前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[openssl命令检查证书]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...础工具套件,使用以下命令编译和运行DPC++程序。 source /opt/intel/inteloneapi/setvars.shdpcpp simple.cpp -o simple./simple 编程实例 实现矢量加法 以下实例描述了使用DPC++实现矢量加法的过程和源代码。 queue类 queue类用来提交给SYCL执行的命令组,是将作业提交到运算设备的一种机制,多个queue可以映射到同一个设备。 Parallel kernel Parallel kernel允许代码并行执行,对于一个不具有相关性的循环数据操作,可以用Parallel kernel并行实现 在C++代码中的循环实现 for(int i=0; i < 1024; i++){a[i] = b[i] + c[i];}); 在Parallel kernel中的并行实现 h.parallel_for(range<1>(1024), [=](id<1> i){A[i] = B[i] + C[i];}); 通用的并行编程模板 h.parallel_for(range<1>(1024), [=](id<1> i){// CODE THAT RUNS ON DEVICE }); range用来生成一个迭代序列,1为步长,在循环体中,i表示索引。 Host Accessor Host Accessor是使用主机缓冲区访问目标的访问器,它使访问的数据可以在主机上使用。通过构建Host Accessor可以将数据同步回主机,除此之外还可以通过销毁缓冲区将数据同步回主机。 buf是存储数据的缓冲区。 host_accessor b(buf,read_only); 除此之外还可以将buf设置为局部变量,当系统超出buf生存期,buf被销毁,数据也将转移到主机中。 矢量相加源代码 根据上面的知识,这里展示了利用DPC++实现矢量相加的代码。 //第一行在jupyter中指明了该cpp文件的保存位置%%writefile lab/vector_add.cppinclude <CL/sycl.hpp>using namespace sycl;int main() {const int N = 256;// 初始化两个队列并打印std::vector<int> vector1(N, 10);std::cout<<"\nInput Vector1: "; for (int i = 0; i < N; i++) std::cout << vector1[i] << " ";std::vector<int> vector2(N, 20);std::cout<<"\nInput Vector2: "; for (int i = 0; i < N; i++) std::cout << vector2[i] << " ";// 创建缓存区buffer vector1_buffer(vector1);buffer vector2_buffer(vector2);// 提交矢量相加任务queue q;q.submit([&](handler &h) {// 为缓存区创建访问器accessor vector1_accessor (vector1_buffer,h);accessor vector2_accessor (vector2_buffer,h);h.parallel_for(range<1>(N), [=](id<1> index) {vector1_accessor[index] += vector2_accessor[index];});});// 创建主机访问器将设备中数据拷贝到主机当中host_accessor h_a(vector1_buffer,read_only);std::cout<<"\nOutput Values: ";for (int i = 0; i < N; i++) std::cout<< vector1[i] << " ";std::cout<<"\n";return 0;} 运行结果 统一共享内存 (Unified Shared Memory USM) 统一共享内存是一种基于指针的方法,是将CPU内存和GPU内存进行统一的虚拟化方法,对于C++来说,指针操作内存是很常规的方式,USM也可以最大限度的减少C++移植到DPC++的代价。 下图显示了非USM(左)和USM(右)的程序员开发视角。 类型 函数调用 说明 在主机上可访问 在设备上可访问 设备 malloc_device 在设备上分配(显式) 否 是 主机 malloc_host 在主机上分配(隐式) 是 是 共享 malloc_shared 分配可以在主机和设备之间迁移(隐式) 是 是 USM语法 初始化: int data = malloc_shared<int>(N, q); int data = static_cast<int >(malloc_shared(N sizeof(int), q)); 释放 free(data,q); 使用共享内存之后,程序将自动在主机和运算设备之间隐式移动数据。 数据依赖 使用USM时,要注意数据之间的依赖关系以及事件之间的依赖关系,如果两个线程同时修改同一个内存区,将产生不可预测的结果。 我们可以使用不同的选项管理数据依赖关系: 内核任务中的 wait() 使用 depends_on 方法 使用 in_queue 队列属性 wait() q.submit([&](handler &h) {h.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 2; });}).wait(); // <--- wait() will make sure that task is complete before continuingq.submit([&](handler &h) {h.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 3; });}); depends_on auto e = q.submit([&](handler &h) { // <--- e is event for kernel taskh.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 2; });});q.submit([&](handler &h) {h.depends_on(e); // <--- waits until event e is completeh.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 3; });}); in_order queue property queue q(property_list{property::queue::in_order()}); // <--- this will make sure all the task with q are executed sequentially 练习1:事件依赖 以下代码使用 USM,并有三个提交到设备的内核。每个内核修改相同的数据阵列。三个队列之间没有数据依赖关系 为每个队列提交添加 wait() 在第二个和第三个内核任务中实施 depends_on() 方法 使用 in_order 队列属性,而非常规队列: queue q{property::queue::in_order()}; %%writefile lab/usm_data.cppinclude <CL/sycl.hpp>using namespace sycl;static const int N = 256;int main() {queue q{property::queue::in_order()};//用队列限制执行顺序std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n";int data = static_cast<int >(malloc_shared(N sizeof(int), q));for (int i = 0; i < N; i++) data[i] = 10;q.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 2; });q.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 3; });q.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 5; });q.wait();//wait阻塞进程for (int i = 0; i < N; i++) std::cout << data[i] << " ";std::cout << "\n";free(data, q);return 0;} 执行结果 练习2:事件依赖 以下代码使用 USM,并有三个提交到设备的内核。前两个内核修改了两个不同的内存对象,第三个内核对前两个内核具有依赖性。三个队列之间没有数据依赖关系 %%writefile lab/usm_data2.cppinclude <CL/sycl.hpp>using namespace sycl;static const int N = 1024;int main() {queue q;std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n";//设备选择int data1 = malloc_shared<int>(N, q);int data2 = malloc_shared<int>(N, q);for (int i = 0; i < N; i++) {data1[i] = 10;data2[i] = 10;}auto e1 = q.parallel_for(range<1>(N), [=](id<1> i) { data1[i] += 2; });auto e2 = q.parallel_for(range<1>(N), [=](id<1> i) { data2[i] += 3; });//e1,e2指向两个事件内核q.parallel_for(range<1>(N),{e1,e2}, [=](id<1> i) { data1[i] += data2[i]; }).wait();//depend on e1,e2for (int i = 0; i < N; i++) std::cout << data1[i] << " ";std::cout << "\n";free(data1, q);free(data2, q);return 0;} 运行结果 UMS实验 在主机中初始化两个vector,初始数据为25和49,在设备中初始化两个vector,将主机中的数据拷贝到设备当中,在设备当中并行计算原始数据的根号值,然后将data1_device和data2_device的数值相加,最后将数据拷贝回主机当中,检验最后相加的和是否是12,程序结束前将内存释放。 %%writefile lab/usm_lab.cppinclude <CL/sycl.hpp>include <cmath>using namespace sycl;static const int N = 1024;int main() {queue q;std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n";//intialize 2 arrays on hostint data1 = static_cast<int >(malloc(N sizeof(int)));int data2 = static_cast<int >(malloc(N sizeof(int)));for (int i = 0; i < N; i++) {data1[i] = 25;data2[i] = 49;}// STEP 1 : Create USM device allocation for data1 and data2int data1_device = static_cast<int >(malloc_device(N sizeof(int),q));int data2_device = static_cast<int >(malloc_device(N sizeof(int),q));// STEP 2 : Copy data1 and data2 to USM device allocationq.memcpy(data1_device, data1, sizeof(int) N).wait();q.memcpy(data2_device, data2, sizeof(int) N).wait();// STEP 3 : Write kernel code to update data1 on device with sqrt of valueauto e1 = q.parallel_for(range<1>(N), [=](id<1> i) { data1_device[i] = std::sqrt(25); });auto e2 = q.parallel_for(range<1>(N), [=](id<1> i) { data2_device[i] = std::sqrt(49); });// STEP 5 : Write kernel code to add data2 on device to data1q.parallel_for(range<1>(N),{e1,e2}, [=](id<1> i) { data1_device[i] += data2_device[i]; }).wait();// STEP 6 : Copy data1 on device to hostq.memcpy(data1, data1_device, sizeof(int) N).wait();q.memcpy(data2, data2_device, sizeof(int) N).wait();// verify resultsint fail = 0;for (int i = 0; i < N; i++) if(data1[i] != 12) {fail = 1; break;}if(fail == 1) std::cout << " FAIL"; else std::cout << " PASS";std::cout << "\n";// STEP 7 : Free USM device allocationsfree(data1_device, q);free(data1);free(data2_device, q);free(data2);// STEP 8 : Add event based kernel dependency for the Steps 2 - 6return 0;} 运行结果 本篇文章为转载内容。原文链接:https://blog.csdn.net/MCKZX/article/details/127630566。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-22 10:28:50
321
转载
Go Gin
...境,那么只需运行以下命令即可: bash go get -u github.com/gin-gonic/gin 接下来,我们来写一个最简单的HTTP服务程序: go package main import ( "github.com/gin-gonic/gin" "net/http" ) func main() { r := gin.Default() r.GET("/ping", func(c gin.Context) { c.JSON(http.StatusOK, gin.H{ "message": "pong", }) }) r.Run(":8080") // 启动服务器监听8080端口 } 这段代码创建了一个Gin路由,并定义了一个GET请求路径/ping,当客户端访问这个地址时,会返回JSON格式的数据{"message": "pong"}。 个人感悟 刚接触这段代码的时候,我有点被惊到了——这么少的代码竟然能完成如此多的功能!当然,这也得益于Gin的设计理念:尽可能简化开发流程,让程序员专注于业务逻辑而不是框架细节。 --- 三、实时处理的核心 WebSocket支持 既然我们要讨论实时处理,那么就不得不提WebSocket。WebSocket就像是一个永不掉线的“聊天热线”,能让浏览器和服务器一直保持着畅通的联系。跟传统的请求-响应模式不一样,它可以让双方随时自由地“唠嗑”,想发啥就发啥,特别适合那些需要实时互动的应用,比如聊天室里你一言我一语,或者股票行情那种分分钟都在变化的东西,用它简直太合适了! Gin内置了对WebSocket的支持,我们可以直接通过中间件来实现这一功能。下面是一个完整的WebSocket示例: go package main import ( "log" "net/http" "github.com/gin-gonic/gin" "github.com/gorilla/websocket" ) var upgrader = websocket.Upgrader{ ReadBufferSize: 1024, WriteBufferSize: 1024, CheckOrigin: func(r http.Request) bool { return true // 允许跨域 }, } func handleWebSocket(c gin.Context) { ws, err := upgrader.Upgrade(c.Writer, c.Request, nil) if err != nil { log.Println("Failed to upgrade:", err) return } defer ws.Close() for { messageType, msg, err := ws.ReadMessage() if err != nil { log.Println("Error reading message:", err) break } log.Printf("Received: %s\n", string(msg)) err = ws.WriteMessage(messageType, msg) if err != nil { log.Println("Error writing message:", err) break } } } func main() { r := gin.Default() r.GET("/ws", handleWebSocket) r.Run(":8080") } 在这段代码中,我们利用gorilla/websocket包实现了WebSocket升级,并在handleWebSocket函数中处理了消息的读取与发送。你可以试着在浏览器里输入这个地址:ws://localhost:8080/ws,然后用JavaScript发个消息试试,看能不能马上收到服务器的回应。 深入探讨 说实话,刚开始写这部分代码的时候,我还担心WebSocket的兼容性问题。后来发现,只要正确设置了CheckOrigin方法,大多数现代浏览器都能正常工作。这让我更加坚定了对Gin的信心——它虽然简单,但足够强大! --- 四、进阶技巧 并发与性能优化 在实际项目中,我们可能会遇到高并发的情况。为了保证系统的稳定性,我们需要合理地管理线程池和内存分配。Gin提供了一些工具可以帮助我们做到这一点。 例如,我们可以使用sync.Pool来复用对象,减少垃圾回收的压力。下面是一个示例: go package main import ( "sync" "time" "github.com/gin-gonic/gin" ) var pool sync.Pool func init() { pool = &sync.Pool{ New: func() interface{} { return make([]byte, 1024) }, } } func handler(c gin.Context) { data := pool.Get().([]byte) defer pool.Put(data) copy(data, []byte("Hello World!")) time.Sleep(100 time.Millisecond) // 模拟耗时操作 c.String(http.StatusOK, string(data)) } func main() { r := gin.Default() r.GET("/", handler) r.Run(":8080") } 在这个例子中,我们定义了一个sync.Pool来存储临时数据。每次处理请求时,从池中获取缓冲区,处理完毕后再放回池中。这样可以避免频繁的内存分配和释放,从而提升性能。 反思与总结 其实,刚开始学习这段代码的时候,我对sync.Pool的理解还停留在表面。直到后来真正用它解决了性能瓶颈,我才意识到它的价值所在。这也让我明白,优秀的框架只是起点,关键还是要结合实际需求去探索和实践。 --- 五、未来展望 Gin与实时处理的无限可能 Gin的强大之处不仅仅在于它的易用性和灵活性,更在于它为开发者提供了广阔的想象空间。无论是构建大型分布式系统,还是打造小型实验项目,Gin都能胜任。 如果你也想尝试用Gin构建实时处理系统,不妨从一个小目标开始——比如做一个简单的在线聊天室。相信我,当你第一次看到用户实时交流的画面时,那种成就感绝对会让你欲罢不能! 最后的话 写这篇文章的过程,其实也是我自己重新审视Gin的过程。其实这个东西吧,说白了挺简单的,但让我学到了一个本事——用最利索的办法搞定事情。希望能这篇文章也能点醒你,让你在今后的开发路上,慢慢琢磨出属于自己的那套玩法!加油吧,程序员们!
2025-04-07 16:03:11
65
时光倒流
ElasticSearch
