前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[计算引擎]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Impala
...据库设计的SQL查询引擎。它以其卓越的性能和灵活性受到了广泛的好评。不过,在实际操作时,我们不能光盯着它的性能,还要深入地摸清楚它数据同步的门道。这样一来,咱们才能更好地驾驭和优化这些数据,让它们发挥出最大的价值。本文将详细介绍Impala的数据同步机制,并探讨其优缺点。 正文 一、什么是Impala? Impala是一个开源的分析工具,它可以让你以SQL查询的形式在Hadoop集群上执行分析任务。它的主要目标是提供高性能、可扩展性和易用性。与其他分析工具不同的是,Impala不依赖于复杂的MapReduce框架,而是通过多核CPU进行计算。这意味着你可以更快地获取结果,而且不会受到MapReduce框架的一些限制。 二、Impala的数据同步机制是什么? 在Impala中,数据同步是指当一个节点上的数据发生变化时,如何将其更新到其他节点上的过程。Impala使用一种称为"数据复制"的技术来实现这一功能。实际上呢,每个Impala节点都有一份数据的完整备份,这样一来,就像每人都有同样的剧本一样,保证了所有数据的一致性和同步性,一点儿都不会出岔子。当一个节点上的数据有了新动静,就像有人在广播里喊了一嗓子“注意啦,有数据更新了!”这时候,其他所有节点都像接到消息的小伙伴一样,会立刻自动把自己的数据副本刷新一下,保证和最新的信息同步。 三、Impala的数据同步机制的优点 1. 提高了数据一致性 由于每个节点都有完整的数据副本,所以即使某个节点发生故障,也不会影响整个系统的数据完整性。 2. 提升了数据读取效率 由于每个节点都有一份完整的数据副本,所以读取数据的速度会比从单个节点读取要快得多。 3. 提供了容错能力 如果一个节点发生故障,其他节点仍然可以通过其备份来提供服务,从而提高了系统的可用性。 四、Impala的数据同步机制的缺点 1. 需要大量的存储空间 由于每个节点都需要保存完整的数据副本,所以这会消耗大量的存储空间。 2. 对网络带宽的需求较高 因为数据需要被广播到所有节点,所以这会增加网络带宽的需求。 3. 增加了系统的复杂性 虽然数据复制可以提高数据的一致性和读取效率,但也增加了系统的复杂性,需要更多的管理和维护工作。 五、总结 Impala的数据同步机制是一种非常重要的技术,它确保了系统数据的一致性和可用性。不过呢,这种技术也存在一些小短板。比如,它对存储空间的需求可是相当大的,而且网络带宽的要求也不低,得要足够给力才行。所以,在考虑选用Impala的时候,咱们得把这些因素都掂量一下,根据实际情况,像挑西瓜那样,选出最对味儿的那个选择。总的来说,Impala这家伙可真是个实力派兼灵活的法宝,在大数据的世界里,它能帮我们更溜地进行数据分析,效率嗖嗖的。如果你还没有尝试过Impala,那么我强烈建议你试一试!
2023-09-29 21:29:11
499
昨夜星辰昨夜风-t
CSS
...一个开源的网页浏览器引擎,主要用于处理和渲染网页内容。在本文中,WebKit 内核被提及是因为 iOS 设备上的 Safari 浏览器就是基于此引擎进行页面渲染。当涉及到滚动条的行为控制时,WebKit 提供了一个名为 -webkit-overflow-scrolling 的非标准样式属性,使得开发者能够对滚动效果进行自定义,特别是针对触摸设备的滚动交互体验。 -webkit-overflow-scrolling 属性 , 这是一个专为WebKit渲染引擎设计的CSS扩展属性,用于控制元素内部内容在溢出时的滚动行为,特别是在触摸设备上。该属性有三个可能的值。 虚拟滚动(Virtual Scrolling) , 虚拟滚动是一种前端性能优化技术,在大数据量场景下尤其有用。它仅渲染视口内的数据项,而非一次性加载并渲染所有数据。当用户滚动列表或表格时,框架会根据滚动位置动态计算并更新需要显示的内容,从而大大降低了内存占用和渲染性能开销,确保即使在包含大量数据的横向表格上也能实现流畅、快速的滚动浏览体验。虽然文章中并未直接提到虚拟滚动,但它是解决移动端滚动问题的一种现代解决方案,与文中讨论的滚动优化策略具有一定的关联性。
2023-09-29 12:02:28
520
心灵驿站_t
Impala
...源的关系型数据库查询引擎,它主要用于Apache Hadoop生态系统中的数据处理和分析。不过,随着数据量蹭蹭往上涨,我们可能得让Impala能应对更多的同时在线连接请求,就像一个服务员在高峰期时需要接待越来越多的顾客一样。这篇文章将教你如何配置Impala以支持更多的并发连接。 2. 配置impala.conf文件 Impala使用一个名为impala.conf的配置文件来控制它的行为。在该文件中,你可以找到几个与并发连接相关的参数。例如,你可以在以下部分设置最大并行任务的数量: [query-engine] max_threads = 100 在这个例子中,我们将最大并行任务数量设置为100。这意味着Impala可以同时处理的最大查询请求数量为100。 3. 使用JVM选项 除了修改impala.conf文件外,你还可以通过Java虚拟机(JVM)选项调整Impala的行为。例如,你可以使用以下命令启动Impala服务: java -Xms1g -Xmx4g \ -Dcom.cloudera.impala.thrift.MAX_THREADS=100 \ -Dcom.cloudera.impala.service.COMPACTION_THREAD_COUNT=8 \ -Dcom.cloudera.impala.util.COMMON_JVM_OPTS="-XX:+UseG1GC -XX:MaxRAMPercentage=95" \ -Dcom.cloudera.impala.service.STORAGE_AGENT_THREAD_COUNT=2 \ -Dcom.cloudera.impala.service.JAVA_DEBUGGER_ADDRESS=localhost:9999 \ -Djava.net.preferIPv4Stack=true \ -Dderby.system.home=/path/to/derby/data \ -Dderby.stream.error.file=/var/log/impala/derby.log \ com.cloudera.impala.service.ImpalaService 在这个例子中,我们添加了几个JVM选项来调整Impala的行为。