前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Flink ResourceManage...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...工具可以帮助您管理、故障分析和诊断你的Windows系统和应用程序. 如果您有关于如何使用这些工具的问题,请访问sysinternals论坛从其他用户和我们的团队获取解答和帮助. 该工具包括: AccessChk 这个工具为您显示指定至档案、登录机码或 Windows 服务的使用者或群组之存取。 AccessEnum 这个简单又具有超高安全性的工具,会让您知道拥有对您系统目录、档案及登录机码的存取之对象和方式。用它来寻找您权限下的安全性漏洞。 AdRestore 取消删除 Server 2003 Active Directory 物件。 BgInfo 这个可完全设定的程式,会自动产生包括含有 IP 位址、电脑名称,和网路介面卡等等重要资讯的桌面背景。 BlueScreen 这个萤幕保护程式不只将「蓝色萤幕」(Blue Screens) 模仿得维妙维肖,也能模仿重新开机 (需使用 CHKDSK 完成),而且在 Windows NT 4、Windows 2000、Windows XP、Server 2003 和 Windows 9x 中皆能执行。 CacheSet CacheSet 是一种能让您使用 NT 提供的功能来控制 Cache Manager 的工作组大小。除了和 NT 所有版本相容之外,还提供原始程式码。 检视系统时钟的解析度,同时也是计时器解析度的最大值。 Contig 希望能够快速地将常用的档案进行磁碟重组吗?使用 Contig 最佳化个别档案,或是建立新的连续档案。 Ctrl2cap 这是一种核心模式驱动程式,展示键盘输入筛选只在键盘类别驱动程式之上,目的是为了将大写锁定按键转换至控制按键。这个层级的筛选允许在 NT 「发现」按键之前,先进行转换和隐藏按键。包括完整的来源。此外,Ctrl2cap 还会显示如何使用 NtDisplayString() 将讯息列印至初始化的蓝色萤幕。 DebugView Sysinternals 的另一个首开先例:这个程式会拦截分别由 DbgPrint 利用装置驱动程式,和 OutputDebugString 利用 Win32 程式所做的呼叫。它能够在您的本机上或跨往际往路,在不需要作用中的侦错工具情况下,检视和录制侦错工作阶段输出。 DiskExt 显示磁碟区磁碟对应。 Diskmon 这个公用程式会撷取全部的硬碟活动,或是提供系统匣中的软体磁碟活动指示器的功能。 DiskView 图形化磁区公用程式。 Du 依目录检视磁碟使用状况。 EFSDump 检视加密档案的资讯。 Filemon 这个监控工具让您即时检视所有档案系统的活动。 Handle 这个易於操纵的命令列公用程式能够显示档案开启的种类和使用的处理程序等更多资讯。 Hex2dec 十六进位数字和十进位数字相互转换。 Junction 建立 Win2K NTFS 符号连结。 LDMDump 倾印逻辑磁碟管理员的磁碟上之资料库内容,其中描述 Windows 2000 动态磁碟分割。 ListDLLs 列出所有目前载入的 DLL,包括载入位置和他们的版本编号。2.0 版列印载入模组的完整路径名称。 LiveKd 使用 Microsoft 核心侦错工具检视即时系统。 LoadOrder 检视在您 WinNT/2K 系统上载入装置的顺序。 LogonSessions 列出系统上的作用中登入工作阶段。 MoveFile 允许您对下一次开机进行移动和删除命令的排程。 NTFSInfo 使用 NTFSInfo 检视详细的 NTFS 磁碟区资讯,包括主档案表格 (MFT) 和 MFT 区的大小和位置,还有 NTFS 中继资料档案的大小。 PageDefrag 将您的分页档和登录 Hive 进行磁碟重组。 PendMoves 列举档案重新命名的清单,删除下次开机将会执行的命令。 Portmon 使用这个进阶的监视工具进行监视序列和平行连接埠活动。它不仅掌握所有标准的序列和平行 IOCTL,甚至会显示传送和接收的资料部份。Version 3.x 具有强大的新 UI 增强功能和进阶的筛选功能。 Process Monitor 即时监控档案系统、登录、程序、执行绪和 DLL 活动。 procexp 任务管理器,这个管理器比windows自带的管理器要强大方便的很多,建议替换自带的任务管理器(本人一直用这个管理器,很不错)。此工具也有汉化版,fans可以自己搜索下载 ProcFeatures 这个小应用程式会描述「实体位址扩充」的处理器和 Windows 支援,而没「没有执行」缓冲区溢位保护。 PsExec 以有限的使用者权限执行处理程序。 PsFile 检视远端开启档案有哪些。 PsGetSid 显示电脑或使用者的 SID。 PsInfo 取得有关系统的资讯。 PsKill 终止本机或远端处理程序。 PsList 显示处理程序和执行绪的相关资讯。 PsLoggedOn 显示使用者登录至一个系统。 PsLogList 倾印事件记录档的记录。 PsPasswd 变更帐户密码。 PsService 检视及控制服务。 PsShutdown 关机及选择重新启动电脑。 PsSuspend 暂停及继续处理程序。 PsTools PsTools 产品系列包括命令列公用程式,其功能有列出在本机或远端电脑上执行的处理程序、远端执行的处理程序、重新开机的电脑和倾印事件记录等等。 RegDelNull 扫描并删除登录机码,这些登录机码包括了标准登录编辑工具无法删除的内嵌式 Null 字元。 RegHide 建立名为 "HKEY_LOCAL_MACHINE\Software\Sysinternals\Can't touch me!\0" 并使用原生 API 的金钥,而且会在此金钥内建立一个值。 Regjump 跳至您在 Regedit 中指定的登录路径。 Regmon 这个监视工具让您即时看到全部的登录活动。 RootkitRevealer 扫描您系统上 Rootkit 为基础的恶意程式码。 SDelete 以安全的方法覆写您的机密档案,并且清除因先前使用这个 DoD 相容安全删除程式所删除档案後而释放的可用空间。包括完整的原始程式码。 ShareEnum 扫描网路上档案共用并检视其安全性设定,来关闭安全性漏洞。 Sigcheck 倾印档案版本资讯和验证系统上的影像皆已完成数位签章。 Strings 搜寻 binaryimages 中的 ANSI 和 UNICODE 字串。 Sync 将快取的资料清除至磁碟。 TCPView 作用中的通讯端命令列检视器。 VolumeId 设定 FAT 或 NTFS 磁碟区 ID。 Whois 看看谁拥有一个网际网路位址。 Winobj 最完整的物件管理员命名空间检视器在此。 ZoomIt 供萤幕上缩放和绘图的简报公用程式。 转自:http://www.360doc.com/content/15/0323/06/20545288_457293504.shtml 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_33515088/article/details/80721846。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-22 15:44:41