...录线上机器用grep命令各种查看。 但如果你不差机器资源,可以搭建上述架构,app的日志会被收集到elasticsearch中,最终你可以在kibana中查看日志,kibana里面可以很方面的做各种筛查操作。 这个流畅大概是这样的: 3.2 通用搜索场景 但是没有上图的beats、logstash、kibana,elasticsearch可以自己工作吗?完全可以的! elasticsearch也支持单机部署,数据规模不是很大的情况下,表现也是不错的。所以,你也不用担心因为自己机器资源不够而对elasticsearch望而却步。当然,单机部署的情况下,更多的适合自己玩,对于可靠性的要求就不能太苛刻了。 如果你在用宝塔,那你可以在宝塔面板,左侧“软件商店”中直接找到elasticsearch,并“没有痛苦”的安装。 本篇文章主要讨论选型,所以不涉及安装细节。 3.2.1 性能顾虑 上面提到了“表现”,其实性能只是elasticsearch的一个方面,主要你的机器资源足够(机器资源?对,包括你的机器个数,elasticsearch可以非常方便的横向扩展,以及单机的配置,cpu+内存,内存越高越好,elasticsearch比较吃内存!),它一定会给你很好的性能反应。试想,公司里的app打印线上日志的行数其实可比一般业务系统产生的订单数量要大很多很多,elasticsearch都可以常在日志的实时分析,所以如果你要做通用场景,而且机器资源不是问题,这是完全行得通的。 3.2.2 易用性和可玩性 此外,在使用elasticsearch的时候,会有很多的可玩性。这里不引经据典,呈现很多elasticsearch官方文章的列举优秀特性(当然,确实很优秀!)。 这里举几个例子: (1)中文分词:第一章提到的其它引擎几乎很难实现,elasticsearch对分词器的支持是原生的,因为elasticsearch天生就为全文索引而生,elasticsearch的汉语名字就是“弹性搜索”。这家伙可是专门搞搜索的! 有的朋友可能不了解分词器,比如你的一个字段里存储“今天我要吃冰激凌”,在分词器的加持下,es最终会存储为“今天|我|要|吃|冰激凌”,并且使用倒排索引的形式进行存储。当你搜索“冰激凌”的时候,可以很快的反馈回来。 关于elasticsearch的原理,这里不展开说明,分词器和倒排索引是elasticsearch的最基本的概念。如果有不了解的朋友,可以自行百度一下。而且这两个概念,与elasticsearch其实不挂钩,是搜索中的通用概念。 关于倒排索引,其核心表现如下图: 如果你要用mysql、mongo实现中文分词,这......其实挺麻烦的,可能在后面的版本支持中会实现的很好,但在当前的流行版本中,它们对中文分词是不够友好的。 mysql5.7之后支持外挂第三方分词器,支持中文分词。而在数据量较大的情况下,mysql的多机器部署几乎很难实现,elasticsearch可以很容易的水平扩展。 mongo支持西方语言的分词,但不支持中文、日语、汉语等东方语言,你需要在自己的逻辑代码中实现分词器。 ngram分词,你看看效果:依旧是“今天我要吃冰激凌”,ngram二元分词后即将得到结果“今天、天我、我要、要吃、吃冰、冰激、激凌”。这....,那你搜索冰激凌就搜不出来!咋办呢,当然可以使用三元分词。但是更好的解决方案还是中文分词器,但它们原生并不支持的。 (2)自定义排名场景:比如你的搜索“冰激凌”,结果中返回了有10条,这10条应该有你想对它指定的顺序。最简单的就是用默认的得分,但是如果你想人为干预这个得分怎么办? elasticsearch支持function_score功能(可以不用,这个是增强功能),es会在计算最终得分之前回调这个你指定的function_score回调函数,传入原始得分、行的原始数据,你可以在里面做计算,比如查询其它参考表、或查看是否是广告位,以得到新的score返回给用户。 function_scrore的功能不展开描述,是一个在自定义得分场景下十分有用又简单易用的功能!下面是一个使用示例,不仅如此,它是支持自定义函数的,自由度非常高。 (3)文本高亮:你用mysql或mongo也可以实现,比如用户搜索“冰激凌”,你只需要在逻辑代码中对“冰激凌”替换为“<span class='highlight-term'>冰激凌</span>”,然后前端做样式即可。但如果用户搜索了“好吃的冰激凌”咋办呢?还有就是英文大小写的场景,用户搜索"MAIN",那结果及时匹配到了“main”(小写的),这个单词是否应该高亮呢?也许这时候你会用业务代码实现toLowerCase下基于位置下标的匹配。 挺麻烦的吧,elasticsearch,自动可以返回高亮字段!并且可以自由指定高亮的html前后标签。 (4)实在太多了....这家伙天生为索引而生,而且版本还在不断地迭代。不差机器的话,用用吧! 4. 退而求其次 4.1 普通数据库 尽管elasticsearch在搜索场景下,是非常好用的利器!但是它比较消耗机器资源,如果你的数据规模并不大,而且想快速实现功能。你可以使用mysql或mongo来代替,完全没有问题。 技术是为了解决特定业务场景下的问题,结合当前手头的资源,适合自己的才是最好的。也许你搞了一个单机器的elasticsearch,单机器内存只有2G,它的表现并不会比mysql、mongo来的好。 当然,如果你为了使用上边提到的一些优秀的独有的特性,那elasticsearch一定还是最佳选择! 对于mysql(关系型数据库)和mongo(文档数据库)的区别这里不展开描述了,但对于搜索而言,两种都合适。有时候选型也不用很纠结,其实都是差不太多的东西,适合自己的、自己熟悉的、运维起来顺手的,就是最好的。 4.2 普通数据库实现中文分词搜索的原理 尽管mysql在5.7以后支持外挂第三方分词器,mongo在截止目前的版本中也不支持中文分词(你可能会看到一些文章中说可以指定language为chinese,但其实会报错的)。 其实当你选择普通数据库,你就不得不在逻辑代码中自己实现一套索引分词+搜索分词逻辑。 索引分词+搜索分词?为什么分开写,如果你有用过elasticsearch或solr,你会知道,在指定字段的时候,需要指定index分词器和search分词器。 下面以mongo为例做简要说明。 4.2.1 index分词器 意思是当数据“索引”截断如何分词。首先,这里必须要承认,数据之后存储了,才能被查询。在搜索中,这句话可以换成是“数据只有被索引了,才能被搜索”。 这时候请求打过来了,要索引一条数据,其中某字段是“今天我要吃冰激凌”,分词后得到“今天|我|要|吃|冰激凌”,这个就可以入库了。 如果你使用elasticsearch或solr,这个过程是自动的。如果你使用不支持外观分词器的常规数据库,这个过程你就要手动了,并把分词后的结果用空格分开(最好使用空格,因为西方语言的分词规则就是按空格拆分,以及逗号句号),存入数据库的一个待搜索的字段上。 效果如下图: 本站的其它博文中有介绍IKAnalyzer:https://www.52itw.com/java/6268.html 4.2.2 search分词器 当用户的查询请求打过来,用户输入了“好吃的冰激凌”,分词后得到“好吃|冰激凌”(“的”作为停用词stopwords,被自动忽略了,IKAnalyzer可以指定停用词表)。 于是这时候就回去上图的数据库表里面搜索“好吃 冰激凌”(与index分词器结果统一,还是用空格分隔)。 当然,对于mongo而言,你需要事先开启全文索引db.xxx.ensureIndex({content: "text"}),xxx是集合名,content是字段名,text是全文索引的标识。 mongo搜索的时候用这个语法:db.xxx.find( { $text: { $search: "好吃 冰激凌" } },{ score: { $meta: "textScore" } }).sort( { score: { $meta: "textScore" } } ) 4.2.3 索引库和存储库分开 为了减少单表的大小,为了让普通的列表查询、普通筛选可以跑的更快,你可以对原有的数据原封不动的做一张表。 然后对于搜索场景,再单独对需要被搜索的字段单独拎一张表出来! 然后二者之间做增量信号同步或定时差额同步,可能会有延迟,这个就看你能容忍多长时间(悄悄告诉你,elasticsearch也需要指定这个refresh时间,一般是1s到几秒、甚至分钟级。当然,二者的这个时间对饮的底层目的是不一样的)。 这样,搜索的时候先查询搜索库,拿到一个指针id的列表,然后拿到指针id的列表区存储里把数据一次性捞出来。当然,也是支持分页的,你查询搜索库其实也是普通的数据库查询嘛,支持分页参数的。 4.3 存储库和索引库的延伸阅读 很多有名的开源软件也是使用的存储库与索引库分离的技术方案,如apache atlas: apache atlas对于大数据领域的数据资产元数据管理、数据血缘上可谓是专家,也涉及资产搜索的特性,它的实现思路就是:从搜索库中做搜索、拿到key、再去存储库中做查询。 搜索库:上图右下角,可以看到使用的是elasticsearch、solr或lucene,多个选一个 存储库:上图左下角,可以看到使用的是Cassandra、HBase或BerkeleyDB,多个选一个 虽然apache atlas在只有搜索库或只有存储库的时候也可以很好的工作,但只针对于数据量并不大的场景。 搜索库,擅长搜索!存储库,擅长海量存储!搜索库多样化搜索,然后去存储库做点查。 当你的数据达到海量的时候,es+hbase也是一种很好的解决方案,不在这里展开说明了。
2024-01-27 17:49:04
537
admin-tim
转载文章
...er被用来执行SQL命令并逐行读取返回的数据集,进而将这些数据转换为CategoryInfo对象,并添加到IList集合中进行后续操作。它的特点是按需读取数据,而不是一次性加载所有数据到内存,因此适用于处理大量数据的情形。 CommandBehavior.CloseConnection , 这是SqlCommand.ExecuteReader方法的一个可选参数,当设置此标志时,在SqlDataReader关闭时,会同时关闭与之关联的SqlConnection。在文章中,作者建议通过设置CommandBehavior.CloseConnection,确保在完成数据读取后能自动关闭数据库连接,从而简化了代码并降低了资源泄漏的风险。
2023-03-18 20:09:36
89
转载
转载文章
...thon练习题👈 检查学习结果。 👉面试刷题👈 资料领取 上述这份完整版的Python全套学习资料已经上传CSDN官方,朋友们如果需要可以微信扫描下方CSDN官方认证二维码输入“领取资料” 即可领取 好文推荐 了解python的前景:https://blog.csdn.net/weixin_49891576/article/details/127187029 了解python的兼职:https://blog.csdn.net/weixin_49891576/article/details/127125308 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_49891576/article/details/130861900。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-04 23:38:21
105
转载
Kafka