比如,我们就拿MAX_THREADS这个选项来说吧,它就像是个看门人,专门负责把控同时进行的任务数量,不让它们超额。再来说说COMPACTION_THREAD_COUNT这个小家伙,它的职责呢,就是限制同一时间能有多少个压缩任务挤在一起干活,防止大家伙儿一起上阵导致场面过于混乱。 4. 性能优化 当你增加了并发连接时,你也应该考虑性能优化。例如,你可以考虑增加内存,以避免因内存不足而导致的性能问题。你也可以使用更快的硬件,如SSD,以提高I/O性能。 5. 结论 Impala是一个强大的工具,可以帮助你在Hadoop生态系统中进行高效的数据处理和分析。只要你把Impala设置得恰到好处,就能让它同时处理更多的连接请求,这样一来,甭管你的需求有多大,都能妥妥地得到满足。虽然这需要一些努力和知识,但最终的结果将是值得的。
2023-08-21 16:26:38
421
晚秋落叶-t
Struts2
...ymeleaf”模板引擎增强功能,它提供了更为简洁直观的语法来遍历和操作集合数据,比如使用th:each标签进行迭代,结合表达式计算能力,能够实现更复杂的数据绑定和条件渲染。 此外,随着前端技术的飞速发展,诸如React、Vue等现代化JavaScript框架也逐渐成为处理后端传递集合数据的主流选择。它们通过组件化的设计模式以及虚拟DOM的高效更新机制,使得开发者可以便捷地对集合数据进行动态渲染与交互,如Vue.js中的v-for指令便能轻松实现列表遍历与状态管理。 不仅如此,对于大数据量的场景,为提升用户体验,分页技术和懒加载策略的应用也越来越普遍。例如,Apache Struts2已支持与众多第三方分页插件集成,而新兴的GraphQL查询语言则从API层面对数据获取进行了革新,允许客户端精确指定需要的数据字段及数量,从而有效减少网络传输负载并提高性能。 总之,无论是在传统Java Web开发框架还是现代前端技术领域,处理集合数据的方式正持续演进,开发者应关注最新技术动态,结合实际需求灵活运用各种工具与方案,以提升开发效率和用户体验。
2023-01-03 18:14:02
44
追梦人
HTML
...家非常了解,对于搜索引擎爬取、收录、排名,至关重要。这里面一般要包含目标关键字。 但是当爬虫理解页面内容的时候,还会参考h1标签,h1标签的权重稍次于title元数据标签,但是也是十分重要的。所以,应该在h1标签中大大方方的写出本页的标题。 另外,一定不要用隐藏的h1标签,隐藏文字在seo中是有可能会被判定为作弊的! <!DOCTYPE html>2<html lang="en">3<head>4 <meta charset="UTF-8">5 <title>页面标题示例</title>6</head>7<body>89 <!-- h1 标签用于定义一级标题 -->10 <h1>欢迎来到我们的网站 - 主页</h1>1112 <!-- 网页的主体内容 -->13 <p>这是一个演示如何使用HTML h1标签的例子。在这个网页中,我们用<h1>标签来呈现主要的、最高级别的标题。</p>1415 <!-- 更多内容... -->16 17</body>18</html> 2. 写好img标签的alt属性 正确写好alt标签有下面几点好处: 当图片无法加载的时候,alt的文本就会显示在页面上,让用户知道这张图片是介绍了什么内容。 可以让搜索引擎理解这站图片的内容,从而可以有可能把这个图片索引到图片库中,在搜索图片的时候就有可能带出来。 如果图片是页面的第一个元素,更要写好alt属性,这有利于搜索引擎理解本页面的页面内容。 图片做logo,logo是锚元素,即<a href='xxx'><img src='xxx' alt='公司logo'></a>这样的时候,图片的alt就相当于锚文本的文字(所以别草草几句就搞定了),锚文本的作用十分关键! <!DOCTYPE html>2<html lang="en">3<head>4 <meta charset="UTF-8">5 <title>图片及alt属性示例</title>6</head>7<body>89 <!-- 使用img标签插入一张图片,并设置alt属性 -->10 <p>下面是一张描述美丽风景的图片:</p>11 <img src="beautiful-scenery.jpg" alt="美丽的山川湖泊景色,天空湛蓝,湖面如镜,周围环绕着翠绿的森林。">1213 <!-- 如果图片因为某种原因无法加载时,浏览器将显示alt文本 -->14 <!-- 对于视力障碍用户使用屏幕阅读器时,也会读出该alt文本 -->1516</body>17</html> 3. 特定的锚元素加nofollow 如果你的页面上有一些外链,或者不需要被跟踪的内链,请对他们加上这个属性。 <!DOCTYPE html>2<html lang="en">3<head>4 <meta charset="UTF-8">5 <title>nofollow属性示例</title>6</head>7<body>89 <!-- 正常的超链接 -->10 <p>访问我们的<a href="https://www.example.com" target="_blank">主页</a></p>1112 <!-- 使用nofollow属性的超链接 -->13 <p>外部链接示例:这是一个带有nofollow属性的<a href="https://www.external-site.com" rel="nofollow" target="_blank">外部网站链接</a>,搜索引擎不会通过这个链接来传递我们网页的权重。</p>1415</body>16</html> 这会让搜索引擎知道这个链接不是受站长推荐的,可能会继续爬取或不继续爬取,但不会传递权重。 