前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Sec-WebSocket-Key Se...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Sqoop
.../TLS? SSL(Secure Sockets Layer)和TLS(Transport Layer Security)是两种安全协议,它们提供了一种安全的方式来在网络上传输数据。这两种协议都建立在公钥加密技术的基础之上,就像咱们平时用的密钥锁一样,只不过这里的“钥匙”更智能些。它们会借用数字证书这玩意儿来给发送信息的一方验明正身,确保消息是从一个真实可信的身份发出的,而不是什么冒牌货。这样可以防止中间人攻击,确保数据的完整性和私密性。 三、如何配置Sqoop以使用SSL/TLS加密? 要配置Sqoop以使用SSL/TLS加密,我们需要按照以下步骤进行操作: 步骤1:创建并生成SSL证书 首先,我们需要创建一个自签名的SSL证书。这可以通过使用OpenSSL命令行工具来完成。以下是一个简单的示例: openssl req -x509 -newkey rsa:2048 -keyout key.pem -out cert.pem -days 3650 -nodes 这个命令将会创建一个名为key.pem的私钥文件和一个名为cert.pem的公钥证书文件。证书的有效期为3650天。 步骤2:修改Sqoop配置文件 接下来,我们需要修改Sqoop的配置文件以使用我们的SSL证书。Sqoop的配置文件通常是/etc/sqoop/conf/sqoop-env.sh。在这个文件中,我们需要添加以下行: export JVM_OPTS="-Djavax.net.ssl.keyStore=/path/to/key.pem -Djavax.net.ssl.trustStore=/path/to/cert.pem" 这行代码将会告诉Java环境使用我们刚刚创建的key.pem文件作为私钥存储位置,以及使用cert.pem文件作为信任存储位置。 步骤3:重启Sqoop服务 最后,我们需要重启Sqoop服务以使新的配置生效。以下是一些常见的操作系统上启动和停止Sqoop服务的方法: Ubuntu/Linux: sudo service sqoop start sudo service sqoop stop CentOS/RHEL: sudo systemctl start sqoop.service sudo systemctl stop sqoop.service 四、总结 在本文中,我们介绍了如何配置Sqoop以使用SSL/TLS加密。你知道吗,就像给自家的保险箱装上密码锁一样,我们可以通过动手制作一个自签名的SSL证书,然后把它塞进Sqoop的配置文件里头。这样一来,就能像防护盾一样,把咱们的数据安全牢牢地守在中间人攻击的外面,让数据的安全性和隐私性蹭蹭地往上涨!虽然一开始可能会觉得有点烧脑,但仔细想想数据的价值,我们确实应该下点功夫,花些时间把这个事情搞定。毕竟,为了保护那些重要的数据,这点小麻烦又算得了什么呢? 当然,这只是基础的配置,如果我们需要更高级的保护,例如双重认证,我们还需要进行更多的设置。不管怎样,咱可得把数据安全当回事儿,要知道,数据可是咱们的宝贝疙瘩,价值连城的东西之一啊!
2023-10-06 10:27:40
184
追梦人-t
Tornado
...些,你还可以利用它的WebSocket、HTTP客户端等功能来满足更多的需求。 五、总结 总的来说,Tornado是一个非常强大的工具,它不仅可以帮助我们提高网络应用程序的性能和稳定性,还可以帮助我们更好地处理网络连接不稳定或中断的问题。如果你是一名网络开发工程师,我强烈推荐你学习和使用Tornado。相信你会发现,它会给你带来很多惊喜和收获。 六、结语 希望通过这篇文章,你能了解到Tornado的基本概念和使用方法,并且能将这些知识运用到实际的工作和项目中。记住了啊,学习这件事儿可是没有终点线的马拉松,只有不断地吸收新知识、动手实践操作,才能让自己的技能树茁壮成长,最终修炼成一名货真价实的网络开发大神。
2023-05-20 17:30:58
168
半夏微凉-t
Consul
...n(service.Key) } } 在这个例子中,我们首先创建了一个 Consul 客户端实例,并指定了要连接的 Consul 服务器地址。然后,我们将刚刚生成的 Token 设置为客户端的认证令牌。最后,我们调用 KV().List() 方法获取服务列表,并打印出来。 五、管理 Token 为了保证系统的安全性,我们需要定期管理和更新 Token。这包括但不限于创建、更新、撤销 Token。以下是如何撤销一个 Token 的示例: bash 撤销 Token consul acl revoke-token my_token_name 六、总结 通过使用 Consul 的 Token 授权功能,我们能够为不同的用户或角色提供细粒度的访问控制,从而增强了系统的安全性。哎呀,你知道吗?从生成那玩意儿(就是Token)开始,到用它在真实场景里拿取资源,再到搞定Token的整个使用周期,Consul 给咱们准备了一整套既周全又灵活的方案。就像是给你的钥匙找到了一个超级棒的保管箱,不仅安全,还能随时取出用上,方便得很!哎呀,兄弟,咱们得好好规划一下Token策略,就像给家里的宝贝设置密码一样。这样就能确保只有那些有钥匙的人能进屋,避免了不请自来的家伙乱翻东西。这样一来,咱们的敏感资料就安全多了,不用担心被不怀好意的人瞄上啦! 七、展望未来 随着业务的不断扩展和复杂性的增加,对系统安全性的需求也会随之提高。利用 Consul 的 Token 授权机制,结合其他安全策略和技术(如多因素认证、访问控制列表等),可以帮助构建更加健壮、安全的分布式系统架构。嘿,你听过这样一句话没?就是咱们得一直努力尝试新的东西,不断实践,这样才能让咱们的系统在面对那些越来越棘手的安全问题时,还能稳稳地跑起来,不卡顿,不掉链子。就像是个超级英雄,无论遇到什么险境,都能挺身而出,保护好大家的安全。所以啊,咱们得加油干,让系统变得更强大,更聪明,这样才能在未来的挑战中,立于不败之地!
2024-08-26 15:32:27
123
落叶归根
转载文章
...) as file:keys = file.read()return keysdef aim_letter(aim):"""获取到网页的json数据并保存到txt文件"""url = f'https://m.baidu.com/sugrec?pre=1&p=3&ie=utf-8&json=1&prod=wise&from=wise_web&sugsid=128699,138809,114177,135846,141002,138945,140853,141677,138878,137978,141200,140173,131246,132552,137743,138165,107315,138883,140259,141754,140201,138585,141650,138253,140114,136196,140325,140579,133847,140793,140066,134046,131423,137703,110085,127969,140957,141581,140593,140865,139886,138426,138941,141190,140596&net=&os=&sp=null&rm_brand=0&callback=jsonp1&wd{aim}&sugmode=2&lid=12389568409845924354&sugid=1990018821100998871&preqy=java&_=1580993331416'headers = {'User-Agent': Faker().user_agent(),'Host': 'm.baidu.com','Referer': 'https://m.baidu.com/ssid=4348023d/s?word={aim}&ts=3254538&t_kt=0&ie=utf-8&rsv_iqid=2845402975&rsv_t=daabpEKSG2wGueEO%252FnXSVz2dj3oGTk5cF1suYK9xduVIBAnyA5yo&sa=ib&rsv_pq=2845402975&rsv_sug4=5130&tj=1&inputT=2405&sugid=1990018821100998871&ss=100'}res = requests.get(url, headers=headers) 由于获取到的数据不是标准的json数据要进行字符串的删减result = json.loads(res.text.replace('jsonp1', '').strip('()')) 保存到txt文件with open(f'百度下拉词.txt', mode='a', encoding='utf-8') as file:for key in result['g']:file.write(key + '\n')def main():"""进行整合,并捕捉错误"""name = input('请输入文件的名字:')start_time = time.time()try:letter = get_aim(name).split('\n') 利用线程池加快爬取速度with concurrent.futures.ThreadPoolExecutor(max_workers=100) as executor:for l in letter:executor.submit(get_data, l)except:print('请检查文件名是否存在或者文件名是否错误!!')else: 提示用户完成并打印运行时间时间print('' 30 + f'<{name}> 百度相关词 已完成' + '' 30)finally:print(time.time() - start_time)if __name__ == '__main__':main() 在此 要感谢我的晨哥!!!哈哈 本篇文章为转载内容。原文链接:https://blog.csdn.net/Result_Sea/article/details/104201970。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-21 12:59:26
490
转载
Etcd
...e(5) 给某个key加上这个租约 client.put(key='/my-lock', value='locked', lease=lease) 这段代码的意思是:我给/my-lock这个key绑定了一个5秒的租约。只要这个key存在,别的节点就不能再获取这把锁了。如果租约过期了,锁也就自动释放了。 2.2 事务操作 Etcd支持原子性的事务操作,也就是要么全部成功,要么全部失败。这种特性非常适合用来保证分布式事务的一致性。 比如,我们想做一个转账操作: python 检查账户A是否有足够的余额 如果余额足够,扣掉金额并增加到账户B success, _ = client.transaction( compare=[ client.transactions.version('/account/A') > 0, client.transactions.value('/account/A') >= '100' ], success=[ client.transactions.put('/account/A', '50'), client.transactions.put('/account/B', '100') ], failure=[] ) if success: print("Transaction succeeded!") else: print("Transaction failed.") 这里咱们用transaction()方法定义了一个事务,先检查账户A的余额是否大于等于100,如果是的话,就把钱从A转到B。整个过程啊,要么全都搞定,要么就啥也不干,这不就是分布式事务最理想的状态嘛! 2.3 观察者模式 Etcd还有一个很酷的功能叫观察者模式,你可以监听某个key的变化,并实时做出反应。这对于监控系统状态或者触发某些事件非常有用。 比如: python for event in client.watch('/my-key'): print(event) 这段代码会一直监听/my-key的变化,一旦有更新就会打印出来。 --- 3. 实战演练 用Etcd实现分布式事务 现在咱们来实战一下,看看怎么用Etcd搞定分布式事务。假设我们要实现一个简单的库存管理系统。 3.1 场景描述 假设我们有两个服务A和服务B,服务A负责扣减库存,服务B负责记录日志。要让这两个步骤像一个整体似的,中间不能出岔子,那我们就得靠Etcd来管着分布式锁和事务了。 3.2 代码实现 Step 1: 初始化Etcd客户端 python import etcd3 client = etcd3.client(host='localhost', port=2379) Step 2: 获取分布式锁 python 创建一个租约,有效期为10秒 lease = client.lease(10) 尝试获取锁 lock_key = '/inventory-lock' try: lock_result = client.put(lock_key, 'locked', lease=lease) print("Lock acquired!") except Exception as e: print(f"Failed to acquire lock: {e}") Step 3: 执行事务操作 python 假设当前库存是100件 stock_key = '/inventory' current_stock = int(client.get(stock_key)[0].decode('utf-8')) if current_stock >= 10: 开始事务 success, _ = client.transaction( compare=[ client.transactions.version(stock_key) == current_stock ], success=[ client.transactions.put(stock_key, str(current_stock - 10)) ], failure=[] ) if success: print("Inventory updated successfully!") else: print("Failed to update inventory due to race condition.") else: print("Not enough stock available.") Step 4: 释放锁 python 租约到期后自动释放锁 lease.revoke() print("Lock released.") --- 4. 总结与展望 写到这里,我觉得咱们已经掌握了如何用Etcd来进行分布式事务管理。其实啊,事情没那么吓人!别看整个流程听着挺绕的,但只要你把分布式锁、事务操作还有观察者模式这些“法宝”都搞明白了,不管啥情况都能游刃有余地搞定,妥妥的! 不过,我也想提醒大家,分布式事务并不是万能药。有时候,过度依赖分布式事务反而会让系统变得更加复杂。所以,在实际开发中,我们需要根据业务需求权衡利弊。 最后,希望大家都能用好Etcd这个利器,让自己的分布式系统更加健壮和高效!如果你还有其他问题,欢迎随时来找我讨论,咱们一起进步!
2025-03-21 15:52:27
54
凌波微步
转载文章
...m/zaphoyd/websocketpp/archive/0.7.0.tar.gz > websocket.tar.gztar zxf websocket.tar.gz -C websocketpp/ --strip 1exit 之后,执行以下命令: sudo ./waf configuresudo ./wafsudo ./waf install 同样,过程中出现WARNING不用管。 最后,一定记着执行以下命令: sudo cp /usr/local/etc/ndn/nfd.conf.sample /usr/local/etc/ndn/nfd.conf 这样才能成功开启nfd。 至此,ndn-cxx 0.6.3和nfd 0.6.3全部安装完成。 执行示例程序 打开终端,运行nfd nfd-start(可能需要输入密码) 在ndn-cxx 0.6.3根目录下打开终端,进入examples目录,或者直接在example目录下打开终端(我选择这种方式,因为懒)。 这里,必须先运行producer程序,再运行consumer程序,作为学计算机的,应该不需要解释为啥了吧。 在一个终端下执行producer命令: ./producer 再打开一个终端,执行consumer命令: ./consumer 这时就可以成功看到交互了,但是有点儿问题,consumer会出现warning,如图所示: 这是为啥呢,好像是因为最近的版本,必须为interest报文指定一个默认前缀,为了之后的APP功能设计,详情请看以下链接: http://named-data.net/doc/ndn-cxx/current/doxygen/d1/d81/classndn_1_1Interest.htmla0275843d0eda5134e7fd7e787f972e78 这里我们怎么修改才能让他不显示这个warning呢?按照以下步骤: 进入ndn-cxx 的src目录: cd /usr/local/lib/ndn-cxx-0.6.3/src 修改interest.cpp文件,因为权限设置,我们在root下使用vim命令修改: sudo su(输入密码)vim interest.cpp找到 static bool hasDefaultCanBePrefixWarning = false将false改为true 之后,我们在ndn-cxx 0.6.3目录下再编译运行一下就行了,即: sudo ./waf configure --with-examplessudo ./wafsudo ./waf install 之后再examples目录再执行两个程序,就可以得到结果: 至此环境已经搭好,目前正准备进行后续工作。。。。。 望各位大佬手下留情,转载注明出处,感谢感谢!!!! 本篇文章为转载内容。原文链接:https://blog.csdn.net/silent_time/article/details/84146586。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-30 19:22:59
321
转载
Beego
...密钥 var jwtKey = []byte("your-secret-key") type User struct { Id int64 orm:"column(id);pk" Name string orm:"column(name)" } func main() { // 初始化ORM orm.RegisterModel(new(User)) // 示例:创建用户并生成JWT令牌 user := &User{Name: "John Doe"} err := orm.Insert(user) if err != nil { panic(err) } token, err := createToken(user.Id) if err != nil { panic(err) } http.HandleFunc("/login", func(w http.ResponseWriter, r http.Request) { w.Write([]byte(token)) }) http.ListenAndServe(":8080", nil) } func createToken(userId int64) (string, error) { claims := jwt.StandardClaims{ Issuer: "YourApp", ExpiresAt: time.Now().Add(time.Hour 24).Unix(), Subject: userId, } token := jwt.NewWithClaims(jwt.SigningMethodHS256, claims) return token.SignedString(jwtKey) } 2. JWT验证与解码 在用户请求资源时,我们需要验证JWT的有效性。Beego框架允许我们通过中间件轻松地实现这一功能: go func authMiddleware(next http.HandlerFunc) http.HandlerFunc { return func(w http.ResponseWriter, r http.Request) { tokenHeader := r.Header.Get("Authorization") if tokenHeader == "" { http.Error(w, "Unauthorized", http.StatusUnauthorized) return } tokenStr := strings.Replace(tokenHeader, "Bearer ", "", 1) token, err := jwt.Parse(tokenStr, func(token jwt.Token) (interface{}, error) { if _, ok := token.Method.(jwt.SigningMethodHMAC); !ok { return nil, fmt.Errorf("Unexpected signing method: %v", token.Header["alg"]) } return jwtKey, nil }) if err != nil { http.Error(w, "Unauthorized", http.StatusUnauthorized) return } if !token.Valid { http.Error(w, "Unauthorized", http.StatusUnauthorized) return } next.ServeHTTP(w, r) } } http.HandleFunc("/protected", authMiddleware(http.HandlerFunc(func(w http.ResponseWriter, r http.Request) { claims := token.Claims.(jwt.MapClaims) userID := int(claims["subject"].(float64)) // 根据UserID获取用户信息或其他操作... }))) 3. 刷新令牌与过期处理 为了提高用户体验并减少用户在频繁登录的情况下的不便,可以实现一个令牌刷新机制。当JWT过期时,用户可以发送请求以获取新的令牌。这通常涉及到更新JWT的ExpiresAt字段,并相应地更新数据库中的记录。 go func refreshToken(w http.ResponseWriter, r http.Request) { claims := token.Claims.(jwt.MapClaims) userID := int(claims["subject"].(float64)) // 更新数据库中的用户信息以延长有效期 err := orm.Update(&User{Id: userID}, "expires_at = ?", time.Now().Add(time.Hour24)) if err != nil { http.Error(w, "Internal Server Error", http.StatusInternalServerError) return } newToken, err := createToken(userID) if err != nil { http.Error(w, "Internal Server Error", http.StatusInternalServerError) return } w.Write([]byte(newToken)) } 4. 总结与展望 通过上述步骤,我们不仅实现了JWT在Beego框架下的集成与管理,还探讨了其在实际应用中的实用性和灵活性。JWT令牌的生命周期管理对于增强Web应用的安全性和用户体验至关重要。哎呀,你懂的,就是说啊,咱们程序员小伙伴们要是能不断深入研究密码学这门学问,然后老老实实地跟着那些最佳做法走,那在面对各种安全问题的时候就轻松多了,咱开发出来的系统自然就又稳当又高效啦!就像是有了金刚钻,再硬的活儿都能干得溜溜的! 在未来的开发中,持续关注安全漏洞和最佳实践,不断优化和升级JWT的实现策略,将有助于进一步提升应用的安全性和性能。哎呀,随着科技这玩意儿越来越发达,咱们得留意一些新的认证方式啦。比如说 OAuth 2.0 啊,这种东西挺适合用在各种不同的场合和面对各种变化的需求时。你想想,就像咱们出门逛街,有时候用钱包,有时候用手机支付,对吧?认证机制也一样,得根据不同的情况选择最合适的方法,这样才能更灵活地应对各种挑战。所以,探索并尝试使用 OAuth 2.0 这类工具,让咱们的技术应用更加多样化和适应性强,听起来挺不错的嘛!