...通过这种方式,你可以检查每个主题的副本分布情况。 3. 生产者端的可靠性保障 作为生产者,我们需要确保发送出去的消息能够安全到达Kafka集群。这涉及到一些关键配置: - acks:控制生产者的确认级别。设置为"all"时,意味着必须等待所有副本确认。 - retries:指定重试次数。如果网络抖动导致消息未送达,Kafka会自动重试。 - linger.ms:控制批量发送的时间间隔。默认值为0毫秒,即立即发送。 java Properties props = new Properties(); props.put("bootstrap.servers", "localhost:9092"); props.put("acks", "all"); props.put("retries", 3); props.put("linger.ms", 5); props.put("batch.size", 16384); Producer producer = new KafkaProducer<>(props); for (int i = 0; i < 100; i++) { producer.send(new ProducerRecord<>("my-topic", Integer.toString(i), Integer.toString(i))); } producer.close(); 在这个例子中,我们设置了retries=3和linger.ms=5,这意味着即使遇到短暂的网络问题,Kafka也会尝试最多三次重试,并且会在5毫秒内累积多条消息一起发送。 4. 消费者端的可靠性保障 消费者端同样需要关注可靠性问题。Kafka 有两种消费模式,一个叫 earliest,一个叫 latest。简单来说,earliest 就是从头开始补作业,把之前没看过的消息全都读一遍;而 latest 则是直接从最新的消息开始看,相当于跳过之前的存档,直接进入直播频道。 java Properties props = new Properties(); props.put("bootstrap.servers", "localhost:9092"); props.put("group.id", "test-group"); props.put("enable.auto.commit", "true"); props.put("auto.commit.interval.ms", "1000"); props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); KafkaConsumer consumer = new KafkaConsumer<>(props); consumer.subscribe(Arrays.asList("my-topic")); while (true) { ConsumerRecords records = consumer.poll(Duration.ofMillis(100)); for (ConsumerRecord record : records) { System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value()); } } 这段代码展示了如何订阅一个主题并持续拉取消息。注意这里启用了自动提交功能,这样就不需要手动管理偏移量了。 5. 总结与反思 通过今天的讨论,我相信大家对Kafka的消息可靠性有了更深的理解。Kafka能从一堆消息队列系统里脱颖而出,靠的就是它在设计的时候就脑补了各种“灾难片”场景,比如数据爆炸、服务器宕机啥的,然后还给配齐了神器,专门对付这些麻烦事儿。 然而,正如任何技术一样,Kafka也不是万能的。在实际应用中,我们还需要结合具体的业务需求来调整配置参数。比如说啊,在那种超级忙、好多请求同时涌过来的场景下,就得调整一下每次处理的任务量,别一下子搞太多,慢慢来可能更稳。但要是你干的事特别讲究速度,晚一秒钟都不行的那种,那就得想办法把发东西的时间间隔调短点,越快越好! 总之,Kafka的强大之处在于它允许我们灵活地调整策略以适应不同的工作负载。希望这篇文章能帮助你在实践中更好地利用Kafka的优势!如果你有任何疑问或想法,欢迎随时交流哦~
2025-04-11 16:10:34
95
幽谷听泉
转载文章
...码,并且只能在SSH命令行中使用“ pihole -a -p”更改密码),有时将其禁用几分钟以进行测试,然后将某些域列入白名单。 我怀疑几周后我会拨好电话。 翻译自: https://www.hanselman.com/blog/blocking-ads-before-they-enter-your-house-at-the-dns-level-with-pihole-and-a-cheap-raspberry-pi pi-hole 本篇文章为转载内容。原文链接:https://blog.csdn.net/cunfusq0176/article/details/109051003。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-12 20:49:59
61
转载
转载文章
...l、算法、linux命令的环节。 松果出行 松果出行主要业务是构建国内县域城市交通出行网络,目前主要是共享电单车和共享新能源汽车服务。目前业务已经覆盖全国21个省,5000个县。 福利待遇属于行业中等,五险一金、年终奖等,没有补充医疗保险。 招聘岗位很多,以JAVA为主,各种级别都有。也有物联网、传感器硬件相关的岗位。 小桔科技 目前研发团队主要做推荐、搜索系统,注册地在大连。 福利待遇行业中等,五险一金、年终奖,没有补充医疗保险。 招聘岗位包括JAVA、PHP、搜索算法、前端、数仓等。 理想汽车 智能电动车品牌,这两年在行业内名气比较大。 福利待遇行业中等偏上,六险一金、交通补贴等。 招聘岗位很多,以JAVA为主,各种级别都有。另外也招聘PaaS平台研发、搜索、车载语音、大数据等。 参加过理想汽车面试的同学反馈面试体验不太好,面试官没有耐心,给大家一个参考。 狮桥 智慧物流+普惠金融融资租赁业务。 福利待遇中等偏下,五险一金、年终奖,没有补充医疗保险。 招聘岗位主要是JAVA开发。 领创集团 海外金融业务,主要做印度市场。 福利待遇中等偏下,六险一金,年终奖,工作节奏慢。 招聘岗位主要是JAVA,招聘岗位主要是java。 面试过的同学反馈体验比较好,面试官比较nice,有手写代码环节。 总结 今天主要推荐了望京的16家值得加入的互联网公司,事实上,望京区域的互联网公司和其他科技公司至少有几百家,由于个人精力有限,主要梳理了业界比较知名和自己熟悉的公司。相信还有好多非常不错的公司值得加入,欢迎大家跟我交流讨论。 欢迎关注个人公众号,一起学习进步 本篇文章为转载内容。原文链接:https://blog.csdn.net/zjj2006/article/details/121412370。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-11 22:59:19
529
转载
NodeJS
...m install命令,安装项目的依赖。 5. EXPOSE 3000 声明应用监听的端口号。 6. CMD ["node", "index.js"]:定义容器启动时默认执行的命令。 保存完Dockerfile后,我们可以试着构建镜像了。 --- 5. 构建并运行Docker镜像 在项目根目录下运行以下命令来构建镜像: bash docker build -t my-node-app . 这里的. 表示当前目录,my-node-app是我们给镜像起的名字。构建完成后,可以用以下命令查看是否成功生成了镜像: bash docker images 输出应该类似这样: REPOSITORY TAG IMAGE ID CREATED SIZE my-node-app latest abcdef123456 2 minutes ago 150MB 接着,我们可以启动容器试试看: bash docker run -d -p 3000:3000 my-node-app 参数解释: - -d:以后台模式运行容器。 - -p 3000:3000:将主机的3000端口映射到容器的3000端口。 - my-node-app:使用的镜像名称。 启动成功后,访问http://localhost:3000/,你会发现依然可以看到“Hello World”!这说明我们的Docker化部署已经初步完成了。 --- 6. 进阶 多阶段构建优化镜像大小 虽然上面的方法可行,但生成的镜像体积有点大(大约150MB左右)。有没有办法让它更小呢?答案是有!这就是Docker的“多阶段构建”。 修改后的Dockerfile如下: dockerfile 第一阶段:构建阶段 FROM node:16-alpine AS builder WORKDIR /app COPY package.json ./ RUN npm install COPY . . RUN npm run build 假设你有一个build脚本 第二阶段:运行阶段 FROM node:16-alpine WORKDIR /app COPY --from=builder /app/dist ./dist 假设build后的文件存放在dist目录下 COPY package.json ./ RUN npm install --production EXPOSE 3000 CMD ["node", "dist/index.js"] 这里的关键在于“--from=builder”,它允许我们在第二个阶段复用第一个阶段的结果。这样就能让开发工具和测试依赖 stays 在它们该待的地方,而不是一股脑全塞进最终的镜像里,这样一来镜像就能瘦成一道闪电啦! --- 7. 总结与展望 写到这里,我相信你已经对如何用Docker部署Node.js应用有了基本的认识。虽然过程中可能会遇到各种问题,但每一次尝试都是成长的机会。记得多查阅官方文档,多动手实践,这样才能真正掌握这项技能。 未来,随着云计算和微服务架构的普及,容器化将成为每个开发者必备的技能之一。所以,别犹豫啦,赶紧去试试呗!要是你有什么不懂的,或者想聊聊自己的经历,就尽管来找我聊天,咱们一起唠唠~咱们一起进步! 最后,祝大家都能早日成为Docker高手!😄
2025-05-03 16:15:16
31
海阔天空
DorisDB
...。 解决方案:首先,检查网络连接稳定性。确保你的服务器与DorisDB实例之间的网络畅通无阻。其次,优化SQL语句的执行效率,减少网络传输的数据量。例如,可以考虑批量插入数据,而不是逐条插入。 第三章:资源限制:磁盘空间不足的挑战 场景还原:你的DorisDB实例运行在一个资源有限的环境中,某天,当你试图插入大量数据时,系统提示磁盘空间不足。 问题浮现:尽管你已经确保了网络连接稳定,但写入仍然失败。 解决方案:增加磁盘空间是显而易见的解决方法,但这需要时间和成本。哎呀,兄弟,你得知道,咱们手头的空间那可是个大问题啊!要是想在短时间内搞定它,我这儿有个小妙招给你。首先,咱们得做个大扫除,把那些用不上的数据扔掉。就像家里大扫除一样,那些过时的文件、照片啥的,该删就删,别让它占着地方。其次呢,咱们可以用更牛逼的压缩工具,比如ZIP或者RAR,它们能把文件压缩得更小,让硬盘喘口气。这样一来,不仅空间大了,还能节省点资源,挺划算的嘛!试试看,说不定你会发现自己的设备运行起来比以前流畅多了!嘿,兄弟!你听说过 DorisDB 的分片和分布式功能吗?这玩意儿超级厉害!它就像个大仓库,能把咱们的数据均匀地摆放在多个小仓库里(那些就是节点),这样不仅能让数据更高效地存储起来,还能让我们的系统跑得更快,用起来更顺畅。试试看,保管让你爱不释手! 第四章:事务冲突与并发控制 场景还原:在高并发环境下,多个用户同时尝试插入数据到同一表中,导致了写入失败。 问题浮现:即使网络连接稳定,磁盘空间充足,事务冲突仍可能导致写入失败。 解决方案:引入适当的并发控制机制是关键。在DorisDB中,可以通过设置合理的锁策略来避免或减少事务冲突。例如,使用行级锁或表级锁,根据具体需求选择最合适的锁模式。哎呀,兄弟,咱们在优化程序的时候,得注意一点,别搞那些没必要的同时进行的操作,这样能大大提升系统的稳定性。就像是做饭,你要是同时炒好几个菜,肯定得忙得团团转,而且容易出错。所以啊,咱们得一个个来,稳扎稳打,这样才能让系统跑得又快又稳! 结语:从困惑到解决的旅程 面对“写入失败”,我们需要冷静分析,从不同的角度寻找问题所在。哎呀,你知道嘛,不管是网速慢了点、硬件不够给力、操作过程中卡壳了,还是设置哪里没对劲,这些事儿啊,都有各自的小妙招来解决。就像是遇到堵车了,你得找找是哪段路的问题,然后对症下药,说不定就是换个路线或者等等红绿灯,就能顺畅起来呢!哎呀,你知道不?咱们要是能持续地学习和动手做,那咱处理问题的能力就能慢慢上个新台阶。就像给水管通了塞子,数据的流动就更顺畅了。这样一来,咱们的业务跑起来也快多了,就像是有了个贴身保镖,保护着业务高效运转呢!嘿!听好了,每回遇到难题都不是白来的,那可是让你升级打怪的好机会!咱们就一起手牵手,勇闯数据的汪洋大海,去发现那些藏在暗处的新世界吧!别怕,有我在你身边,咱俩一起探险,一起成长!