尤其对于新站,每天爬虫来访的频次和深度其实都比较有限,所以正确的时候nofollow(无论在外链或内链上),可以一定程度上把爬虫引入正确的爬行轨迹。 但是,爬虫的爬取,也是有它自己的想法,不能说加上nofollow就一定有作用。 4. 所有el-link一律用a代替 比如使用了element-ui或其它的前端库,其锚元素并不是<a>而是比如<el-link>这样的元素。请优先使用<a>。 尽管在页面审查元素的时候可以看到<el-link>已经被正确的解析为了<a>,但是在右键-查看网页源代码的时候,依旧是<el-link>。 尽管现在的搜索引擎爬虫可以很好的解析动态页面,但不排除对于新站或权重低的站点,仍然就是拿到源代码做解析(节省计算资源嘛)。 所以,为了安全起见,还是优先使用<a>作为锚元素,确保内链的建设能够得到正确的爬取! 5. 移动端文字适配 也许你没有单独做一个移动站,只做了一个pc站。但当你手机上访问站点的时候,发现站点的文字发生了异常的突变,指定fong-size不生效。 这时候你可能就要使用:-webkit-text-size-adjust: none 试试吧,你会发现药到病除! 6. html的title中元素的顺序很重要 举几个例子: 第一页: 分类名称-网站名称 第二页: 分类名称-第二页-网站名称 文章页面: 文章标题-网站名称 如果要使用符号,尽量使用中划线或下划线,不要使用其它特殊符号。 7. 加入新的meta标签 content-language、author,尤其是content-language,在必应bing的站长后台做网站体检的时候还会提示站长(尽管不是一个很严重的问题)。 <!DOCTYPE html>2<html lang="zh-CN">3<head>4 <meta charset="UTF-8">5 <!-- 设置网页内容的语言 -->6 <meta http-equiv="Content-Language" content="zh-CN">7 8 <!-- 指定网页作者 -->9 <meta name="author" content="张三">10 11 <title>示例网页 - HTML Meta 标签使用</title>12 13 <!-- 其他元信息,如网页描述 -->14 <meta name="description" content="这是一个关于HTML Meta标签content-language和author属性使用的示例网页。">15 16</head>17<body>18 <!-- 网页正文内容 -->19 ...20</body>21</html> 8. 减少html中的注释 一方面,有利于减少响应文本的体积,降低服务器带宽。 另一方面,有利于搜索引擎的爬虫理解页面内容,试想,如果一个页面50%的注释,那么搜索引擎理解起来也会有难度。 9. 不要使用table布局或其它复杂布局 搜索引擎爬虫对页面内容的理解不像人类的肉眼,它是需要基于代码的。 如果代码结构比较复杂,它会比较反感这样的代码,甚至会跑路。所以,简单整洁的代码是招引爬虫来的很重要的因素。 所以,不要使用比较复杂布局代码,能写到css文件里的就用css文件搞定。 10. 不要使用隐藏文字 无论是什么样的初心,使用了隐藏文字,都会被搜索引擎认为是作弊。 比如:文字颜色和背景色颜色一样、文字使用absolute绝对定位定位到可视便捷以外、文字用z-index定位到最下层... 尽管用户看不到,但搜索引擎的爬虫阅读源码会看到,尽管不一定能够正确识别这些文字是隐藏文字,但一旦识别出来,就会被判断为作弊站点。 另外,当用户点击某按钮后出来的文字,属于正常的交互,不属于隐藏文字。
2024-01-26 18:58:53
504
admin-tim
Docker
Apache Lucene
...是一个开源的全文搜索引擎库,可以用于构建各种搜索引擎应用。它最擅长的就是快速存取和查找大量的文本信息,不过在对付那些超大的文本文件时,可能会有点力不从心,出现性能上的小状况。 三、Lucene处理大型文本文件的问题 那么,当我们在处理大型文本文件时,Apache Lucene为什么会遇到问题呢? 1. 存储效率低下 Lucene主要是通过索引来提高搜索效率,但是随着文本数据的增大,索引也会变得越来越大。这就意味着,为了存储这些索引,我们需要更多的内存空间,这样一来,不可避免地会对整个系统的运行速度和效率产生影响。说得通俗点,就像是你的书包,如果放的索引卡片越多,虽然找东西方便了,但书包本身会变得更重,背起来也就更费劲儿,系统也是一样的道理,索引多了,内存空间占用大了,自然就会影响到它整体的运行表现啦。 2. 分片限制 Lucene的内部设计是基于分片进行数据处理的,每一份分片都有自己的索引。不过呢,要是遇到那种超级大的文本文件,这些切分出来的片段也会跟着变得贼大,这样一来,查询速度可就慢得跟蜗牛赛跑似的了。 3. IO操作频繁 当处理大型文本文件时,Lucene需要频繁地进行IO操作(例如读取和写入磁盘),这会极大地降低系统性能。 四、解决办法 既然我们已经了解了Lucene处理大型文本文件的问题所在,那么有什么方法可以解决这些问题呢? 1. 使用分布式存储 如果文本文件非常大,我们可以考虑将其分割成多个部分,然后在不同的机器上分别存储和处理。这样不仅可以减少单台机器的压力,还可以提高整个系统的吞吐量。 2. 使用更高效的索引策略 我们可以尝试使用更高效的索引策略,例如倒排索引或者近似最近邻算法。这些策略可以在一定程度上提高索引的压缩率和查询速度。 3. 优化IO操作 为了减少IO操作的影响,我们可以考虑使用缓存技术,例如MapReduce。这种技术有个绝活,能把部分计算结果暂时存放在内存里头,这样一来就不用老是翻来覆去地读取和写入磁盘了,省了不少功夫。 五、总结 虽然Apache Lucene在处理大量文本数据时可能存在一些问题,但只要我们合理利用现有的技术和工具,就可以有效地解决这些问题。在未来,我们盼着Lucene能够再接再厉,进一步把自己的性能和功能提升到新的高度,这样一来,就能轻轻松松应对更多的应用场景,满足大家的各种需求啦!