2024-10-15 16:05:11
70
风中飘零
Consul
...,它还自带一个强大的Key-Value存储内核,这就意味着,用它来搭建既稳定可靠、又能灵活扩展的架构,简直就是绝佳拍档!今天,咱们就手拉手,一起揭开Consul数据存储的秘密面纱,瞧瞧它是如何在背后默默地支持整个系统的顺畅运行。 2. 数据存储基础 Consul的Key-Value存储,简称KV Store,是其核心组件之一。这个存储系统就像一个乱丢乱放的抽屉,你往里面塞东西、找东西都特简单方便,就跟你在一堆钥匙和小纸条中找对应的那把钥匙开对应的锁一样,只不过这里是应用程序在存取数据罢了。每一个键(Key)对应一个值(Value),并且支持版本控制和过期时间设置。这使得KV Store非常适合用于配置管理、状态跟踪和元数据存储。 go // 使用Consul的Go客户端存储键值对 package main import ( "fmt" "github.com/hashicorp/consul/api" ) func main() { config := api.DefaultConfig() config.Address = "localhost:8500" client, err := api.NewClient(config) if err != nil { panic(err) } // 存储键值对 _, _, err = client.KV().Put(&api.KVPair{ Key: "myapp/config/db_url", Value: []byte("postgresql://localhost:5432/mydb"), }, nil) if err != nil { fmt.Printf("Error storing key: %v\n", err) } else { fmt.Println("Key-value stored successfully") } } 3. 版本控制与事务 Consul KV Store支持版本控制,这意味着每次更新键值对时,都会记录一个新的版本。这对于确保数据一致性至关重要。例如,你可以使用KV() API的CheckAndSet方法原子性地更新值,只有当键的当前值与预期一致时才进行更新。 go // 更新键值对并确保值匹配 _, _, err = client.KV().CheckAndSet(&api.KVPair{ Key: "myapp/config/db_url", Value: []byte("postgresql://localhost:5432/mydb-updated"), Version: 1, // 假设我们已经知道当前版本是1 }, nil) 4. 过期时间与自动清理 Consul允许为键设置过期时间,一旦超过这个时间,Consul会自动删除该键值对,无需人工干预。这对于临时存储或缓存数据特别有用。 go // 设置过期时间为1小时的键值对 _, _, err = client.KV().Put(&api.KVPair{ Key: "myapp/temp_data", Value: []byte("temp data"), TTL: time.Hour, }, nil) 5. 集群同步与一致性 Consul的KV Store采用复制和一致性算法,确保所有节点上的数据保持同步。当有新数据需要写入时,Consul会发动一次全体节点参与的协同作战,确保这些新鲜出炉的数据会被所有节点稳稳接收到,这样一来,就不用担心数据会神秘消失或者出现啥不一致的情况啦。 6. 动态配置与服务发现 Consul的KV Store常用于动态配置,如应用的环境变量。同时呢,它还跟服务发现玩得可亲密了。具体来说就是,服务实例会主动把自己的信息挂到KV Store这个公告板上,其他服务一看,嘿,只要找到像service/myapp这样的关键词,就能轻松查到这些服务的配置情况和健康状况啦。 go // 注册服务 service := &api.AgentServiceRegistration{ ID: "myapp", Name: "My App Service", Tags: []string{"web"}, Address: "192.168.1.100:8080", } _, _, err = client.Agent().ServiceRegister(service, nil) 7. 总结与展望 Consul的Key-Value存储是其强大功能的核心,它使得数据管理变得简单且可靠。嘿,你知道吗?KV Store就像个超能小管家,在分布式系统里大显身手。它通过灵活的版本控制机制,像记录家族大事记一样,确保每一次数据变动都有迹可循;再搭配上过期时间管理这一神技能,让数据能在合适的时间自动更新换代,永葆青春;最关键的是,它还提供了一致性保证这个法宝,让所有节点的数据都能保持同步协调,稳如磐石。所以说啊,KV Store实实在在地为分布式系统搭建了一个无比坚实的基础支撑。无论是服务发现还是配置管理,Consul都展现了其灵活和实用的一面。随着企业越来越离不开微服务和云原生架构,Consul这个家伙将在现代DevOps的日常运作中持续扮演它的“大主角”,而且这戏份只会越来越重。 --- 在撰写这篇文章的过程中,我尽力将复杂的概念以易于理解的方式呈现,同时也融入了一些代码示例,以便读者能更直观地感受Consul的工作原理。甭管你是刚刚开始摸Consul的开发者小哥,还是正在绞尽脑汁提升自家系统稳定性的工程师大佬,都能从Consul这儿捞到实实在在的好处。希望本文能帮助你在使用Consul时更好地理解和利用其数据存储能力。
2024-03-04 11:46:36
433
人生如戏-t
Go Gin
...三、实时处理的核心 WebSocket支持 既然我们要讨论实时处理,那么就不得不提WebSocket。WebSocket就像是一个永不掉线的“聊天热线”,能让浏览器和服务器一直保持着畅通的联系。跟传统的请求-响应模式不一样,它可以让双方随时自由地“唠嗑”,想发啥就发啥,特别适合那些需要实时互动的应用,比如聊天室里你一言我一语,或者股票行情那种分分钟都在变化的东西,用它简直太合适了! Gin内置了对WebSocket的支持,我们可以直接通过中间件来实现这一功能。下面是一个完整的WebSocket示例: go package main import ( "log" "net/http" "github.com/gin-gonic/gin" "github.com/gorilla/websocket" ) var upgrader = websocket.Upgrader{ ReadBufferSize: 1024, WriteBufferSize: 1024, CheckOrigin: func(r http.Request) bool { return true // 允许跨域 }, } func handleWebSocket(c gin.Context) { ws, err := upgrader.Upgrade(c.Writer, c.Request, nil) if err != nil { log.Println("Failed to upgrade:", err) return } defer ws.Close() for { messageType, msg, err := ws.ReadMessage() if err != nil { log.Println("Error reading message:", err) break } log.Printf("Received: %s\n", string(msg)) err = ws.WriteMessage(messageType, msg) if err != nil { log.Println("Error writing message:", err) break } } } func main() { r := gin.Default() r.GET("/ws", handleWebSocket) r.Run(":8080") } 在这段代码中,我们利用gorilla/websocket包实现了WebSocket升级,并在handleWebSocket函数中处理了消息的读取与发送。你可以试着在浏览器里输入这个地址:ws://localhost:8080/ws,然后用JavaScript发个消息试试,看能不能马上收到服务器的回应。 深入探讨 说实话,刚开始写这部分代码的时候,我还担心WebSocket的兼容性问题。后来发现,只要正确设置了CheckOrigin方法,大多数现代浏览器都能正常工作。这让我更加坚定了对Gin的信心——它虽然简单,但足够强大! --- 四、进阶技巧 并发与性能优化 在实际项目中,我们可能会遇到高并发的情况。为了保证系统的稳定性,我们需要合理地管理线程池和内存分配。Gin提供了一些工具可以帮助我们做到这一点。 例如,我们可以使用sync.Pool来复用对象,减少垃圾回收的压力。下面是一个示例: go package main import ( "sync" "time" "github.com/gin-gonic/gin" ) var pool sync.Pool func init() { pool = &sync.Pool{ New: func() interface{} { return make([]byte, 1024) }, } } func handler(c gin.Context) { data := pool.Get().([]byte) defer pool.Put(data) copy(data, []byte("Hello World!")) time.Sleep(100 time.Millisecond) // 模拟耗时操作 c.String(http.StatusOK, string(data)) } func main() { r := gin.Default() r.GET("/", handler) r.Run(":8080") } 在这个例子中,我们定义了一个sync.Pool来存储临时数据。每次处理请求时,从池中获取缓冲区,处理完毕后再放回池中。这样可以避免频繁的内存分配和释放,从而提升性能。 反思与总结 其实,刚开始学习这段代码的时候,我对sync.Pool的理解还停留在表面。直到后来真正用它解决了性能瓶颈,我才意识到它的价值所在。这也让我明白,优秀的框架只是起点,关键还是要结合实际需求去探索和实践。 --- 五、未来展望 Gin与实时处理的无限可能 Gin的强大之处不仅仅在于它的易用性和灵活性,更在于它为开发者提供了广阔的想象空间。无论是构建大型分布式系统,还是打造小型实验项目,Gin都能胜任。 如果你也想尝试用Gin构建实时处理系统,不妨从一个小目标开始——比如做一个简单的在线聊天室。相信我,当你第一次看到用户实时交流的画面时,那种成就感绝对会让你欲罢不能! 最后的话 写这篇文章的过程,其实也是我自己重新审视Gin的过程。其实这个东西吧,说白了挺简单的,但让我学到了一个本事——用最利索的办法搞定事情。希望能这篇文章也能点醒你,让你在今后的开发路上,慢慢琢磨出属于自己的那套玩法!加油吧,程序员们!
2025-04-07 16:03:11
65
时光倒流
ElasticSearch
...-x509 -newkey rsa:4096 -keyout elastic.key -out elastic.crt -days 365 -nodes 这段命令会生成一个有效期为一年的证书文件elastic.crt和私钥文件elastic.key。 2.2.2 修改配置文件 接下来,我们需要在Elasticsearch的配置文件elasticsearch.yml中启用SSL/TLS。找到以下配置项: yaml xpack.security.http.ssl: enabled: true keystore.path: "/path/to/elastic.keystore" 这里的keystore.path指向你刚刚生成的证书和私钥文件。 2.2.3 启动Elasticsearch 启动Elasticsearch后,客户端连接时必须提供对应的证书才能正常工作。例如,使用curl命令时可以这样: bash curl --cacert elastic.crt https://localhost:9200/ 2.3 小结 通过SSL/TLS加密,我们可以大大降低数据泄露的风险。不过,自签名证书只适合开发和测试环境。如果是在生产环境中,建议购买由权威机构签发的证书。 --- 3. 用户认证与授权 接下来,咱们谈谈用户认证和授权。想象一下,如果没有身份验证机制,任何人都可以访问你的Elasticsearch集群,那简直是噩梦! 3.1 背景故事 有一次,我在调试一个项目时,无意间发现了一个未设置密码的Elasticsearch集群。我当时心里一惊,心想:“乖乖,要是有谁发现这个漏洞,那可就麻烦大了!”赶紧招呼团队的小伙伴们注意一下,提醒大家赶紧加上用户认证功能,别让问题溜走。 3.2 使用内置角色管理 Elasticsearch自带了一些内置角色,比如superuser和read_only。你可以根据需求创建自定义角色,并分配给不同的用户。 3.2.1 创建用户 假设我们要创建一个名为admin的管理员用户,可以使用以下命令: bash curl -X POST "https://localhost:9200/_security/user/admin" \ -H 'Content-Type: application/json' \ -u elastic \ -d' { "password" : "changeme", "roles" : [ "superuser" ] }' 这里的-u elastic表示使用默认的elastic用户进行操作。 3.2.2 测试用户权限 创建完用户后,我们可以尝试登录并执行操作。例如,使用admin用户查看索引列表: bash curl -X GET "https://localhost:9200/_cat/indices?v" \ -u admin:changeme 如果一切正常,你应该能看到所有索引的信息。 3.3 RBAC(基于角色的访问控制) 除了内置角色外,Elasticsearch还支持RBAC。你可以给每个角色设定超级详细的权限,比如说准不准用某个API,能不能访问特定的索引之类的。 json { "role": "custom_role", "cluster": ["monitor"], "indices": [ { "names": [ "logstash-" ], "privileges": [ "read", "view_index_metadata" ] } ] } 这段JSON定义了一个名为custom_role的角色,允许用户读取logstash-系列索引的数据。 --- 4. 日志审计与监控 最后,咱们得关注日志审计和监控。即使你做了所有的安全措施,也不能保证万无一失。定期检查日志和监控系统可以帮助我们及时发现问题。 4.1 日志审计 Elasticsearch自带的日志功能非常强大。你可以通过配置日志级别来记录不同级别的事件。例如,启用调试日志: yaml logger.org.elasticsearch: debug 将这条配置添加到logging.yml文件中即可。 4.2 监控工具 推荐使用Kibana来监控Elasticsearch的状态。装好Kibana之后,你就能通过网页界面瞅一眼你的集群健不健康、各个节点都在干嘛,还能看看性能指标啥的,挺直观的! 4.2.1 配置Kibana 在Kibana的配置文件kibana.yml中,添加以下内容: yaml elasticsearch.hosts: ["https://localhost:9200"] elasticsearch.username: "kibana_system" elasticsearch.password: "changeme" 然后重启Kibana服务,打开浏览器访问http://localhost:5601即可。 --- 5. 总结 好了,朋友们,今天的分享就到这里啦!优化Elasticsearch的安全性并不是一件容易的事,但只要我们用心去做,就能大大降低风险。从SSL/TLS加密到用户认证,再到日志审计和监控,每一个环节都很重要。 我希望这篇文章对你有所帮助,如果你还有其他问题或者经验分享,欢迎随时留言交流!让我们一起打造更安全、更可靠的Elasticsearch集群吧!
2025-05-12 15:42:52
96
星辰大海
NodeJS
...Node.js 与 WebSocket 构建实时监控面板 1. 开头 为什么选择 Node.js 和 WebSocket? 大家好!今天咱们聊聊如何用 Node.js 和 WebSocket 搭建一个实时监控面板。说实话,这事儿我琢磨了好久。作为一个前端开发爱好者,我一直对“实时”这个概念特别着迷。比如说,你点开一个网页,嚯!服务器跑得怎么样、数据库忙不忙,这些事儿一下子就清清楚楚地摆在眼前,还能隔空摆弄一下设备呢!这感觉,简直爽到飞起有木有? 但问题是,要实现这种功能并不简单。想象一下,以前我们用老式的网页加载方式,就像打电话问朋友“嘿,有啥新鲜事儿没?”然后挂掉电话等对方回拨告诉你答案。问题是,如果你想知道最新消息,就得一直重复这个过程——不停地挂电话再拨号,也就是不停刷新页面,才能看到有没有新东西蹦出来。这显然不是最优解。而 WebSocket 就不一样了,它是一种全双工通信协议,可以让客户端和服务端随时互相推送消息,简直是实时应用的最佳拍档! 说到 Node.js,它天生就擅长处理异步事件流,再加上强大的生态系统(比如 Express、Socket.IO 等),简直就是为实时应用量身定制的工具。所以,今天我们就用 Node.js + WebSocket 来做一个简单的实时监控面板,顺便分享一下我的一些心得。 --- 2. 第一步 搭建基础环境 首先,我们需要准备开发环境。Node.js 的安装非常简单,去官网下载对应版本就行。安装完后,用 node -v 和 npm -v 验证是否成功。如果这两个命令都能正常输出版本号,那就说明环境配置好了。 接下来,我们创建项目文件夹,并初始化 npm: bash mkdir real-time-monitor cd real-time-monitor npm init -y 然后安装必要的依赖包。这里我们用到两个核心库:Express 和 ws(WebSocket 库)。Express 是用来搭建 HTTP 服务的,ws 则专门用于 WebSocket 通信。 bash npm install express ws 接下来,我们写一个最基础的 HTTP 服务,确保环境能正常工作: javascript // server.js const express = require('express'); const app = express(); app.get('/', (req, res) => { res.send('Hello World!'); }); const PORT = process.env.PORT || 3000; app.listen(PORT, () => { console.log(Server is running on port ${PORT}); }); 保存文件后运行 node server.js,然后在浏览器输入 http://localhost:3000,应该能看到 “Hello World!”。到这里,我们的基本框架已经搭好了,是不是感觉还挺容易的? --- 3. 第二步 引入 WebSocket 现在我们有了一个 HTTP 服务,接下来该让 WebSocket 上场了。WebSocket 的好处就是能在浏览器和服务器之间直接搭起一条“高速公路”,不用老是像发短信那样频繁地丢 HTTP 请求过去,省时又高效!为了方便,我们可以直接用 ws 库来实现。 修改 server.js 文件,添加 WebSocket 相关代码: javascript // server.js const express = require('express'); const WebSocket = require('ws'); const app = express(); const wss = new WebSocket.Server({ port: 8080 }); wss.on('connection', (ws) => { console.log('A client connected!'); // 接收来自客户端的消息 ws.on('message', (message) => { console.log(Received message => ${message}); ws.send(You said: ${message}); }); // 当客户端断开时触发 ws.on('close', () => { console.log('Client disconnected.'); }); }); app.get('/', (req, res) => { res.sendFile(__dirname + '/index.html'); }); const PORT = process.env.PORT || 3000; app.listen(PORT, () => { console.log(HTTP Server is running on port ${PORT}); }); 这段代码做了几件事: 1. 创建了一个 WebSocket 服务器,监听端口 8080。 2. 当客户端连接时,打印日志并等待消息。 3. 收到消息后,会回传给客户端。 4. 如果客户端断开连接,也会记录日志。 为了让浏览器能连接到 WebSocket 服务器,我们还需要一个简单的 HTML 页面作为客户端入口: html Real-Time Monitor WebSocket Test Send Message 这段 HTML 代码包含了一个简单的聊天界面,用户可以在输入框中输入内容并通过 WebSocket 发送到服务器,同时也能接收到服务器返回的信息。跑完 node server.js 之后,别忘了打开浏览器,去 http://localhost:3000 看一眼,看看它是不是能正常转起来。 --- 4. 第三步 扩展功能——实时监控数据 现在我们的 WebSocket 已经可以正常工作了,但还不能算是一个真正的监控面板。为了让它更实用一点,咱们不妨假装弄点监控数据玩玩,像CPU用得多不多、内存占了百分之多少之类的。 首先,我们需要一个生成随机监控数据的函数: javascript function generateRandomMetrics() { return { cpuUsage: Math.random() 100, memoryUsage: Math.random() 100, diskUsage: Math.random() 100 }; } 然后,在 WebSocket 连接中定时向客户端推送这些数据: javascript wss.on('connection', (ws) => { console.log('A client connected!'); setInterval(() => { const metrics = generateRandomMetrics(); ws.send(JSON.stringify(metrics)); }, 1000); // 每秒发送一次 ws.on('close', () => { console.log('Client disconnected.'); }); }); 客户端需要解析接收到的数据,并动态更新页面上的信息。我们可以稍微改造一下 HTML 和 JavaScript: html CPU Usage: Memory Usage: Disk Usage: javascript socket.onmessage = (event) => { const metrics = JSON.parse(event.data); document.getElementById('cpuProgress').value = metrics.cpuUsage; document.getElementById('memoryProgress').value = metrics.memoryUsage; document.getElementById('diskProgress').value = metrics.diskUsage; const messagesDiv = document.getElementById('messages'); messagesDiv.innerHTML += Metrics updated. ; }; 这样,每秒钟都会从服务器获取一次监控数据,并在页面上以进度条的形式展示出来。是不是很酷? --- 5. 结尾 总结与展望 通过这篇文章,我们从零开始搭建了一个基于 Node.js 和 WebSocket 的实时监控面板。别看它现在功能挺朴素的,但这东西一出手就让人觉得,WebSocket 在实时互动这块儿真的大有可为啊!嘿,听我说!以后啊,你完全可以接着把这个项目捯饬得更酷一些。比如说,弄点新鲜玩意儿当监控指标,让用户用起来更爽,或者直接把它整到真正的生产环境里去,让它发挥大作用! 其实开发的过程就像拼图一样,有时候你会遇到困难,但只要一点点尝试和调整,总会找到答案。希望这篇文章能给你带来灵感,也欢迎你在评论区分享你的想法和经验! 最后,如果你觉得这篇文章对你有帮助,记得点个赞哦!😄 --- 完
2025-05-06 16:24:48
72
清风徐来
Redis
...ent, lock_key, timeout=10): 尝试加锁,设置过期时间为timeout秒 result = redis_client.set(lock_key, "locked", nx=True, ex=timeout) return bool(result) def release_lock(redis_client, lock_key): 使用Lua脚本来保证解锁的安全性 script = """ if redis.call("get", KEYS[1]) == ARGV[1] then return redis.call("del", KEYS[1]) else return 0 end """ redis_client.eval(script, keys=[lock_key], args=["locked"]) 这段代码展示了最基础的分布式锁实现方式。我们用set命令设置了两个参数:一个是NX,意思是“只在key不存在的时候才创建”,这样就能避免重复创建;另一个是EX,给这个锁加了个过期时间,相当于设了个倒计时,万一客户端挂了或者出问题了,锁也能自动释放,就不会一直卡在那里变成死锁啦。最后,解锁的时候我们用了Lua脚本,这样可以保证操作的原子性。 --- 4. 如何解决锁的隔离性问题? 诶,说到这里,问题来了——如果两个不同的业务逻辑都需要用到同一个锁怎么办?比如订单系统和积分系统都想操作同一个用户的数据,这时候就需要考虑锁的隔离性了。换句话说,我们需要确保不同业务逻辑之间的锁不会互相干扰。 示例代码 2:基于命名空间的隔离策略 python def acquire_namespace_lock(redis_client, namespace, lock_name, timeout=10): 构造带命名空间的锁名称 lock_key = f"{namespace}:{lock_name}" result = redis_client.set(lock_key, "locked", nx=True, ex=timeout) return bool(result) def release_namespace_lock(redis_client, namespace, lock_name): lock_key = f"{namespace}:{lock_name}" script = """ if redis.call("get", KEYS[1]) == ARGV[1] then return redis.call("del", KEYS[1]) else return 0 end """ redis_client.eval(script, keys=[lock_key], args=["locked"]) 在这个版本中,我们在锁的名字前面加上了命名空间前缀,比如orders:place_order和points:update_score。这样一来,不同业务逻辑就可以使用独立的锁,避免相互影响。 --- 5. 进阶 如何处理锁竞争与性能优化? 当然啦,现实中的分布式锁并不会总是那么顺利,有时候会出现大量请求同时争抢同一个锁的情况。这时我们可能需要引入队列机制或者批量处理的方式来降低系统的压力。 示例代码 3:使用Redis的List模拟队列 python def enqueue_request(redis_client, queue_key, request_data): redis_client.rpush(queue_key, request_data) def dequeue_request(redis_client, queue_key): return redis_client.lpop(queue_key) def process_queue(redis_client, lock_key, queue_key): while True: 先尝试获取锁 if not acquire_lock(redis_client, lock_key): time.sleep(0.1) 等待一段时间再重试 continue 获取队列中的第一个请求并处理 request = dequeue_request(redis_client, queue_key) if request: handle_request(request) 释放锁 release_lock(redis_client, lock_key) 这段代码展示了如何利用Redis的List结构来管理请求队列。想象一下,好多用户一起抢同一个东西,场面肯定乱哄哄的对吧?这时候,咱们就让他们老老实实排成一队,然后派一个专门的小哥挨个儿去处理他们的请求。这样一来,大家就不会互相“打架”了,事情也能更顺利地办妥。 --- 6. 总结与反思 兄弟们,通过今天的讨论,我相信大家都对如何在Redis中实现分布式锁有了更深刻的理解了吧?虽然Redis本身已经足够强大,但我们仍然需要根据实际需求对其进行适当的扩展和优化。比如刚才提到的命名空间隔离、队列机制等,这些都是非常实用的小技巧。 不过呢,我也希望大家能记住一点——技术永远不是一成不变的。业务越做越大,技术也日新月异的,咱们得不停地充电,学点新鲜玩意儿,试试新招数才行啊!就像今天的分布式锁一样,也许明天就会有更高效、更优雅的解决方案出现。所以,保持好奇心,勇于探索未知领域,这才是程序员最大的乐趣所在! 好了,今天就聊到这里啦,祝大家在编程的路上越走越远!如果有任何疑问或者想法,欢迎随时找我交流哦~
2025-04-22 16:00:29
58
寂静森林
Kafka
...rops.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer"); props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); KafkaProducer producer = new KafkaProducer<>(props); for (int i = 0; i < 10; i++) { producer.send(new ProducerRecord<>("login_logs", "key" + i, "value" + i)); } producer.close(); } } 这段代码会向login_logs主题发送10条消息,每条消息都有一个唯一的键和值。 --- 5. 总结 Kafka的魅力在于细节 好了,到这里咱们的Kafka之旅就告一段落了。通过这篇文章,我希望大家能更好地理解Kafka的命名规范和组织结构。Kafka为啥这么牛?因为它在设计的时候真是把每个小细节都琢磨得特别透。就像给主题起名字吧,分个区啦,还有消费者组怎么配合干活儿,这些地方都能看出人家确实是下了一番功夫的,真不是随便凑合出来的! 当然,Kafka的学习之路还有很多内容需要探索,比如监控、调优、安全等等。其实我觉得啊,只要你把命名的规矩弄明白了,东西该怎么放也心里有数了,那你就算是走上正轨啦,成功嘛,它就已经在向你招手啦!加油吧,朋友们! --- 希望这篇文章对你有所帮助,如果有任何疑问,欢迎随时交流哦!
