doQuery("SELECT FROM blacklisttable", null, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {while(result.next()){blackListNames.add(result.getString(1));} }});List<Tuple2<String, Boolean>> blackListTuple = new ArrayList<Tuple2<String,Boolean>>();for(String name : blackListNames) {blackListTuple.add(new Tuple2<String, Boolean>(name, true));}List<Tuple2<String, Boolean>> blacklistFromListDB = blackListTuple; //数据来自于查询的黑名单表并且映射成为<String, Boolean>JavaSparkContext jsc = new JavaSparkContext(rdd.context());/ 黑名单的表中只有userID,但是如果要进行join操作的话就必须是Key-Value,所以在这里我们需要 基于数据表中的数据产生Key-Value类型的数据集合/JavaPairRDD<String, Boolean> blackListRDD = jsc.parallelizePairs(blacklistFromListDB);/ 进行操作的时候肯定是基于userID进行join,所以必须把传入的rdd进行mapToPair操作转化成为符合格式的RDD/JavaPairRDD<String, Tuple2<String, String>> rdd2Pair = rdd.mapToPair(new PairFunction<Tuple2<String,String>, String, Tuple2<String, String>>() {public Tuple2<String, Tuple2<String, String>> call(Tuple2<String, String> t) throws Exception {// TODO Auto-generated method stubString userID = t._2.split("\t")[2];return new Tuple2<String, Tuple2<String,String>>(userID, t);} });JavaPairRDD<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> joined = rdd2Pair.leftOuterJoin(blackListRDD);JavaPairRDD<String, String> result = joined.filter(new Function<Tuple2<String,Tuple2<Tuple2<String,String>,Optional<Boolean>>>, Boolean>() {public Boolean call(Tuple2<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> tuple)throws Exception {// TODO Auto-generated method stubOptional<Boolean> optional = tuple._2._2;if(optional.isPresent() && optional.get()){return false;} else {return true;} }}).mapToPair(new PairFunction<Tuple2<String,Tuple2<Tuple2<String,String>,Optional<Boolean>>>, String, String>() {public Tuple2<String, String> call(Tuple2<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> t)throws Exception {// TODO Auto-generated method stubreturn t._2._1;} });return result;} });//广告点击的基本数据格式:timestamp、ip、userID、adID、province、cityJavaPairDStream<String, Long> pairs = filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t) throws Exception {String[] splited=t._2.split("\t");String timestamp = splited[0]; //YYYY-MM-DDString ip = splited[1];String userID = splited[2];String adID = splited[3];String province = splited[4];String city = splited[5]; String clickedRecord = timestamp + "_" +ip + "_"+userID+"_"+adID+"_"+province +"_"+city;return new Tuple2<String, Long>(clickedRecord, 1L);} });/ 第4.3步:在单词实例计数为1基础上,统计每个单词在文件中出现的总次数/JavaPairDStream<String, Long> adClickedUsers= pairs.reduceByKey(new Function2<Long, Long, Long>() {public Long call(Long i1, Long i2) throws Exception{return i1 + i2;} });/判断有效的点击,复杂化的采用机器学习训练模型进行在线过滤 简单的根据ip判断1天不超过100次;也可以通过一个batch duration的点击次数判断是否非法广告点击,通过一个batch来判断是不完整的,还需要一天的数据也可以每一个小时来判断。/JavaPairDStream<String, Long> filterClickedBatch = adClickedUsers.filter(new Function<Tuple2<String,Long>, Boolean>() {public Boolean call(Tuple2<String, Long> v1) throws Exception {if (1 < v1._2){//更新一些黑名单的数据库表return false;} else { return true;} }});//filterClickedBatch.print();//写入数据库filterClickedBatch.foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition) throws Exception {//使用数据库连接池的高效读写数据库的方式将数据写入数据库mysql//例如一次插入 1000条 records,使用insertBatch 或 updateBatch//插入的用户数据信息:userID,adID,clickedCount,time//这里面有一个问题,可能出现两条记录的key是一样的,此时需要更新累加操作List<UserAdClicked> userAdClickedList = new ArrayList<UserAdClicked>();while(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("\t");UserAdClicked userClicked = new UserAdClicked();userClicked.setTimestamp(splited[0]);userClicked.setIp(splited[1]);userClicked.setUserID(splited[2]);userClicked.setAdID(splited[3]);userClicked.setProvince(splited[4]);userClicked.setCity(splited[5]);userAdClickedList.add(userClicked);}final List<UserAdClicked> inserting = new ArrayList<UserAdClicked>();final List<UserAdClicked> updating = new ArrayList<UserAdClicked>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final UserAdClicked clicked : userAdClickedList) {jdbcWrapper.doQuery("SELECT clickedCount FROM adclicked WHERE"+ " timestamp =? AND userID = ? AND adID = ?",new Object[]{clicked.getTimestamp(), clicked.getUserID(),clicked.getAdID()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);clicked.setClickedCount(count);updating.add(clicked);} else {inserting.add(clicked);clicked.setClickedCount(1L);} }});}//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(UserAdClicked insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.getTimestamp(),insertRecord.getIp(),insertRecord.getUserID(),insertRecord.getAdID(),insertRecord.getProvince(),insertRecord.getCity(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclicked VALUES(?, ?, ?, ?, ?, ?, ?)", insertParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(UserAdClicked updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getTimestamp(),updateRecord.getIp(),updateRecord.getUserID(),updateRecord.getAdID(),updateRecord.getProvince(),updateRecord.getCity(),updateRecord.getClickedCount() + 1});}jdbcWrapper.doBatch("UPDATE adclicked SET clickedCount = ? WHERE"+ " timestamp =? AND ip = ? AND userID = ? AND adID = ? "+ "AND province = ? AND city = ?", updateParametersList);} });return null;} });//再次过滤,从数据库中读取数据过滤黑名单JavaPairDStream<String, Long> blackListBasedOnHistory = filterClickedBatch.filter(new Function<Tuple2<String,Long>, Boolean>() {public Boolean call(Tuple2<String, Long> v1) throws Exception {//广告点击的基本数据格式:timestamp,ip,userID,adID,province,cityString[] splited = v1._1.split("\t"); //提取key值String date =splited[0];String userID =splited[2];String adID =splited[3];//查询一下数据库同一个用户同一个广告id点击量超过50次列入黑名单//接下来 根据date、userID、adID条件去查询用户点击广告的数据表,获得总的点击次数//这个时候基于点击次数判断是否属于黑名单点击int clickedCountTotalToday = 81 ;if (clickedCountTotalToday > 50) {return true;}else {return false ;} }});//map操作,找出用户的idJavaDStream<String> blackListuserIDBasedInBatchOnhistroy =blackListBasedOnHistory.map(new Function<Tuple2<String,Long>, String>() {public String call(Tuple2<String, Long> v1) throws Exception {// TODO Auto-generated method stubreturn v1._1.split("\t")[2];} });//有一个问题,数据可能重复,在一个partition里面重复,这个好办;//但多个partition不能保证一个用户重复,需要对黑名单的整个rdd进行去重操作。//rdd去重了,partition也就去重了,一石二鸟,一箭双雕// 找出了黑名单,下一步就写入黑名单数据库表中JavaDStream<String> blackListUniqueuserBasedInBatchOnhistroy = blackListuserIDBasedInBatchOnhistroy.transform(new Function<JavaRDD<String>, JavaRDD<String>>() {public JavaRDD<String> call(JavaRDD<String> rdd) throws Exception {// TODO Auto-generated method stubreturn rdd.distinct();} });// 下一步写入到数据表中blackListUniqueuserBasedInBatchOnhistroy.foreachRDD(new Function<JavaRDD<String>, Void>() {public Void call(JavaRDD<String> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<String>>() {public void call(Iterator<String> t) throws Exception {// TODO Auto-generated method stub//插入的用户信息可以只包含:useID//此时直接插入黑名单数据表即可。//写入数据库List<Object[]> blackList = new ArrayList<Object[]>();while(t.hasNext()) {blackList.add(new Object[]{t.next()});}JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();jdbcWrapper.doBatch("INSERT INTO blacklisttable values (?)", blackList);} });return null;} });/广告点击累计动态更新,每个updateStateByKey都会在Batch Duration的时间间隔的基础上进行广告点击次数的更新, 更新之后我们一般都会持久化到外部存储设备上,在这里我们存储到MySQL数据库中/JavaPairDStream<String, Long> updateStateByKeyDSteam = filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t)throws Exception {String[] splited=t._2.split("\t");String timestamp = splited[0]; //YYYY-MM-DDString ip = splited[1];String userID = splited[2];String adID = splited[3];String province = splited[4];String city = splited[5]; String clickedRecord = timestamp + "_" +ip + "_"+userID+"_"+adID+"_"+province +"_"+city;return new Tuple2<String, Long>(clickedRecord, 1L);} }).updateStateByKey(new Function2<List<Long>, Optional<Long>, Optional<Long>>() {public Optional<Long> call(List<Long> v1, Optional<Long> v2)throws Exception {// v1:当前的Key在当前的Batch Duration中出现的次数的集合,例如{1,1,1,。。。,1}// v2:当前的Key在以前的Batch Duration中积累下来的结果;Long clickedTotalHistory = 0L; if(v2.isPresent()){clickedTotalHistory = v2.get();}for(Long one : v1) {clickedTotalHistory += one;}return Optional.of(clickedTotalHistory);} });updateStateByKeyDSteam.foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition) throws Exception {//使用数据库连接池的高效读写数据库的方式将数据写入数据库mysql//例如一次插入 1000条 records,使用insertBatch 或 updateBatch//插入的用户数据信息:timestamp、adID、province、city//这里面有一个问题,可能出现两条记录的key是一样的,此时需要更新累加操作List<AdClicked> AdClickedList = new ArrayList<AdClicked>();while(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("\t");AdClicked adClicked = new