102
转载
Kafka
...是为了实现负载均衡和故障恢复。比如说,如果有两个小伙伴在一个小组里,系统就会帮他们自动分配任务(也就是主题的分区),这样大家就不会抢来抢去,重复干同样的活儿啦!而且呢,要是有个消费者挂掉了或者出问题了,其他的消费者就会顶上来,接手它负责的那些分区,接着干活儿,完全不受影响。 --- 3. 组织结构 Kafka的大脑与四肢 3.1 集群(Cluster):Kafka的心脏 Kafka集群是由多个Broker组成的,Broker是Kafka的核心组件,负责存储和转发消息。一个Broker就是一个节点,多个Broker协同工作,形成一个分布式的系统。 java // 启动Kafka Broker nohup kafka-server-start.sh config/server.properties & Broker的数量决定了系统的容错能力和性能。其实啊,通常咱们都会建议弄三个Broker,为啥呢?就怕万一有个家伙“罢工”了,比如突然挂掉或者出问题,别的还能顶上,整个系统就不耽误干活啦!不过,Broker的数量也不能太多,否则会增加管理和维护的成本。 3.2 Zookeeper:Kafka的大脑 Zookeeper是Kafka的协调器,它负责管理集群的状态和配置。没有Zookeeper,Kafka就无法正常运作。比如说啊,新添了个Broker(也就是那个消息中转站),Zookeeper就会赶紧告诉其他Broker:“嘿,快看看这位新伙伴,更新一下你们的状态吧!”还有呢,要是某个分区的老大换了(Leader切换了),Zookeeper也会在一旁默默记好这笔账,生怕漏掉啥重要信息似的。 java // 启动Zookeeper nohup zookeeper-server-start.sh config/zookeeper.properties & 虽然Zookeeper很重要,但它也有一定的局限性。比如,它可能会成为单点故障,影响整个系统的稳定性。因此,近年来Kafka也在尝试去掉对Zookeeper的依赖,开发了自己的内部协调机制。 3.3 日志(Log):Kafka的四肢 日志是Kafka存储消息的地方,每个分区对应一个日志文件。嘿,这个日志设计可太聪明了!它用的是顺序写入的方法,就像一条直线往前跑,根本不用左顾右盼,写起来那叫一个快,效率直接拉满! java // 查看日志路径 cat config/server.properties | grep log.dirs 日志的大小可以通过参数log.segment.bytes来控制。默认值是1GB,你可以根据实际情况调整。要是日志文件太大了,查个东西就像在大海捞针一样慢吞吞的;但要是弄得太小吧,又老得换新的日志文件,麻烦得很,还费劲。 --- 4. 实战演练 从零搭建一个Kafka环境 说了这么多理论,咱们来实际操作一下吧!假设我们要搭建一个简单的Kafka环境,用来收集用户的登录日志。 4.1 安装Kafka和Zookeeper 首先,我们需要安装Kafka和Zookeeper。可以从官网下载最新的二进制包,解压后按照文档配置即可。 bash 下载Kafka wget https://downloads.apache.org/kafka/3.4.0/kafka_2.13-3.4.0.tgz 解压 tar -xzf kafka_2.13-3.4.0.tgz 4.2 创建主题和消费者 接下来,我们创建一个名为login_logs的主题,并启动一个消费者来监听消息。 bash 创建主题 bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 3 --topic login_logs 启动消费者 bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic login_logs --from-beginning 4.3 生产消息 最后,我们可以编写一个简单的Java程序来生产消息。 java import org.apache.kafka.clients.producer.KafkaProducer; import org.apache.kafka.clients.producer.ProducerRecord; import java.util.Properties; public class KafkaProducerExample { public static void main(String[] args) { Properties props = new Properties(); props.put("bootstrap.servers", "localhost:9092"); props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer"); props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); KafkaProducer producer = new KafkaProducer<>(props); for (int i = 0; i < 10; i++) { producer.send(new ProducerRecord<>("login_logs", "key" + i, "value" + i)); } producer.close(); } } 这段代码会向login_logs主题发送10条消息,每条消息都有一个唯一的键和值。 --- 5. 总结 Kafka的魅力在于细节 好了,到这里咱们的Kafka之旅就告一段落了。通过这篇文章,我希望大家能更好地理解Kafka的命名规范和组织结构。Kafka为啥这么牛?因为它在设计的时候真是把每个小细节都琢磨得特别透。就像给主题起名字吧,分个区啦,还有消费者组怎么配合干活儿,这些地方都能看出人家确实是下了一番功夫的,真不是随便凑合出来的! 当然,Kafka的学习之路还有很多内容需要探索,比如监控、调优、安全等等。其实我觉得啊,只要你把命名的规矩弄明白了,东西该怎么放也心里有数了,那你就算是走上正轨啦,成功嘛,它就已经在向你招手啦!加油吧,朋友们! --- 希望这篇文章对你有所帮助,如果有任何疑问,欢迎随时交流哦!