2023-01-19 10:46:46
509
清风徐来-t
Tesseract
...学字符识别是一种利用计算机视觉技术从图像中识别和提取文本信息的过程。在本文的语境下,Tesseract作为一款先进的OCR引擎,能够自动读取并理解图片或扫描文档中的文字内容,实现纸质文档电子化或图像文字数字化。 Leptonica库 , Leptonica是一个开源的C语言编写的图像处理和分析库。在Tesseract OCR的应用环境中,Leptonica库为Tesseract提供了不可或缺的图像预处理和后处理功能,例如对图像进行二值化、降噪、边界检测等操作,这些功能对于提升Tesseract识别文字的准确性和效率至关重要。 依赖库(Dependency Library) , 在软件开发中,依赖库是指一个软件项目为了正常运行而需要调用的外部代码模块。在本文讨论的场景中,Tesseract OCR与Leptonica库之间存在依赖关系,即Tesseract的部分核心功能实现依赖于Leptonica提供的图像处理能力。当Leptonica版本过旧时,可能无法满足Tesseract新版本的功能需求,从而引发兼容性问题,影响到Tesseract的整体性能和稳定性。因此,及时更新依赖库是保证软件正常运行和发挥最佳效能的重要维护工作。
2023-03-22 14:28:26
154
繁华落尽
Logstash
...ack)中的数据收集引擎,它是一个开源工具,用于从各种来源接收、解析、转换和输出数据。在本文的语境中,Logstash在处理大量数据时可能出现内存使用超过限制的问题,因此需要进行优化配置。 pipeline.workers , 这是Logstash的一个核心配置参数,用于设置同时处理数据的线程数量。在运行过程中,Logstash会按照pipeline.workers指定的数量创建并发工作线程,每个线程负责一部分数据的处理工作。根据机器的实际内存大小调整该参数,可以在提高数据处理效率与避免内存溢出之间找到平衡。 队列(Queue) , 在计算机科学中,队列是一种先进先出(FIFO)的数据结构。在文中提到的场景中,队列被用来暂存待处理的数据,以防止一次性加载所有数据到内存导致内存不足。通过合理设置队列大小,可以控制Logstash在任何时间点存储在内存中的数据量,从而有效管理内存资源,避免因数据量过大引发的系统崩溃风险。
2023-03-27 09:56:11
328
翡翠梦境-t
Tesseract
..., OCR是一种利用计算机视觉和图像处理技术,将扫描文档、图像或照片中的文本信息转化为可编辑、可搜索的数据格式的技术。在本文中,Tesseract作为一款强大的OCR工具,能够从多页图像中提取并识别出文本内容。 Tesseract , Tesseract是一款由Google维护的开源OCR引擎,其设计目标是识别多种语言和字体的打印文本。在处理多页图像文本识别任务时,尽管Tesseract功能强大,但默认设置下并不直接支持对多页PDF或图像文件进行批量识别,需要通过特定策略来优化处理流程以实现准确识别。 PDF(便携式文档格式) , PDF是一种用于呈现文档包括文本格式、图片、矢量图形、超链接等元素在内的通用文件格式,保持了跨平台和设备上的一致性展示效果。在本文讨论的场景下,Tesseract在处理PDF文档时面临挑战,原始设置下无法有效识别多页PDF中的分页文本,需采用逐页转换为图像后分别识别的策略来解决这一问题。
2024-01-12 23:14:58
121
翡翠梦境
Docker
近期,随着云计算和容器技术的不断发展,越来越多的企业选择使用Docker等容器化平台来部署和管理其应用和服务。例如,最近阿里巴巴集团宣布在其内部大规模采用Docker技术,以提升应用的部署效率和稳定性。这一举措不仅展示了大型企业在IT基础设施现代化方面的决心,也为其他企业提供了有益的参考。 此外,随着安全问题日益受到重视,如何在使用Docker时保障系统的安全性也成为了一个热门话题。最近,GitHub发布了一份关于Docker安全最佳实践的白皮书,详细介绍了如何通过合理配置网络、使用安全镜像和定期更新等方式来增强Docker环境的安全性。这份白皮书对于那些正在考虑使用Docker的企业来说,无疑是一个重要的参考资料。 同时,随着Kubernetes(K8s)的普及,越来越多的企业开始探索如何结合Docker和K8s来构建更加高效和灵活的应用部署方案。K8s作为一个开源的容器编排系统,能够自动管理容器的生命周期,实现负载均衡、自动伸缩等功能。因此,结合Docker和K8s的技术趋势也值得关注。 综上所述,无论是从技术发展还是安全角度,Docker及其相关技术都在不断演进,为企业带来了更多的可能性和挑战。对于希望深入了解和应用这些技术的企业和个人而言,持续关注最新的技术动态和最佳实践是非常必要的。
2025-03-09 16:19:42
87
青春印记_
Tesseract
...错误和异常情况? 在计算机视觉与光学字符识别(OCR)领域,Tesseract作为一款开源且功能强大的工具,被广泛应用。然而,在实际使用过程中,我们可能会遇到一些识别错误或异常情况,这时如何正确地理解和处理这些问题呢?本文将带你一起深入探讨,并通过实例代码来具体展示。 1. 理解Tesseract的局限性 首先,我们需要认识到即使是Tesseract这样的优秀OCR引擎,也无法做到100%准确。其性能受到图片质量、字体样式、背景复杂度等因素的影响。所以,当遇到识别出岔子的时候,咱首先别急着满世界找解决办法,而是要先稳住心态,理解和欣然接受这个实际情况。接下来,咱就可以对症下药,要么琢磨着优化一下输入的照片,要么灵活调整一下参数设定,这样就对啦! python import pytesseract from PIL import Image 假设我们有一张较为复杂的图片需要识别 img = Image.open('complex_image.png') text = pytesseract.image_to_string(img) 如果输出的text有误,那可能是因为原始图片的质量问题 2. 图像预处理 为了提高识别准确性,对输入图像进行预处理是至关重要的一步。例如,我们可以进行灰度化、二值化、降噪、边界检测等操作。 python 对图片进行灰度化和二值化处理 img = img.convert('L').point(lambda x: 0 if x < 128 else 255, '1') 再次尝试识别 improved_text = pytesseract.image_to_string(img) 3. 调整识别参数 Tesseract提供了一系列丰富的可调参数以适应不同的场景。比如语言模型、是否启用特定字典、识别模式等。针对特定场景下的错误,可以通过调整这些参数来改善识别效果。 python 使用英语+数字的语言模型,同时启用多层识别 custom_config = r'--oem 3 --psm 6 -l eng' more_accurate_text = pytesseract.image_to_string(img, config=custom_config) 4. 结果后处理 即便进行了以上优化,识别结果仍可能出现瑕疵。这时候,我们可以灵活运用自然语言处理技术对结果进行深加工,比如纠错、分词、揪出关键词这些操作,这样一来,文本的实用性就能噌噌噌地往上提啦! python import re from nltk.corpus import words 创建一个简单的英文单词库 english_words = set(words.words()) 对识别结果进行过滤,只保留英文单词 filtered_text = ' '.join([word for word in improved_text.split() if word.lower() in english_words]) 5. 针对异常情况的处理 当Tesseract抛出异常时,应遵循常规的异常处理原则。例如,捕获Image.open()可能导致的IOError,或者pytesseract.image_to_string()可能引发的RuntimeError等。 python try: img = Image.open('nonexistent_image.png') text = pytesseract.image_to_string(img) except IOError: print("无法打开图片文件!") except RuntimeError as e: print(f"运行时错误:{e}") 总结来说,处理Tesseract的错误和异常情况是一项涉及多个层面的工作,包括理解其内在局限性、优化输入图像、调整识别参数、结果后处理以及有效应对异常。在这个过程中,耐心调试、持续学习和实践反思都是非常关键的。让我们用人类特有的情感化思考和主观能动性去驾驭这一强大的工具,让Tesseract更好地服务于我们的需求吧!