AdClicked();adClicked.setTimestamp(splited[0]);adClicked.setAdID(splited[1]);adClicked.setProvince(splited[2]);adClicked.setCity(splited[3]);adClicked.setClickedCount(record._2);AdClickedList.add(adClicked);}final List<AdClicked> inserting = new ArrayList<AdClicked>();final List<AdClicked> updating = new ArrayList<AdClicked>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final AdClicked clicked : AdClickedList) {jdbcWrapper.doQuery("SELECT clickedCount FROM adclickedcount WHERE"+ " timestamp = ? AND adID = ? AND province = ? AND city = ?",new Object[]{clicked.getTimestamp(), clicked.getAdID(),clicked.getProvince(), clicked.getCity()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);clicked.setClickedCount(count);updating.add(clicked);} else {inserting.add(clicked);clicked.setClickedCount(1L);} }});}//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdClicked insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.getTimestamp(),insertRecord.getAdID(),insertRecord.getProvince(),insertRecord.getCity(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclickedcount VALUES(?, ?, ?, ?, ?)", insertParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(AdClicked updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getClickedCount(),updateRecord.getTimestamp(),updateRecord.getAdID(),updateRecord.getProvince(),updateRecord.getCity()});}jdbcWrapper.doBatch("UPDATE adclickedcount SET clickedCount = ? WHERE"+ " timestamp =? AND adID = ? AND province = ? AND city = ?", updateParametersList);} });return null;} });/ 对广告点击进行TopN计算,计算出每天每个省份Top5排名的广告 因为我们直接对RDD进行操作,所以使用了transfomr算子;/updateStateByKeyDSteam.transform(new Function<JavaPairRDD<String,Long>, JavaRDD<Row>>() {public JavaRDD<Row> call(JavaPairRDD<String, Long> rdd) throws Exception {JavaRDD<Row> rowRDD = rdd.mapToPair(new PairFunction<Tuple2<String,Long>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, Long> t)throws Exception {// TODO Auto-generated method stubString[] splited=t._1.split("_");String timestamp = splited[0]; //YYYY-MM-DDString adID = splited[3];String province = splited[4];String clickedRecord = timestamp + "_" + adID + "_" + province;return new Tuple2<String, Long>(clickedRecord, t._2);} }).reduceByKey(new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 + v2;} }).map(new Function<Tuple2<String,Long>, Row>() {public Row call(Tuple2<String, Long> v1) throws Exception {// TODO Auto-generated method stubString[] splited=v1._1.split("_");String timestamp = splited[0]; //YYYY-MM-DDString adID = splited[3];String province = splited[4];return RowFactory.create(timestamp, adID, province, v1._2);} });StructType structType = DataTypes.createStructType(Arrays.asList(DataTypes.createStructField("timestamp", DataTypes.StringType, true),DataTypes.createStructField("adID", DataTypes.StringType, true),DataTypes.createStructField("province", DataTypes.StringType, true),DataTypes.createStructField("clickedCount", DataTypes.LongType, true)));HiveContext hiveContext = new HiveContext(rdd.context());DataFrame df = hiveContext.createDataFrame(rowRDD, structType);df.registerTempTable("topNTableSource");DataFrame result = hiveContext.sql("SELECT timestamp, adID, province, clickedCount, FROM"+ " (SELECT timestamp, adID, province,clickedCount, "+ "ROW_NUMBER() OVER(PARTITION BY province ORDER BY clickeCount DESC) rank "+ "FROM topNTableSource) subquery "+ "WHERE rank <= 5");return result.toJavaRDD();} }).foreachRDD(new Function<JavaRDD<Row>, Void>() {public Void call(JavaRDD<Row> rdd) throws Exception {// TODO Auto-generated method stubrdd.foreachPartition(new VoidFunction<Iterator<Row>>() {public void call(Iterator<Row> t) throws Exception {// TODO Auto-generated method stubList<AdProvinceTopN> adProvinceTopN = new ArrayList<AdProvinceTopN>();while(t.hasNext()) {Row row = t.next();AdProvinceTopN item = new AdProvinceTopN();item.setTimestamp(row.getString(0));item.setAdID(row.getString(1));item.setProvince(row.getString(2));item.setClickedCount(row.getLong(3));adProvinceTopN.add(item);}// final List<AdProvinceTopN> inserting = new ArrayList<AdProvinceTopN>();// final List<AdProvinceTopN> updating = new ArrayList<AdProvinceTopN>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();Set<String> set = new HashSet<String>();for(AdProvinceTopN item: adProvinceTopN){set.add(item.getTimestamp() + "_" + item.getProvince());}//表的字段timestamp、adID、province、clickedCountArrayList<Object[]> deleteParametersList = new ArrayList<Object[]>();for(String deleteRecord : set) {String[] splited = deleteRecord.split("_");deleteParametersList.add(new Object[]{splited[0],splited[1]});}jdbcWrapper.doBatch("DELETE FROM adprovincetopn WHERE timestamp = ? AND province = ?", deleteParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdProvinceTopN insertRecord : adProvinceTopN) {insertParametersList.add(new Object[] {insertRecord.getClickedCount(),insertRecord.getTimestamp(),insertRecord.getAdID(),insertRecord.getProvince()});}jdbcWrapper.doBatch("INSERT INTO adprovincetopn VALUES (?, ?, ?, ?)", insertParametersList);} });return null;} });/ 计算过去半个小时内广告点击的趋势 广告点击的基本数据格式:timestamp、ip、userID、adID、province、city/filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t)throws Exception {String splited[] = t._2.split("\t");String adID = splited[3];String time = splited[0]; //Todo:后续需要重构代码实现时间戳和分钟的转换提取。此处需要提取出该广告的点击分钟单位return new Tuple2<String, Long>(time + "_" + adID, 1L);} }).reduceByKeyAndWindow(new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 + v2;} }, new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 - v2;} }, Durations.minutes(30), Durations.milliseconds(5)).foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {// TODO Auto-generated method stubrdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition)throws Exception {List<AdTrendStat> adTrend = new ArrayList<AdTrendStat>();// TODO Auto-generated method stubwhile(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("_");String time = splited[0];String adID = splited[1];Long clickedCount = record._2;/ 在插入数据到数据库的时候具体需要哪些字段?time、adID、clickedCount; 而我们通过J2EE技术进行趋势绘图的时候肯定是需要年、月、日、时、分这个维度的,所以我们在这里需要 年月日、小时、分钟这些时间维度;/AdTrendStat adTrendStat = new AdTrendStat();adTrendStat.setAdID(adID);adTrendStat.setClickedCount(clickedCount);adTrendStat.set_date(time); //Todo:获取年月日adTrendStat.set_hour(time); //Todo:获取小时adTrendStat.set_minute(time);//Todo:获取分钟adTrend.add(adTrendStat);}final List<AdTrendStat> inserting = new ArrayList<AdTrendStat>();final List<AdTrendStat> updating = new ArrayList<AdTrendStat>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final AdTrendStat trend : adTrend) {final AdTrendCountHistory adTrendhistory = new AdTrendCountHistory();jdbcWrapper.doQuery("SELECT clickedCount FROM adclickedtrend WHERE"+ " date =? AND hour = ? AND minute = ? AND AdID = ?",new Object[]{trend.get_date(), trend.get_hour(), trend.get_minute(),trend.getAdID()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);adTrendhistory.setClickedCountHistoryLong(count);updating.add(trend);} else { inserting.add(trend);} }});}//表的字段date、hour、minute、adID、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdTrendStat insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.get_date(),insertRecord.get_hour(),insertRecord.get_minute(),insertRecord.getAdID(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclickedtrend VALUES(?, ?, ?, ?, ?)", insertParametersList);//表的字段date、hour、minute、adID、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(AdTrendStat updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getClickedCount(),updateRecord.get_date(),updateRecord.get_hour(),updateRecord.get_minute(),updateRecord.getAdID()});}jdbcWrapper.doBatch("UPDATE adclickedtrend SET clickedCount = ? WHERE"+ " date =? AND hour = ? AND minute = ? AND AdID = ?", updateParametersList);} });return null;} });;/ Spark Streaming 执行引擎也就是Driver开始运行,Driver启动的时候是位于一条新的线程中的,当然其内部有消息循环体,用于 接收应用程序本身或者Executor中的消息,/javassc.start();javassc.awaitTermination();javassc.close();}private static JavaStreamingContext createContext(String checkpointDirectory, SparkConf conf) {// If you do not see this printed, that means the StreamingContext has been loaded// from the new checkpointSystem.out.println("Creating new context");// Create the context with a 5 second batch sizeJavaStreamingContext ssc = new JavaStreamingContext(conf, Durations.seconds(10));ssc.checkpoint(checkpointDirectory);return ssc;} }class JDBCWrapper {private static JDBCWrapper jdbcInstance = null;private static LinkedBlockingQueue<Connection> dbConnectionPool = new LinkedBlockingQueue<Connection>();static {try {Class.forName("com.mysql.jdbc.Driver");} catch (ClassNotFoundException e) {// TODO Auto-generated catch