2025-04-05 15:38:52
95
彩虹之上
转载文章
...I进行网络策略管理、故障排查等,Red Hat官方博客最近发布了一篇教程,提供了从理论到实践的全面指南。 5. 学术研究:《计算机网络》期刊最新刊载的一篇研究报告,针对开源SDN控制器(包括OpenDaylight)的安全性和性能进行了深入剖析,并提出了提升其可靠性的若干改进方案,这对于从事相关领域研究和技术开发的专业人士具有很高的参考价值。 以上这些资源不仅可以帮助您跟踪了解OpenDaylight与OpenStack集成的最新进展,还能让您洞悉整个SDN领域的前沿趋势和发展方向,从而更好地指导您的项目实施和技术创新。
2023-06-08 17:13:19
294
转载
Flink
...理:在Apache Flink中切换between Batch and Streaming modes 批处理和流处理是大数据处理中的两种核心模式,而Apache Flink以其独特的设计理念实现了批与流的一体化处理。本文将深入探讨Flink如何无缝切换并高效执行批处理和流处理任务,并通过丰富的代码示例帮助你理解这一机制。 1. Apache Flink 批流一体的统一计算引擎 (1)Flink的设计哲学 Apache Flink的核心理念是将批视为一种特殊的流——有限流,从而实现了一种基于流处理的架构去同时处理无限流数据和有界数据集。这种设计简直让开发者们乐开了花,从此以后再也不用头疼选择哪种处理模型了。无论是对付那些堆积如山的历史数据,还是实时流动的数据流,都能轻松驾驭,只需要同一套API就能搞定编写工作。这样一来,不仅开发效率噌噌噌地往上飙,连资源利用率也得到了前所未有的提升,真可谓是一举两得的超级福利! (2)批流一体的实现原理 在Flink中,所有的数据都被视作数据流,即便是静态的批数据,也被看作是无界流的一个切片。这就意味着,批处理的任务其实可以理解为流处理的一个小弟,只需要在数据源那里设定一个特定的边界条件,就一切搞定了。这么做的优点就在于,开发者能够用一个统一的编程套路,来应对各种不同的应用场景,轻轻松松实现批处理和流处理之间的无缝切换。就像是你有了一个万能工具箱,甭管是组装家具还是修理电器,都能游刃有余地应对,让批处理和流处理这两种模式切换起来就像换扳手一样自然流畅。 2. 切换批处理与流处理模式的实战演示 (1)定义DataStream API java import org.apache.flink.api.common.functions.MapFunction; import org.apache.flink.streaming.api.datastream.DataStream; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; public class BatchToStreamingExample { public static void main(String[] args) throws Exception { // 创建流处理环境 final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // 假设这是批处理数据源(实际上Flink也支持批处理数据源) DataStream text = env.fromElements("Hello", "World", "Flink", "is", "awesome"); // 流处理操作(映射函数) DataStream mappedStream = text.map(new MapFunction() { @Override public String map(String value) { return value.toUpperCase(); } }); // 在流处理环境中提交作业(这里也可以切换到批处理模式下运行) env.execute("Batch to Streaming Example"); } } (2)从流处理模式切换到批处理模式 上述代码是在流处理环境下运行的,但实际上,只需简单改变数据源,我们就可以轻松地处理批数据。例如,我们可以使用readTextFile方法读取文件作为批数据源: java DataStream text = env.readTextFile("/path/to/batch/data.txt"); 在实际场景中,Flink会根据数据源的特性自动识别并调整内部执行策略,实现批处理模式下的优化执行。 3. 深入探讨批流一体的价值 批处理和流处理模式的无缝切换,不仅简化了编程模型,更使资源调度、状态管理以及故障恢复等底层机制得以统一,极大地提高了系统的稳定性和性能表现。同时呢,这也意味着当业务需求风吹草动时,咱能更灵活地扭动数据处理策略,不用大费周章重构大量代码。说白了,就是“一次编写,到处运行”,真正做到灵活应变,轻松应对各种变化。 总结来说,Apache Flink凭借其批流一体的设计理念和技术实现,让我们在面对复杂多变的大数据应用场景时,拥有了更为强大且高效的武器。无论你的数据是源源不断的实时流,还是静待处理的历史批数据,Flink都能游刃有余地完成使命。这就是批流一体的魅力所在,也是我们深入探索和研究它的价值所在。
2023-04-07 13:59:38
504
梦幻星空
Flink
一、引言 Flink是一个强大的流处理框架,它可以帮助我们高效地处理海量数据。在用Flink干活儿的时候,咱们免不了会碰到各种幺蛾子,其中最多人吐槽的就是状态存储这茬儿。好嘞,那咱们今天就唠唠嗑,说说这怎么挑个合适的State Backend吧! 二、什么是State Backend? 在Flink中,我们经常需要保存一些中间结果或者上下文信息,这就是所谓的状态。而这些状态的存储方式就被称为State Backend。Flink提供了多种不同的State Backend,包括RocksDB、FsState等。 三、选择State Backend的原则 当我们面临选择State Backend的问题时,我们需要遵循以下几个原则: 3.1 稳定性 这是最重要的一个原则。咱们得挑一个超级稳定的State Backend,这样咱的应用才能稳如磐石,不会因为State Backend抽风而突然罢工。 3.2 性能 性能也是一个重要的考虑因素。我们得挑一个超级给力的State Backend,这样一来,咱们的应用运行起来就能溜得飞起,效率杠杠的。 3.3 可扩展性 随着我们的应用规模的扩大,我们需要选择一个可扩展性强的State Backend,这样可以满足我们未来的需求。 四、RocksDB State Backend RocksDB是一种高性能的键值对数据库,它是Google开源的一个项目。