2025-04-05 15:38:52
95
彩虹之上
转载文章
...inute;int sec;};Time t1{15,36,26}; 在一个打括号内顺序列出各个公有数据成员的值,在两个值之间用逗号分隔。注意这只能用于数据成员都是共有的情况。 在前面的例子里,是用成员函数对对象的数据成员赋初值,如果一个类定义了多个对象,对每个对象都要调用成员函数对数据成员赋初值,那么程序就会变得繁琐,所以用成员函数为数据成员赋初值不是一个好办法。 2.构造函数的作用 构造函数用于为对象分配空间和进行初始化,它属于某一个类,可以由系统自动生成。也可以由程序员编写,程序员根据初始化的要求设计构造函数及函数参数。 构造函数是一种特殊的成员函数,在程序中不需要写调用语句,在系统建立对象时由系统自觉调用执行。 构造函数的特点: 构造函数的名字与它的类名必须相同 它没有类型,也不返回值 它可以带参数,也可以不带参数 include <iostream>using namespace std;class Time {public:Time() {hour = 0;minute = 0;sec = 0;}void set_time();void show_time();private:int hour;int minute;int sec;};int main() {Time t1;t1.set_time();t1.show_time();Time t2;t2.show_time();return 0;}void Time::set_time() {cin >> hour;cin >> minute;cin >> sec;}void Time::show_time() {cout << hour << ":" << minute << ":" << sec << endl;} 在类Time中定义了构造函数Time,它与所在的类同名。在建立对象时自动执行构造函数,该函数的作用是为对象中的每个数据成员赋初值0。注意只有执行构造函数时才能为数据成员赋初值。 程序运行时首先建立对象t1,并对t1中的数据成员赋初值0,然后执行t1.set_time函数,从键盘输入新值给对象t1的数据成员,再输出t1的数据成员的值。接着建立对象t2,同时对t2中的数据成员赋初值0,最后输出t2的数据成员的初值。程序运行情况如下: 也可以在类内声明构造函数然后在类外定义构造函数。将程序修改为Time();然后在类外定义构造函数: Time::Time() {hour = 0;minute = 0;sec = 0;} 关于构造函数的使用,说明如下: 什么时候调用构造函数?当函数执行到对象定义语句时建立对象,此时就要调用构造函数,对象就有了自己的作用域,对象的生命周期开始了。 构造函数没有返回值,因此不需要在定义中声明类型。 构造函数不需要显式地调用,构造函数是在建立对象时由系统自动执行的,且只执行以此。构造函数一般定义为public。 在构造函数中除了可以对数据成员赋初值,还可以使用其他语句。 如果用户没有定义构造函数,C++系统会自动生成一个构造函数,而这个函数体是空的,不执行初始化操作。 3.带形参数的构造函数 (1)含义 可以采用带形参数的构造函数,在调用不同对象的构造函数时,从外边将不同的数据传递给构造函数,实现不同对象的初始化。 构造函数的首部的一般格式为:构造函数名(类型 形参1,类型 形参2,……)。在定义对象时指定实参,定义对象的格式为:类名 对象名(实参1,实参2,……)。 (2)【例3.2】 有两个长方柱,其长、宽、高分别为:(1)12,25,30(2)15,30,21编写程序,在类中用带参数的构造函数,计算它们的体积。 分析:可以在类中定义一个计算长方体体积的成员函数计算对象的体积。 include<iostream>using namespace std;class Box{public:Box(int,int,int); //声明int volume();private:int height;int width;int length;};Box::Box(int h,int w,int len) //长方体构造函数{height=h;width=w;length=len;}int Box::volume() //计算长方体体积{return(heightwidthlength);}int main(){Box box1(12,25,30); //定义对象box1cout<<"box1体积="<<box1.volume()<<endl;Box box2(15,30,21); //定义对象box2cout<<"box2体积="<<box2.volume()<<endl;return 0;} 【注】 带形参的构造函数在定义对象时必须指定实参 用这种方法可以实现不同对象的初始化 4.用参数初始化表对数据成员初始化 C++提供了参数初始化表的方法对数据成员初始化。这种方法不必再构造函数内对数据成员初始化,在函数的首部就能实现数据成员初始化。 函数名(类型1 形参1,类型2 形参2): 成员名1(形参1),成员名2(形参2){ } 功能:执行构造函数时,将形参1的值赋予成员1,将形参2的值赋予成员2,形参的值由定义对象时的实参值决定。此时定义对象的格式依然是带实参的形式:类名 对象名(实参1,实参2); 例:定义带形参初始化表的构造函数 Box::Box(int h,int w,int len):height(h),width(w),length(len){}//定义对象:Box box1(12,25,30);//……Box box2(15,30,21); 5.构造函数的重载 (1)含义 构造函数也可以重载。一个类可以有多个同名构造函数,函数参数的个数、参数的类型各不相同。 (2)【例3.3】 在【例3.2】的基础上定义两个构造函数,其中一个无参数,另一个有参数 include <iostream>using namespace std;class Box {public:Box();Box(int h, int w, int len): height(h), width(w), length(len) {}int volume();private:int height;int width;int length;};Box::Box() {height = 10;width = 10;length = 10;}int Box::volume() {return (height width length);}int main() {Box box1;cout << "box1 体积" << box1.volume() << endl;Box box2(15, 30, 25);cout << "box2 体积" << box2.volume() << endl;return 0;} (3)说明 不带形参的构造函数为默认构造函数,每个类只有一个默认构造函数,如果是系统自动给的默认构造函数,其函数体是空的 虽然每个类可以包含多个构造函数,但是创建对象时,系统仅执行其中一个 6.使用默认参数值的构造函数 (1)含义 C++允许在构造函数里为形参指定默认值,如果创建对象时,未给出相应的实参时,系统将用形参的默认值为形参赋值。 (2)格式 函数名(类型 形参1=常数,类型 形参2=常数,……); (3)【例3.4】 将【例3.3】中的构造函数改用带默认值的参数,长、宽、高的默认值都是10 include <iostream>using namespace std;class Box {public:Box(int w = 10, int h = 10, int len = 10);int volume();private:int height;int width;int length;};Box::Box(int w, int h, int len) {height = h;width = w;length = len;}int Box::volume() {return (height width length);}int main() {Box box1;cout << "box1 体积" << box1.volume() << endl;Box box2(15);cout << "box2 体积" << box2.volume() << endl;Box box3(15, 30);cout << "box3 体积" << box3.volume() << endl;Box box4(15, 30, 20);cout << "box4 体积" << box4.volume() << endl;return 0;} (4)说明 如果在类外定义构造函数,应该在声明构造函数时指定默认参数值,再定以函数时不再指定默认参数值 在声明构造函数时,形参名可以省略。例如:Box(int 10,int 10,int 10); 如果构造函数的所有形参都指定了默认值,在定义对象时,可以指定实参也可不指定实参。由于不指定实参也可以调用构造函数,因此全部形参都指定了默认值的构造函数也属于默认构造函数。为了避免歧义,不允许同时定义不带形参的构造函数和全部形参都指定默认值的构造函数。 不能同时使用重载构造函数和带默认值的构造函数 二、析构函数 1.含义 析构函数也是个特殊的成员函数,它的作用与构造函数相反,当对象的生命周期结束时,系统自动调用析构函数,收回对象占用的内存空间。 2.执行析构函数的时机 在一个函数内定义的对象当这个函数结束时,自动执行析构函数释放对象 static局部对象要到main函数结束或执行exit命令时才自动执行析构函数释放对象 全局对象(在函数外定义的对象)当main函数结束或执行exit命令时自动执行析构函数释放对象 如果用new建立动态对象,用delete时自动执行析构函数释放对象 3.特征 以~符号开始后跟类名 析构函数没有数据类型、返回值、形参。由于没有形参所以析构函数不能重载。一个类只有一个析构函数 如果程序员没有定义析构函数,C++编译系统会自动生成一个析构函数 【注】析构函数除了释放对象(资源)外,还可以执行程序员在最后一次适用对象后希望执行的任何操作。例如输出有关的信息。 4.【例3.5】包含构造函数和析构函数的C++程序 include <iostream>include <string>using namespace std;class Student {public:Student(int n, string nam, char s) {num = n;name = nam;sex = s;cout << "Constructor called." << endl;}~Student() {cout << "Destructor called." << endl;}void display() {cout << "num:" << num << endl;cout << "name:" << name << endl;cout << "sex:" << sex << endl;}private:int num;string name;char sex;};int main() {Student stud1(10010, "wang_li", 'f');stud1.display();Student stud2(10011, "zhang_han", 'm');stud2.display();return 0;}//main函数前声明的类其作用域是全局的 三、调用构造函数和析构函数的顺序 1.同一类存储类别的对象 一般情况下,调用析构函数的次序与调用构造函数的次序恰好相反:最先调用构造函数的对象,最后调用析构函数;最后调用构造函数的对象,最先调用析构函数。可简记为:先构造的后析构,后构造的先析构。它相当于一个栈,后进先出。 2.全局范围内定义的对象 在全局范围内定义的对象(在所有函数之外定义的对象),在文件中的所有函数(包括主函数)执行前调用构造函数。当主函数结束或执行exit函数时,调用析构函数。 3.局部自动对象 如果定义局部自动对象(在函数内定义对象),在创建对象时调用构造函数。如多次调用对象所在的函数,则每次创建对象时都调用构造函数。在函数调用结束时调用析构函数。 4.静态局部对象 如果在函数中定义静态局部对象,则在第一次调用该函数建立对象时调用构造函数,但在主函数结束或调用exit函数时才调用析构函数。 5.例 void fun(){student st1; //定义局部自动对象static student st2; //定义静态局部对象...} 对象st1是每次调用函数fun时调用构造函数。在函数fun结束时调用析构函数。 对象st2是第一次调用函数fun时调用构造函数,在函数fun结束时并不调用析构函数,到主函数结束时才调用析构函数 四、对象数组 1.含义 类是一种特殊的数据类型,它当然是C++的合法类型,自然可以定义对象数组。在一个对象数组中各个元素都是同类对象。例如一个班级有50个同学,每个学生有学号、年龄、成绩等属性,可以为这个班级建立一个对象数组,数组包括了50个元素:student std[50];。 可以这样建立构造函数:student::student(int 1001,int 18,int 60);。 在建立数组时,同样要调用构造函数。上面的数组有50个元素,要调用50次构造函数。如果构造函数有多个参数,C++要求:在等号后的花括号中为每个对象分别写出构造函数并指定实参。格式为: student st[n]={ student(实参1,实参2,实参3); …… student(实参1,实参2,实参3); }; 假定对象有三个数据成员:学号、年龄、成绩。下面定义有三个学生的对象数组: student st[3]={ student(1001,18,87); student(1002,19,76); student(1003,18,80); };//构造函数带实参 在建立对象数组时,分别调用构造函数,对每个对象初始化。每个元素的实参用括号括起来,实参的位置与构造函数形参的位置一一对应,不会混淆。 2.【例3.6】 include <iostream>using namespace std;class Box {public:Box(int h = 10, int w = 12, int len = 15): height(h), width(w), length(len) {} //int volume();private:int height;int width;int length;};int Box::volume() {return (height width length);}int main() {Box a[3] = {Box(10, 12, 15), Box(15, 18, 20), Box(16, 20, 26)};cout << "a[0]的体积是" << a[0].volume() << endl;cout << "a[1]的体积是" << a[1].volume() << endl;cout << "a[2]的体积是" << a[2].volume() << endl;return 0;}//每个数组元素是一个对象 五、对象指针 指针的含义是内存单元的地址,可以指向一般的变量,也可以指向对象。 1.指向对象的指针 对象要占据一片连续的内存空间,CPU实际都是按地址访问内存,所以对象在内存的其实地址是CPU确定对象在内存中位置的依据。这个起始地址称为对象指针。 C++的对象也可以参加取地址运算:&对象名。运算的结果是该对象的起始地址,也称对象的指针,要用与对象类型相同的指针变量保存运算的结果。 C++中定义对象的指针变量与定义其他的指针变量相似,格式如下:类名 变量名表。类名表示对象所属的类,变量名按标识符规则取名,两个变量名之间用逗号分隔。定义好指针变量后,必须先给赋予合法的地址后才能使用。 例如定义如下一个类: class Time {public:Time() {hour = 0;minute = 0;sec = 0;}void set_time();void show_time();private:int hour;int minute;int sec;};void Time::set_time() {cin >> hour;cin >> minute;cin >> sec;}void Time::show_time() {cout << hour << ":" << minute << ":" << sec << endl;} 在此基础上,有如下语句: Time pt; //定义pt是指向Time类对象的指针Time t1; //定义Time类对象t1pt=&t1; //将对象t1的地址赋予pt 程序在此基础上就可以用指针变量访问对象的成员。 (pt).hour;pt->hour;(pt).show_time();pt->show_time(); 2.指向对象成员的指针 (1)含义 对象由成员组成。对象占据的内存区是各个数据成员占据的内存区的总和。对象成员也有地址,即指针。这指针分指向数据成员的指针和指向成员函数的指针。 (2)指向对象公有数据成员的指针 定义数据成员的指针变量:数据类型 指针变量名(这里的数据类型是数据成员的数据类型) 计算公有数据成员的地址:&对象名.成员名 Time t1;int p1; //定义一个指向整型数据的指针变量p1=&t1.hour; //假定hour是公有成员cout<<p1<<endl; (3)指向对象成员函数的指针 定义指向成员函数的指针变量:数据类型(类名::变量名)(形参表); 数据类型是成员函数的类型;类名是对象所属的类;变量名按标识符取名;形参表:指定成员函数的形参表(形参个数、类型) 取成员函数的地址:&类名::成员函数名 给指针变量赋初值:指针变量名=&类名::成员函数名; 用指针变量调用成员函数:(对象名.指针变量名)([实参表]); 对象名:指定调用成员函数的对象;:明确其后的是一个指针变量;实参表:与成员函数的形参表对应,如无形参,可以省略实参表 (4)【例3.7】有关对象指针的使用方法 include <iostream>using namespace std;class Time {public:Time(int, int, int);int hour;int minute;int sec;void get_time();};Time::Time(int h, int m, int s) {hour = h;minute = m;sec = s;}void Time::get_time() {cout << hour << ":" << minute << ":" << sec << endl;}int main() {Time t1(10, 13, 56);int p1 = &t1.hour; //定义指向数据成员的指针p1cout << p1 << endl;t1.get_time(); //调用成员函数Time p2 = &t1; //定义指向对象t1的指针p2p2->get_time(); //用对象指针调用成员函数void(Time::p3)(); //定义指向成员函数的指针p3 = &Time::get_time; //给成员函数的指针赋初值(t1.p3)(); //用指向成员函数的指针调用成员函数return 0;} 【注】代码的34,35行可合并为:void(Time::p3)=&Time::get_time; 3.this指针 一个类的成员函数只有一个内存拷贝。类中不论哪个对象调用某个成员函数,调用的都是内存中同一个成员函数代码。例如Time类一个成员函数: void Time::get_time(){cout<<hour<<":"<<minute<<":"<<sec<<endl;}t1.get_time();t2.get_time(); 当不同对象的成员函数访问数据成员时,怎么保证访问的就是指定对象的数据成员?其实每个成员函数中都包含一个特殊的指针,他的名字是this指针。它是指向本类对象的指针。当对象调用成员函数时,它的值就是该对象的起始地址。所以为了区分不同对象访问成员函数,语法要求的调用成员函数的格式是:对象名.成员函数名(实参表)。从语法上明确是对象名所指的对象调用成员函数。This指针是隐式使用的,在调用成员函数时C++把对象的地址作为实参传递给this指针。例如成员函数定义如下: int Box::volume(){return(heightwidthlength);} C++编译成: int Box::volume(this){return(this->heightthis->widththis->length);} 对于计算长方体体积的成员函数volume,当对象调用它时,就把对象地址给this指针,编译程序将的地址作为实参调用成员函数:a.volume(&a);。实际上函数是计算(this->height)(this->width)(this->length),这时就等价计算(a.height)(a.width)(a.length)。 可以用(this)表示调用成员函数的对象。(this)就是this所指的对象。如前面的计算长方体体积的函数中return语句可以写成:return((this).height(this).width(this).length);注意,this两侧的括号不能省略。 C++通过编译程序,在对象调用成员函数时,把对象的地址赋予this指针,用this指针指向对象,实现了用同一个成员函数访问不同对象的数据成员。 六、共用数据的保护 如果既希望数据在一定范围内共享,又不愿它被随意修改,从技术上可以把数据指定为只读型的。C++提供const手段,将数据、对象、成员函数指定为常量,从而实现了只读要求,达到保护数据的目的。 1.常对象 定义格式: const 类名 对象名(实参表);或 类名 const 对象名(实参表); 把对象定义为常对象,对象中的数据成员就是常变量,在定义时必须带实参作为数据成员的初值,在程序中不允许修改常对象的数据成员值。 如果一个常对象的成员函数未被定义为常成员函数(除构造函数和析构函数外),则对象不能调用这样的函数。 const Time t1(10,16,36);t1.get_time();//错误,不能调用 为了访问常对象中的数据成员,要定义常成员函数。 void get_time() const 如果在常对象中要修改某个数据成员,C++提供了指定可变的数据成员方法。 格式:mutable 类型 数据成员 在定义数据成员时加mutable后,将数据成员声明为可变的数据成员,就可以用声明为const的成员函数修改它的值。 2.常对象成员 可以在声明普通对象时将数据成员或成员函数声明为常数据成员或常成员函数。 (1)常数据成员 格式: const 类型 数据成员名 将类中的数据成员定义为具有只读的性质。注意只能通过带参数初始表的构造函数对常数据成员进行初始化。例如: const int hour;Time::Time(int h){hour=h;...//错误}Time::Time(int h):hour(h){}//正确 在类中声明了某个常数据成员后,该类中每个对象的这个数据成员的值都是只读的,而每个对象的这个数据成员的值可以不同,由定义对象时给出。 (2)常成员函数 定义格式:类型 函数名 (形参表)const const是函数类型的一部分,在声明函数原型和定义函数时都要用const关键字。 【注1】const是函数类型的一个组成部分,因此在函数的实现部分也要使用关键字const。常成员函数不能修改对象的数据成员,也不能调用该类中没有由关键字const修饰的成员函数,从而保证了在常成员函数中不会修改数据成员的值。如果一个对象被说明为常对象,则通过该对象只能调用它的常成员函数。 【注2】一般成员函数可以访问或修改本类中非const数据成员。而常成员函数只能读本类中的数据成员,而不能写他们。 数据成员 非const成员函数 const成员函数 非const的数据成员 可以引用,也可以改变值 可以引用,但不可以改变值 const数据成员 可以引用,但不可以改变值 可以引用,但不可以改变值 const对象的数据成员 不允许引用和改变值 可以引用,但不可以改变值 常成员函数的使用: 如果类中有部分数据成员的值要求为只读,可以将它们声明为const,这样成员函数只能读这些数据成员的值,但不能修改它们的值 如果所有数据成员的值为只读,可将对象声明为const,在类中必须声明const成员函数,常对象只能通过常成员函数读数据成员 常对象不能调用非const成员函数 【注】如果常对象的成员函数未加const,编译系统将其当作非const成员函数;常成员函数不能调用非const成员函数 3.指向对象的常指针 如果在定义指向对象的指针时,使用了关键字const,他就是一个常指针,必须在定义时对其初始化,并且在程序运行中不能再修改指针的值。 格式:const 指针变量名=对象地址 Time t1(10,12,15),t2;Time const p1=&t1;//在此后,不能修改p1Time const p1=&t2;//错误语句 指向对象的常指针,在程序运行中始终指向的是同一个对象。即指针变量的值始终不变,但它所指对象的数据成员值可以修改。当需要将一个指针变量固定地与一个对象相联系时,就可将指针变量指定为const。往往用常指针作为函数的形参,目的是不允许在函数中修改指针变量的值,让它始终指向原来的对象。 4.指向常对象的指针变量 5.对象的常引用 (1)含义 前面学过引用是传递参数的有效方法。用引用形参时,形参变量与实参变量是同一个变量,在函数内修改引用形参也就是修改实参变量。如果用引用形参又不想让函数修改实参,可以使用常引用机制。 (2)格式 const 类名 &形参变量名 (3)【例3.8】对象的引用 include <iostream>using namespace std;class Time {public:Time(int, int, int);int hour;int minute;int sec;};Time::Time(int h, int m, int s) {hour = h;minute = m;sec = s;}void fun(Time &t) {t.hour = 18;}int main() {Time t1(10, 13, 56);fun(t1);cout << t1.hour << endl;return 0;} //如果用引用形参又不想让函数修改实参,可以使用常引用机制include <iostream>using namespace std;class Time {public:Time(int, int, int);void fun(int &t) {hour = t;t = 18;}int hour;int minute;int sec;};Time::Time(int h, int m, int s) {hour = h;minute = m;sec = s;}int main(int argc, char argc[]) {int x = 15;Time t1(10, 13, 56);t1.fun(x);cout << t1.hour << endl;cout << x << endl;return 0;} 6.const型数据小结 七、对象的动态建立与释放——动态建立对象 C++提供了new和delete运算符,实现动态分配、回收内存。他们也可以用来动态建立对象和释放对象。 格式:new 类名; 功能:在堆里分配内存,建立指定类的一个对象。如果分配成功,将返回动态对象的起始地址(指针);如不成功,返回0.为了保存这个指针,必须事先建立以类名为类型的指针变量。 格式:类名 指针变量名 Box pt;pt=new Box;//如果分配成功,就可以用指针变量pt访问动态对象的数据成员cout<<pt->height;cout<<pt->volume(); 当不再需要使用动态变量时,必须用delete运算符释放内存。 格式:delete 指针变量(存放的是用new运算返回的指针) 八、对象的赋值和复制 1.对象的赋值 (1)含义 如果一个类定义了两个或多个对象,则这些同类对象之间可以相互赋值。这里所指的对象的值含义是对象中所有数据成员的值。对象1、对象2都是已建立好的同类对象。 格式:对象1=对象2; (2)【例3.9】对象的赋值 include <iostream>using namespace std;class Box {public:Box(int = 10, int = 10, int = 10);int volume();private:int height;int width;int length;};Box::Box(int h, int w, int len) {height = h;width = w;length = len;}int Box::volume() {return (height width length);}int main() {Box box1(15, 30, 25), box2;cout << "box1 体积=" << box1.volume() << endl;box2 = box1;cout << "box2 体积=" << box2.volume() << endl;return 0;} (3)说明 对象的赋值只对数据成员操作 数据成员中不能含有动态分配的数据成员 2.对象的复制 (1)含义 对象赋值的前提是对象1和对象2是已经建立的对象。C++还可以按照一个对象克隆出另一个对象(从无到有),这就是复制对象。复制对象是创建对象的另一种方法(以前学过的是定义对象)。创建对象必须调用构造函数,复制对象要调用复制构造函数。以Box类为例,复制构造函数的形式是: Box::Box(const Box &b){height=b.height;width=b.width;length=b.length;} 复制构造函数只有一个参数,这个参数是本类的对象,且采用引用对象形式。为了防止修改数据,加const限制。