blocke.printStackTrace();} }public static JDBCWrapper getJDBCInstance() {if(jdbcInstance == null) {synchronized (JDBCWrapper.class) {if(jdbcInstance == null) {jdbcInstance = new JDBCWrapper();} }}return jdbcInstance; }private JDBCWrapper() {for(int i = 0; i < 10; i++){try {Connection conn = DriverManager.getConnection("jdbc:mysql://Master:3306/sparkstreaming","root", "root");dbConnectionPool.put(conn);} catch (Exception e) {// TODO Auto-generated catch blocke.printStackTrace();} } }public synchronized Connection getConnection() {while(0 == dbConnectionPool.size()){try {Thread.sleep(20);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }return dbConnectionPool.poll();}public int[] doBatch(String sqlText, List<Object[]> paramsList){Connection conn = getConnection();PreparedStatement preparedStatement = null;int[] result = null;try {conn.setAutoCommit(false);preparedStatement = conn.prepareStatement(sqlText);for(Object[] parameters: paramsList) {for(int i = 0; i < parameters.length; i++){preparedStatement.setObject(i + 1, parameters[i]);} preparedStatement.addBatch();}result = preparedStatement.executeBatch();conn.commit();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} finally {if(preparedStatement != null) {try {preparedStatement.close();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} }if(conn != null) {try {dbConnectionPool.put(conn);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }}return result; }public void doQuery(String sqlText, Object[] paramsList, ExecuteCallBack callback){Connection conn = getConnection();PreparedStatement preparedStatement = null;ResultSet result = null;try {preparedStatement = conn.prepareStatement(sqlText);for(int i = 0; i < paramsList.length; i++){preparedStatement.setObject(i + 1, paramsList[i]);} result = preparedStatement.executeQuery();try {callback.resultCallBack(result);} catch (Exception e) {// TODO Auto-generated catch blocke.printStackTrace();} } catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} finally {if(preparedStatement != null) {try {preparedStatement.close();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} }if(conn != null) {try {dbConnectionPool.put(conn);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }} }}interface ExecuteCallBack {void resultCallBack(ResultSet result) throws Exception;}class UserAdClicked {private String timestamp;private String ip;private String userID;private String adID;private String province;private String city;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getIp() {return ip;}public void setIp(String ip) {this.ip = ip;}public String getUserID() {return userID;}public void setUserID(String userID) {this.userID = userID;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public String getCity() {return city;}public void setCity(String city) {this.city = city;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdClicked {private String timestamp;private String adID;private String province;private String city;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public String getCity() {return city;}public void setCity(String city) {this.city = city;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdProvinceTopN {private String timestamp;private String adID;private String province;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdTrendStat {private String _date;private String _hour;private String _minute;private String adID;private Long clickedCount;public String get_date() {return _date;}public void set_date(String _date) {this._date = _date;}public String get_hour() {return _hour;}public void set_hour(String _hour) {this._hour = _hour;}public String get_minute() {return _minute;}public void set_minute(String _minute) {this._minute = _minute;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdTrendCountHistory{private Long clickedCountHistoryLong;public Long getClickedCountHistoryLong() {return clickedCountHistoryLong;}public void setClickedCountHistoryLong(Long clickedCountHistoryLong) {this.clickedCountHistoryLong = clickedCountHistoryLong;} } 本篇文章为转载内容。原文链接:https://blog.csdn.net/tom_8899_li/article/details/71194434。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-14 19:16:35
297
转载
转载文章