Flink提供了一个基于RocksDB的State Backend。 java ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); env.setStateBackend(new RocksDBStateBackend("/tmp/flink-rocksdb")); 五、FsState State Backend FsState是Flink提供的一个基于文件系统的State Backend。 java ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); env.setStateBackend(new FsStateBackend("/tmp/flink-fsstate")); 六、总结 选择合适的State Backend是一项非常重要的任务。咱们应该根据自身的实际需求和所处的环境条件,来挑个最适合的State Backend,就像选衣服要根据身材和天气一样,得找准那个最合拍的“款”。同时呢,咱们也得留意这么个事儿,就是各种State Backend各有各的好和不足。要想做出最合适的决定,就得先把这些家伙的脾性摸个透彻明白才行。 以上就是我对于如何选择合适的State Backend的一些理解和看法,希望能够对你有所帮助。如果你有任何问题或者想法,欢迎留言讨论。 七、尾声 Flink是一个强大且灵活的流处理框架,但是它的复杂性也给我们带来了一些挑战。我们需要不断地学习和探索,才能更好地利用它。在挑State Backend的时候,咱们得根据自身的实际情况和需求,像个精明的买家那样,选出最对胃口、最适合的那个选项。
2023-07-04 20:53:04
508
海阔天空-t
Flink
...如何在Apache Flink中定义一个数据源——Source。Flink,这个强大的流处理工具,可厉害了!它让我们能够随心所欲地定义各种数据源。比如说,文件系统里存的那些数据、数据库里躺着的各种记录,甚至是从网络上飞来飞去的信息,全都可以被咱们轻松纳入囊中,没有啥太大的限制! 二、什么是Source? 在Flink中,Source是一个用于产生数据并将其转换为适合流处理的形式的组件。它是一个特殊的Operator,其输入是0或多个其他Operators的输出,而其输出则是进一步处理的数据流。 三、如何在Flink中定义一个数据源? 定义一个Source非常简单,只需要遵循以下几个步骤: 第一步:选择你的数据源 首先,你需要确定你要从哪里获取数据。这完全可能是个文件夹、数据库什么的,也可能是网络呀,或者实时传感器这类玩意儿,反正只要是能提供数据的来源,都行! 第二步:创建Source类 接下来,你需要创建一个Source类来表示你的数据源。这个类需要继承自org.apache.flink.api.common.functions.SourceFunction接口,并实现run方法。 例如,如果你的数据源是从一个文件系统中读取的文本文件,你可以创建一个这样的Source类: java public class MySource implements SourceFunction { private boolean isRunning = true; @Override public void run(SourceContext ctx) throws Exception { File file = new File("/path/to/my/file.txt"); try (BufferedReader reader = new BufferedReader(new FileReader(file))) { String line; while ((line = reader.readLine()) != null && isRunning) { ctx.collect(line); } } } @Override public void cancel() { isRunning = false; } } 在这个例子中,我们的Source类MySource会从指定路径的文件中读取每一行并发送给下游的Operators进行处理。 第三步:注册Source到StreamGraph 最后,你需要将你的Source注册到一个StreamGraph中。你可以通过调用StreamExecutionEnvironment.addSource方法来完成这个操作。 例如: java StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); DataStream dataStream = env.addSource(new MySource()); 四、总结 以上就是我们在Flink中定义一个数据源的基本步骤。当然啦,实际情况可能还会复杂不少,比如说你可能得同时对付多个数据来源,或者先给数据做个“美容”(预处理)啥的。不过,只要你把基础的概念和技术都玩得溜溜的,这些挑战对你来说就都不是事儿,你可以灵活应对,轻松解决。 五、结语 我希望这篇文章能帮助你更好地理解和使用Flink中的Source。如果你有任何问题或者想要分享你的经验,欢迎留言讨论。让我们一起学习和进步! 六、附录 参考资料 1. Apache Flink官方文档 https://ci.apache.org/projects/flink/flink-docs-latest/ 2. Java 8 API文档 https://docs.oracle.com/javase/8/docs/api/ 3. Stream Processing with Flink: A Hands-on Guide by Kostas Tsichlas and Thomas Hotham (Packt Publishing, 2017).
2023-01-01 13:52:18
405
月影清风-t
Flink