构造函数的内容就是将实参对象的数据成员值赋予新对象对应的数据成员,如果程序中未定义复制构造函数,编译系统将提供默认的复制构造函数,复制类中的数据成员。 复制对象有两种格式: 类名 对象2(对象1);按对象1复制对象2 类名 对象2=对象1,对象3=对象1,……按对象1复制对象2、对象3 (2)【例】用复制对象的方法创建Box类的对象(用默认复制构造函数) //include "stdafx.h"include <iostream>using namespace std;class Box {public:Box(int = 10, int = 10, int = 10);int volume();private:int height;int width;int length;};Box::Box(int h, int w, int len) {height = h;width = w;length = len;}int Box::volume() {return (height width length);}int main() {Box box1(15, 30, 25);cout << "box1 体积=" << box1.volume() << endl;//Box box2=box1,box3=box2;Box box2(box1), box3(box2);cout << "box2 体积=" << box2.volume() << endl;cout << "box3 体积=" << box3.volume() << endl;return 0;} (3)说明 在以下情况调用复制构造函数: 在程序里用复制对象格式创建对象 当函数的参数是对象。调用函数时,需要将实参对象复制给形参对象,在此系统将调用复制构造函数 void fun(Box b){...}int main(){Box box1(12,15,18);fun(box1);return 0;} 在函数返回值是类的对象时,需要将函数里的对象复制一个临时对象当作函数值返回 Box f(){Box box1(12,15,18);return box1;}int main(){Box box2;box2=f();} 九、静态成员 C++用const保护数据对象不被修改,在实际中还需要共享数据,C++怎样提供数据共享机制?C++静态成员、友元实现对象之间、类之间的数据共享。 1.静态数据成员 (1)定义格式 static 类型 数据成员名 class Box{public:Box(int=10,int=10,int=10);int volume();private:static int height;int width;int length;}; (2)特性 设Box有n个对象box1..boxn。这n个对象的height成员在内存中共享一个整型数据空间。如果某个对象修改了height成员的值,其他n-1个对象的height成员值也被改变,从而达到n个对象共享height成员值的目的。 (3)说明 由于一个类的所有对象共享静态数据成员,所以不能用构造函数为静态数据成员初始化,只能在类外专门对其初始化。如果程序未对静态数据成员赋初值,则编译系统自动用0为它赋初值 格式:数据类型 类名::静态数据成员名=初值; 即可已用对象名引用静态成员,也可以用类名引用静态成员 静态数据成员在对象外单独开辟内存空间,只要在类中定义了静态成员,即使不定义对象,系统也为静态成员分配内存空间,可以被引用 在程序开始时为静态成员分配内存空间,直到程序结束才释放内存空间 静态数据成员作用域是它的类的作用域(如果在一个函数内定义类,他的静态数据成员作用域就是这个函数)在此范围内可以用“类名::静态成员名”的形式访问静态数据成员 (4)【例3.10】引用静态数据成员 include <iostream>using namespace std;class Box {public:Box(int, int);int volume();static int height;int width;int length;};Box::Box(int w, int len) {width = w;length = len;}int Box::volume() {return (height width length);}int Box::height = 10;int main() {Box a(15, 20), b(25, 30);cout << a.height << endl;cout << b.height << endl;cout << Box::height << endl;cout << a.volume() << endl;cout << b.volume() << endl;return 0;} 2.静态成员函数 (1)含义 C++提供静态成员函数,用它访问静态数据成员,静态成员函数不属于某个对象而属于类。 类中的非静态成员函数可以访问类中所有数据成员;而静态成员函数可以直接访问类的静态成员,不能直接访问非静态成员。 静态成员函数定义格式: static 类型 成员函数(形参表){……} 调用公有静态成员函数格式: 类名::成员函数(实参表) 引用方式 静态数据成员 非静态数据成员 静态成员函数 成员名 对象名.成员名 非静态成员函数 成员名 成员名 【注】静态成员函数不带this指针,所以必须用对象名和成员运算符.访问非静态成员;而普通成员函数有this指针,可以在函数中直接引用成员名。 (2)【例3.11】关于引用非静态成员和静态成员的具体方法 class Student {private:int num;int age;float score;static float sum;static int count;public:Student(int, int, int);void total();static float average();};Student::Student(int m, int a, int s) {num = m;age = a;score = s;}void Student::total() {sum += score;count++;}float Student::average() {return (sum / count);}float Student::sum = 0;int Student::count = 0;int main() {Student stud[3] = {Student(1001, 18, 70), Student(1002, 19, 79), Student(1005, 20, 98)};int n;cout << "请输入学生的人数:";cin >> n;for (int i = 1; i < n; i++)stud[i].total();cout << n << "个学生的平均成绩是:"cout << Student::average() << endl;return 0;} (3)【例】具有静态数据成员的point类 include <iostream>using namespace std;class Point {private:int X, Y;static int countP;public:Point(int xx = 0, int yy = 0) {X = xx;Y = yy;countP++;}Point(Point &p); //复制构造函数int GetX() {return X;}int GetY() {return Y;}int GetC() {cout << "Object id=" << countP << endl;return 0;} };Point::Point(Point &p) {X = p.X;Y = p.Y;countP++;}int Point::countP = 0;int main() {Point A(4, 5);cout << "Point A," << A.GetC() << "," << A.GetY();A.GetC();Point B(A);cout << "Point B," << B.GetC() << "," << B.GetY();B.GetC();return 0;} (4)静态成员函数举例 include <iostream>using namespace std;class application {private:static int global;public:static void f();static void g();};int application::global = 0;void application::f() {global = 5;}void application::g() {cout << global << endl;}int main() {application::f();application::g();return 0;} class A{private:int x; //非静态成员public:static void f(A a);};void A::f(A a){cout<<x; //对x的引用是错误的cout<<a.x; //正确} (5)具有静态数据、函数成员的Point类 include <iostream>using namespace std;class Point { //point类声明private: //私有数据成员int X, Y;static int countP;public: //外部接口Point(int xx = 0, int yy = 0) {X = xx;Y = yy;countP++;}Point(Point &p); //复制构造函数int GetX() {return X;}int GetY() {return Y;}static int GetC() {cout << "Object id=" << countP << endl;return 0;} };Point::Point(Point &p) {X = p.X;Y = p.Y;countP++;}int Point::countP = 0;int main() //主函数实现{ Point A(4, 5); //声明对象Acout << "Point A," << A.GetC() << "," << A.GetY();A.GetC(); //输出对象号,对象名引用Point B(A); //声明对象Bcout << "Point B," << B.GetC() << "," << B.GetY();Point::GetC(); //输出对象号,类名引用return 0;} (6)静态成员函数、静态数组及其初始化 include <iostream>include <stdio.h>using namespace std;class A {static int a[20];int x;public:A(int xx = 0) {x = xx;}static void in();static void out();void show() {cout << "x=" << x << endl;} };int A::a[20] = {0, 0};void A::in() {cout << "input a[20]:" << endl;for (int i = 0; i < 20; ++i)cin >> a[i];}void A::out() {for (int i = 0; i < 20; ++i)cout << "a[" << i << "]=" << a[i] << endl;}int main() {A::in();A::out();A a;a.out();a.show();return 0;} 十、友元 除了在同类对象之间共享数据外,类和类之间也可以共享数据。类的私有成员只能被类的成员函数访问,但是有时需要在类的外部访问类的私有成员,C++通过友元的手段实现这一特殊要求。友元可以是不属于任何类的一般函数,也可以是另一个类的成员函数,还可以是整个的一个类(这个类中的所有成员函数都可以成为友元函数)。 友元是C++提供的一种破坏数据封装和数据隐藏的机制。为了保证数据的完整性及数据封装与隐藏的原则,建议尽量不使用或少使用友元。 1.友元函数 (1)含义 如果在A类外定义一个函数(它可以是另一个类的成员函数,也可以是一个普通函数),在A类中声明该函数是A的友元函数后,这个函数就能访问A类中的所有成员。 (2)格式 friend 类型 类1::成员函数x(类2 &对象); friend 类型 函数y(类2 &对象); //类1是另一个类的类名,类2是本类的类名 功能:第一种形式在类2中声明类1的成员函数x为友元函数。第二种形式在类2中声明一个普通函数y是友元函数。 友元函数内访问对象的格式: 对象名.成员名 因为友元不是成员函数,它不属于类,所以它访问对象时必须冠以对象名。定义友元函数时形参通过定义引用对象,这样在友元函数内就能访问实参对象了。 (3)【例3.12】将普通函数声明为友元函数 include <iostream>using namespace std;class Time {public:Time(int, int, int);friend void display(Time &);private:int hour;int minute;int sec;};Time::Time(int h, int m, int s) {hour = h;minute = m;sec = s;}void display(Time &t) {cout << t.hour << ":" << t.minute << ":" << t.sec << endl;}int main() {Time t1(10, 13, 56);display(t1);return 0;} 【例】使用友元函数计算两点距离 include <iostream>include <cmath>using namespace std;class Point {public:Point(int xx = 0, int yy = 0) {X = xx;Y = yy;}int GetX() {return X;}int GetY() {return Y;}friend double Distance(Point &a, Point &b);private:int X, Y;};double Distance(Point &a, Point &b) {double dx = a.X - b.X;double dy = b.Y - b.Y;return sqrt(dx dx + dy dy);}int main() {Point p1(3.0, 5.0), p2(4.0, 6.0);double d = Distance(p1, p2);cout << "The distance is " << d << endl;return 0;} include <iostream>include <math.h>using namespace std;class TPoint {private:double x, y;public:TPoint(double a, double b) {x = a;y = b;cout << "点:(" << x << "," << y << ")" << endl;}friend double distance(TPoint &a, TPoint &b) {return sqrt((a.x - b.x) (a.x - b.x) + (a.y - b.y) (a.y - b.y));} };int main(int argc, char argv[]) {TPoint myp1(2.1, 1.3), myp2(5.4, 6.5);cout << "两点之间的距离为:";cout << distance(myp1, myp2) << endl;return 0;} (4)友元成员函数 【例3.13】将成员函数声明为友元函数 例子中有两个类Time和Date。其中Time类里定义了成员函数void display(Date &),他除了显示时间外还要显示日期,这个日期通过引用形参访问。在Date类中将Time类的display成员函数定义为友元函数,允许display访问Date类的所有私有数据成员。 include <iostream>using namespace std;class Date;class Time {private:int hour;int minute;int sec;public:Time(int, int, int);void display(const Date &);};class Date {private:int month;int day;int year;public:Date(int, int, int);friend void Time::display(const Date &);};Time::Time(int h, int m, int s) hour = h;minute = m;sec = s;}void Time::display(const Date &da) {cout << da.month << "/" << da.day << "/" << da.year << endl;cout << hour << ":" << minute << ":" << sec << endl;}Date::Date(int m, int d, int y) {month = m;day = d;year = y;}int main() {Time t1(10, 13, 56);Date d1(12, 25, 2004);t1.display(d1);return 0;} 【注1】友元是单向的,此例中声明Time的成员函数display是Date类的友元,允许它访问Date类的所有成员,但不等于说Date类的成员函数也是Time类的友元。 【注2】一个函数(包括普通函数和成员函数)可以被多个类声明为“朋友”,这样就可以引用多个类中的私有数据 【注3】例如可以将例3.13程序中的display函数作为类外的普通函数,分别在Time和Date类中将display声明为友元。Display就可以分别引用Time和Date类的对象的私有数据成员。输出年月日和时分秒。 2.友元类 C++允许将一个类声明为另一个类的友元。假定A类是B类的友元类,A类中所有的成员函数都是B类的友元函数,在B类中声明A类为友元类的格式:friend A; 【注1】友元关系是单向的,不是双向的 【注2】友元关系不能传递 【注3】实际中一般不把整个类声明友元类,而只是将确有需要的成员函数声明为友元函数 include <iostream>include <math.h>using namespace std;class B;class A {private:int x;public:A() {x = 3;}friend class B;};class B {public:void disp1(A temp) {temp.x++;cout << "disp1:x" << temp.x << endl;}void disp2(A temp) {temp.x--;cout << "disp2:x" << temp.x << endl;} };int main(int argc, char argv[]) {A a;B b;b.disp1(a);b.disp2(a);return 0;} class Student; //前向声明,类名声明class Teacher{privated:int noOfStudents;Student pList[100];public:void assignGrades(Student &s); //赋成绩void adjustHours(Student &s); //调整学时数};class Student{privated:int hours;float gpa;public:friend class Teacher;};void Teacher::assignGrades(Student &s){...};void Teacher::adjustHours(Student &s){...}; //函数定义必须在Student定义之后 十一、类模板 1.含义 对于功能相同而只是数据类型不同的函数,不必须定义出所有函数,我们定义一个可对任何类型变量操作的函数模板。对于功能相同的类而数据类型不同,不必定义出所有类,只要定义一个可对任何类进行操作的类模板。 例如定义比较两个整数的类和比较两个浮点数的类,这两个类做的工作是相似的,所以可以用类模板,减少工作量。 class Compare_int{private:int x,y;public:Compare_int(int a,int b){x=a;y=b;}int max(){return (x>y)?x:y;}int min(){return (x<y)?x:y;} };class Compare_float{private:float x,y;public:Compare_float(float a,float b){x=a;y=b;}float max(){return (x>y)?x:y;}float min(){return (x<y)?x:y;} }; 2.定义类模板的格式 template <class 类型参数名> class 类模板名 {……} 类型参数名:按标识符取名。如有多个类型参数,每个类型参数都要以class为前导,两个类型参数之间用逗号分隔 类模板名:按标识符取名 类模板{...}内定义数据成员和成员函数的规则:用类型参数作为数据类型,用类模板名作为类 template<class numtype>class Compare{private:numtype x,y;public:Compare(numtype a,numtype b){x=a,y=b;}numtype max(){return (x>y)?x:y;}numtype min(){return (x<y)?x:y;} }; 3.在类模板外定义成员函数的语法 类型参数 类模板名<类型参数>::成员函数名(形参表){……} 例如在类模板外定义max和min成员函数 template<class numtype>class Compare{public:Compare(numtype a,numtype b){x=a,y=b;}numtype max();numtype min();private:numtype x,y;};numtype Compare<numtype>::max(){return(x>y)?x:y;}numtype Compare<numtype>::min(){return(x<y)?x:y;} 4.使用类模板时,定义对象的格式 类模板名 <实际类型名>对象名; 类模板名 <实际类型名>对象名(实参表); 例如:Compare <int>cmp2(4,7) 在编译时, 编译系统用int取代类模板中的类型参数numtype,就把类模板具体化了。这时Compare<int>将相当于Compare_int类。 5.【例3.14】声明类模板,实现两个整数、浮点数和字符的比较,求出大数和小数 include <iostream>using namespace std;template<class numtype>class Compare {private:numtype x, y;public:Compare(numtype a, numtype b) {x = a;y = b;}numtype max() {return (x > y) ? x : y;}numtype min() {return (x < y) ? x : y;} };int main() {Compare<int>cmp1(3, 7);cout << cmp1.max() << "是两个整数中的大数." << endl;cout << cmp1.min() << "是两个整数中的小数." << endl;Compare<float>cmp2(45.78, 93.6);cout << cmp2.max() << "是两个浮点数中的大数." << endl;cout << cmp2.min() << "是两个浮点数中的小数." << endl;Compare<char>cmp3('a', 'A');cout << cmp3.max() << "是两个字符中的大者." << endl;cout << cmp3.min() << "是两个字符中的小者." << endl;return 0;} 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_72318954/article/details/127064376。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-29 12:38:23
544
转载
转载文章
...果Redis有1亿个key,使用keys命令是否会影响线上服务? Redis的持久化方式,aod和rdb,具体怎么实现,追加日志和备份文件,底层实现原理的话知道么? 遇到最大困难是什么?怎么克服? 未来的规划是什么? 你想问我什么? 05 百度三面 5.1 百度一面 自我介绍 Java中的多态 为什么要同时重写hashcode和equals Hashmap的原理 Hashmap如何变线程安全,每种方式的优缺点 垃圾回收机制 Jvm的参数你知道的说一下 设计模式了解的说一下啊 手撕一个单例模式 手撕算法:反转单链表 手撕算法:实现类似微博子结构的数据结构,输入一系列父子关系,输出一个类似微博评论的父子结构图 手写java多线程 手写java的soeket编程,服务端和客户端 手撕算法: 爬楼梯,写出状态转移方程 智力题:时针分针什么时候重合 5.2 百度二面(现场) 自我介绍 项目介绍 服务器如何负载均衡,有哪些算法,哪个比较好,一致性哈希原理,怎么避免DDOS攻击请求打到少数机器。 TCP连接中的三次握手和四次挥手,四次挥手的最后一个ack的作用是什么,为什么要time wait,为什么是2msl。 数据库的备份和恢复怎么实现的,主从复制怎么做的,什么时候会出现数据不一致,如何解决。 Linux查看cpu占用率高的进程 手撕算法:给定一个数字三角形,找到从顶部到底部的最小路径和。每一步可以移动到下面一行的相邻数字上。 然后继续在这个问题上扩展 求出最短那条的路径 递归求出所有的路径 设计模式讲一下熟悉的 会不会滥用设计模式 多线程条件变量为什么要在while体里 你遇到什么挫折,怎么应对和处理 5.3 百度三面(现场) 自我介绍 项目介绍 Redis的特点 Redis的持久化怎么做,aof和rdb,有什么区别,有什么优缺点。 Redis使用哨兵部署会有什么问题,我说需要扩容的话还是得集群部署。 说一下JVM内存模型把,有哪些区,分别干什么的 说一下gc算法,分代回收说下 MySQL的引擎讲一下,有什么区别,使用场景呢 分布式事务了解么 反爬虫的机制,有哪些方式 06 蚂蚁中间件团队面试题 6.1 蚂蚁中间件一面: 自我介绍 JVM垃圾回收算法和垃圾回收器有哪些,最新的JDK采用什么算法。 新生代和老年代的回收机制。 讲一下ArrayList和linkedlist的区别,ArrayList与HashMap的扩容方式。 Concurrenthashmap1.8后的改动。 Java中的多线程,以及线程池的增长策略和拒绝策略了解么。 Tomcat的类加载器了解么 Spring的ioc和aop,Springmvc的基本架构,请求流程。 HTTP协议与Tcp有什么区别,http1.0和2.0的区别。 Java的网络编程,讲讲NIO的实现方式,与BIO的区别,以及介绍常用的NIO框架。 索引什么时候会失效变成全表扫描 介绍下分布式的paxos和raft算法 6.2 蚂蚁中间件二面 你在项目中怎么用到并发的。 消息队列的使用场景,谈谈Kafka。 你说了解分布式服务,那么你怎么理解分布式服务。 Dubbo和Spring Clound的区别,以及使用场景。 讲一下docker的实现原理,以及与JVM的区别。 MongoDB、Redis和Memcached的应用场景,各自优势 MongoDB有事务吗 Redis说一下sorted set底层原理 讲讲Netty为什么并发高,相关的核心组件有哪些 6.3 蚂蚁中间件三面 完整的画一个分布式集群部署图,从负载均衡到后端数据库集群。 分布式锁的方案,Redis和Zookeeper哪个好,如果是集群部署,高并发情况下哪个性能更好。 分布式系统的全局id如何实现。 数据库万级变成亿级,你如何来解决。 常见的服务器雪崩是由什么引起的,如何来防范。 异地容灾怎么实现 常用的高并发技术解决方案有哪些,以及对应的解决步骤。 07 京东4面(Java研发) 7.1 一面(基础面:约1小时) 自我介绍,主要讲讲做了什么和擅长什么 springmvc和spring-boot区别 @Autowired的实现原理 Bean的默认作用范围是什么?其他的作用范围? 索引是什么概念有什么作用?MySQL里主要有哪些索引结构?哈希索引和B+树索引比较? Java线程池的原理?线程池有哪些?线程池工厂有哪些线程池类型,及其线程池参数是什么? hashmap原理,处理哈希冲突用的哪种方法? 还知道什么处理哈希冲突的方法? Java GC机制?GC Roots有哪些? Java怎么进行垃圾回收的?什么对象会进老年代?垃圾回收算法有哪些?为什么新生代使用复制算法? HashMap的时间复杂度?HashMap中Hash冲突是怎么解决的?链表的上一级结构是什么?Java8中的HashMap有什么变化?红黑树需要比较大小才能进行插入,是依据什么进行比较的?其他Hash冲突解决方式? hash和B+树的区别?分别应用于什么场景?哪个比较好? 项目里有个数据安全的,aes和md5的区别?