2024-10-07 15:51:26
122
醉卧沙场
转载文章
...深入浅出。各种功能和命令的介绍,都配以大量的实例操作和详尽的解析。本书是初学者学习Linux不可多得的一本入门好书。 八、计算机网络自顶向下方法 《计算机网络自顶向下方法》是经典的计算机网络教材,采用作者独创的自顶向下方法来讲授计算机网络的原理及其协议,自第1版出版以来已经被数百所大学和学院选作教材,被译为14种语言。 新版保持了以前版本的特色,继续关注因特网和计算机网络的现代处理方式,注重原理和实践,为计算机网络教学提供一种新颖和与时俱进的方法。同时,第7版进行了相当多的修订和更新,首次改变了各章的组织结构,将网络层分成两章(第4章关注网络层的数据平面,第5章关注网络层的控制平面) 九、MySQL是怎样运行的 《MySQL是怎样运行的》采用诙谐幽默、通俗易懂的写作风格,针对上面这些问题给出了相应的解答方案。尽管本书的表达方式与司空见惯的学术派、理论派IT图书有显著区别,但本书的确是相当正经的专业技术图书,内容涵盖了使用MySQL的同学在求职面试和工作中常见的一些核心概念。无论是身居MySQL专家身份的技术人员,还是技术有待进一步提升的DBA,甚至是刚投身于数据库行业的“萌新”人员,本书都是他们彻底了解MySQL运行原理的优秀图书。 十、编程珠玑 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_65485112/article/details/122007938。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-11 11:49:14
119
转载
转载文章
... 这个易於操纵的命令列公用程式能够显示档案开启的种类和使用的处理程序等更多资讯。 Hex2dec 十六进位数字和十进位数字相互转换。 Junction 建立 Win2K NTFS 符号连结。 LDMDump 倾印逻辑磁碟管理员的磁碟上之资料库内容,其中描述 Windows 2000 动态磁碟分割。 ListDLLs 列出所有目前载入的 DLL,包括载入位置和他们的版本编号。2.0 版列印载入模组的完整路径名称。 LiveKd 使用 Microsoft 核心侦错工具检视即时系统。 LoadOrder 检视在您 WinNT/2K 系统上载入装置的顺序。 LogonSessions 列出系统上的作用中登入工作阶段。 MoveFile 允许您对下一次开机进行移动和删除命令的排程。 NTFSInfo 使用 NTFSInfo 检视详细的 NTFS 磁碟区资讯,包括主档案表格 (MFT) 和 MFT 区的大小和位置,还有 NTFS 中继资料档案的大小。 PageDefrag 将您的分页档和登录 Hive 进行磁碟重组。 PendMoves 列举档案重新命名的清单,删除下次开机将会执行的命令。 Portmon 使用这个进阶的监视工具进行监视序列和平行连接埠活动。它不仅掌握所有标准的序列和平行 IOCTL,甚至会显示传送和接收的资料部份。Version 3.x 具有强大的新 UI 增强功能和进阶的筛选功能。 Process Monitor 即时监控档案系统、登录、程序、执行绪和 DLL 活动。 procexp 任务管理器,这个管理器比windows自带的管理器要强大方便的很多,建议替换自带的任务管理器(本人一直用这个管理器,很不错)。此工具也有汉化版,fans可以自己搜索下载 ProcFeatures 这个小应用程式会描述「实体位址扩充」的处理器和 Windows 支援,而没「没有执行」缓冲区溢位保护。 PsExec 以有限的使用者权限执行处理程序。 PsFile 检视远端开启档案有哪些。 PsGetSid 显示电脑或使用者的 SID。 PsInfo 取得有关系统的资讯。 PsKill 终止本机或远端处理程序。 PsList 显示处理程序和执行绪的相关资讯。 PsLoggedOn 显示使用者登录至一个系统。 PsLogList 倾印事件记录档的记录。 PsPasswd 变更帐户密码。 PsService 检视及控制服务。 PsShutdown 关机及选择重新启动电脑。 PsSuspend 暂停及继续处理程序。 PsTools PsTools 产品系列包括命令列公用程式,其功能有列出在本机或远端电脑上执行的处理程序、远端执行的处理程序、重新开机的电脑和倾印事件记录等等。 RegDelNull 扫描并删除登录机码,这些登录机码包括了标准登录编辑工具无法删除的内嵌式 Null 字元。 RegHide 建立名为 "HKEY_LOCAL_MACHINE\Software\Sysinternals\Can't touch me!\0" 并使用原生 API 的金钥,而且会在此金钥内建立一个值。 Regjump 跳至您在 Regedit 中指定的登录路径。 Regmon 这个监视工具让您即时看到全部的登录活动。 RootkitRevealer 扫描您系统上 Rootkit 为基础的恶意程式码。 SDelete 以安全的方法覆写您的机密档案,并且清除因先前使用这个 DoD 相容安全删除程式所删除档案後而释放的可用空间。包括完整的原始程式码。 ShareEnum 扫描网路上档案共用并检视其安全性设定,来关闭安全性漏洞。 Sigcheck 倾印档案版本资讯和验证系统上的影像皆已完成数位签章。 Strings 搜寻 binaryimages 中的 ANSI 和 UNICODE 字串。 Sync 将快取的资料清除至磁碟。 TCPView 作用中的通讯端命令列检视器。 VolumeId 设定 FAT 或 NTFS 磁碟区 ID。 Whois 看看谁拥有一个网际网路位址。 Winobj 最完整的物件管理员命名空间检视器在此。 ZoomIt 供萤幕上缩放和绘图的简报公用程式。 转自:http://www.360doc.com/content/15/0323/06/20545288_457293504.shtml 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_33515088/article/details/80721846。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-22 15:44:41
102
转载
转载文章
...教mpi 单机模拟的命令为: mpirun -np 2 -localonly d:/cpi.exe 成功 两机器名分别为 liu1 liu2,命令为 mpirun -hosts 2 liu1 liu2 d:/cpi.exe 失败 config文件为 config.cfg exe d:/cpi.exe hosts liu1 2 liu2 2 命令为 mpirun d:/config.cfg 失败 加选项-tcp也没用 可执行文件的存放路径都在d盘根目录下 都老师,我想你们都是用linux 的,能不能请您的研究生给在两台 机器上试一下,估计两个小时够了,有你的指点,就会知道问题出在哪。 我们这边也有很多同学在你的书的指引下在linux下进行的,我是进行数值计算,不敢弄那 么复杂,只好在windows下进行,可也不知问题究竟在哪。 Zhihui Du <duzh@tsinghua.edu.cn> wrote: 你运行的具体命令是什么?可以用mpirun -np 2 xxx 和 mpirun configfile 两种方式都 试试,可执行程序两台机器上都要有。 ------------------------------ Dr. Zhihui Du Department of Computer Science and Technology Tsinghua University. Beijing, 100084, P.R. China Phone:86-10-62782530 Fax:86-10-62771138 http://hpclab.cs.tsinghua.edu.cn/~duzh ----- Original Message ----- From: zhyi To: Zhihui Du Sent: Sunday, October 31, 2004 11:50 AM Subject: Re: 请教mpi 任务管理器里发现有mpd进程,mpiconfig也能找到对方, 我们是在同一个宿舍,用hub相连,这在局域网内应该没问题了, 共享也是可读写的,盘符的格式是一样的,单机可以运行 mpirun -np 2 -localonly c:/ .exe 有结果 Zhihui Du <duzh@tsinghua.edu.cn> wrote: 安装mpich后应该有一个新的mpi进程在运行,用mpiconfig应该能够列出其他的机器才行, 还有这些计算结点的网络配置应该在一个子网内,另外共享的权限是否是任何用户可以读 写?