Flink on YARN部署与资源管理策略:一次深度探索之旅 1. 引言 Apache Flink,作为一款开源的流处理和批处理大数据框架,以其高效、灵活的特点深受开发者喜爱。实际上,很多工程师都非常关心一个核心问题,那就是如何在拥有大量机器的集群环境下,巧妙地借助YARN(这个资源协商小能手)来把Flink任务部署得妥妥当当,同时又能把各种资源调配管理得井井有条。本文将带领大家深入探讨Flink on YARN的部署方式,并通过实例代码揭示其背后的资源配置策略。 2. Flink on YARN部署初探 2.1 部署原理 当我们选择在YARN上运行Flink时,实质上是将Flink作为一个YARN应用来部署。YARN就像个大管家,它会专门给Flink搭建一个叫做Application Master的“指挥部”。这个“AM”呢,就负责向YARN这位资源大佬申请干活所需要的“粮草物资”,然后根据Flink作业的具体需求,派遣出一队队TaskManager“小分队”去执行实际的计算任务。 bash 启动Flink作业在YARN上的Application ./bin/flink run -m yarn-cluster -yn 2 -ys 1024 -yjm 1024 -ytm 2048 /path/to/your/job.jar 上述命令中,-yn指定了TaskManager的数量,-ys和-yjm分别设置了每个容器的内存大小和Application Master的内存大小,而-ytm则定义了每个TaskManager的内存大小。 2.2 配置详解 - -m yarn-cluster 表示在YARN集群模式下运行Flink作业。 - -yn 参数用于指定TaskManager的数量,可以根据实际需求调整以适应不同的并发负载。 - -ys、-yjm 和 -ytm 则是针对YARN资源的细致调控,确保Flink作业能在合理利用集群资源的同时,避免因资源不足而导致的性能瓶颈或OOM问题。 3. 资源管理策略揭秘 3.1 动态资源分配 Flink on YARN支持动态资源分配,即在作业执行过程中,根据当前负载情况自动调整TaskManager的数量。这种策略极大地提高了资源利用率,特别是在应对实时变化的工作负载时表现突出。 3.2 Slot分配机制 在Flink内部,资源被抽象为Slots,每个TaskManager包含一定数量的Slot,用来执行并行任务。在YARN这个大环境下,我们能够灵活掌控每个TaskManager能同时处理的任务量。具体来说,就是可以根据TaskManager内存的大小,还有咱们预先设置的slots数量,来精准调整每个TaskManager的承载能力,让它恰到好处地执行多个任务并发运行。 例如,在flink-conf.yaml中设置: yaml taskmanager.numberOfTaskSlots: 4 这意味着每个TaskManager将提供4个slot,也就是说,理论上它可以同时执行4个并发任务。 3.3 自定义资源请求 对于特殊的场景,如GPU密集型或者高CPU消耗的作业,我们还可以自定义资源请求,向YARN申请特定类型的资源。不过这需要YARN环境本身支持异构资源调度。 4. 结语 关于Flink on YARN的思考与讨论 理解并掌握Flink on YARN的部署与资源管理策略,无疑能够帮助我们在面对复杂的大数据应用场景时更加游刃有余。不过同时也要留意,实际操作时咱们得充分照顾到业务本身的特性,还有集群当前的资源状况,像玩拼图一样灵活运用这些策略。不断去微调、优化资源分配的方式,确保Flink能在YARN集群里火力全开,达到最佳效能状态。在这个过程中,我们会不断地挠头琢磨、动手尝试、努力改进,这恰恰就是大数据技术最吸引人的地方——它就像一座满是挑战的山峰,但每当你攀登上去,就会发现一片片全新的风景,充满着无限的可能性和惊喜。 通过以上的阐述和示例,希望你对Flink on YARN有了更深的理解,并在未来的工作中能更好地驾驭这一强大的工具。记住,技术的魅力在于实践,不妨现在就动手试一试吧!
2023-09-10 12:19:35
462
诗和远方
Apache Pig
...登录到Hadoop ResourceManager节点,查看yarn-site.xml文件中的相关配置,如yarn.resourcemanager.scheduler.class和yarn.scheduler.capacity.root.queues等属性,确保目标队列已被正确创建并启用。 4.2 确认权限问题 其次,检查提交作业的用户是否有权访问指定队列。在容量调度器这个系统里,每个队列都有一份专属的“通行证名单”——也就是ACL(访问控制列表)。为了保险起见,得确认一下您是不是已经在这份名单上,拥有对当前队列的访问权限。 4.3 正确指定队列名 在提交Pig作业时,请务必准确无误地指定队列名。例如,如果你在YARN中有名为"data_processing"的队列,应如此提交作业: shell pig -x mapreduce -param yarn_queue_name=data_processing script.pig 4.4 调整资源请求 最后,根据队列的实际资源配置情况,适当调整作业的资源请求(如vCores、内存等)。如果资源请求开得太大,即使队列里明明有资源并且存货充足,作业也可能抓不到自己需要的那份资源,导致无法顺利完成任务。 5. 总结与思考 理解并解决Pig作业在YARN上无法获取队列资源的问题,不仅需要我们熟悉Apache Pig和YARN的工作原理,更要求我们在实践中细心观察、细致排查。当你碰到这类问题的时候,不妨先从最基础的设置开始“摸底”,一步步地往里探索。同时,得保持像猫捉老鼠那样的敏锐眼神和逮住问题不放的耐心,这样你才能在海量数据这座大山中稳稳当当地向前迈进。毕竟,就像生活一样,处理大数据问题的过程也是充满挑战与乐趣的探索之旅。
2023-06-29 10:55:56
474
半夏微凉
转载文章
在解决虚拟机启动错误的问题时,内存完整性设置、Hyper-V服务状态以及系统级的Hypervisor配置是影响虚拟化环境稳定运行的关键因素。最近,随着Windows 11的更新,微软进一步优化了其内置的虚拟化平台,用户在使用第三方虚拟机软件(如VMware或VirtualBox)时可能会遇到更多兼容性问题。例如,启用Windows安全中心中的内存完整性功能可能导致非Hyper-V虚拟机无法启动。 近期,微软官方发布了关于如何在启用内存完整性功能的同时,确保其他虚拟机软件兼容性的最新指南。该指南建议用户在运行非Hyper-V虚拟化解决方案时,可尝试通过Windows设置中“设备安全性”选项暂时关闭内存完整性保护。此外,对于专业用户而言,深入理解并合理配置Windows Hypervisor Platform的各项参数也是至关重要的,这包括通过Powershell命令行工具对hypervisorlaunchtype进行灵活调整。 值得注意的是,部分IT专业媒体针对这一现象进行了深度解析和实战演示,指导用户如何在确保系统安全的前提下,充分挖掘硬件资源潜力以支持多类型虚拟机的共存与高效运行。同时,一些第三方虚拟机软件也在不断更新适配,力求在Windows 11等新环境下实现更稳定的性能表现。 综上所述,在处理虚拟机启动失败这类问题时,不仅需要了解基本的排查步骤,还需关注操作系统更新动态及第三方软件的兼容性改进,以便及时采取相应措施,避免潜在的冲突影响到日常的开发测试或生产环境的正常运行。