...个空间,支持PHP+MySql,免费二级域名,免费域名绑定 这个是我邀请的地址,您通过这个链接注册即为我的好友,并获赠云豆500个,价值5元哦!短网址是http://t.cn/SXOiLh我创建的小站每天访客已经达到2000+了,每天挂广告赚50+元哦,呵呵,饭钱不愁了,\(^o^)/ 本篇文章为转载内容。原文链接:https://blog.csdn.net/javazhuanzai/article/details/7189396。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-24 09:01:26
286
转载
转载文章
...ode.js 中的 mysqljs 库的 query 方法中的 ? 占位参数。 mysql.query(SELECT FROM user WHERE username = ? AND psw = ?, [username, psw]); 在应用发布之前建议使用专业的 SQL 注入检测工具进行检测,以及时修补被发现的 SQL 注入漏洞。网上有很多这方面的开源工具,例如 sqlmap、SQLninja 等。 避免网站打印出 SQL 错误信息,比如类型错误、字段不匹配等,把代码里的 SQL 语句暴露出来,以防止攻击者利用这些错误信息进行 SQL 注入。 不要过于细化返回的错误信息,如果目的是方便调试,就去使用后端日志,不要在接口上过多的暴露出错信息,毕竟真正的用户不关心太多的技术细节,只要话术合理就行。 碰到要操作的数据库的代码,一定要慎重,小心使得万年船,多找几个人多来几次 code review,将问题都暴露出来,而且要善于利用工具,操作数据库相关的代码属于机密,没事不要去各种论坛晒自家站点的 SQL 语句,万一被人盯上了呢? 命令行注入 命令行注入漏洞,指的是攻击者能够通过 HTTP 请求直接侵入主机,执行攻击者预设的 shell 命令,听起来好像匪夷所思,这往往是 Web 开发者最容易忽视但是却是最危险的一个漏洞之一,看一个实例: 假如现在需要实现一个需求:用户提交一些内容到服务器,然后在服务器执行一些系统命令去产出一个结果返回给用户,接口的部分实现如下: // 以 Node.js 为例,假如在接口中需要从 github 下载用户指定的 repoconst exec = require('mz/child_process').exec;let params = {/ 用户输入的参数 /};exec(git clone ${params.repo} /some/path); 这段代码确实能够满足业务需求,正常的用户也确实能从指定的 git repo 上下载到想要的代码,可是和 SQL 注入一样,这段代码在恶意攻击者眼中,简直就是香饽饽。 如果 params.repo 传入的是 https://github.com/zoumiaojiang/zoumiaojiang.github.io.git 当然没问题了。 可是如果 params.repo 传入的是 https://github.com/xx/xx.git && rm -rf / && 恰好你的服务是用 root 权限起的就惨了。 具体恶意攻击者能用命令行注入干什么也像 SQL 注入一样,手法是千变万化的,比如「反弹 shell 注入」等,但原理都是一样的,我们绝对有能力防止命令行注入发生。防止命令行注入需要做到以下几件事情: 后端对前端提交内容需要完全选择不相信,并且对其进行规则限制(比如正则表达式)。 在调用系统命令前对所有传入参数进行命令行参数转义过滤。 不要直接拼接命令语句,借助一些工具做拼接、转义预处理,例如 Node.js 的 shell-escape npm 包。 还是前面的例子,我们可以做到如下: const exec = require('mz/child_process').exec;// 借助 shell-escape npm 包解决参数转义过滤问题const shellescape = require('shell-escape');let params = {/ 用户输入的参数 /};// 先过滤一下参数,让参数符合预期if (!/正确的表达式/.test(params.repo)) {return;}let cmd = shellescape(['git','clone',params.repo,'/some/path']);// cmd 的值: git clone 'https://github.com/xx/xx.git && rm -rf / &&' /some/path// 这样就不会被注入成功了。exec(cmd); DDoS 攻击 DDoS 又叫分布式拒绝服务,全称 Distributed Denial of Service,其原理就是利用大量的请求造成资源过载,导致服务不可用,这个攻击应该不能算是安全问题,这应该算是一个另类的存在,因为这种攻击根本就是耍流氓的存在,「伤敌一千,自损八百」的行为。出于保护 Web App 不受攻击的攻防角度,还是介绍一下 DDoS 攻击吧,毕竟也是挺常见的。 DDoS 攻击可以理解为:「你开了一家店,隔壁家点看不惯,就雇了一大堆黑社会人员进你店里干坐着,也不消费,其他客人也进不来,导致你营业惨淡」。为啥说 DDoS 是个「伤敌一千,自损八百」的行为呢?毕竟隔壁店还是花了不少钱雇黑社会但是啥也没得到不是?DDoS 攻击的目的基本上就以下几个: 深仇大恨,就是要干死你 敲诈你,不给钱就干你 忽悠你,不买我防火墙服务就会有“人”继续干你 也许你的站点遭受过 DDoS 攻击,具体什么原因怎么解读见仁见智。DDos 攻击从层次上可分为网络层攻击与应用层攻击,从攻击手法上可分为快型流量攻击与慢型流量攻击,但其原理都是造成资源过载,导致服务不可用。 网络层 DDoS 网络层 DDos 攻击包括 SYN Flood、ACK Flood、UDP Flood、ICMP Flood 等。 SYN Flood 攻击 SYN flood 攻击主要利用了 TCP 三次握手过程中的 Bug,我们都知道 TCP 三次握手过程是要建立连接的双方发送 SYN,SYN + ACK,ACK 数据包,而当攻击方随意构造源 IP 去发送 SYN 包时,服务器返回的 SYN + ACK 就不能得到应答(因为 IP 是随意构造的),此时服务器就会尝试重新发送,并且会有至少 30s 的等待时间,导致资源饱和服务不可用,此攻击属于慢型 DDoS 攻击。 ACK Flood 攻击 ACK Flood 攻击是在 TCP 连接建立之后,所有的数据传输 TCP 报文都是带有 ACK 标志位的,主机在接收到一个带有 ACK 标志位的数据包的时候,需要检查该数据包所表示的连接四元组是否存在,如果存在则检查该数据包所表示的状态是否合法,然后再向应用层传递该数据包。如果在检查中发现该数据包不合法,例如该数据包所指向的目的端口在本机并未开放,则主机操作系统协议栈会回应 RST 包告诉对方此端口不存在。 UDP Flood 攻击 UDP flood 攻击是由于 UDP 是一种无连接的协议,因此攻击者可以伪造大量的源 IP 地址去发送 UDP 包,此种攻击属于大流量攻击。正常应用情况下,UDP 包双向流量会基本相等,因此发起这种攻击的攻击者在消耗对方资源的时候也在消耗自己的资源。 ICMP Flood 攻击 ICMP Flood 攻击属于大流量攻击,其原理就是不断发送不正常的 ICMP 包(所谓不正常就是 ICMP 包内容很大),导致目标带宽被占用,但其本身资源也会被消耗。目前很多服务器都是禁 ping 的(在防火墙在可以屏蔽 ICMP 包),因此这种攻击方式已经落伍。 网络层 DDoS 防御 网络层的 DDoS 攻击究其本质其实是无法防御的,我们能做得就是不断优化服务本身部署的网络架构,以及提升网络带宽。当然,还是做好以下几件事也是有助于缓解网络层 DDoS 攻击的冲击: 网络架构上做好优化,采用负载均衡分流。 确保服务器的系统文件是最新的版本,并及时更新系统补丁。 添加抗 DDos 设备,进行流量清洗。 限制同时打开的 SYN 半连接数目,缩短 SYN 半连接的 Timeout 时间。 限制单 IP 请求频率。 防火墙等防护设置禁止 ICMP 包等。 严格限制对外开放的服务器的向外访问。 运行端口映射程序或端口扫描程序,要认真检查特权端口和非特权端口。 关闭不必要的服务。 认真检查网络设备和主机/服务器系统的日志。只要日志出现漏洞或是时间变更,那这台机器就可能遭到了攻击。 限制在防火墙外与网络文件共享。这样会给黑客截取系统文件的机会,主机的信息暴露给黑客,无疑是给了对方入侵的机会。 加钱堆机器。。 报警。。 应用层 DDoS 应用层 DDoS 攻击不是发生在网络层,是发生在 TCP 建立握手成功之后,应用程序处理请求的时候,现在很多常见的 DDoS 攻击都是应用层攻击。应用层攻击千变万化,目的就是在网络应用层耗尽你的带宽,下面列出集中典型的攻击类型。 CC 攻击 当时绿盟为了防御 DDoS 攻击研发了一款叫做 Collapasar 的产品,能够有效的防御 SYN Flood 攻击。黑客为了挑衅,研发了一款 Challenge Collapasar 攻击工具(简称 CC)。 CC 攻击的原理,就是针对消耗资源比较大的页面不断发起不正常的请求,导致资源耗尽。因此在发送 CC 攻击前,我们需要寻找加载比较慢,消耗资源比较多的网页,比如需要查询数据库的页面、读写硬盘文件的等。通过 CC 攻击,使用爬虫对某些加载需要消耗大量资源的页面发起 HTTP 请求。 DNS Flood DNS Flood 攻击采用的方法是向被攻击的服务器发送大量的域名解析请求,通常请求解析的域名是随机生成或者是网络世界上根本不存在的域名,被攻击的DNS 服务器在接收到域名解析请求的时候首先会在服务器上查找是否有对应的缓存,如果查找不到并且该域名无法直接由服务器解析的时候,DNS 服务器会向其上层 DNS 服务器递归查询域名信息。域名解析的过程给服务器带来了很大的负载,每秒钟域名解析请求超过一定的数量就会造成 DNS 服务器解析域名超时。 根据微软的统计数据,一台 DNS 服务器所能承受的动态域名查询的上限是每秒钟 9000 个请求。而我们知道,在一台 P3 的 PC 机上可以轻易地构造出每秒钟几万个域名解析请求,足以使一台硬件配置极高的 DNS 服务器瘫痪,由此可见 DNS 服务器的脆弱性。 