你用mpirun -localonly -np x abc方式是否可以运行? ------------------------------ Dr. Zhihui Du Department of Computer Science and Technology Tsinghua University. Beijing, 100084, P.R. China Phone:86-10-62782530 Fax:86-10-62771138 http://hpclab.cs.tsinghua.edu.cn/~duzh ----- Original Message ----- From: zhyi To: Zhihui Du Sent: Saturday, October 30, 2004 5:55 PM Subject: Re: 请教mpi 我是严格按照mpich的要求进行的, 1。使用管理员权限在两机器上新建同一个名称的用户及相同的口令 2。分别在上面的两用户里安装mpich,然后mpiregister ,用户名和口令同 3。同一名称的盘符共享 4。mpiconfig,显示了对方的mpich 的版本号,说明已找到。 5。运行mpi程序 这样还是没有用,我们这边在windows系统下进行的很少有人成功过 我们都在网上问这个问题 Zhihui Du <duzh@tsinghua.edu.cn> wrote: 如果仅仅是自己做实验用,就可以不要考虑太多的安全问题,把MPI程序所在的盘共享出来 让其他的机器都可以访问,按照MPICH自己的设置,你可以运行MPIREGISTER程序先注册一 下用户名和口令。 ------------------------------ Dr. Zhihui Du Department of Computer Science and Technology Tsinghua University. Beijing, 100084, P.R. China Phone:86-10-62782530 Fax:86-10-62771138 http://hpclab.cs.tsinghua.edu.cn/~duzh ----- Original Message ----- From: zhyi To: duzh@tirc.cs.tsinghua.edu.cn Sent: Friday, October 29, 2004 9:26 PM Subject: 请教mpi 都老师: 你好! 我是南京大学系学生,现在正在用mpi进行数值并行编程, 是在windows系统下,同实验室的两台机器,总是显示登陆失败 不知怎么设置的。两台机器用的是同一用户名和相同密码,同样的注册。 希望能得到您的指点。 此致 -- ※ 来源:.南京大学小百合站 http://bbs.nju.edu.cn [FROM: 172.16.78.68] -- ※ 转寄:.南京大学小百合站 bbs.nju.edu.cn.[FROM: 202.120.20.14] -- ※ 转寄:.南京大学小百合站 bbs.nju.edu.cn.[FROM: 202.120.20.14] 一、预备工作 0. 二、下载 1. 下载mpich 三、安装 2. 用具有管理权限的帐户登陆计算机 3. 执行mpich.nt.1.2.5.exe,选择所有缺省安装 4. 在每台计算机上均执行上述过程2、3 四、配置 5. 运行配置工具 start->programs->MPICH->mpd->MPICH Configuration tool 6. 加入已经安装mpich的主机 7.点击 [Apply] 保存 8 点击 [OK] 退出 五、测试 9. 打开MSDEV工作空间文件 MPICH/SDK/examples/nt/examples.dsw 10. 编译调试该cpi 项目 11. 拷贝MPICH/SDK/examples/nt/basic/Debug/cpi.exe 到每一台机器某一共享目录。 如: c:/temp/cpi.exe 注意:确保每台机器均有同样的共享目录,并且可以互相访问!! 12. 打开命令窗口,改变当前路径到 c:/temp 下(与前相同) 13. 执行命令 MPICH/mpd/bin/mpirun.exe -np 4 cpi 本篇文章为转载内容。原文链接:https://blog.csdn.net/yangdelong/article/details/3946113。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-09 11:52:38
113
转载
Nacos
...。 我打开代码,仔细检查了Nacos客户端的初始化部分: java NacosConfigService configService = NacosFactory.createConfigService("http://localhost:8848"); 这段代码看起来没问题啊,路径明明指向的是本地的Nacos服务器。而且我之前测试的时候也是这么写的,一直都没问题。 “会不会是配置路径格式变了?”我又重新检查了一遍Nacos的配置管理页面,确认路径确实正确无误。然后我又检查了权限设置,确保服务有权限访问这些配置。 “权限应该没问题吧,毕竟之前都好好的。”我自言自语道。不过嘛,我总觉得不放心,就随手叫上咱们的运维小伙伴帮我看了一下Nacos服务端的配置权限。没想到一看还真发现了点小问题,仔细一排查才发现权限其实没啥大事儿,一切正常! “看来不是路径和权限的问题,那问题到底出在哪呢?”我有点沮丧,但还是不死心,继续往下查。 --- 三、深入排查 网络连接与超时设置 接下来,我开始怀疑是不是网络连接出了问题。毕竟Nacos是基于网络通信的,如果网络不通畅,那自然会导致读取失败。 我先检查了Nacos服务端的日志,发现并没有什么异常。再瞧瞧服务端的那个监听端口,嘿,8848端口不仅开着呢,而且服务还稳稳地在跑着,一点问题没有! “难道是客户端的网络问题?”我心中一动,赶紧查看了服务端的防火墙规则,确认没有阻断任何请求。接着我又尝试ping了一下Nacos服务端的IP地址,结果发现网络连通性很好。 “网络应该没问题啊,那会不会是超时时间设置得太短了?”我灵机一动,想到之前在其他项目中遇到过类似的问题,可能是客户端等待响应的时间太短,导致请求超时。 于是我修改了Nacos客户端的配置,增加了超时时间: java Properties properties = new Properties(); properties.put(PropertyKeyConst.SERVER_ADDR, "localhost:8848"); properties.put(PropertyKeyConst.CONNECT_TIMEOUT_MS, "5000"); // 增加到5秒 NacosConfigService configService = NacosFactory.createConfigService(properties); 重新启动服务后,问题依然存在。看来超时时间也不是主要原因。 “真是搞不懂啊,难道是Nacos本身的问题?”我有些泄气,但还是决定继续深挖下去。 --- 四、终极排查 代码逻辑与异常处理 最后,我决定从代码逻辑入手,看看是不是程序内部的某些逻辑出了问题。于是我打开了Nacos客户端的源码,开始逐行分析。 在Nacos客户端的实现中,有一个方法是用来获取配置的: java String content = configService.getConfig(dataId, group, timeoutMs); 我仔细检查了这个方法的调用点,发现它是在服务启动时被调用的。你瞧,服务一启动呢,就会加载一堆东西,像数据库连接池啦,缓存配置啦,各种各样的“装备”都得准备好,这样它才能顺利开工干活呀! “会不会是某个配置项的加载顺序影响了Nacos的读取?”我突然想到这一点。我琢磨着这事儿,干脆把所有的配置加载顺序仔仔细细捋了一遍,就为了确保Nacos的配置能在服务刚启动的时候就给安排上,别拖到后面出了幺蛾子。 同时,我还加强了异常处理逻辑,给Nacos的读取操作加上了try-catch块,以便捕获具体的异常信息: java try { String content = configService.getConfig(dataId, group, timeoutMs); System.out.println("Config loaded successfully: " + content); } catch (NacosException e) { System.err.println("Failed to load config: " + e.getMessage()); } 经过一番调整后,我再次启动服务,终于看到了一条令人振奋的消息:“Config loaded successfully”。 “太好了!”我长舒一口气,“原来问题就出在这里啊。” --- 五、总结与感悟 经过这次折腾,我对Nacos有了更深的理解。Nacos这东西确实挺牛的,是个超棒的配置管理工具,但用着用着你会发现,它也不是完美无缺的,各种小问题啊、坑啊,时不时就冒出来折腾你一下。其实吧,这些问题真不一定是Nacos自己惹的祸,八成是咱们的代码写得有点问题,或者是环境配错了,带偏了Nacos。 “其实啊,调试的过程就像侦探破案一样,需要耐心和细心。我坐在电脑前忍不住感慨:“哎,有时候觉得这问题看起来平平无奇的,可谁知道背后可能藏着啥惊天大秘密呢!”” 总之,这次经历让我明白了一个道理:遇到问题不要慌,要冷静分析,逐步排查。只有这样,才能找到问题的根本原因,解决问题。希望我的经验能对大家有所帮助,如果有类似的问题,不妨按照这个思路试试看!