2023-07-17 18:52:17
85
海阔天空
MySQL
...引策略、合理选择存储引擎(如InnoDB与MyISAM的对比分析),以及通过参数调优来最大化MySQL服务器性能。 再者,随着云服务的发展,研究探讨MySQL在云计算环境下的应用趋势和最佳实践也至关重要。比如阿里云、AWS等云服务商推出的MySQL托管服务,不仅简化了数据库运维管理,还提供了自动化备份恢复、读写分离等功能,这对于现代互联网企业的架构选型颇具参考意义。 此外,对于大数据时代的挑战,MySQL也在不断适应变化,例如MySQL与Hadoop、Spark等大数据处理框架的集成使用,实现结构化数据与非结构化数据的有效融合,是当前业界值得关注的一个热点领域。 总之,在掌握MySQL基础知识的同时,持续跟进其最新发展动态,并结合具体业务需求探索更深层次的应用与优化策略,将有助于我们在数据库管理领域保持竞争力,更好地应对日新月异的数据处理挑战。
2023-09-03 11:49:35
62
键盘勇士
NodeJS
...于Chrome V8引擎的JavaScript运行环境,它可以用于构建高性能的网络应用程序。然而,在我们捣鼓应用开发的时候,也千万不能忽略一些安全方面的隐患,尤其是那些可能偷偷摸摸藏在代码里的恶意家伙,还有那些可能会对我们的应用发起攻击的行为,都得时刻提防着点。这篇文章将会讨论这些问题,并提供一些解决方案。 二、什么是恶意代码和攻击行为? 在计算机编程中,恶意代码是指那些旨在破坏系统正常运行的程序。这包括但不限于病毒、木马、蠕虫等。攻击行为,这个听着好像挺专业的词儿,其实说白了就是那些坏蛋通过各种花招,利用一些带有恶意的代码去搞破坏的行为。就好比,他们可能会像小偷一样悄悄摸摸地盗取你的数据,或者像个涂鸦者随意篡改你的信息内容,再不然就像个霸道的门神,让你无法正常享受服务,这就是所谓的拒绝服务攻击啦。 三、如何应对Node.js中的恶意代码和攻击行为? 1. 安装安全更新和补丁 Node.js官方会定期发布新的版本以及相关的安全更新和补丁,我们应当及时安装这些更新,以修复已知的安全漏洞。 javascript npm install -g n n stable 2. 使用防篡改工具 为了防止恶意代码对我们的代码进行修改,我们可以使用一些防篡改工具,例如Git hooks。 3. 验证输入数据 在接受用户输入时,我们应该对其进行验证,确保其符合预期的格式和范围。否则,恶意用户可能会通过输入特殊的字符来执行恶意操作。 javascript if (isNaN(input)) { console.log('Invalid input'); } 4. 使用HTTPS协议 当我们需要向用户提供敏感信息(如密码)时,我们应该使用HTTPS协议,以保护数据传输过程中的安全性。 5. 实施访问控制 我们需要限制哪些用户可以访问我们的系统,并且赋予他们什么样的权限。这样可以防止未经授权的用户访问系统的敏感部分。 6. 使用防火墙 防火墙可以帮助我们阻止来自特定IP地址的请求,从而防止DDoS攻击。 7. 日志记录和审计 我们需要记录所有的系统事件,以便在发生问题时能够追溯到问题的发生位置。同时,我们还需要定期进行系统审计,检查是否有任何异常行为。 四、总结 虽然Node.js为我们提供了很多便利,但是我们也不能忽视其中可能存在的安全问题。只有时刻瞪大眼睛,像老鹰护小鸡那样采取实实在在的防护行动,才能确保我们的系统稳稳妥妥、安安全全地跑起来,不会出任何岔子。
2024-01-07 18:08:03
97
彩虹之上-t
Kylin
...一款开源的分布式分析引擎,专为超大规模数据集设计,提供了在Hadoop/Spark环境下的低延迟OLAP(在线分析处理)能力。通过预计算技术,Kylin能够将复杂的查询转换为对预计算结果的快速检索,从而实现亚秒级的查询响应速度,特别适用于大数据时代海量数据的实时分析需求。 ZooKeeper , ZooKeeper是一个分布式的、开放源码的分布式应用程序协调服务,它提供了一种简单且强大的方式来管理大型分布式系统中的各种状态信息和元数据。在Apache Kylin中,ZooKeeper被用作集群管理和配置存储的角色,确保各个节点之间能够进行有效的通信和协调。 Service Mesh , Service Mesh是一种用于处理服务间通信的基础设施层,通常以轻量级网络代理的形式部署在每个服务实例旁边,负责服务发现、负载均衡、熔断限流、监控追踪等微服务治理功能。在云原生环境中,借助Istio等Service Mesh框架,可以更好地管理和优化Apache Kylin与ZooKeeper之间的交互,提升服务稳定性及通信效率。
2023-09-01 14:47:20
107
人生如戏-t
ElasticSearch
...一款开源的分布式搜索引擎,具有高可用性、高性能和丰富的功能。在实际操作中,我们经常会遇到要处理海量数据并进行分页展示的情况,这时候,Elasticsearch 提供的这个叫 search_after 的参数就派上大用场啦。 一、什么是 search_after 参数 search_after 参数是 Elasticsearch 5.0 版本引入的一个新的分页方式,它允许我们在前一页的基础上,根据排序字段的值获取下一页的结果。search_after 参数的核心思想是在每一页查询结束时,记录下最后一条记录的排序字段值,并将这个值作为下一页查询的开始点,以此类推,直到达到我们需要的分页数量为止。 二、为什么需要使用 search_after 参数 使用传统的 from + size 方式进行分页,如果数据量很大,那么每一页都需要加载所有满足条件的记录到内存中,这样不仅消耗了大量的内存,而且会导致 CPU 资源的浪费。用 search_after 参数来实现分页的话,操作起来就像是这样:只需要轻轻拽住满足条件的最后一项记录,就能嗖地一下翻到下一页的结果。这样做,就像给内存和CPU减负瘦身一样,能大大降低它们的工作压力和损耗。 三、如何使用 search_after 参数 使用 search_after 参数非常简单,我们只需要在 Search API 中添加 search_after 参数即可。例如,如果我们有一个商品列表,我们想要获取第一页的商品列表,我们可以这样做: bash GET /products/_search { "from": 0, "size": 10, "sort": [ { "name": { "order": "asc" } } ], "search_after": [ { "name": "Apple" } ] } 在这个查询中,我们设置了 from 为 0,size 为 10,表示我们要获取第一页的商品列表,排序字段为 name,排序顺序为升序,最后,我们设置了 search_after 参数为 {"name": "Apple"},表示我们要从名为 Apple 的商品开始查找下一页的结果。 四、实战示例 为了更好地理解和掌握 search_after 参数的使用,我们来看一个实战示例。想象一下,我们运营着一个用户评论平台,现在呢,我们特别想瞅瞅用户们最新的那些精彩评论。不过,这里有个小插曲,就是这评论数量实在多得惊人,所以我们没法一股脑儿全捞出来看个遍哈。