2023-02-22 23:03:19
177
转载
HTML
...致用户体验下降,经过排查发现是由于后台生成的HTML代码中图片src属性值未能动态更新所造成。这一实例再次提醒我们,即便是在动态生成内容的场景下,也要严格把控HTML代码质量,避免出现类似资源加载失败的现象。 总结来说,无论从基础的网页开发规范还是前沿的性能优化实践来看,深入理解和重视HTML代码编写中的细微之处,对于构建高质量、高性能的Web应用都具有重要意义。在日常开发工作中,定期进行代码审查,借助自动化工具检查标签闭合、资源引用等问题,将有助于减少因这类低级错误带来的用户界面故障,并有效提升整体项目的稳定性和用户体验。
2023-03-06 16:22:50
499
键盘勇士
MySQL
在深入理解了如何启动和停止MySQL服务后,我们还可以进一步探究数据库管理的更多实用技巧与最新动态。近日,MySQL 8.0版本推出了多项重大更新,包括增强安全性、性能优化以及对JSON数据类型支持的改进。对于企业级用户而言,掌握新版本特性并进行升级迁移,能够有效提升数据处理效率和安全性。 与此同时,随着云计算和容器化技术的发展,越来越多的企业选择将MySQL部署在如Docker或云服务器上。例如,AWS RDS(Amazon Relational Database Service)提供了一键式部署MySQL服务的功能,并集成了自动备份、故障切换等高级特性,大大简化了数据库运维工作。 另外,针对数据库优化及安全防护方面,定期审计MySQL日志、合理设置索引策略、采用SSL加密通信协议以保护数据传输安全等也是现代数据库管理员必备的知识点。近期,业界还提出了通过机器学习算法预测数据库性能瓶颈,提前进行资源调度的新方法,这一创新研究为MySQL数据库的高效稳定运行提供了新的可能。 综上所述,在实际操作MySQL服务的基础上,关注其最新版本特性、云端部署趋势以及数据库优化和安全领域的前沿动态,将有助于我们在日常工作中更高效地利用MySQL这一强大而灵活的关系型数据库管理系统。
2023-10-18 17:15:18
48
电脑达人
MySQL
...ter实现实时同步和故障切换,确保数据服务的连续性和可靠性。持续关注MySQL社区、官方文档和技术博客,将有助于紧跟技术潮流,不断提升自身数据库开发与管理能力。
2023-04-24 15:12:40
49
电脑达人
MySQL
...绍一下方式。 1. 启动终端或者命令行窗口 首先,启动终端(macOS或者Linux)或者命令行窗口(Windows)。 2. 进行查找 输入以下命令进行MySQL的查找: $ which mysql 如果你的电脑上已经已安装MySQL,这个命令会展示MySQL所在的地址。比如,如果你的MySQL位于/usr/bin/mysql,则展示: /usr/bin/mysql 3. 检查MySQL版本 我们还可以通过以下命令检查MySQL的版本: $ mysql -V 如果你的电脑上已经已安装MySQL,这个命令会展示MySQL的版本信息。比如,如果你的MySQL版本是5.7.12,则展示: mysql Ver 14.14 Distrib 5.7.12, for osx10.11 (x86_64) using EditLine wrapper 4. 安装MySQL 如果你的电脑上没有安装MySQL,你可以按照以下的步骤进行安装: (1)访问MySQL官方网站: https://dev.mysql.com/downloads/mysql 。 (2)下载MySQL Community Server。 (3)按照安装向导进行安装。 以上就是如何检查电脑上是否已安装MySQL的方式。如果你的电脑上没有安装MySQL,可以按照上述步骤进行安装。MySQL的安装过程比较简单,但对于初学者来说可能还是有些困难,因此还可参考MySQL官方网站上的安装教程。
2023-09-19 12:58:09
133
算法侠
Docker
...备份,确保即使在容器故障或环境迁移时,也能快速恢复应用程序状态。 此外,关于权限管理方面,容器安全领域的研究也持续深入。一些先进的容器安全工具,比如 Open Policy Agent (OPA) 和 Aqua Security,能够帮助用户精细控制容器内部文件系统的访问权限,从而有效防止因不当权限配置导致的数据泄漏或破坏。 综上所述,在实际运用 Docker 进行容器部署时,不仅需要理解基础的挂载状态原理与解决方法,还需紧跟技术发展步伐,结合最新存储方案及安全策略,以保证容器环境中数据的高效、安全存储与访问。
2023-01-13 17:03:08
524
逻辑鬼才
Apache Lucene
...是因为Lucene在启动的时候,得先建一个文件目录来存放索引和其它相关的那些文件啦。要是这个目录没影儿了,那就没法继续给Lucene走初始化流程了,这时候就得抛出个异常来提醒你。 例如,下面的代码尝试初始化一个名为test的Lucene实例: java Directory directory = FSDirectory.open(new File("test")); Analyzer analyzer = new StandardAnalyzer(); IndexWriterConfig config = new IndexWriterConfig(analyzer); IndexWriter writer = new IndexWriter(directory, config); 如果test目录不存在,这段代码就会抛出NoSuchDirectoryException异常。 解决NoSuchDirectoryException找不到目录异常的方法 为了解决这个问题,我们需要在初始化Lucene之前,先创建这个目录。我们可以使用Java的File类来创建这个目录。以下是一个示例: java try { File dir = new File("test"); if (!dir.exists()) { boolean success = dir.mkdir(); if (!success) { throw new RuntimeException("Failed to create directory."); } } Directory directory = FSDirectory.open(dir); Analyzer analyzer = new StandardAnalyzer(); IndexWriterConfig config = new IndexWriterConfig(analyzer); IndexWriter writer = new IndexWriter(directory, config); } catch (IOException e) { // Handle IOExceptions here. } 在这个示例中,我们首先检查test目录是否已经存在。