详细点 7.2 二面(问数据库较多) 自我介绍 为什么MyISAM查询性能好? 事务特性(acid) 隔离级别 SQL慢查询的常见优化步骤? 说下乐观锁,悲观锁(select for update),并写出sql实现 TCP协议的三次握手和四次挥手过程? 用到过哪些rpc框架 数据库连接池怎么实现 Java web过滤器的生命周期 7.3 三面(综合面;约一个小时) 自我介绍。 ConcurrentHashMap 在Java7和Java8中的区别?为什么Java8并发效率更好?什么情况下用HashMap,什么情况用ConcurrentHashMap? 加锁有什么机制? ThreadLocal?应用场景? 数据库水平切分,垂直切分的设计思路和切分顺序 Redis如何解决key冲突 soa和微服务的区别? 单机系统演变为分布式系统,会涉及到哪些技术的调整?请从前面负载到后端详细描述。 设计一个秒杀系统? 7.4 四面(HR面) 你自己最大优势和劣势是什么 平时遇见过什么样的挑战,怎么去克服的 工作中遇见了技术解决不了的问题,你的应对思路? 你的兴趣爱好? 未来的职业规划是什么? 08 美团java高级开发3面 8.1 美团一面 自我介绍 项目介绍 Redis介绍 了解redis源码么 了解redis集群么 Hashmap的原理,增删的情况后端数据结构如何位移 hashmap容量为什么是2的幂次 hashset的源码 object类你知道的方法 hashcode和equals 你重写过hashcode和equals么,要注意什么 假设现在一个学生类,有学号和姓名,我现在hashcode方法重写的时候,只将学号参与计算,会出现什么情况? 往set里面put一个学生对象,然后将这个学生对象的学号改了,再put进去,可以放进set么?并讲出为什么 Redis的持久化?有哪些方式,原理是什么? 讲一下稳定的排序算法和不稳定的排序算法 讲一下快速排序的思想 8.2 美团二面 自我介绍 讲一下数据的acid 什么是一致性 什么是隔离性 Mysql的隔离级别 每个隔离级别是如何解决 Mysql要加上nextkey锁,语句该怎么写 Java的内存模型,垃圾回收 线程池的参数 每个参数解释一遍 然后面试官设置了每个参数,给了是个线程,让描述出完整的线程池执行的流程 Nio和IO有什么区别 Nio和aio的区别 Spring的aop怎么实现 Spring的aop有哪些实现方式 动态代理的实现方式和区别 Linux了解么 怎么查看系统负载 Cpu load的参数如果为4,描述一下现在系统处于什么情况 Linux,查找磁盘上最大的文件的命令 Linux,如何查看系统日志文件 手撕算法:leeetcode原题 22,Generate Parentheses,给定 n 对括号,请- 写一个函数以将其生成新的括号组合,并返回所有组合结果。 8.3 美团三面(现场) 三面没怎么问技术,问了很多技术管理方面的问题 自我介绍 项目介绍 怎么管理项目成员 当意见不一致时,如何沟通并说服开发成员,并举个例子 怎么保证项目的进度 数据库的索引原理 非聚簇索引和聚簇索引 索引的使用注意事项 联合索引 从底层解释最左匹配原则 Mysql对联合索引有优化么?会自动调整顺序么?哪个版本开始优化? Redis的应用 Redis的持久化的方式和原理 技术选型,一个新技术和一个稳定的旧技术,你会怎么选择,选择的考虑有哪些 说你印象最深的美团点评技术团队的三篇博客 最近在学什么新技术 你是怎么去接触一门新技术的 会看哪些书 怎么选择要看的书 最后 由于篇幅限制,小编在此截出几张知识讲解的图解,有需要的程序猿(媛)可以点赞后戳这里免费领取全部资料获取哦 子 怎么保证项目的进度 数据库的索引原理 非聚簇索引和聚簇索引 索引的使用注意事项 联合索引 从底层解释最左匹配原则 Mysql对联合索引有优化么?会自动调整顺序么?哪个版本开始优化? Redis的应用 Redis的持久化的方式和原理 技术选型,一个新技术和一个稳定的旧技术,你会怎么选择,选择的考虑有哪些 说你印象最深的美团点评技术团队的三篇博客 最近在学什么新技术 你是怎么去接触一门新技术的 会看哪些书 怎么选择要看的书 最后 由于篇幅限制,小编在此截出几张知识讲解的图解,有需要的程序猿(媛)可以点赞后戳这里免费领取全部资料获取哦 [外链图片转存中…(img-SFREePIJ-1624074891834)] [外链图片转存中…(img-5kF3pkiC-1624074891834)] [外链图片转存中…(img-HDVXfOMR-1624074891835)] [外链图片转存中…(img-RyaAC5jy-1624074891836)] [外链图片转存中…(img-iV32C5Ok-1624074891837)] 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_57285325/article/details/118051767。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-13 23:43:59
85
转载
转载文章
...nt、metric、key-value tags) ) 水平扩展能力 (支持每个周期上亿次的数据采集、告警判定、历史数据存储和查询 ) 高效率的告警策略管理 (高效的portal、支持策略模板、模板继承和覆盖、多种告警方式、支持callback调用 ) 人性化的告警设置 (最大告警次数、告警级别、告警恢复通知、告警暂停、不同时段不同阈值、支持维护周期 ) 高效率的graph组件 (单机支撑200万metric的上报、归档、存储(周期为1分钟) ) 高效的历史数据query组件 (采用rrdtool的数据归档策略,秒级返回上百个metric一年的历史数据 ) dashboard(面向用户的查询界面,可以看到push到graph中的所有数据,并查看数据发展趋势 ) (对维度的数据展示,用户自定义Screen) 高可用 (整个系统无核心单点,易运维,易部署,可水平扩展) 开发语言 (整个系统的后端,全部golang编写,portal和dashboard使用python编写。 ) 监控范围 Open-Falcon支持系统基础监控,第三方服务监控,JVM监控,业务应用监控 基础监控指的是Linux系统的指标监控,包括CPU、load、内存、磁盘、IO、网络等, 这些指标由Openfalcon的agent节点直接支持,无需插件 第三方服务监控指的是一些常见的服务监控,包括Mysql、Redis、Nginx等 OpenFalcon官网提供了很多第三方服务的监控插件,也可以自己实现插件,定义采集指标。而采集到的指标,也是通过插件先发送给agent,再由agent发送到OpenFalcon。 JVM监控主要通过插件完成,插件通过JVM开放的JMX通信端口,获取到JVM参数指标,并推送到agent节点,再由agent发送到OpenFalcon。 业务应用监控就是监控企业自主开发的应用服务 主要通过插件完成,插件通过JVM开放的JMX通信端口,获取到JVM参数指标,并推送到agent节点,再由agent发送到OpenFalcon。 数据流向 常见的OpenFalcon包含transfer、hbs、agent、judge、graph、API几个进程 以下是各个节点的数据流向图,主数据流向是agent -> transfer -> judge/graph: SNMP 简述 SNMP:简单网络管理协议,是TCP/IP协议簇 的一个应用层协议,由于SNMP的简单性,在Internet时代得到了蓬勃的发展 ,1992年发布了SNMPv2版本,以增强SNMPv1的安全性和功能。现在,已经有了SNMPv3版本(它对网络管理最大的贡献在于其安全性。增加了对认证和密文传输的支持 )。 一套完整的SNMP系统主要包括:管理信息库(MIB)、管理信息结构(SMI)和 SNMP报文协议 为什么要用SNMP 作为运维人员,我们很大一部分的工作就是为了保证我们的网络能够正常、稳定的运行。因此监控,控制,管理各种网络设备成了我们日常的工作 优点和好处 优点: 简单易懂,部署的开销成本也小 ,正因为它足够简单,所以被广泛的接受,事实上它已经成为了主要的网络管理标准。在一个网络设备上实现SNMP的管理比绝大部分其他管理方式都简单直接。 好处: 标准化的协议:SNMP是TCP/IP网络的标准网络管理协议。 广泛认可:所有主流供应商都支持SNMP。 可移植性:SNMP独立于操作系统和编程语言。 轻量级:SNMP增强对设备的管理能力的同时不会对设备的操作方式或性能产生冲击。 可扩展性:在所有SNMP管理的设备上都会支持相同的一套核心操作集。 广泛部署:SNMP是最流行的管理协议,最为受设备供应商关注,被广泛部署在各种各样的设备上。 MIB、SMI和SNMP报文 MIB 管理信息库MIB:任何一个被管理的资源都表示成一个对象,称为被管理的对象。 MIB是被管理对象的集合。 它定义了被管理对象的一系列属性:对象的名称、对象的访问权限和对象的数据类型等。 每个SNMP设备(Agent)都有自己的MIB。 MIB也可以看作是NMS(网管系统)和Agent之间的沟通桥梁。 MIB文件中的变量使用的名字取自ISO和ITU管理的对象表示符命名空间,他是一个分级数的结构 SMI SMI定义了SNNMP框架多用信息的组织、组成和标识,它还未描述MIB对象和表述协议怎么交换信息奠定了基础 SMI定义的数据类型: 简单类型(simple): Integer:整型是-2,147,483,648~2,147,483,647的有符号整数 octet string: 字符串是0~65535个字节的有序序列 OBJECT IDENTIFIER: 来自按照ASN.1规则分配的对象标识符集 简单结构类型(simple-constructed ): SEQUENCE 用于列表。这一数据类型与大多数程序设计语言中的“structure”类似。一个SEQUENCE包括0个或更多元素,每一个元素又是另一个ASN.1数据类型 SEQUENCE OF type 用于表格。这一数据类型与大多数程序设计语言中的“array”类似。一个表格包括0个或更多元素,每一个元素又是另一个ASN.1数据类型。 应用类型(application-wide): IpAddress: 以网络序表示的IP地址。因为它是一个32位的值,所以定义为4个字节; counter:计数器是一个非负的整数,它递增至最大值,而后回零。在SNMPv1中定义的计数器是32位的,即最大值为4,294,967,295; Gauge :也是一个非负整数,它可以递增或递减,但达到最大值时保持在最大值,最大值为232-1; time ticks:是一个时间单位,表示以0.01秒为单位计算的时间; SNMP报文 SNMP规定了5种协议数据单元PDU(也就是SNMP报文),用来在管理进程和代理之间的交换。 get-request操作:从代理进程处提取一个或多个参数值。 get-next-request操作:从代理进程处提取紧跟当前参数值的下一个参数值。 set-request操作:设置代理进程的一个或多个参数值。 get-response操作:返回的一个或多个参数值。这个操作是由代理进程发出的,它是前面三种操作的响应操作。 trap操作:代理进程主动发出的报文,通知管理进程有某些事情发生。 操作命令 SNMP协议之所以易于使用,这是因为它对外提供了三种用于控制MIB对象的基本操作命令。它们是:Get、Set 和 Trap。 Get:管理站读取代理者处对象的值 Set:管理站设置代理者处对象的值 Trap: 代理者主动向管理站通报重要事件 SLA 简述 SLA(服务等级协议):是关于网络服务供应商和客户之间的一份合同,其中定义了服务类型、服务质量和客户付款等术语 一个完整的SLA同时也是一个合法的文档,包括所涉及的当事人、协定条款(包含应用程序和支持的服务)、违约的处罚、费用和仲裁机构、政策、修改条款、报告形式和双方的义务等。同样服务提供商可以对用户在工作负荷和资源使用方面进行规定。 KPI 简述 KPI(关键绩效指标):是通过对组织内部流程的输入端、输出端的关键参数进行设置、取样、计算、分析,衡量流程绩效的一种目标式量化管理指标,是把企业的战略目标分解为可操作的工作目标的工具,是企业绩效管理的基础。 KPI可以是部门主管明确部门的主要责任,并以此为基础,明确部门人员的业绩衡量指标,建立明确的切实可行的KPI体系,是做好绩效管理的关键。 KPI(关键绩效指标)是用于衡量工作人员工作绩效表现的量化指标,是绩效计划的重要组成部分 转载于:https://www.cnblogs.com/woshinideyugegea/p/11242034.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/anqiongsha8211/article/details/101592137。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-19 16:00:05
45
转载
转载文章
... CLIENT SECTION 客户端部分 ---------------------------------------------------------------------- The following options will be read by MySQL client applications. Note that only client applications shipped by MySQL are guaranteed to read this section. If you want your own MySQL client program to honor these values, you need to specify it as an option during the MySQL client library initialization. MySQL客户机应用程序将读取以下选项。注意,只有MySQL提供的客户端应用程序才能阅读本节。如果您希望自己的MySQL客户机程序遵守这些值,您需要在初始化MySQL客户机库时将其指定为一个选项。 [client] pipe= socket=MYSQL port=3306 [mysql] no-beep default-character-set= SERVER SECTION 服务器部分 ---------------------------------------------------------------------- The following options will be read by the MySQL Server. Make sure that you have installed the server correctly (see above) so it reads this file. MySQL服务器将读取以下选项。确保您已经正确安装了服务器(参见上面),以便它读取这个文件。 server_type=3 [mysqld] The next three options are mutually exclusive to SERVER_PORT below. 下面的三个选项对SERVER_PORT是互斥的。skip-networking enable-named-pipe 共享内存 skip-networking enable-named-pipe shared-memory shared-memory-base-name=MYSQL The Pipe the MySQL Server will use socket=MYSQL The TCP/IP Port the MySQL Server will listen on port=3306 Path to installation directory. All paths are usually resolved relative to this. basedir="C:/Program Files/MySQL/MySQL Server 8.0/" Path to the database root datadir=C:/ProgramData/MySQL/MySQL Server 8.0/Data The default character set that will be used when a new schema or table is created and no character set is defined 创建新模式或表时使用的默认字符集,并且没有定义字符集 character-set-server= The default authentication plugin to be used when connecting to the server 连接到服务器时使用的默认身份验证插件 default_authentication_plugin=caching_sha2_password The default storage engine that will be used when create new tables when 当创建新表时将使用的默认存储引擎 default-storage-engine=INNODB Set the SQL mode to strict 将SQL模式设置为strict sql-mode="STRICT_TRANS_TABLES,NO_ENGINE_SUBSTITUTION" General and Slow logging. 一般和缓慢的日志。 log-output=NONE general-log=0 general_log_file="DESKTOP-NF9QETB.log" slow-query-log=0 slow_query_log_file="DESKTOP-NF9QETB-slow.log" long_query_time=10 Binary Logging. 二进制日志。 log-bin Error Logging. 错误日志记录。 log-error="DESKTOP-NF9QETB.err" Server Id. server-id=1 Indicates how table and database names are stored on disk and used in MySQL. 指示表名和数据库名如何存储在磁盘上并在MySQL中使用。 Value = 0: Table and database names are stored on disk using the lettercase specified in the CREATE TABLE or CREATE DATABASE statement. Name comparisons are case sensitive. You should not set this variable to 0 if you are running MySQL on a system that has case-insensitive file names (such as Windows or macOS). Value = 0:表名和数据库名使用CREATE Table或CREATE database语句中指定的lettercase存储在磁盘上。名称比较区分大小写。如果您在一个具有不区分大小写文件名(如Windows或macOS)的系统上运行MySQL,则不应将该变量设置为0。 Value = 1: Table names are stored in lowercase on disk and name comparisons are not case-sensitive. MySQL converts all table names to lowercase on storage and lookup. This behavior also applies to database names and table aliases. 表名以小写存储在磁盘上,并且名称比较不区分大小写。MySQL在存储和查找时将所有表名转换为小写。此行为也适用于数据库名称和表别名。 Value = 3, Table and database names are stored on disk using the lettercase specified in the CREATE TABLE or CREATE DATABASE statement, but MySQL converts them to lowercase on lookup. Name comparisons are not case sensitive. This works only on file systems that are not case-sensitive! InnoDB table names and view names are stored in lowercase, as for Value = 1.表名和数据库名使用CREATE Table或CREATE database语句中指定的lettercase存储在磁盘上,但是MySQL在查找时将它们转换为小写。名称比较不区分大小写。这只适用于不区分大小写的文件系统!InnoDB表名和视图名以小写存储,Value = 1。 NOTE: lower_case_table_names can only be configured when initializing the server. Changing the lower_case_table_names setting after the server is initialized is prohibited. lower_case_table_names=1 Secure File Priv. 权限安全文件 secure-file-priv="C:/ProgramData/MySQL/MySQL Server 8.0/Uploads" The maximum amount of concurrent sessions the MySQL server will allow. One of these connections will be reserved for a user with SUPER privileges to allow the administrator to login even if the connection limit has been reached. MySQL服务器允许的最大并发会话量。这些连接中的一个将保留给具有超级特权的用户,以便允许管理员登录,即使已经达到连接限制。 max_connections=151 The number of open tables for all threads. Increasing this value increases the number of file descriptors that mysqld requires. Therefore you have to make sure to set the amount of open files allowed to at least 4096 in the variable "open-files-limit" in 为所有线程打开的表的数量。增加这个值会增加mysqld需要的文件描述符的数量。因此,您必须确保在[mysqld_safe]节中的变量“open-files-limit”中将允许打开的文件数量至少设置为4096 section [mysqld_safe] table_open_cache=2000 Maximum size for internal (in-memory) temporary tables. If a table grows larger than this value, it is automatically converted to disk based table This limitation is for a single table. There can be many of them. 内部(内存)临时表的最大大小。如果一个表比这个值大,那么它将自动转换为基于磁盘的表。可以有很多。 tmp_table_size=94M How many threads we should keep in a cache for reuse. When a client disconnects, the client's threads are put in the cache if there aren't more than thread_cache_size threads from before. This greatly reduces the amount of thread creations needed if you have a lot of new connections. (Normally this doesn't give a notable performance improvement if you have a good thread implementation.) 我们应该在缓存中保留多少线程以供重用。当客户机断开连接时,如果之前的线程数不超过thread_cache_size,则将客户机的线程放入缓存。如果您有很多新连接,这将大大减少所需的线程创建量(通常,如果您有一个良好的线程实现,这不会带来显著的性能改进)。 thread_cache_size=10 MyISAM Specific options The maximum size of the temporary file MySQL is allowed to use while recreating the index (during REPAIR, ALTER TABLE or LOAD DATA INFILE. If the file-size would be bigger than this, the index will be created through the key cache (which is slower). MySQL允许在重新创建索引时(在修复、修改表或加载数据时)使用临时文件的最大大小。如果文件大小大于这个值,那么索引将通过键缓存创建(这比较慢)。 myisam_max_sort_file_size=100G If the temporary file used for fast index creation would be bigger than using the key cache by the amount specified here, then prefer the key cache method. This is mainly used to force long character keys in large tables to use the slower key cache method to create the index. myisam_sort_buffer_size=179M Size of the Key Buffer, used to cache index blocks for MyISAM tables. Do not set it larger than 30% of your available memory, as some memory is also required by the OS to cache rows. Even if you're not using MyISAM tables, you should still set it to 8-64M as it will also be used for internal temporary disk tables. 如果用于快速创建索引的临时文件比这里指定的使用键缓存的文件大,则首选键缓存方法。这主要用于强制大型表中的长字符键使用较慢的键缓存方法来创建索引。 key_buffer_size=8M Size of the buffer used for doing full table scans of MyISAM tables. Allocated per thread, if a full scan is needed. 用于对MyISAM表执行全表扫描的缓冲区的大小。如果需要完整的扫描,则为每个线程分配。 read_buffer_size=256K read_rnd_buffer_size=512K INNODB Specific options INNODB特定选项 innodb_data_home_dir= Use this option if you have a MySQL server with InnoDB support enabled but you do not plan to use it. This will save memory and disk space and speed up some things. 如果您启用了一个支持InnoDB的MySQL服务器,但是您不打算使用它,那么可以使用这个选项。这将节省内存和磁盘空间,并加快一些事情。skip-innodb skip-innodb If set to 1, InnoDB will flush (fsync) the transaction logs to the disk at each commit, which offers full ACID behavior. If you are willing to compromise this safety, and you are running small transactions, you may set this to 0 or 2 to reduce disk I/O to the logs. Value 0 means that the log is only written to the log file and the log file flushed to disk approximately once per second. Value 2 means the log is written to the log file at each commit, but the log file is only flushed to disk approximately once per second. 