这时,我们就需要使用 search_after 参数来进行深度分页。 首先,我们需要创建一个 user_comment 文档类型,包含用户 id、评论内容和评论时间等字段。然后,我们可以编写如下的代码来获取最新的用户评论: python from datetime import datetime import requests 设置 Elasticsearch 的地址和端口 es_url = "http://localhost:9200" 创建 Elasticsearch 集群 es = Elasticsearch([es_url]) 获取最新的用户评论 def get_latest_user_comments(): 设置查询参数 params = { "index": "user_comment", "body": { "query": { "match_all": {} }, "sort": [ { "created_at": { "order": "desc" } } ], "size": 1, "search_after": [] } } 获取第一条记录 response = es.search(params) if not response["hits"]["hits"]: return [] 记录最后一条记录的排序字段值 last_record = response["hits"]["hits"][0] search_after = [last_record["_source"]["id"], last_record["_source"]["created_at"]] 获取下一条记录 while True: params["body"]["size"] += 1 params["body"]["search_after"] = search_after response = es.search(params) 如果没有更多记录,则返回所有记录 if not response["hits"]["hits"]: return [hit["_source"] for hit in response["hits"]["hits"]] else: last_record = response["hits"]["hits"][0] search_after = [last_record["_source"]["id"], last_record["_source"]["created_at"]] 在这段代码中,我们首先设置了一个空的 search_after 列表,然后执行了一次查询,获取了第一条记录,并将其存储在 last_record 变量中。接着,我们将 last_record 中的 id 和 created_at 字段的值添加到 search_after 列表中,再次执行查询,获取下一条记录。如此反复,直到获取到我们需要的所有记录为止。 五、总结 search_after 参数是 Elasticsearch 5.0 版本引入的一个新的分页方式,它可以让我们在每一页查询结束时,记录下最后一条记录的排序字段值,并将这个值作为下一页查询的开始点,以此类推广多获取我们需要的分页数量为止。这种方法不仅可以减少内存和 CPU 的消耗,而且还能够提高查询的效率,是一个非常值得使用的分页方式。
2023-03-26 18:17:46
576
人生如戏-t
HBase
...给车子换了个强劲的新引擎!你知道吗,每个问题背后都藏着小故事,就像侦探破案一样,得一点一滴地探索,才能找到那个超级定制的解决招数!
2024-04-05 11:02:24
432
月下独酌
ClickHouse
...一个高性能列存储查询引擎,用于在线分析处理(OLAP)。它的最大亮点就是速度贼快,能够瞬间处理海量数据,而且超级贴心,支持多种查询语言,SQL什么的都不在话下。 三、实时数据流处理的重要性 实时数据流处理是指对实时生成的数据进行及时处理,以便于用户能够获取到最新的数据信息。这对于许多实际的业务操作而言,那可是相当关键的呢,比如咱平时的金融交易啦,还有电商平台给你推荐商品这些场景,都离不开这个重要的因素。 四、ClickHouse的实时数据流处理能力 ClickHouse能够高效地处理实时数据流,其主要原因在于以下几个方面: 1. 列式存储 ClickHouse采用列式存储方式,这意味着每一列数据都被独立存储,这样可以大大减少磁盘I/O操作,从而提高查询性能。 2. 分布式架构 ClickHouse采用分布式架构,可以在多台服务器上并行处理数据,进一步提高了处理速度。 3. 内存计算 ClickHouse支持内存计算,这意味着它可以将数据加载到内存中进行处理,避免了频繁的磁盘I/O操作。 五、如何在ClickHouse中实现高效的实时数据流处理? 下面我们将通过一些具体的示例来讲解如何在ClickHouse中实现高效的实时数据流处理。 1. 数据导入 首先,我们需要将实时数据导入到ClickHouse中。这其实可以这么办,要么直接用ClickHouse的客户端进行操作,要么选择其他你熟悉的方式实现,就像我们平常处理问题那样,灵活多变,总能找到适合自己的路径。例如,我们可以通过以下命令将CSV文件中的数据导入到ClickHouse中: sql CREATE TABLE my_table (id UInt32, name String) ENGINE = MergeTree() ORDER BY id; INSERT INTO my_table SELECT toUInt32(number), format('%.3f', number) FROM system.numbers LIMIT 1000000; 这个例子中,我们首先创建了一个名为my_table的表,然后从system.numbers表中选择了前一百万个数字,并将它们转换为整型和字符串类型,最后将这些数据插入到了my_table表中。 2. 实时查询 接下来,我们可以使用ClickHouse的实时查询功能来处理实时数据。例如,我们可以通过以下命令来查询my_table表中的最新数据: sql SELECT FROM my_table ORDER BY id DESC LIMIT 1; 这个例子中,我们首先按照id字段降序排列my_table表中的所有数据,然后返回排名最高的那条数据。 3. 实时聚合 除了实时查询之外,我们还可以使用ClickHouse的实时聚合功能来处理实时数据。例如,我们可以通过以下命令来统计my_table表中的数据数量: sql SELECT count(), sum(id) FROM my_table GROUP BY id ORDER BY id; 这个例子中,我们首先按id字段对my_table表中的数据进行分组,然后统计每组的数量和id总和。 六、总结 通过以上的内容,我们可以看出ClickHouse在处理实时数据流方面具有很大的优势。无论是数据导入、实时查询还是实时聚合,都可以通过ClickHouse来高效地完成。如果你现在正琢磨着找一个能麻溜处理实时数据的神器,那我跟你说,ClickHouse绝对值得你考虑一下。它在处理实时数据流方面表现可圈可点,可以说是相当靠谱的一个选择!