HTTP 慢速连接攻击 针对 HTTP 协议,先建立起 HTTP 连接,设置一个较大的 Conetnt-Length,每次只发送很少的字节,让服务器一直以为 HTTP 头部没有传输完成,这样连接一多就很快会出现连接耗尽。 应用层 DDoS 防御 判断 User-Agent 字段(不可靠,因为可以随意构造) 针对 IP + cookie,限制访问频率(由于 cookie 可以更改,IP 可以使用代理,或者肉鸡,也不可靠) 关闭服务器最大连接数等,合理配置中间件,缓解 DDoS 攻击。 请求中添加验证码,比如请求中有数据库操作的时候。 编写代码时,尽量实现优化,并合理使用缓存技术,减少数据库的读取操作。 加钱堆机器。。 报警。。 应用层的防御有时比网络层的更难,因为导致应用层被 DDoS 攻击的因素非常多,有时往往是因为程序员的失误,导致某个页面加载需要消耗大量资源,有时是因为中间件配置不当等等。而应用层 DDoS 防御的核心就是区分人与机器(爬虫),因为大量的请求不可能是人为的,肯定是机器构造的。因此如果能有效的区分人与爬虫行为,则可以很好地防御此攻击。 其他 DDoS 攻击 发起 DDoS 也是需要大量的带宽资源的,但是互联网就像森林,林子大了什么鸟都有,DDoS 攻击者也能找到其他的方式发起廉价并且极具杀伤力的 DDoS 攻击。 利用 XSS 举个例子,如果 12306 页面有一个 XSS 持久型漏洞被恶意攻击者发现,只需在春节抢票期间在这个漏洞中执行脚本使得往某一个小站点随便发点什么请求,然后随着用户访问的增多,感染用户增多,被攻击的站点自然就会迅速瘫痪了。这种 DDoS 简直就是无本万利,不用惊讶,现在大站有 XSS 漏洞的不要太多。 来自 P2P 网络攻击 大家都知道,互联网上的 P2P 用户和流量都是一个极为庞大的数字。如果他们都去一个指定的地方下载数据,成千上万的真实 IP 地址连接过来,没有哪个设备能够支撑住。拿 BT 下载来说,伪造一些热门视频的种子,发布到搜索引擎,就足以骗到许多用户和流量了,但是这只是基础攻击。 高级的 P2P 攻击,是直接欺骗资源管理服务器。如迅雷客户端会把自己发现的资源上传到资源管理服务器,然后推送给其它需要下载相同资源的用户,这样,一个链接就发布出去。通过协议逆向,攻击者伪造出大批量的热门资源信息通过资源管理中心分发出去,瞬间就可以传遍整个 P2P 网络。更为恐怖的是,这种攻击是无法停止的,即使是攻击者自身也无法停止,攻击一直持续到 P2P 官方发现问题更新服务器且下载用户重启下载软件为止。 最后总结下,DDoS 不可能防的住,就好比你的店只能容纳 50 人,黑社会有 100 人,你就换一家大店,能容纳 500 人,然后黑社会又找来了 1000 人,这种堆人头的做法就是 DDoS 本质上的攻防之道,「道高一尺,魔高一丈,魔高一尺,道高一丈」,讲真,必要的时候就答应勒索你的人的条件吧,实在不行就报警吧。 流量劫持 流量劫持应该算是黑产行业的一大经济支柱了吧?简直是让人恶心到吐,不吐槽了,还是继续谈干货吧,流量劫持基本分两种:DNS 劫持 和 HTTP 劫持,目的都是一样的,就是当用户访问 zoumiaojiang.com 的时候,给你展示的并不是或者不完全是 zoumiaojiang.com 提供的 “内容”。 DNS 劫持 DNS 劫持,也叫做域名劫持,可以这么理解,「你打了一辆车想去商场吃饭,结果你打的车是小作坊派来的,直接给你拉到小作坊去了」,DNS 的作用是把网络地址域名对应到真实的计算机能够识别的 IP 地址,以便计算机能够进一步通信,传递网址和内容等。如果当用户通过某一个域名访问一个站点的时候,被篡改的 DNS 服务器返回的是一个恶意的钓鱼站点的 IP,用户就被劫持到了恶意钓鱼站点,然后继而会被钓鱼输入各种账号密码信息,泄漏隐私。 dns劫持 这类劫持,要不就是网络运营商搞的鬼,一般小的网络运营商与黑产勾结会劫持 DNS,要不就是电脑中毒,被恶意篡改了路由器的 DNS 配置,基本上做为开发者或站长却是很难察觉的,除非有用户反馈,现在升级版的 DNS 劫持还可以对特定用户、特定区域等使用了用户画像进行筛选用户劫持的办法,另外这类广告显示更加随机更小,一般站长除非用户投诉否则很难觉察到,就算觉察到了取证举报更难。无论如何,如果接到有 DNS 劫持的反馈,一定要做好以下几件事: 取证很重要,时间、地点、IP、拨号账户、截屏、URL 地址等一定要有。 可以跟劫持区域的电信运营商进行投诉反馈。 如果投诉反馈无效,直接去工信部投诉,一般来说会加白你的域名。 HTTP 劫持 HTTP 劫持您可以这么理解,「你打了一辆车想去商场吃饭,结果司机跟你一路给你递小作坊的广告」,HTTP 劫持主要是当用户访问某个站点的时候会经过运营商网络,而不法运营商和黑产勾结能够截获 HTTP 请求返回内容,并且能够篡改内容,然后再返回给用户,从而实现劫持页面,轻则插入小广告,重则直接篡改成钓鱼网站页面骗用户隐私。能够实施流量劫持的根本原因,是 HTTP 协议没有办法对通信对方的身份进行校验以及对数据完整性进行校验。如果能解决这个问题,则流量劫持将无法轻易发生。所以防止 HTTP 劫持的方法只有将内容加密,让劫持者无法破解篡改,这样就可以防止 HTTP 劫持了。 HTTPS 协议就是一种基于 SSL 协议的安全加密网络应用层协议,可以很好的防止 HTTP 劫持。这里有篇 文章 讲的不错。HTTPS 在这就不深讲了,后面有机会我会单独好好讲讲 HTTPS。如果不想站点被 HTTP 劫持,赶紧将你的站点全站改造成 HTTPS 吧。 服务器漏洞 服务器除了以上提到的那些大名鼎鼎的漏洞和臭名昭著的攻击以外,其实还有很多其他的漏洞,往往也很容易被忽视,在这个小节也稍微介绍几种。 越权操作漏洞 如果你的系统是有登录控制的,那就要格外小心了,因为很有可能你的系统越权操作漏洞,越权操作漏洞可以简单的总结为 「A 用户能看到或者操作 B 用户的隐私内容」,如果你的系统中还有权限控制就更加需要小心了。所以每一个请求都需要做 userid 的判断 以下是一段有漏洞的后端示意代码: // ctx 为请求的 context 上下文let msgId = ctx.params.msgId;mysql.query('SELECT FROM msg_table WHERE msg_id = ?',[msgId]); 以上代码是任何人都可以查询到任何用户的消息,只要有 msg_id 就可以,这就是比较典型的越权漏洞,需要如下这么改进一下: // ctx 为请求的 context 上下文let msgId = ctx.params.msgId;let userId = ctx.session.userId; // 从会话中取出当前登陆的 userIdmysql.query('SELECT FROM msg_table WHERE msg_id = ? AND user_id = ?',[msgId, userId]); 嗯,大概就是这个意思,如果有更严格的权限控制,那在每个请求中凡是涉及到数据库的操作都需要先进行严格的验证,并且在设计数据库表的时候需要考虑进 userId 的账号关联以及权限关联。 目录遍历漏洞 目录遍历漏洞指通过在 URL 或参数中构造 …/,./ 和类似的跨父目录字符串的 ASCII 编码、unicode 编码等,完成目录跳转,读取操作系统各个目录下的敏感文件,也可以称作「任意文件读取漏洞」。 目录遍历漏洞原理:程序没有充分过滤用户输入的 …/ 之类的目录跳转符,导致用户可以通过提交目录跳转来遍历服务器上的任意文件。使用多个… 符号,不断向上跳转,最终停留在根 /,通过绝对路径去读取任意文件。 目录遍历漏洞几个示例和测试,一般构造 URL 然后使用浏览器直接访问,或者使用 Web 漏洞扫描工具检测,当然也可以自写程序测试。 http://somehost.com/../../../../../../../../../etc/passwdhttp://somehost.com/some/path?file=../../Windows/system.ini 借助 %00 空字符截断是一个比较经典的攻击手法http://somehost.com/some/path?file=../../Windows/system.ini%00.js 使用了 IIS 的脚本目录来移动目录并执行指令http://somehost.com/scripts/..%5c../Windows/System32/cmd.exe?/c+dir+c:\ 防御 方法就是需要对 URL 或者参数进行 …/,./ 等字符的转义过滤。 物理路径泄漏 物理路径泄露属于低风险等级缺陷,它的危害一般被描述为「攻击者可以利用此漏洞得到信息,来对系统进一步地攻击」,通常都是系统报错 500 的错误信息直接返回到页面可见导致的漏洞。得到物理路径有些时候它能给攻击者带来一些有用的信息,比如说:可以大致了解系统的文件目录结构;可以看出系统所使用的第三方软件;也说不定会得到一个合法的用户名(因为很多人把自己的用户名作为网站的目录名)。 防止这种泄漏的方法就是做好后端程序的出错处理,定制特殊的 500 报错页面。 源码暴露漏洞 和物理路径泄露类似,就是攻击者可以通过请求直接获取到你站点的后端源代码,然后就可以对系统进一步研究攻击。那么导致源代码暴露的原因是什么呢?基本上就是发生在服务器配置上了,服务器可以设置哪些路径的文件才可以被直接访问的,这里给一个 koa 服务起的例子,正常的 koa 服务器可以通过 koa-static 中间件去指定静态资源的目录,好让静态资源可以通过路径的路由访问。比如你的系统源代码目录是这样的: |- project|- src|- static|- ...|- server.js 你想要将 static 的文件夹配成静态资源目录,你应该会在 server.js 做如下配置: const Koa = require('koa');const serve = require('koa-static');const app = new Koa();app.use(serve(__dirname + '/project/static')); 但是如果配错了静态资源的目录,可能就出大事了,比如: // ...app.use(serve(__dirname + '/project')); 这样所有的源代码都可以通过路由访问到了,所有的服务器都提供了静态资源机制,所以在通过服务器配置静态资源目录和路径的时候,一定要注意检验,不然很可能产生漏洞。 最后,希望 Web 开发者们能够管理好自己的代码隐私,注意代码安全问题,比如不要将产品的含有敏感信息的代码放到第三方外部站点或者暴露给外部用户,尤其是前端代码,私钥类似的保密性的东西不要直接输出在代码里或者页面中。也许还有很多值得注意的点,但是归根结底还是绷住安全那根弦,对待每一行代码都要多多推敲。 请关注我的订阅号 本篇文章为转载内容。原文链接:https://blog.csdn.net/MrCoderStack/article/details/88547919。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-03 14:51:12