如果不存在,我们就尝试创建它。如果创建失败,我们就抛出一个运行时异常。如果创建成功,我们就使用这个目录来初始化Lucene。 这样,即使test目录不存在,我们的代码也可以正常运行,并且能够创建一个新的目录。 结论 总的来说,NoSuchDirectoryException找不到目录异常是我们在使用Lucene时经常会遇到的问题。但是,只要我们掌握了正确的解决方案,就可以轻松地解决这个问题。在我们动手初始化Lucene之前,有个小窍门可以确保目录已经准备就绪,那就是用Java里的File类来亲手创建这个目录,这样一来,一切就能稳妥进行啦!这样一来,哪怕目录压根不存在,我们的代码也能稳稳地运行起来,并且顺手就把新的目录给创建了。
2023-01-08 20:44:16
463
心灵驿站-t
Docker
...目录中。 4. 通过启动新的实例并挂载数据目录的方式实现数据找回。 2. 利用数据卷备份 1. 在需要备份的数据卷所在的实例内,运用 tar 命令将数据卷的所有目录和文件备份为一个文件。 2. 将存档文件传输到安全的存储介质上,例如 NAS 服务器中。 3. 在发生信息遗失的情况下,从备份介质中找回存档文件。 4. 利用 docker volume create 命令创建一个新的数据卷,并挂载到实例中。 5. 利用 tar 命令将存档文件中的数据找回到新的数据卷中。 6. 挂载新的数据卷到有关实例中实现数据找回。 总之,在日常运用 Docker 时,一定要注意备份好数据,保护好自己的数据。
2023-04-14 09:42:03
301
码农
Kylin
...利用AI算法预测硬盘故障能够显著减少由于磁盘损坏造成的分区识别错误情况。通过实时分析硬盘的SMART数据,系统可以在硬件故障发生前提前预警,并提示用户备份数据及更换硬盘,从而有效避免磁盘问题带来的系统安装困扰。 此外,在资源管理方面,现代操作系统如Windows 11和macOS Monterey均提供了更智能的空间优化工具,可动态调整磁盘空间分配,以适应多样化的存储需求,减少因硬盘空间不足而导致的分区识别错误问题。 总之,了解并关注最新存储技术进展、操作系统特性以及相关的硬件维护知识,有助于我们更好地应对磁盘分区识别错误这一常见问题,确保系统安装过程顺利进行。同时,养成定期检查磁盘健康状况、合理规划存储空间的良好习惯,也是预防此类问题的有效手段。
2023-04-06 20:16:18
185
雪域高原-t
AngularJS
...将为你提供一种有效的排查及解决方案。 二、问题分析 当我们在 AngularJS 中尝试访问一个不存在的控制器时,就会出现上述错误。哎呀,出个小差错啦!它告诉我们正在找一个叫“0”的控制器,但是呢,你猜怎么着?这个控制器压根儿不存在~ 三、解决办法 1. 检查并确认控制名正确性 首先,我们需要检查我们的代码,并确保我们的控制器名称拼写无误且大小写正确。此外,我们也需要确认控制器所在的模块是否正确。 2. 确保控制器被正确注册 其次,我们需要确保我们的控制器已经被正确地注册到相应的模块中。要是我们没把控制器塞到模块里头,AngularJS 就压根儿认不出这个控制器来。 3. 使用 $controllerProvider 注册控制器: 另外,我们可以使用 $controllerProvider 来注册我们的控制器。这可以让我们在不修改现有代码的情况下为 AngularJS 添加新的控制器。 4. 调整路由规则 如果我们发现某个路由指向了一个不存在的控制器,那么我们应该调整我们的路由规则,以便它能够指向正确的控制器。 四、代码示例 javascript var myModule = angular.module('myApp', []); myModule.controller('MyCtrl', function($scope) { $scope.message = "Hello, World!"; }); angular.bootstrap(document, ['myApp']); 在这个例子中,我们定义了一个名为 MyCtrl 的控制器,并将其添加到了名为 myApp 的模块中。接下来,咱们就用 angular.bootstrap 这个神奇的小玩意儿启动咱们的应用程序,同时告诉它我们要用哪个模块来开启这场奇妙的旅程。 如果我们的控制器名称拼写错误或者大小写错误,那么 AngularJS 就无法找到这个控制器,从而抛出上述错误。 五、结论 总的来说,当我们遇到 AngularJS $rootScope 报错:“noctrl Controller '0' not found”的问题时,我们应该仔细检查我们的代码,确保我们的控制器名称正确,以及我们的控制器已经被正确地注册到相应的模块中。另外,咱们还可以琢磨一下用 $controllerProvider 这个家伙来注册咱们的控制器,或者灵活调整路由规则,确保它们能指向正确的控制器。这样理解就更接地气啦! 六、小结 以上就是我对 “AngularJS $rootScope 报错:“noctrl Controller '0' not found”的处理方式和思路的介绍。大家伙儿,我真心希望大家读完这篇文章后,以后在用 AngularJS 进行开发的时候,能绕过那些坑坑洼洼的小路,一路顺风顺水地把项目搞定,顺利完成任务。
2024-01-18 15:53:01
430
春暖花开-t
SeaTunnel
...连接出现异常时,需要排查并解决相关问题。 RabbitMQ , RabbitMQ 是一个开源的消息队列系统,基于 AMQP(高级消息队列协议)标准设计,常用于实现应用之间的解耦、异步处理和负载均衡。在本文中,RabbitMQ 是 SeaTunnel 连接的目标服务端,如果配置错误或网络环境问题,可能会导致 SeaTunnel 无法正常与其建立连接。 配置文件(如 rabbitmq.config 或 rabbitmq-env.conf) , 在 RabbitMQ 中,配置文件是存储服务器运行参数的重要文件。rabbitmq.config 文件用于设定 RabbitMQ 的核心配置选项,包括插件启用、虚拟主机设置等;rabbitmq-env.conf 则主要用于设置环境变量,影响 RabbitMQ 服务的启动行为及性能参数。在文章的情境下,这些配置文件若存在错误或不恰当的设置,将可能导致 SeaTunnel 在尝试连接 RabbitMQ 时发生异常。