2024-01-17 10:20:32
537
秋水共长天一色-t
Flink
...个高性能的键值对存储引擎,用于NoSQL数据库和缓存系统。它被设计为可扩展的,支持低延迟和高吞吐量的数据读取。 在Flink中,RocksDBStateBackend是一种存储和恢复状态的方式。当我们运行一个作业时,该后台将所有中间结果(即状态)保存到磁盘上。如果作业失败,或者我们需要重试某个步骤,我们可以从这个备份中恢复我们的状态,从而避免重新计算已经完成的任务。 三、为什么会出现corruption? RocksDBStateBackend出现corruption的原因可能有很多。可能是磁盘错误、网络中断,或者是内存溢出导致的状态数据损坏。另外,还有一种可能,就是我们想要恢复的那个备份文件,可能早已经被其他程序动过手脚了。这样一来,RocksDB在检查数据时如果发现对不上号,就会像咱们平常遇到问题那样,抛出一个“corruption异常”,也就是提示数据损坏了。 四、如何解决这个问题? 如果你遇到“RocksDBStateBackend corruption”的问题,你可以采取以下几种方法来解决: 1. 重启Flink集群 这通常是最简单的解决方案,但是并不总是有效的。如果你的集群正在处理大量的任务,重启可能会导致严重的数据丢失。 2. 恢复备份 如果你有最新的备份,你可以尝试从备份中恢复你的状态。这需要你确保没有其他的进程正在访问这个备份。 3. 使用检查点 Flink提供了checkpoints功能,可以帮助你在作业失败时快速恢复。你可以定期创建checkpoints,并在需要时从中恢复。 4. 调整Flink的配置 有些配置参数可能会影响RocksDBStateBackend的行为。例如,你可以增加RocksDB的垃圾回收频率,或者调整它的日志级别,以便更好地了解可能的问题。 五、总结 总的来说,“RocksDBStateBackend corruption”是一个常见的问题,但也是可以解决的。只要我们把配置调对,策略定准,就能最大程度地避免数据丢失这个大麻烦,确保无论何时何地,咱们的作业都能快速恢复如初,一切尽在掌握之中。当然啦,最顶呱呱的招儿还是防患于未然。所以呐,你就得养成定期给你的数据做个“备胎”的好习惯,同时也要像关心身体健康那样,随时留意你系统的运行状态。 六、代码示例 以下是使用Flink的code实现state的示例: java StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setStateBackend(new RocksDBStateBackend("path/to/your/state")); DataStream text = env.socketTextStream("localhost", 9999); text.map(new MapFunction() { @Override public Integer map(String value) throws Exception { return Integer.parseInt(value); } }).keyBy(0) .reduce(new ReduceFunction() { @Override public Integer reduce(Integer value1, Integer value2) throws Exception { return value1 + value2; } }).print(); 在这个例子中,我们将所有的中间结果(即状态)保存到了指定的目录下。如果作业不幸搞砸了,我们完全可以拽回这个目录下的文件,让一切恢复到之前的状态。 以上就是我关于“RocksDBStateBackend corruption: State backend detected corruption during recovery”的理解和分析,希望能对你有所帮助。
2023-09-05 16:25:22
417
冬日暖阳-t
Impala
...个内存中的 SQL 引擎,它直接在 HDFS 或 HBase 上运行查询,而无需进行 MapReduce 计算。这意味着 Impala 可以在几秒钟内返回结果,非常适合实时查询。其实呢,Hive 就是个处理大数据的仓库,能把你的 SQL 查询变成 MapReduce 任务去跑。不过这个过程有时候会有点慢,可能得等个几分钟甚至更长呢。 示例代码: sql -- 使用Impala查询数据 SELECT FROM sales_data WHERE year = 2023 LIMIT 10; -- 使用Hive查询数据(假设已经创建了相应的表) SELECT FROM sales_data WHERE year = 2023 LIMIT 10; 2. 数据存储与访问 虽然 Impala 和 Hive 都可以访问 HDFS 中的数据,但它们在数据存储方式上有所不同。Impala可以直接读取Parquet、Avro和SequenceFile这些列式存储格式的数据文件,这样一来,在处理海量数据时就会快得飞起。相比之下,Hive 可以处理各种存储格式,比如文本文件、RCFile 和 ORC 文件,但当遇到复杂的查询时,它就有点力不从心了。 示例代码: sql -- 使用Impala读取Parquet格式的数据 SELECT FROM sales_data_parquet WHERE month = 'October'; -- 使用Hive读取ORC格式的数据 SELECT FROM sales_data_orc WHERE month = 'October'; 3. 易用性和开发体验 Impala 的易用性体现在其简洁的 SQL 语法和快速的查询响应时间上。对于经常要做数据分析的人来说,Impala 真的是一个超级好用又容易上手的工具。然而,Hive 虽然功能强大,但它的学习曲线相对陡峭一些。特别是在对付那些复杂的ETL(提取、转换、加载)流程时,用Hive写脚本可真是个体力活,得花不少时间和精力呢。 