493
转载
JQuery插件下载
...遵循最佳实践,确保搜索引擎能够正确解析和索引菜单结构,有助于提升网站在搜索结果中的可见性。总之,jQuery响应式多级导航菜单插件是一个强大的工具,为开发人员提供了创建高效、美观且适应各种设备环境的导航解决方案。无论是桌面端还是移动端,都能提供一致且优化的用户体验,是现代响应式网站不可或缺的组件。 点我下载 文件大小:473.00 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-08-20 10:38:49
48
本站
HBase
...景。你会如何选型? mysql、mongo、elasticsearch等完全可以,当然,你肯定不会忘了hbase。“海量数据存储”的海量,非hbase莫属。 几种常见数据库的对比如下: 2. hbase应用场景 如果你的查询场景就是根据key拿到结果,没有其它的过滤筛选条件,这就是经典的“点查”,“点查”在hbase上是非常合适的。 当然,除了hbase,还有很多适合“点查”的数据库,比如aws的dynamodb、google的bigtable。但一般公司或自用站点,还是用hbase更合适。 不用很纠结技术选型,hbase依旧非常经典,而且版本也在源源不断的迭代,适合自己的就是最好的。 3. hbase安装依赖 如果你的机器资源不足或只有一两台机器的站点,那么不建议使用hbase,因为它严格依赖hdfs存储系统和hadoop计算架构,以及zookeeper。 如果你的机器配置不高,在安装完这一些,还没安装完hbase的时候,内存就已经被占据了不少了。 4. 场景解析 本篇文章更关注于选型的探讨,不涉及原理的解析。所以当什么场景下应该会使用到hbase,我们再来回顾一下。 hbase的查询方式是通过rowkey做交互。所以,如果你的查询能够抽象为用rowkey直接获取,那么就适合用hbase查询。 这里的rowkey不仅仅是一个id或uuid,它甚至可以是几个字段组成的一个有限长度的字符串,比如“zhangsan-18-beijing”都是可以的。 但是,hbase不能带有其它的filter,比如你要过滤age<18,虽然可以使用hbase的一些协处理器实现,但性能会十分让你惊讶。性能是不好的。 所以,如果你的查询能够抽象为有意义的rowkey,那直接用hbase存储和查询是没有问题的。而且要注意rowkey的长度和散列,太长的rowkey会带来性能的损失,不具备散列特性的rowkey会带来热点问题。 5 自定义过滤下的hbase 从本篇文章的第一小节可以看到,极好的一列出现了三位选手:hbase、redis和elasticsearch 大数据情况下,或海量数据场景下,咱就先让redis休个假吧。如果你的数据较为海量,使用elasticsearch+hbase的搜索存储架构是非常好的选择。 这里引用阿里云的一篇文章:https://developer.aliyun.com/article/941191 6 总结 只有点查的场景,你只需要使用hbase。 只有搜索的场景,其实你完全可以只使用elasticsearch。 但当数据量不断扩大,而且参数搜索的字段可能只是所有字段的一部分,你不妨使用elasticsearch+hbase架构。搜索字段放elasticsearch,需要拿出来数据计算或展示的字段放hbase。各司其职,索引库+存储库分离。 索引库+存储库这个思想也不是为elasticsearch+hbase特定准备的,比如索引库你可以替换为lucene或solr,存储库可以替换为casandra或berkeleydb等都是可以的。任意两个组件都可以组合。
2024-01-27 18:28:18
557
admin-tim
MySQL
mysqldump , mysqldump是MySQL数据库自带的一种用于备份数据库的命令行工具,它可以将一个或多个MySQL数据库完整地导出为SQL脚本文件,包括表结构、数据记录以及触发器、存储过程等数据库对象。在文章中,用户通过执行mysqldump命令并指定用户名、密码和要导出的数据库名,将源MySQL服务器上的数据导出到本地的一个.sql文件中。 SQL文件 , SQL(Structured Query Language)文件是一种包含一系列SQL语句的文本文件,这些语句可以用来创建数据库表结构、插入数据、更新数据或者执行其他数据库操作。在本文上下文中,通过使用mysqldump工具从源MySQL数据库导出的数据被保存在一个SQL文件中,然后可以在目标MySQL服务器上通过执行该文件中的SQL语句来恢复或导入数据。 数据库服务器 , 数据库服务器是一种专门运行数据库管理系统软件,并负责存储、处理和管理大量结构化数据的计算机系统。在迁移MySQL数据的过程中,涉及到至少两个数据库服务器,即源数据库服务器(需要从其上导出数据)和目标数据库服务器(需要将数据导入到其中)。数据库服务器通常具备高可用性、容错性和可扩展性等特点,以满足不同规模的应用场景需求。
2023-02-12 10:44:09
70
数据库专家
Java
...每个元素可以通过两个索引(行索引和列索引)来访问。例如,在文章中的情境下,二维矩阵是指一个存储了多行多列数据的数组,通过删除指定数量的行和列可以改变其原有结构。 嵌套循环 , 嵌套循环是程序设计中的一种控制结构,它指的是在一个循环内部包含另一个或多个循环。在Java代码片段中,嵌套循环被用来遍历二维矩阵的所有元素。外部循环对应矩阵的行数,内部循环对应矩阵的列数。结合本文内容,嵌套循环用于依次检查并筛选出不需要删除的矩阵元素,然后将它们复制到新创建的矩阵中。 稀疏矩阵 , 稀疏矩阵是指非零元素相对较少的矩阵,即大部分元素都是零值。在处理大规模数据时,如果矩阵的稀疏度较高,则可以采用特殊的数据结构(如邻接表、压缩稀疏列等)来高效存储和计算,从而节省内存空间并提升运算速度。虽然文章并未直接提到稀疏矩阵,但在实际应用中,特别是Google Research团队的研究成果,对稀疏矩阵的高效运算有着重要影响,因为这能显著提高推荐系统、自然语言处理等领域模型训练的效率。
2023-02-17 11:26:36
284
算法侠
HTML
...信息密度高的元素,其创建和优化对于提升用户体验至关重要。随着Web技术的快速发展,HTML5和CSS3为表格设计提供了更多可能。例如,可以使用新的语义标签如为表格添加标题以提高可访问性,同时结合CSS Grid布局实现复杂的数据展示结构。 近日,W3C发布了最新的无障碍网页内容规范(WCAG 2.2),对数据表格的可读性和操作性提出了更严格的要求,强调了使用ARIA角色属性(role="rowheader"、role="columnheader")来增强屏幕阅读器对表格的理解能力。此外,Google也于近期更新了搜索算法,优先索引遵循无障碍标准的网页,这意味着正确构建和优化表格不仅有助于提升用户体验,还能影响网站在搜索引擎中的排名。 深入探究表格的设计实践,Bootstrap等前端框架提供了丰富的预设样式和交互效果,使得开发者无需从零开始编写CSS代码即可轻松定制响应式表格。与此同时,前端库如ag-Grid、DataTables等提供了强大的表格功能扩展,如分页、排序、过滤以及动态加载大数据量等高级特性,极大地提升了数据密集型应用的性能表现和用户体验。 综上所述,无论是基础的HTML表格构建,还是借助现代Web技术和框架进行进阶优化,都应当关注最新标准、趋势及最佳实践,以确保所创建的表格既能满足信息展示需求,又能适应不同用户群体的访问习惯和设备环境,从而打造更加友好且高效的网页界面。
2023-02-13 13:05:09
485
码农
Python
...修改集合内容可能导致索引错误、丢失数据等问题。为解决此类问题,Python提供了多种方法,如使用列表推导式创建新列表代替原列表,或者先记录待删除项,遍历结束后再统一执行删除操作。此外,还可以考虑采用更为安全的数据结构,如集合或生成器表达式,在某些场景下能有效避免迭代过程中的状态改变问题。 另外,Python官方文档也强调了对于可变对象在循环中正确操作的重要性,并提供了一系列最佳实践建议。例如,《Effective Python》一书中提到,“在对容器元素进行迭代的同时对其进行修改是一种反模式,应尽量避免”。这一观点与我们之前分析“外星人入侵”游戏bug时得出的结论相吻合,再次提醒我们在实际编程中关注细节,遵循正确的编程范式,以提升代码质量和程序稳定性。
2023-12-10 11:15:11
201
昨夜星辰昨夜风_t
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
tar -cvzf archive.tar.gz file_or_directory
- 创建gzip压缩格式的tar归档包。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"