2023-02-19 09:32:34
119
草原牧歌-t
ActiveMQ
...一旦Broker重新启动,所有的订阅信息就会像一阵风一样消失得无影无踪啦。 二、理解非持久订阅 首先,我们需要理解什么是非持久订阅。非持久订阅这个概念,其实就像你关注了一个实时更新的资讯频道。它的独特之处在于,每当有新鲜热辣的消息蹦出来时,它会立马拍一拍订阅者的小肩膀,告诉你“嗨,有新消息来了!”完全不需要你苦等或者反复刷新,是不是超贴心、超接地气儿?这就意味着,假如我们手里有一个非持久性的订阅,一旦有啥新鲜消息蹦跶过来,这位订阅的小伙伴会立马收到通知,一刻都不耽误! 这种订阅模式的一个优点是,它可以提供实时的通知。不过,你要知道,这种订阅模式有个特点,它不会把任何信息存到硬盘里头去。这样一来,每当Broker重新启动的时候,之前所有的订阅信息可就都消失得无影无踪了。 三、如何解决这个问题? 如果我们想要避免这种情况,我们可以考虑使用持久订阅。持久订阅是一种订阅模式,它的主要特点是,每当接收到一条新的消息时,都会将这条消息存储到磁盘上,然后通知订阅者。这样,即使Broker重启,我们也能够恢复之前的状态。 但是,使用持久订阅也有其缺点。首先,它会增加磁盘空间的需求。其次,如果网络出现问题,那么可能无法及时地接收到来自Broker的消息。 因此,选择使用哪种订阅模式,取决于我们的具体需求和环境。要是我们对信息的实时性特别讲究,或者说咱手头的磁盘空间足够充足,那么完全可以考虑采用非持久订阅这种方式。换种说法,要是我们追求消息传递的绝对靠谱,或者手头的磁盘空间实在紧张得要命,那咱们真应该琢磨琢磨使用持久订阅这种方式了。 四、结论 总的来说,我们在使用ActiveMQ时,需要注意非持久订阅的问题。我们应该根据自己的需求和环境,选择合适的订阅模式。同时,我们也应该了解ActiveMQ的其他功能,以便更好地利用这个强大的工具。 最后,我希望这篇文章能够帮助你更好地理解和使用ActiveMQ。如果你有任何疑问,欢迎随时联系我。我期待着与你的进一步交流!
2023-03-05 16:49:49
350
青春印记-t
RocketMQ
...由于网络延迟、服务器故障等原因导致消息无法及时传递给接收方,从而影响整个系统的稳定性和可靠性。 消息中间件 , 消息中间件是一种软件或服务,它允许分布式系统中的组件之间异步传输数据(即消息)。文中提及的RocketMQ就是一种分布式消息中间件,其作用是解耦系统组件、保证消息的可靠传递,并支持多种消息传输模式,如发布/订阅模式、点对点模式等。 死信队列 , 在消息处理过程中,死信队列是指专门用来存放那些由于某种原因无法正常被消费的消息的特殊队列。当消息由于消费者异常、超时未消费或其他不可预知的问题而无法正常处理时, RocketMQ可以将其转移至死信队列,以便于后续人工排查问题或采取其他特殊处理措施。
2023-03-14 15:04:18
159
春暖花开-t
Linux
... MySQL服务器未启动 首先,我们需要确保MySQL服务器已经成功启动。我们可以使用以下命令检查: bash sudo systemctl status mysql 如果输出显示为active (running),那么MySQL服务器已经启动。如果看到提示说inactive (dead)或者其他一些错误消息,那很可能意味着我们需要亲自动手启动MySQL服务器了。 解决方法是使用sudo systemctl start mysql命令来启动MySQL服务器。 二、问题二 MySQL数据库配置文件存在问题 MySQL数据库的配置文件通常位于/etc/mysql/my.cnf或者/etc/my.cnf。这个文件里头记录了一些MySQL的基础配置内容,就像端口号啊、日志存放的路径啥的,都是些重要的小细节。 如果配置文件存在错误,那么可能会导致无法正常连接到MySQL服务器。我们可以尝试修改这个文件,并重启MySQL服务器来解决问题。 下面是一个简单的配置文件示例: ini [mysqld] port=3306 log-error=/var/log/mysql/error.log datadir=/var/lib/mysql 在这个配置文件中,我们设置了MySQL服务器监听的端口号为3306,日志文件路径为/var/log/mysql/error.log,数据目录为/var/lib/mysql。 三、问题三 MySQL数据库账户权限不足 在连接MySQL数据库时,我们通常需要提供一个数据库用户名和密码。如果我们提供的账号没有足够的权限,那么可能会导致连接失败。 解决方法是登录到MySQL服务器,然后使用GRANT命令来给指定的账号赋予相应的权限。 例如,我们可以使用以下命令来给用户testuser赋予对所有数据库的所有操作权限: sql GRANT ALL PRIVILEGES ON . TO 'testuser'@'localhost' IDENTIFIED BY 'password'; 在这个命令中,ALL PRIVILEGES表示赋予所有的权限,.表示所有数据库的所有表,'localhost'表示从本地主机连接,'password'是用户的密码。 四、问题四 防火墙设置阻止了连接 如果我们的Linux系统的防火墙设置阻止了外部连接,那么我们也无法连接到MySQL服务器。 解决方法是检查防火墙的规则,确保它允许MySQL服务器监听的端口(通常是3306)对外部连接。 我们可以通过以下命令来查看防火墙的规则: bash sudo iptables -L -n -t filter --line-numbers 如果输出中没有包含3306端口,那么我们可以使用以下命令来添加规则: bash sudo iptables -A INPUT -p tcp --dport 3306 -j ACCEPT 在这个命令中,-p tcp表示只处理TCP协议的连接请求,--dport 3306表示目标端口号为3306,-j ACCEPT表示接受该连接请求。 总结一下,虽然在Linux系统上连接MySQL数据库可能会遇到一些问题,但只要我们了解并熟悉这些问题的原因,就很容易找到解决方案。希望这篇文章能够帮助你更好地理解和解决Linux下连接MySQL数据库的问题。
2023-03-28 20:22:57
162
柳暗花明又一村-t
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
curl --compressed http://example.com
- 使用压缩方式获取网页内容。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"