示例代码: sql -- 使用Impala进行简单的数据聚合 SELECT month, SUM(sales) AS total_sales FROM sales_data GROUP BY month ORDER BY total_sales DESC; -- 使用Hive进行复杂的ETL操作 INSERT INTO monthly_sales_summary SELECT month, SUM(sales) AS total_sales FROM sales_data GROUP BY month ORDER BY total_sales DESC; 4. 社区支持与生态系统 Impala 和 Hive 都拥有活跃的社区支持,但它们的发展方向有所不同。因为Impala主要是Cloudera开发和维护的,所以在大公司里用得特别多。另一方面,Hive 作为 Hadoop 生态系统的一部分,被许多不同的公司和组织采用。另外,Hive 还有一些厉害的功能,比如支持事务和符合 ACID 标准,所以在某些特殊情况下用起来会更爽。 示例代码: sql -- 使用Impala进行事务操作(如果支持的话) BEGIN TRANSACTION; UPDATE sales_data SET sales = sales + 100 WHERE id = 123; COMMIT; -- 使用Hive进行事务操作 BEGIN TRANSACTION; UPDATE sales_data SET sales = sales + 100 WHERE id = 123; COMMIT; 总结 总的来说,Impala 和 Hive 各有千秋。要是你需要迅速搞定一大堆数据,并且马上知道结果,那 Impala 真的是个好帮手。不过,如果你要对付复杂的数据提取、转换和加载(ETL)流程,并且对数据仓库的功能有很多期待,那 Hive 可能会更合你的胃口。不管你选啥工具,关键是要根据自己实际需要和情况来个聪明的选择。
2025-01-11 15:44:42
83
梦幻星空
Java
... 2. 数组长度计算 在处理数组的时候,我们也可以利用前加加和后加加来计算数组的长度。例如: java String[] array = {"Hello", "World"}; int length = array.length + 1; System.out.println(length); // 输出:3 在这个例子中,我们先获取数组的长度,然后利用后加加将其增加1,最终得到的是数组加上新元素后的长度。 3. 变量初始化 在程序的初始化阶段,我们也可以利用前加加和后加加来进行变量的初始化。例如: java int num = 0, sum = 0; for (int i = 1; i <= 10; ++i) { num = i; sum += num; } System.out.println(sum); // 输出:55 在这个例子中,我们利用前加加来循环遍历数组,每循环一次就将i的值赋给num,并将num的值累加到sum上,最后输出的是sum的值,即1到10的和。 三、前加加和后加加的注意事项 虽然前加加和后加加在实际编程中应用广泛,但也需要注意以下几点: 1. 避免重复计算 在进行复杂的数学计算时,我们应该尽可能地避免重复计算,因为这样可以提高程序的运行效率。比如,在刚才提到的那个计算数组长度的例子,我们可以耍个小聪明,先用一个临时的小帮手(变量)把数组的长度记下来,而不是傻傻地每次都重新数一遍数组的元素个数来得到长度。 2. 注意边界条件 在使用循环结构时,我们应该特别注意边界条件,确保循环能够正常终止。比如,在刚才那个关于循环结构的例子,如果我们任性地把i的初始值定为5,那么这个循环就会无休止地转下去,这明显不是我们想要的结果啦。 3. 不要滥用前加加和后加加 尽管前加加和后加加是非常有用的运算符,但是我们也应该尽量避免滥用它们,因为过度依赖某种运算符会导致程序变得难以理解和维护。比如,在上面讲到的初始化变量的例子,其实咱们完全可以采用传统的循环方法,一样能达到相同的效果,压根没必要用到前缀递增或后缀递增的操作。 四、结论 总的来说,前加加和后加加是Java编程中非常重要的一部分,它们不仅提供了丰富的功能,而且也为我们的程序设计带来了更大的灵活性和便利性。不过呢,咱们也得留心眼儿,在使用这些运算符的时候可得多加小心,确保咱的程序既不出错又靠得住。同时呢,咱也得尝试各种各样的招数来解决实际问题,别老拘泥于一种方法或者技巧嘛,让思路活泛起来,多维度解决问题才更有趣儿!
2023-03-21 12:55:07
376
昨夜星辰昨夜风-t
c++
...、嵌入式系统和高性能计算等领域占据着重要地位。最近,有报道称在游戏开发界,C++仍然是最受欢迎的语言之一,许多大型游戏引擎如Unreal Engine和Unity都广泛使用C++。这表明C++的模板类机制在实际项目中具有很高的应用价值和实用性。 此外,随着人工智能和机器学习的发展,C++因其高效性和稳定性再次受到关注。近期的一项研究显示,许多AI框架如TensorFlow和PyTorch在底层实现中大量使用了C++,其中不乏模板类的应用。这不仅提高了算法执行效率,还增强了系统的可扩展性和维护性。 同时,C++社区也在不断推进语言的标准化和现代化。例如,C++20引入了多项新特性,包括协程、模块化系统等,这些新特性的引入使得模板类的使用更加灵活和强大。最新的C++标准不仅提升了语言本身的性能,也为开发者提供了更多的工具来构建高效且易于维护的软件系统。 对于初学者而言,理解C++模板类的工作原理和应用场景是非常重要的。除了基础理论的学习,实践是掌握这一技术的关键。建议多参与开源项目或个人项目,通过实际编码来加深理解。此外,阅读高质量的C++代码也是一个很好的学习途径,可以借鉴优秀项目的代码风格和设计模式,提升自身的编程水平。 总之,C++模板类在现代软件开发中扮演着不可或缺的角色,无论是游戏开发、AI研究还是其他高性能计算场景,其应用范围都在不断扩大。因此,持续关注C++的发展动态,不断提升自身的编程技能,对于每一位开发者来说都是非常有益的。
2025-02-03 15:43:39
49
清风徐来_
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
Ctrl+R
- 启动反向搜索历史命令功能。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"