如果设置为1,InnoDB将在每次提交时将事务日志刷新(fsync)到磁盘,这将提供完整的ACID行为。如果您愿意牺牲这种安全性,并且正在运行小型事务,您可以将其设置为0或2,以将磁盘I/O减少到日志。值0表示日志仅写入日志文件,日志文件大约每秒刷新一次磁盘。值2表示日志在每次提交时写入日志文件,但是日志文件大约每秒只刷新一次磁盘。 innodb_flush_log_at_trx_commit=1 The size of the buffer InnoDB uses for buffering log data. As soon as it is full, InnoDB will have to flush it to disk. As it is flushed once per second anyway, it does not make sense to have it very large (even with long transactions).InnoDB用于缓冲日志数据的缓冲区大小。一旦它满了,InnoDB就必须将它刷新到磁盘。由于它无论如何每秒刷新一次,所以将它设置为非常大的值是没有意义的(即使是长事务)。 innodb_log_buffer_size=5M InnoDB, unlike MyISAM, uses a buffer pool to cache both indexes and row data. The bigger you set this the less disk I/O is needed to access data in tables. On a dedicated database server you may set this parameter up to 80% of the machine physical memory size. Do not set it too large, though, because competition of the physical memory may cause paging in the operating system. Note that on 32bit systems you might be limited to 2-3.5G of user level memory per process, so do not set it too high. 与MyISAM不同,InnoDB使用缓冲池来缓存索引和行数据。设置的值越大,访问表中的数据所需的磁盘I/O就越少。在专用数据库服务器上,可以将该参数设置为机器物理内存大小的80%。但是,不要将它设置得太大,因为物理内存的竞争可能会导致操作系统中的分页。注意,在32位系统上,每个进程的用户级内存可能被限制在2-3.5G,所以不要设置得太高。 innodb_buffer_pool_size=20M Size of each log file in a log group. You should set the combined size of log files to about 25%-100% of your buffer pool size to avoid unneeded buffer pool flush activity on log file overwrite. However, note that a larger logfile size will increase the time needed for the recovery process. 日志组中每个日志文件的大小。您应该将日志文件的合并大小设置为缓冲池大小的25%-100%,以避免在覆盖日志文件时出现不必要的缓冲池刷新活动。但是,请注意,较大的日志文件大小将增加恢复过程所需的时间。 innodb_log_file_size=48M Number of threads allowed inside the InnoDB kernel. The optimal value depends highly on the application, hardware as well as the OS scheduler properties. A too high value may lead to thread thrashing. InnoDB内核中允许的线程数。最优值在很大程度上取决于应用程序、硬件以及OS调度程序属性。过高的值可能导致线程抖动。 innodb_thread_concurrency=9 The increment size (in MB) for extending the size of an auto-extend InnoDB system tablespace file when it becomes full. 增量大小(以MB为单位),用于在表空间满时扩展自动扩展的InnoDB系统表空间文件的大小。 innodb_autoextend_increment=128 The number of regions that the InnoDB buffer pool is divided into. For systems with buffer pools in the multi-gigabyte range, dividing the buffer pool into separate instances can improve concurrency, by reducing contention as different threads read and write to cached pages. InnoDB缓冲池划分的区域数。对于具有多gb缓冲池的系统,将缓冲池划分为单独的实例可以提高并发性,因为不同的线程对缓存页面的读写会减少争用。 innodb_buffer_pool_instances=8 Determines the number of threads that can enter InnoDB concurrently. 确定可以同时进入InnoDB的线程数 innodb_concurrency_tickets=5000 Specifies how long in milliseconds (ms) a block inserted into the old sublist must stay there after its first access before it can be moved to the new sublist. 指定插入到旧子列表中的块必须在第一次访问之后停留多长时间(毫秒),然后才能移动到新子列表。 innodb_old_blocks_time=1000 It specifies the maximum number of .ibd files that MySQL can keep open at one time. The minimum value is 10. 它指定MySQL一次可以打开的.ibd文件的最大数量。最小值是10。 innodb_open_files=300 When this variable is enabled, InnoDB updates statistics during metadata statements. 当启用此变量时,InnoDB会在元数据语句期间更新统计信息。 innodb_stats_on_metadata=0 When innodb_file_per_table is enabled (the default in 5.6.6 and higher), InnoDB stores the data and indexes for each newly created table in a separate .ibd file, rather than in the system tablespace. 当启用innodb_file_per_table(5.6.6或更高版本的默认值)时,InnoDB将每个新创建的表的数据和索引存储在单独的.ibd文件中,而不是系统表空间中。 innodb_file_per_table=1 Use the following list of values: 0 for crc32, 1 for strict_crc32, 2 for innodb, 3 for strict_innodb, 4 for none, 5 for strict_none. 使用以下值列表:0表示crc32, 1表示strict_crc32, 2表示innodb, 3表示strict_innodb, 4表示none, 5表示strict_none。 innodb_checksum_algorithm=0 The number of outstanding connection requests MySQL can have. This option is useful when the main MySQL thread gets many connection requests in a very short time. It then takes some time (although very little) for the main thread to check the connection and start a new thread. The back_log value indicates how many requests can be stacked during this short time before MySQL momentarily stops answering new requests. You need to increase this only if you expect a large number of connections in a short period of time. MySQL可以有多少未完成连接请求。当MySQL主线程在很短的时间内收到许多连接请求时,这个选项非常有用。然后,主线程需要一些时间(尽管很少)来检查连接并启动一个新线程。back_log值表示在MySQL暂时停止响应新请求之前的短时间内可以堆多少个请求。只有当您预期在短时间内会有大量连接时,才需要增加这个值。 back_log=80 If this is set to a nonzero value, all tables are closed every flush_time seconds to free up resources and synchronize unflushed data to disk. This option is best used only on systems with minimal resources. 如果将该值设置为非零值,则每隔flush_time秒关闭所有表,以释放资源并将未刷新的数据同步到磁盘。这个选项最好只在资源最少的系统上使用。 flush_time=0 The minimum size of the buffer that is used for plain index scans, range index scans, and joins that do not use 用于普通索引扫描、范围索引扫描和不使用索引执行全表扫描的连接的缓冲区的最小大小。 indexes and thus perform full table scans. join_buffer_size=200M The maximum size of one packet or any generated or intermediate string, or any parameter sent by the mysql_stmt_send_long_data() C API function. 由mysql_stmt_send_long_data() C API函数发送的一个包或任何生成的或中间字符串或任何参数的最大大小 max_allowed_packet=500M If more than this many successive connection requests from a host are interrupted without a successful connection, the server blocks that host from performing further connections. 如果在没有成功连接的情况下中断了来自主机的多个连续连接请求,则服务器将阻止主机执行进一步的连接。 max_connect_errors=100 Changes the number of file descriptors available to mysqld. You should try increasing the value of this option if mysqld gives you the error "Too many open files". 更改mysqld可用的文件描述符的数量。如果mysqld给您的错误是“打开的文件太多”,您应该尝试增加这个选项的值。 open_files_limit=4161 If you see many sort_merge_passes per second in SHOW GLOBAL STATUS output, you can consider increasing the sort_buffer_size value to speed up ORDER BY or GROUP BY operations that cannot be improved with query optimization or improved indexing. 如果在SHOW GLOBAL STATUS输出中每秒看到许多sort_merge_passes,可以考虑增加sort_buffer_size值,以加快ORDER BY或GROUP BY操作的速度,这些操作无法通过查询优化或改进索引来改进。 sort_buffer_size=1M The number of table definitions (from .frm files) that can be stored in the definition cache. If you use a large number of tables, you can create a large table definition cache to speed up opening of tables. The table definition cache takes less space and does not use file descriptors, unlike the normal table cache. The minimum and default values are both 400. 可以存储在定义缓存中的表定义的数量(来自.frm文件)。如果使用大量表,可以创建一个大型表定义缓存来加速表的打开。与普通的表缓存不同,表定义缓存占用更少的空间,并且不使用文件描述符。最小值和默认值都是400。 table_definition_cache=1400 Specify the maximum size of a row-based binary log event, in bytes. Rows are grouped into events smaller than this size if possible. The value should be a multiple of 256. 指定基于行的二进制日志事件的最大大小,单位为字节。如果可能,将行分组为小于此大小的事件。这个值应该是256的倍数。 binlog_row_event_max_size=8K If the value of this variable is greater than 0, a replication slave synchronizes its master.info file to disk. (using fdatasync()) after every sync_master_info events. 如果该变量的值大于0,则复制奴隶将其主.info文件同步到磁盘。(在每个sync_master_info事件之后使用fdatasync())。 sync_master_info=10000 If the value of this variable is greater than 0, the MySQL server synchronizes its relay log to disk. (using fdatasync()) after every sync_relay_log writes to the relay log. 如果这个变量的值大于0,MySQL服务器将其中继日志同步到磁盘。(在每个sync_relay_log写入到中继日志之后使用fdatasync())。 sync_relay_log=10000 If the value of this variable is greater than 0, a replication slave synchronizes its relay-log.info file to disk. (using fdatasync()) after every sync_relay_log_info transactions. 如果该变量的值大于0,则复制奴隶将其中继日志.info文件同步到磁盘。(在每个sync_relay_log_info事务之后使用fdatasync())。 sync_relay_log_info=10000 Load mysql plugins at start."plugin_x ; plugin_y". 开始时加载mysql插件。“plugin_x;plugin_y” plugin_load The TCP/IP Port the MySQL Server X Protocol will listen on. MySQL服务器X协议将监听TCP/IP端口。 loose_mysqlx_port=33060 本篇文章为转载内容。原文链接:https://blog.csdn.net/mywpython/article/details/89499852。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-08 09:56:02
129
转载
转载文章
...ateStateByKey或者mapWithState进行不同地区广告点击排名的计算; Spark Streaming+Spark SQL+Spark Core等综合分析数据; 使用Window类型的操作; 高可用和性能调优等等; 流量趋势,一般会结合DB等; Spark Core / /package com.tom.spark.SparkApps.sparkstreaming;import java.util.Date;import java.util.HashMap;import java.util.Map;import java.util.Properties;import java.util.Random;import kafka.javaapi.producer.Producer;import kafka.producer.KeyedMessage;import kafka.producer.ProducerConfig;/ 数据生成代码,Kafka Producer产生数据/public class MockAdClickedStat {/ @param args/public static void main(String[] args) {final Random random = new Random();final String[] provinces = new String[]{"Guangdong", "Zhejiang", "Jiangsu", "Fujian"};final Map<String, String[]> cities = new HashMap<String, String[]>();cities.put("Guangdong", new String[]{"Guangzhou", "Shenzhen", "Dongguan"});cities.put("Zhejiang", new String[]{"Hangzhou", "Wenzhou", "Ningbo"});cities.put("Jiangsu", new String[]{"Nanjing", "Suzhou", "Wuxi"});cities.put("Fujian", new String[]{"Fuzhou", "Xiamen", "Sanming"});final String[] ips = new String[] {"192.168.112.240","192.168.112.239","192.168.112.245","192.168.112.246","192.168.112.247","192.168.112.248","192.168.112.249","192.168.112.250","192.168.112.251","192.168.112.252","192.168.112.253","192.168.112.254",};/ Kafka相关的基本配置信息/Properties kafkaConf = new Properties();kafkaConf.put("serializer.class", "kafka.serializer.StringEncoder");kafkaConf.put("metadeta.broker.list", "Master:9092,Worker1:9092,Worker2:9092");ProducerConfig producerConfig = new ProducerConfig(kafkaConf);final Producer<Integer, String> producer = new Producer<Integer, String>(producerConfig);new Thread(new Runnable() {public void run() {while(true) {//在线处理广告点击流的基本数据格式:timestamp、ip、userID、adID、province、cityLong timestamp = new Date().getTime();String ip = ips[random.nextInt(12)]; //可以采用网络上免费提供的ip库int userID = random.nextInt(10000);int adID = random.nextInt(100);String province = provinces[random.nextInt(4)];String city = cities.get(province)[random.nextInt(3)];String clickedAd = timestamp + "\t" + ip + "\t" + userID + "\t" + adID + "\t" + province + "\t" + city;producer.send(new KeyedMessage<Integer, String>("AdClicked", clickedAd));try {Thread.sleep(50);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }} }).start();} } package com.tom.spark.SparkApps.sparkstreaming;import java.sql.Connection;import java.sql.DriverManager;import java.sql.PreparedStatement;import java.sql.ResultSet;import java.sql.SQLException;import java.util.ArrayList;import java.util.Arrays;import java.util.HashMap;import java.util.HashSet;import java.util.Iterator;import java.util.List;import java.util.Map;import java.util.Set;import java.util.concurrent.LinkedBlockingQueue;import kafka.serializer.StringDecoder;import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaPairRDD;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.api.java.JavaSparkContext;import org.apache.spark.api.java.function.Function;import org.apache.spark.api.java.function.Function2;import org.apache.spark.api.java.function.PairFunction;import org.apache.spark.api.java.function.VoidFunction;import org.apache.spark.sql.DataFrame;import org.apache.spark.sql.Row;import org.apache.spark.sql.RowFactory;import org.apache.spark.sql.hive.HiveContext;import org.apache.spark.sql.types.DataTypes;import org.apache.spark.sql.types.StructType;import org.apache.spark.streaming.Durations;import org.apache.spark.streaming.api.java.JavaDStream;import org.apache.spark.streaming.api.java.JavaPairDStream;import org.apache.spark.streaming.api.java.JavaPairInputDStream;import org.apache.spark.streaming.api.java.JavaStreamingContext;import org.apache.spark.streaming.api.java.JavaStreamingContextFactory;import org.apache.spark.streaming.kafka.KafkaUtils;import com.google.common.base.Optional;import scala.Tuple2;/ 数据处理,Kafka消费者/public class AdClickedStreamingStats {/ @param args/public static void main(String[] args) {// TODO Auto-generated method stub//好处:1、checkpoint 2、工厂final SparkConf conf = new SparkConf().setAppName("SparkStreamingOnKafkaDirect").setMaster("hdfs://Master:7077/");final String checkpointDirectory = "hdfs://Master:9000/library/SparkStreaming/CheckPoint_Data";JavaStreamingContextFactory factory = new JavaStreamingContextFactory() {public JavaStreamingContext create() {// TODO Auto-generated method stubreturn createContext(checkpointDirectory, conf);} };/ 可以从失败中恢复Driver,不过还需要指定Driver这个进程运行在Cluster,并且在提交应用程序的时候制定--supervise;/JavaStreamingContext javassc = JavaStreamingContext.getOrCreate(checkpointDirectory, factory);/ 第三步:创建Spark Streaming输入数据来源input Stream: 1、数据输入来源可以基于File、HDFS、Flume、Kafka、Socket等 2、在这里我们指定数据来源于网络Socket端口,Spark Streaming连接上该端口并在运行的时候一直监听该端口的数据 (当然该端口服务首先必须存在),并且在后续会根据业务需要不断有数据产生(当然对于Spark Streaming 应用程序的运行而言,有无数据其处理流程都是一样的) 3、如果经常在每间隔5秒钟没有数据的话不断启动空的Job其实会造成调度资源的浪费,因为并没有数据需要发生计算;所以 实际的企业级生成环境的代码在具体提交Job前会判断是否有数据,如果没有的话就不再提交Job;///创建Kafka元数据来让Spark Streaming这个Kafka Consumer利用Map<String, String> kafkaParameters = new HashMap<String, String>();kafkaParameters.put("metadata.broker.list", "Master:9092,Worker1:9092,Worker2:9092");Set<String> topics = new HashSet<String>();topics.add("SparkStreamingDirected");JavaPairInputDStream<String, String> adClickedStreaming = KafkaUtils.createDirectStream(javassc, String.class, String.class, StringDecoder.class, StringDecoder.class,kafkaParameters, topics);/因为要对黑名单进行过滤,而数据是在RDD中的,所以必然使用transform这个函数; 但是在这里我们必须使用transformToPair,原因是读取进来的Kafka的数据是Pair<String,String>类型, 另一个原因是过滤后的数据要进行进一步处理,所以必须是读进的Kafka数据的原始类型 在此再次说明,每个Batch Duration中实际上讲输入的数据就是被一个且仅被一个RDD封装的,你可以有多个 InputDStream,但其实在产生job的时候,这些不同的InputDStream在Batch Duration中就相当于Spark基于HDFS 数据操作的不同文件来源而已罢了。