2025-04-06 15:56:57
67
清风徐来
转载文章
...还有一种方法,npm命令如上 VERSION=node_14.x DISTRO="$(dpkg --status tzdata|grep Provides|cut -f2 -d'-')" echo "deb https://deb.nodesource.com/$VERSION $DISTRO main" | sudo tee /etc/apt/sources.list.d/nodesource.list echo "deb-src https://deb.nodesource.com/$VERSION $DISTRO main" | sudo tee -a /etc/apt/sources.list.d/nodesource.list curl -fsSL https://deb.nodesource.com/gpgkey/nodesource.gpg.key | sudo apt-key add - sudo apt-get -y update sudo apt-get install -y nodejs 5. 安装SVN sudo apt-get install -y subversion 6. 安装Git sudo apt-get install -y git 7. 安装MySQL MySQL :: Download MySQL Community Server 下载Debian版DEB Bundle 解压 进入目录,执行 sudo dpkg -i mysql-{common,community-client,client,community-server,server}_.deb 如果报错,执行 sudo apt-get -f install 中途设置root用户密码 8. 安装PostgreSQL 安装PostgreSQL sudo apt-get install -y postgresql-11 修改postgres用户密码 sudo -u postgres psql 进入后执行SQL ALTER USER postgres WITH PASSWORD 'postgres'; 退出 exit; 9. 安装Redis sudo apt-get install -y redis-server 修改配置文件 sudo vim /etc/redis/redis.conf 重启 sudo systemctl restart redis sudo systemctl enable redis-server 10. 安装Nginx sudo apt-get install -y nginx 修改配置文件 sudo vim /etc/nginx/nginx.conf 重启 sudo systemctl restart nginx sudo systemctl enable nginx 11. 安装VMWare Workstation 下载 https://www.vmware.com/go/getworkstation-linux 放到文件夹,进入,执行 sudo chmod +x VMware-Workstation-Full-17.0.0-20800274.x86_64.bundle sudo ./VMware-Workstation-Full-17.0.0-20800274.x86_64.bundle 安装gcc sudo apt-get install -y gcc 进入控制台,找到VMWare,开始安装,安装过程同Windows 如果如果遇到build environment error错误,执行下列命令后再重新在控制台打开图标 sudo apt-get install -y libcanberra 如果还不行,执行 sudo vmware-modconfig --console --install-all 看看还缺什么 12. 安装百度网盘 官网下载Linux版本的软件:百度网盘 客户端下载 deepin的软件包格式为deb。安装: sudo dpkg -i baidunetdisk_3.5.0_amd64.deb 最新版本 sudo dpkg -i baidunetdisk_4.17.7_amd64.deb 如果报错,执行 sudo apt-get -f install 13. 安装WPS 官网下载Linux版本的软件:WPS Office 2019 for Linux-支持多版本下载_WPS官方网站 deepin的软件包格式为deb。安装: sudo dpkg -i wps-office_11.1.0.10702_amd64.deb 最新版本 sudo dpkg -i wps-office_11.1.0.11691_amd64.deb 如果报错执行 sudo apt-get -f install wps有可能会报缺字体,缺的字体如下,双击安装 百度网盘 请输入提取码 提取码:lexo 14. 安装VS Code 官网下载Linux版本的软件:Visual Studio Code - Code Editing. Redefined deepin的软件包格式为deb。安装: sudo dpkg -i code_1.61.1-1634175470_amd64.deb 最新版本 sudo dpkg -i code_1.76.0-1677667493_amd64.deb 如果报错执行 sudo apt-get -f install 15. 安装微信、QQ、迅雷 微信 sudo apt-get install -y com.qq.weixin.deepin QQ sudo apt-get install -y com.qq.im.deepin 迅雷 sudo apt-get install -y com.xunlei.download 16. 安装视频播放器 sudo apt-get -y install smplayer sudo apt-get -y install vlc 17. 安装SSH工具electerm 下载electerm的deb版本 deepin的软件包格式为deb。安装: https://github.com/electerm/electerm/releases/download/v1.25.16/electerm-1.25.16-linux-amd64.deb sudo dpkg -i electerm-1.25.16-linux-amd64.deb 18.安装FTP/SFTP工具FileZilla sudo apt-get -y install filezilla 19. 安装edge浏览器 下载edge浏览器 deepin的软件包格式为deb。安装: 下载 Microsoft Edge sudo apt-get -y install fonts-liberation sudo apt-get -y install libu2f-udev sudo dpkg -i microsoft-edge-beta_95.0.1020.30-1_amd64.deb 最新版本 sudo dpkg -i microsoft-edge-stable_110.0.1587.63-1_amd64.deb 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_42173947/article/details/119973703。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-15 19:14:44
54
转载
转载文章
...自定义拦截器,它负责检查用户是否已经登录,只有当用户已登录时才允许继续执行后续的操作(如文件上传或下载)。通过这种方式,拦截器增强了系统的安全性,确保了只有经过验证的用户才能访问受限资源。
2023-11-12 20:53:42
140
转载
Beego
...3. 1. 第一步 检查配置文件的格式 当遇到 “configuration file parsing error” 时,第一步当然是检查配置文件的格式。这听起来很简单,但实际上需要仔细观察每一个细节。 比如说,你的配置文件可能有空行或者多余的空格。Beego 对这些细节是非常敏感的。再比如,有些键值对之间可能没有等号(=),这也是一个常见的错误。所以,在处理这个问题之前,先用文本编辑器打开配置文件,仔细检查每一行。 bash 打开配置文件进行检查 vim conf/app.conf 3. 2. 第二步 使用 Beego 提供的工具 Beego 为我们提供了一个非常方便的工具,叫做 beego.AppConfig。这个工具可以帮助我们轻松地读取和解析配置文件。要是你检查完配置文件,发现格式啥的都没毛病,可还是报错的话,那八成是代码里头哪里出岔子了。 下面是一个简单的代码示例,展示如何使用 beego.AppConfig 来读取配置文件: go package main import ( "fmt" "github.com/beego/beego/v2/server/web" ) func main() { // 初始化 Beego 配置 web.SetConfigName("app") web.AddConfigPath("./conf") err := web.LoadAppConfig("ini", "./conf/app.conf") if err != nil { fmt.Println("Error loading configuration:", err) return } // 读取配置项 appName := web.AppConfig.String("appname") port := web.AppConfig.String("port") fmt.Printf("Application Name: %s\n", appName) fmt.Printf("Port: %s\n", port) } 在这个例子中,我们首先设置了配置文件的名字和路径,然后通过 LoadAppConfig 方法加载配置文件。要是加载的时候挂了,就会蹦出个错误信息。咱们可以用 fmt.Println 把这个错误打出来,这样就能知道到底哪里出问题啦! 3. 3. 第三步 日志记录的重要性 在处理配置文件解析错误时,日志记录是一个非常重要的环节。通过记录详细的日志信息,我们可以更好地追踪问题的根源。 Beego 提供了强大的日志功能,我们可以很容易地将日志输出到控制台或文件中。下面是一个使用 Beego 日志模块的例子: go package main import ( "github.com/beego/beego/v2/server/web" "log" ) func main() { // 设置日志级别 log.SetFlags(log.Ldate | log.Ltime | log.Lshortfile) // 加载配置文件 err := web.LoadAppConfig("ini", "./conf/app.conf") if err != nil { log.Fatalf("Failed to load configuration: %v", err) } // 继续执行其他逻辑 log.Println("Configuration loaded successfully.") } 在这个例子中,我们设置了日志的格式,并在加载配置文件时使用了 log.Fatalf 来记录错误信息。这样,即使程序崩溃,我们也能清楚地看到哪里出了问题。 4. 我的经验总结 经过多次实践,我发现处理配置文件解析错误的关键在于耐心和细心。很多时候,问题并不是特别复杂,只是我们一时疏忽导致的。所以啊,在写代码的时候,得养成好习惯,像时不时瞅一眼配置文件是不是整整齐齐的,别让那些键值对出问题,不然出了bug找起来可够呛。 同时,我也建议大家多利用 Beego 提供的各种工具和功能。Beego 是一个非常成熟的框架,它已经为我们考虑到了很多细节。只要我们合理使用这些工具,就能大大减少遇到问题的概率。 最后,我想说的是,编程其实是一个不断学习和成长的过程。当我们遇到困难时,不要气馁,也不要急于求成。静下心来,一步步分析问题,总能找到解决方案。这就跟处理配置文件出错那会儿似的,说白了嘛,只要你能沉住气,再琢磨出点门道来,这坎儿肯定能迈过去! 5. 结语 好了,今天的分享就到这里了。希望能通过这篇文章,让大家弄明白在 Beego 里怎么正确解决配置文件出错的问题,这样以后遇到类似情况就不会抓耳挠腮啦!如果你还有什么疑问或者更好的方法,欢迎随时跟我交流。我们一起进步,一起成为更优秀的开发者! 记住,编程不仅仅是解决问题,更是一种艺术。愿你在编程的道路上越走越远,越走越宽广!
2025-04-13 15:33:12
24
桃李春风一杯酒
Apache Lucene
...ng()); // 检查是否有异常抛出 while (tokenStream.incrementToken()) { System.out.println("Token: " + tokenStream.getAttribute(CharTermAttribute.class).toString()); } // 关闭 TokenStream 和 IndexReader tokenStream.end(); reader.close(); } } 在这段代码中,我们首先创建了一个 RAMDirectory,并使用它来构建一个索引。接着,我们添加了一个包含测试文本的文档到索引中。之后,我们创建了 IndexSearcher 来搜索文档,并使用 StandardAnalyzer 来创建 TokenStream。在循环中,我们逐个输出令牌,直到遇到 EOFException,这通常意味着已经到达了文本的末尾。 第二部分:深入分析 EOFException 的原因与解决策略 在实际应用中,EOFException 通常意味着 TokenStream 已经到达了文本的结尾,这可能是由于以下原因: - 文本过短:如果输入的文本长度不足以产生足够的令牌,TokenStream 可能会过早地报告结束。 - 解析问题:在复杂的文本结构下,解析器可能未能正确地分割文本,导致部分文本未被识别为有效的令牌。 为了应对这种情况,我们可以采取以下策略: - 增加文本长度:确保输入的文本足够长,以生成多个令牌。 - 优化解析器配置:根据特定的应用场景调整分析器的配置,例如使用不同的分词器(如 CJKAnalyzer)来适应不同语言的需求。 - 错误处理机制:在代码中加入适当的错误处理逻辑,以便在遇到 EOFException 时进行相应的处理,例如记录日志、提示用户重新输入更长的文本等。 结语:拥抱挑战,驾驭全文检索 面对 org.apache.lucene.analysis.TokenStream$EOFException: End of stream 这样的挑战,我们的目标不仅仅是解决问题,更是通过这样的经历深化对 Lucene 工作原理的理解。哎呀,你猜怎么着?咱们在敲代码、调参数的过程中,不仅技术越来越溜,还能在处理那些乱七八糟的数据时,感觉自己就像个数据处理的小能手,得心应手的呢!就像是在厨房里,熟练地翻炒各种食材,做出来的菜品色香味俱全,让人赞不绝口。编程也是一样,每一次的实践和调试,都是在给我们的技能加料,让我们的作品越来越美味,越来越有营养!嘿!兄弟,听好了,每次遇到难题都像是在给咱的成长加个buff,咱们得一起揭开全文检索的神秘面纱,掌控技术的大棒,让用户体验到最棒、最快的搜索服务,让每一次敲击键盘都能带来惊喜! --- 以上内容不仅涵盖了理论解释与代码实现,还穿插了人类在面对技术难题时的思考与探讨,旨在提供一种更加贴近实际应用、充满情感与主观色彩的技术解读方式。
2024-07-25 00:52:37
391
青山绿水
NodeJS
...是否成功。如果这两个命令都能正常输出版本号,那就说明环境配置好了。 接下来,我们创建项目文件夹,并初始化 npm: bash mkdir real-time-monitor cd real-time-monitor npm init -y 然后安装必要的依赖包。这里我们用到两个核心库:Express 和 ws(WebSocket 库)。Express 是用来搭建 HTTP 服务的,ws 则专门用于 WebSocket 通信。 bash npm install express ws 接下来,我们写一个最基础的 HTTP 服务,确保环境能正常工作: javascript // server.js const express = require('express'); const app = express(); app.get('/', (req, res) => { res.send('Hello World!'); }); const PORT = process.env.PORT || 3000; app.listen(PORT, () => { console.log(Server is running on port ${PORT}); }); 保存文件后运行 node server.js,然后在浏览器输入 http://localhost:3000,应该能看到 “Hello World!”。到这里,我们的基本框架已经搭好了,是不是感觉还挺容易的? --- 3. 第二步 引入 WebSocket 现在我们有了一个 HTTP 服务,接下来该让 WebSocket 上场了。WebSocket 的好处就是能在浏览器和服务器之间直接搭起一条“高速公路”,不用老是像发短信那样频繁地丢 HTTP 请求过去,省时又高效!为了方便,我们可以直接用 ws 库来实现。 修改 server.js 文件,添加 WebSocket 相关代码: javascript // server.js const express = require('express'); const WebSocket = require('ws'); const app = express(); const wss = new WebSocket.Server({ port: 8080 }); wss.on('connection', (ws) => { console.log('A client connected!'); // 接收来自客户端的消息 ws.on('message', (message) => { console.log(Received message => ${message}); ws.send(You said: ${message}); }); // 当客户端断开时触发 ws.on('close', () => { console.log('Client disconnected.'); }); }); app.get('/', (req, res) => { res.sendFile(__dirname + '/index.html'); }); const PORT = process.env.PORT || 3000; app.listen(PORT, () => { console.log(HTTP Server is running on port ${PORT}); }); 这段代码做了几件事: 1. 创建了一个 WebSocket 服务器,监听端口 8080。 2. 当客户端连接时,打印日志并等待消息。 3. 收到消息后,会回传给客户端。 4. 如果客户端断开连接,也会记录日志。 为了让浏览器能连接到 WebSocket 服务器,我们还需要一个简单的 HTML 页面作为客户端入口: html Real-Time Monitor WebSocket Test Send Message 这段 HTML 代码包含了一个简单的聊天界面,用户可以在输入框中输入内容并通过 WebSocket 发送到服务器,同时也能接收到服务器返回的信息。跑完 node server.js 之后,别忘了打开浏览器,去 http://localhost:3000 看一眼,看看它是不是能正常转起来。 --- 4. 第三步 扩展功能——实时监控数据 现在我们的 WebSocket 已经可以正常工作了,但还不能算是一个真正的监控面板。为了让它更实用一点,咱们不妨假装弄点监控数据玩玩,像CPU用得多不多、内存占了百分之多少之类的。 首先,我们需要一个生成随机监控数据的函数: javascript function generateRandomMetrics() { return { cpuUsage: Math.random() 100, memoryUsage: Math.random() 100, diskUsage: Math.random() 100 }; } 然后,在 WebSocket 连接中定时向客户端推送这些数据: javascript wss.on('connection', (ws) => { console.log('A client connected!'); setInterval(() => { const metrics = generateRandomMetrics(); ws.send(JSON.stringify(metrics)); }, 1000); // 每秒发送一次 ws.on('close', () => { console.log('Client disconnected.'); }); }); 客户端需要解析接收到的数据,并动态更新页面上的信息。我们可以稍微改造一下 HTML 和 JavaScript: html CPU Usage: Memory Usage: Disk Usage: javascript socket.onmessage = (event) => { const metrics = JSON.parse(event.data); document.getElementById('cpuProgress').value = metrics.cpuUsage; document.getElementById('memoryProgress').value = metrics.memoryUsage; document.getElementById('diskProgress').value = metrics.diskUsage; const messagesDiv = document.getElementById('messages'); messagesDiv.innerHTML += Metrics updated. ; }; 这样,每秒钟都会从服务器获取一次监控数据,并在页面上以进度条的形式展示出来。是不是很酷? --- 5. 结尾 总结与展望 通过这篇文章,我们从零开始搭建了一个基于 Node.js 和 WebSocket 的实时监控面板。别看它现在功能挺朴素的,但这东西一出手就让人觉得,WebSocket 在实时互动这块儿真的大有可为啊!嘿,听我说!以后啊,你完全可以接着把这个项目捯饬得更酷一些。比如说,弄点新鲜玩意儿当监控指标,让用户用起来更爽,或者直接把它整到真正的生产环境里去,让它发挥大作用! 其实开发的过程就像拼图一样,有时候你会遇到困难,但只要一点点尝试和调整,总会找到答案。希望这篇文章能给你带来灵感,也欢迎你在评论区分享你的想法和经验! 最后,如果你觉得这篇文章对你有帮助,记得点个赞哦!😄 --- 完
2025-05-06 16:24:48
70
清风徐来
转载文章
...ml 1.购买SSL证书,参考:http://www.cnblogs.com/yipu/p/3722135. ... OpenGL的glViewPort窗口设置函数实现分屏 之前实现过全景图片查看(OpenGL的几何变换3之内观察全景图),那么我们需要进行分屏该如何实现呢?如下图: 没错就是以前提过的glViewPort函数,废话不多说了,我直接上代码: //从这里开始进 ... hdu 4764 Stone (巴什博弈,披着狼皮的羊,小样,以为换了身皮就不认识啦) 今天(2013/9/28)长春站,最后一场网络赛! 3~5分钟后有队伍率先发现伪装了的签到题(博弈) 思路: 与取石头的巴什博弈对比 题目要求第一个人取数字在[1,k]间的某数x,后手取x加[1,k] ... android报表图形引擎(AChartEngine)demo解析与源码 AchartEngine支持多种图表样式,本文介绍两种:线状表和柱状表. AchartEngine有两种启动的方式:一种是通过ChartFactory.getView()方式来直接获取到view ... CSS长度单位及区别 em ex px pt in 1. css相对长度单位 Ø em 元素的字体高度 Ø ex 字体x的高度 Ø px ... es6的箭头函数 1.使用语法 : 参数 => 函数语句; 分为以下几种形式 : (1) ()=>语句 ( )=> statement 这是一种简写方法省略了花括号和return 相当于 ()=&g ... pdfplumber库解析pdf格式 参考地址:https://github.com/jsvine/pdfplumber 简单的pdf转换文本: import pdfplumber with pdfplumber.open(path) a ... KMP替代算法——字符串Hash 很久以前写的... 今天来谈谈一种用来替代KMP算法的奇葩算法--字符串Hash 例题:给你两个字符串p和s,求出p在s中出现的次数.(字符串长度小于等于1000000) 字符串的Hash 根据字面意 ... SSM_CRUD新手练习(5)测试mapper 上一篇我们使用逆向工程生成了所需要的bean.dao和对应的mapper.xml文件,并且修改好了我们需要的数据库查询方法. 现在我们来测试一下DAO层,在test包下新建一个MapperTest.j ... 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_35666639/article/details/118169985。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-16 11:42:34
252
转载
Hadoop
...降。文章提到可以通过检查代码执行时间和优化副本策略来诊断是否存在网络延迟问题。 数据本地性 , 指的是数据被请求时,其所在的存储节点与发起请求的客户端之间的距离关系。理想状态下,数据应尽可能存储在靠近客户端的位置,以减少跨节点的数据传输开销。文章中提到可以通过调整副本策略来改善数据本地性,例如设置dfs.replication参数,使文件副本更集中于特定节点,从而提高读取效率。
2025-05-04 16:24:39
103
月影清风
Netty
...合心跳检测机制,定期检查连接状态,确保连接的有效性。 零拷贝技术 , 一种优化内存使用的技术,允许数据在不同内存区域之间直接传递而不发生额外的复制操作,从而减少CPU和内存资源的开销。文中提到Netty利用零拷贝技术通过FileRegion类直接将文件内容发送到Socket通道,这种方式提高了文件传输效率,降低了内存占用,特别适合大数据量传输的场景。
2025-03-19 16:22:40
79
红尘漫步
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
tar -cvzf archive.tar.gz file_or_directory
- 创建gzip压缩格式的tar归档包。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"