/JavaPairDStream<String, String> filteredadClickedStreaming = adClickedStreaming.transformToPair(new Function<JavaPairRDD<String,String>, JavaPairRDD<String,String>>() {public JavaPairRDD<String, String> call(JavaPairRDD<String, String> rdd) throws Exception {/ 在线黑名单过滤思路步骤: 1、从数据库中获取黑名单转换成RDD,即新的RDD实例封装黑名单数据; 2、然后把代表黑名单的RDD的实例和Batch Duration产生的RDD进行Join操作, 准确的说是进行leftOuterJoin操作,也就是说使用Batch Duration产生的RDD和代表黑名单的RDD实例进行 leftOuterJoin操作,如果两者都有内容的话,就会是true,否则的话就是false 我们要留下的是leftOuterJoin结果为false; /final List<String> blackListNames = new ArrayList<String>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();jdbcWrapper.doQuery("SELECT FROM blacklisttable", null, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {while(result.next()){blackListNames.add(result.getString(1));} }});List<Tuple2<String, Boolean>> blackListTuple = new ArrayList<Tuple2<String,Boolean>>();for(String name : blackListNames) {blackListTuple.add(new Tuple2<String, Boolean>(name, true));}List<Tuple2<String, Boolean>> blacklistFromListDB = blackListTuple; //数据来自于查询的黑名单表并且映射成为<String, Boolean>JavaSparkContext jsc = new JavaSparkContext(rdd.context());/ 黑名单的表中只有userID,但是如果要进行join操作的话就必须是Key-Value,所以在这里我们需要 基于数据表中的数据产生Key-Value类型的数据集合/JavaPairRDD<String, Boolean> blackListRDD = jsc.parallelizePairs(blacklistFromListDB);/ 进行操作的时候肯定是基于userID进行join,所以必须把传入的rdd进行mapToPair操作转化成为符合格式的RDD/JavaPairRDD<String, Tuple2<String, String>> rdd2Pair = rdd.mapToPair(new PairFunction<Tuple2<String,String>, String, Tuple2<String, String>>() {public Tuple2<String, Tuple2<String, String>> call(Tuple2<String, String> t) throws Exception {// TODO Auto-generated method stubString userID = t._2.split("\t")[2];return new Tuple2<String, Tuple2<String,String>>(userID, t);} });JavaPairRDD<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> joined = rdd2Pair.leftOuterJoin(blackListRDD);JavaPairRDD<String, String> result = joined.filter(new Function<Tuple2<String,Tuple2<Tuple2<String,String>,Optional<Boolean>>>, Boolean>() {public Boolean call(Tuple2<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> tuple)throws Exception {// TODO Auto-generated method stubOptional<Boolean> optional = tuple._2._2;if(optional.isPresent() && optional.get()){return false;} else {return true;} }}).mapToPair(new PairFunction<Tuple2<String,Tuple2<Tuple2<String,String>,Optional<Boolean>>>, String, String>() {public Tuple2<String, String> call(Tuple2<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> t)throws Exception {// TODO Auto-generated method stubreturn t._2._1;} });return result;} });//广告点击的基本数据格式:timestamp、ip、userID、adID、province、cityJavaPairDStream<String, Long> pairs = filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t) throws Exception {String[] splited=t._2.split("\t");String timestamp = splited[0]; //YYYY-MM-DDString ip = splited[1];String userID = splited[2];String adID = splited[3];String province = splited[4];String city = splited[5]; String clickedRecord = timestamp + "_" +ip + "_"+userID+"_"+adID+"_"+province +"_"+city;return new Tuple2<String, Long>(clickedRecord, 1L);} });/ 第4.3步:在单词实例计数为1基础上,统计每个单词在文件中出现的总次数/JavaPairDStream<String, Long> adClickedUsers= pairs.reduceByKey(new Function2<Long, Long, Long>() {public Long call(Long i1, Long i2) throws Exception{return i1 + i2;} });/判断有效的点击,复杂化的采用机器学习训练模型进行在线过滤 简单的根据ip判断1天不超过100次;也可以通过一个batch duration的点击次数判断是否非法广告点击,通过一个batch来判断是不完整的,还需要一天的数据也可以每一个小时来判断。/JavaPairDStream<String, Long> filterClickedBatch = adClickedUsers.filter(new Function<Tuple2<String,Long>, Boolean>() {public Boolean call(Tuple2<String, Long> v1) throws Exception {if (1 < v1._2){//更新一些黑名单的数据库表return false;} else { return true;} }});//filterClickedBatch.print();//写入数据库filterClickedBatch.foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition) throws Exception {//使用数据库连接池的高效读写数据库的方式将数据写入数据库mysql//例如一次插入 1000条 records,使用insertBatch 或 updateBatch//插入的用户数据信息:userID,adID,clickedCount,time//这里面有一个问题,可能出现两条记录的key是一样的,此时需要更新累加操作List<UserAdClicked> userAdClickedList = new ArrayList<UserAdClicked>();while(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("\t");UserAdClicked userClicked = new UserAdClicked();userClicked.setTimestamp(splited[0]);userClicked.setIp(splited[1]);userClicked.setUserID(splited[2]);userClicked.setAdID(splited[3]);userClicked.setProvince(splited[4]);userClicked.setCity(splited[5]);userAdClickedList.add(userClicked);}final List<UserAdClicked> inserting = new ArrayList<UserAdClicked>();final List<UserAdClicked> updating = new ArrayList<UserAdClicked>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final UserAdClicked clicked : userAdClickedList) {jdbcWrapper.doQuery("SELECT clickedCount FROM adclicked WHERE"+ " timestamp =? AND userID = ? AND adID = ?",new Object[]{clicked.getTimestamp(), clicked.getUserID(),clicked.getAdID()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);clicked.setClickedCount(count);updating.add(clicked);} else {inserting.add(clicked);clicked.setClickedCount(1L);} }});}//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(UserAdClicked insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.getTimestamp(),insertRecord.getIp(),insertRecord.getUserID(),insertRecord.getAdID(),insertRecord.getProvince(),insertRecord.getCity(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclicked VALUES(?, ?, ?, ?, ?, ?, ?)", insertParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(UserAdClicked updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getTimestamp(),updateRecord.getIp(),updateRecord.getUserID(),updateRecord.getAdID(),updateRecord.getProvince(),updateRecord.getCity(),updateRecord.getClickedCount() + 1});}jdbcWrapper.doBatch("UPDATE adclicked SET clickedCount = ? WHERE"+ " timestamp =? AND ip = ? AND userID = ? AND adID = ? "+ "AND province = ? AND city = ?", updateParametersList);} });return null;} });//再次过滤,从数据库中读取数据过滤黑名单JavaPairDStream<String, Long> blackListBasedOnHistory = filterClickedBatch.filter(new Function<Tuple2<String,Long>, Boolean>() {public Boolean call(Tuple2<String, Long> v1) throws Exception {//广告点击的基本数据格式:timestamp,ip,userID,adID,province,cityString[] splited = v1._1.split("\t"); //提取key值String date =splited[0];String userID =splited[2];String adID =splited[3];//查询一下数据库同一个用户同一个广告id点击量超过50次列入黑名单//接下来 根据date、userID、adID条件去查询用户点击广告的数据表,获得总的点击次数//这个时候基于点击次数判断是否属于黑名单点击int clickedCountTotalToday = 81 ;if (clickedCountTotalToday > 50) {return true;}else {return false ;} }});//map操作,找出用户的idJavaDStream<String> blackListuserIDBasedInBatchOnhistroy =blackListBasedOnHistory.map(new Function<Tuple2<String,Long>, String>() {public String call(Tuple2<String, Long> v1) throws Exception {// TODO Auto-generated method stubreturn v1._1.split("\t")[2];} });//有一个问题,数据可能重复,在一个partition里面重复,这个好办;//但多个partition不能保证一个用户重复,需要对黑名单的整个rdd进行去重操作。//rdd去重了,partition也就去重了,一石二鸟,一箭双雕// 找出了黑名单,下一步就写入黑名单数据库表中JavaDStream<String> blackListUniqueuserBasedInBatchOnhistroy = blackListuserIDBasedInBatchOnhistroy.transform(new Function<JavaRDD<String>, JavaRDD<String>>() {public JavaRDD<String> call(JavaRDD<String> rdd) throws Exception {// TODO Auto-generated method stubreturn rdd.distinct();} });// 下一步写入到数据表中blackListUniqueuserBasedInBatchOnhistroy.foreachRDD(new Function<JavaRDD<String>, Void>() {public Void call(JavaRDD<String> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<String>>() {public void call(Iterator<String> t) throws Exception {// TODO Auto-generated method stub//插入的用户信息可以只包含:useID//此时直接插入黑名单数据表即可。//写入数据库List<Object[]> blackList = new ArrayList<Object[]>();while(t.hasNext()) {blackList.add(new Object[]{t.next()});}JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();jdbcWrapper.doBatch("INSERT INTO blacklisttable values (?)", blackList);} });return null;} });/广告点击累计动态更新,每个updateStateByKey都会在Batch Duration的时间间隔的基础上进行广告点击次数的更新, 更新之后我们一般都会持久化到外部存储设备上,在这里我们存储到MySQL数据库中/JavaPairDStream<String, Long> updateStateByKeyDSteam = filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t)throws Exception {String[] splited=t._2.split("\t");String timestamp = splited[0]; //YYYY-MM-DDString ip = splited[1];String userID = splited[2];String adID = splited[3];String province = splited[4];String city = splited[5]; String clickedRecord = timestamp + "_" +ip + "_"+userID+"_"+adID+"_"+province +"_"+city;return new Tuple2<String, Long>(clickedRecord, 1L);} }).updateStateByKey(new Function2<List<Long>, Optional<Long>, Optional<Long>>() {public Optional<Long> call(List<Long> v1, Optional<Long> v2)throws Exception {// v1:当前的Key在当前的Batch Duration中出现的次数的集合,例如{1,1,1,。。。,1}// v2:当前的Key在以前的Batch Duration中积累下来的结果;Long clickedTotalHistory = 0L; if(v2.isPresent()){clickedTotalHistory = v2.get();}for(Long one : v1) {clickedTotalHistory += one;}return Optional.of(clickedTotalHistory);} });updateStateByKeyDSteam.foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition) throws Exception {//使用数据库连接池的高效读写数据库的方式将数据写入数据库mysql//例如一次插入 1000条 records,使用insertBatch 或 updateBatch//插入的用户数据信息:timestamp、adID、province、city//这里面有一个问题,可能出现两条记录的key是一样的,此时需要更新累加操作List<AdClicked> AdClickedList = new ArrayList<AdClicked>();while(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("\t");AdClicked adClicked = new AdClicked();adClicked.setTimestamp(splited[0]);adClicked.setAdID(splited[1]);adClicked.setProvince(splited[2]);adClicked.setCity(splited[3]);adClicked.setClickedCount(record._2);AdClickedList.add(adClicked);}final List<AdClicked> inserting = new ArrayList<AdClicked>();final List<AdClicked> updating = new ArrayList<AdClicked>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final AdClicked clicked : AdClickedList) {jdbcWrapper.doQuery("SELECT clickedCount FROM adclickedcount WHERE"+ " timestamp = ? AND adID = ? AND province = ? AND city = ?",new Object[]{clicked.getTimestamp(), clicked.getAdID(),clicked.getProvince(), clicked.getCity()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);clicked.setClickedCount(count);updating.add(clicked);} else {inserting.add(clicked);clicked.setClickedCount(1L);} }});}//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdClicked insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.getTimestamp(),insertRecord.getAdID(),insertRecord.getProvince(),insertRecord.getCity(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclickedcount VALUES(?, ?, ?, ?, ?)", insertParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(AdClicked updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getClickedCount(),updateRecord.getTimestamp(),updateRecord.getAdID(),updateRecord.getProvince(),updateRecord.getCity()});}jdbcWrapper.doBatch("UPDATE adclickedcount SET clickedCount = ? WHERE"+ " timestamp =? AND adID = ? AND province = ? AND city = ?", updateParametersList);} });return null;} });/ 对广告点击进行TopN计算,计算出每天每个省份Top5排名的广告 因为我们直接对RDD进行操作,所以使用了transfomr算子;/updateStateByKeyDSteam.transform(new Function<JavaPairRDD<String,Long>, JavaRDD<Row>>() {public JavaRDD<Row> call(JavaPairRDD<String, Long> rdd) throws Exception {JavaRDD<Row> rowRDD = rdd.mapToPair(new PairFunction<Tuple2<String,Long>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, Long> t)throws Exception {// TODO Auto-generated method stubString[] splited=t._1.split("_");String timestamp = splited[0]; //YYYY-MM-DDString adID = splited[3];String province = splited[4];String clickedRecord = timestamp + "_" + adID + "_" + province;return new Tuple2<String, Long>(clickedRecord, t._2);} }).reduceByKey(new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 + v2;} }).map(new Function<Tuple2<String,Long>, Row>() {public Row call(Tuple2<String, Long> v1) throws Exception {// TODO Auto-generated method stubString[] splited=v1._1.split("_");String timestamp = splited[0]; //YYYY-MM-DDString adID = splited[3];String province = splited[4];return RowFactory.create(timestamp, adID, province, v1._2);} });StructType structType = DataTypes.createStructType(Arrays.asList(DataTypes.createStructField("timestamp", DataTypes.StringType, true),DataTypes.createStructField("adID", DataTypes.StringType, true),DataTypes.createStructField("province", DataTypes.StringType, true),DataTypes.createStructField("clickedCount", DataTypes.LongType, true)));HiveContext hiveContext = new HiveContext(rdd.context());DataFrame df = hiveContext.createDataFrame(rowRDD, structType);df.registerTempTable("topNTableSource");DataFrame result = hiveContext.sql("SELECT timestamp, adID, province, clickedCount, FROM"+ " (SELECT timestamp, adID, province,clickedCount, "+ "ROW_NUMBER() OVER(PARTITION BY province ORDER BY clickeCount DESC) rank "+ "FROM topNTableSource) subquery "+ "WHERE rank <= 5");return result.toJavaRDD();} }).foreachRDD(new Function<JavaRDD<Row>, Void>() {public Void call(JavaRDD<Row> rdd) throws Exception {// TODO Auto-generated method stubrdd.foreachPartition(new VoidFunction<Iterator<Row>>() {public void call(Iterator<Row> t) throws Exception {// TODO Auto-generated method stubList<AdProvinceTopN> adProvinceTopN = new ArrayList<AdProvinceTopN>();while(t.hasNext()) {Row row = t.next();AdProvinceTopN item = new AdProvinceTopN();item.setTimestamp(row.getString(0));item.setAdID(row.getString(1));item.setProvince(row.getString(2));item.setClickedCount(row.getLong(3));adProvinceTopN.add(item);}// final List<AdProvinceTopN> inserting = new ArrayList<AdProvinceTopN>();// final List<AdProvinceTopN> updating = new ArrayList<AdProvinceTopN>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();Set<String> set = new HashSet<String>();for(AdProvinceTopN item: adProvinceTopN){set.add(item.getTimestamp() + "_" + item.getProvince());}//表的字段timestamp、adID、province、clickedCountArrayList<Object[]> deleteParametersList = new ArrayList<Object[]>();for(String deleteRecord : set) {String[] splited = deleteRecord.split("_");deleteParametersList.add(new Object[]{splited[0],splited[1]});}jdbcWrapper.doBatch("DELETE FROM adprovincetopn WHERE timestamp = ? AND province = ?", deleteParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdProvinceTopN insertRecord : adProvinceTopN) {insertParametersList.add(new Object[] {insertRecord.getClickedCount(),insertRecord.getTimestamp(),insertRecord.getAdID(),insertRecord.getProvince()});}jdbcWrapper.doBatch("INSERT INTO adprovincetopn VALUES (?, ?, ?, ?)", insertParametersList);} });return null;} });/ 计算过去半个小时内广告点击的趋势 广告点击的基本数据格式:timestamp、ip、userID、adID、province、city/filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t)throws Exception {String splited[] = t._2.split("\t");String adID = splited[3];String time = splited[0]; //Todo:后续需要重构代码实现时间戳和分钟的转换提取。此处需要提取出该广告的点击分钟单位return new Tuple2<String, Long>(time + "_" + adID, 1L);} }).reduceByKeyAndWindow(new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 + v2;} }, new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 - v2;} }, Durations.minutes(30), Durations.milliseconds(5)).foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {// TODO Auto-generated method stubrdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition)throws Exception {List<AdTrendStat> adTrend = new ArrayList<AdTrendStat>();// TODO Auto-generated method stubwhile(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("_");String time = splited[0];String adID = splited[1];Long clickedCount = record._2;/ 在插入数据到数据库的时候具体需要哪些字段?time、adID、clickedCount; 而我们通过J2EE技术进行趋势绘图的时候肯定是需要年、月、日、时、分这个维度的,所以我们在这里需要 年月日、小时、分钟这些时间维度;/AdTrendStat adTrendStat = new AdTrendStat();adTrendStat.setAdID(adID);adTrendStat.setClickedCount(clickedCount);adTrendStat.set_date(time); //Todo:获取年月日adTrendStat.set_hour(time); //Todo:获取小时adTrendStat.set_minute(time);//Todo:获取分钟adTrend.add(adTrendStat);}final List<AdTrendStat> inserting = new ArrayList<AdTrendStat>();final List<AdTrendStat> updating = new ArrayList<AdTrendStat>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final AdTrendStat trend : adTrend) {final AdTrendCountHistory adTrendhistory = new AdTrendCountHistory();jdbcWrapper.doQuery("SELECT clickedCount FROM adclickedtrend WHERE"+ " date =? AND hour = ? AND minute = ? AND AdID = ?",new Object[]{trend.get_date(), trend.get_hour(), trend.get_minute(),trend.getAdID()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);adTrendhistory.setClickedCountHistoryLong(count);updating.add(trend);} else { inserting.add(trend);} }});}//表的字段date、hour、minute、adID、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdTrendStat insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.get_date(),insertRecord.get_hour(),insertRecord.get_minute(),insertRecord.getAdID(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclickedtrend VALUES(?, ?, ?, ?, ?)", insertParametersList);//表的字段date、hour、minute、adID、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(AdTrendStat updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getClickedCount(),updateRecord.get_date(),updateRecord.get_hour(),updateRecord.get_minute(),updateRecord.getAdID()});}jdbcWrapper.doBatch("UPDATE adclickedtrend SET clickedCount = ? WHERE"+ " date =? AND hour = ? AND minute = ? AND AdID = ?", updateParametersList);} });return null;} });;/ Spark Streaming 执行引擎也就是Driver开始运行,Driver启动的时候是位于一条新的线程中的,当然其内部有消息循环体,用于 接收应用程序本身或者Executor中的消息,/javassc.start();javassc.awaitTermination();javassc.close();}private static JavaStreamingContext createContext(String checkpointDirectory, SparkConf conf) {// If you do not see this printed, that means the StreamingContext has been loaded// from the new checkpointSystem.out.println("Creating new context");// Create the context with a 5 second batch sizeJavaStreamingContext ssc = new JavaStreamingContext(conf, Durations.seconds(10));ssc.checkpoint(checkpointDirectory);return ssc;} }class JDBCWrapper {private static JDBCWrapper jdbcInstance = null;private static LinkedBlockingQueue<Connection> dbConnectionPool = new LinkedBlockingQueue<Connection>();static {try {Class.forName("com.mysql.jdbc.Driver");} catch (ClassNotFoundException e) {// TODO Auto-generated catch blocke.printStackTrace();} }public static JDBCWrapper getJDBCInstance() {if(jdbcInstance == null) {synchronized (JDBCWrapper.class) {if(jdbcInstance == null) {jdbcInstance = new JDBCWrapper();} }}return jdbcInstance; }private JDBCWrapper() {for(int i = 0; i < 10; i++){try {Connection conn = DriverManager.getConnection("jdbc:mysql://Master:3306/sparkstreaming","root", "root");dbConnectionPool.put(conn);} catch (Exception e) {// TODO Auto-generated catch blocke.printStackTrace();} } }public synchronized Connection getConnection() {while(0 == dbConnectionPool.size()){try {Thread.sleep(20);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }return dbConnectionPool.poll();}public int[] doBatch(String sqlText, List<Object[]> paramsList){Connection conn = getConnection();PreparedStatement preparedStatement = null;int[] result = null;try {conn.setAutoCommit(false);preparedStatement = conn.prepareStatement(sqlText);for(Object[] parameters: paramsList) {for(int i = 0; i < parameters.length; i++){preparedStatement.setObject(i + 1, parameters[i]);} preparedStatement.addBatch();}result = preparedStatement.executeBatch();conn.commit();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} finally {if(preparedStatement != null) {try {preparedStatement.close();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} }if(conn != null) {try {dbConnectionPool.put(conn);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }}return result; }public void doQuery(String sqlText, Object[] paramsList, ExecuteCallBack callback){Connection conn = getConnection();PreparedStatement preparedStatement = null;ResultSet result = null;try {preparedStatement = conn.prepareStatement(sqlText);for(int i = 0; i < paramsList.length; i++){preparedStatement.setObject(i + 1, paramsList[i]);} result = preparedStatement.executeQuery();try {callback.resultCallBack(result);} catch (Exception e) {// TODO Auto-generated catch blocke.printStackTrace();} } catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} finally {if(preparedStatement != null) {try {preparedStatement.close();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} }if(conn != null) {try {dbConnectionPool.put(conn);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }} }}interface ExecuteCallBack {void resultCallBack(ResultSet result) throws Exception;}class UserAdClicked {private String timestamp;private String ip;private String userID;private String adID;private String province;private String city;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getIp() {return ip;}public void setIp(String ip) {this.ip = ip;}public String getUserID() {return userID;}public void setUserID(String userID) {this.userID = userID;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public String getCity() {return city;}public void setCity(String city) {this.city = city;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdClicked {private String timestamp;private String adID;private String province;private String city;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public String getCity() {return city;}public void setCity(String city) {this.city = city;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdProvinceTopN {private String timestamp;private String adID;private String province;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdTrendStat {private String _date;private String _hour;private String _minute;private String adID;private Long clickedCount;public String get_date() {return _date;}public void set_date(String _date) {this._date = _date;}public String get_hour() {return _hour;}public void set_hour(String _hour) {this._hour = _hour;}public String get_minute() {return _minute;}public void set_minute(String _minute) {this._minute = _minute;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdTrendCountHistory{private Long clickedCountHistoryLong;public Long getClickedCountHistoryLong() {return clickedCountHistoryLong;}public void setClickedCountHistoryLong(Long clickedCountHistoryLong) {this.clickedCountHistoryLong = clickedCountHistoryLong;} } 本篇文章为转载内容。原文链接:https://blog.csdn.net/tom_8899_li/article/details/71194434。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-14 19:16:35
297
转载
HBase
...你的查询场景就是根据key拿到结果,没有其它的过滤筛选条件,这就是经典的“点查”,“点查”在hbase上是非常合适的。 当然,除了hbase,还有很多适合“点查”的数据库,比如aws的dynamodb、google的bigtable。但一般公司或自用站点,还是用hbase更合适。 不用很纠结技术选型,hbase依旧非常经典,而且版本也在源源不断的迭代,适合自己的就是最好的。 3. hbase安装依赖 如果你的机器资源不足或只有一两台机器的站点,那么不建议使用hbase,因为它严格依赖hdfs存储系统和hadoop计算架构,以及zookeeper。 如果你的机器配置不高,在安装完这一些,还没安装完hbase的时候,内存就已经被占据了不少了。 4. 场景解析 本篇文章更关注于选型的探讨,不涉及原理的解析。所以当什么场景下应该会使用到hbase,我们再来回顾一下。 hbase的查询方式是通过rowkey做交互。所以,如果你的查询能够抽象为用rowkey直接获取,那么就适合用hbase查询。 这里的rowkey不仅仅是一个id或uuid,它甚至可以是几个字段组成的一个有限长度的字符串,比如“zhangsan-18-beijing”都是可以的。 但是,hbase不能带有其它的filter,比如你要过滤age<18,虽然可以使用hbase的一些协处理器实现,但性能会十分让你惊讶。性能是不好的。 所以,如果你的查询能够抽象为有意义的rowkey,那直接用hbase存储和查询是没有问题的。而且要注意rowkey的长度和散列,太长的rowkey会带来性能的损失,不具备散列特性的rowkey会带来热点问题。 5 自定义过滤下的hbase 从本篇文章的第一小节可以看到,极好的一列出现了三位选手:hbase、redis和elasticsearch 大数据情况下,或海量数据场景下,咱就先让redis休个假吧。如果你的数据较为海量,使用elasticsearch+hbase的搜索存储架构是非常好的选择。 这里引用阿里云的一篇文章:https://developer.aliyun.com/article/941191 6 总结 只有点查的场景,你只需要使用hbase。 只有搜索的场景,其实你完全可以只使用elasticsearch。 但当数据量不断扩大,而且参数搜索的字段可能只是所有字段的一部分,你不妨使用elasticsearch+hbase架构。搜索字段放elasticsearch,需要拿出来数据计算或展示的字段放hbase。各司其职,索引库+存储库分离。 索引库+存储库这个思想也不是为elasticsearch+hbase特定准备的,比如索引库你可以替换为lucene或solr,存储库可以替换为casandra或berkeleydb等都是可以的。任意两个组件都可以组合。
2024-01-27 18:28:18
557
admin-tim
JQuery插件下载
...计师打造。这款插件以Key社游戏中的标志性元素为灵感,将传统的浏览器右键菜单转化为一个令人耳目一新的动画圆形菜单,不仅在视觉上带来了震撼的冲击力,更添加了音效元素,使得交互体验更加生动有趣。产品特色1.动画圆形菜单:GalMenu.js将菜单从线性布局转变为圆周排列,每个选项如同星星般围绕中心旋转,创造出一种动态而优雅的视觉效果。这种设计不仅美观,还能够有效减少空间占用,提高用户体验。2.原生浏览器功能升级:通过巧妙地利用JavaScript和jQuery,插件将浏览器的右键菜单功能提升到一个新的高度。它保留了原始菜单的基本功能,同时加入了动画和音效,使得整个操作流程变得更加流畅和吸引人。3.响应式设计:考虑到现代设备的多样化,GalMenu.js特别注重响应式设计。无论是在大屏幕的台式机还是小屏幕的移动设备上,菜单都能完美适配,保证了跨平台的一致性和流畅性。4.易于集成:作为一款基于jQuery的插件,GalMenu.js提供了简洁的API接口,开发者可以轻松地将其集成到现有的项目中。只需要几行代码,就可以享受到其带来的丰富功能和视觉效果。5.音效增强:除了视觉上的创新,插件还内置了丰富的音效,包括点击、打开、关闭等操作的音效,这些细节的处理极大地提升了用户的沉浸感和互动体验。应用场景GalMenu.js适合于各种需要增强用户界面交互性和视觉吸引力的应用场景,无论是游戏、社交媒体平台、在线教育网站,还是任何希望提供独特用户体验的网站或应用,都能从中获益。通过引入这种创新的菜单设计,不仅可以提升产品的整体形象,还能显著增加用户的使用满意度和粘性。总之,GalMenu.js是一款不可多得的jQuery插件,它将功能性和美学完美结合,为现代Web开发提供了全新的视角和解决方案。无论是对于追求创新的设计者还是对用户体验有严格要求的开发者来说,它都是一份不容错过的礼物。 点我下载 文件大小:116.35 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-09-23 21:24:20
21
本站
转载文章
...header: { Accept: "application/json; charset=utf-8"},success : function(result) {},error : function(jqXHR, textStatus) {jqAjaxError(jqXHR, textStatus);} }) beforeSend设置 $.ajax({type : "get",dataType : "json",async:false,url : base_path + "aa/getList",beforeSend: function (xhr) {xhr.setRequestHeader("sso_token", "sso_token");},success : function(result) {},error : function(jqXHR, textStatus) {jqAjaxError(jqXHR, textStatus);} }); 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_44724587/article/details/132226488。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-09 19:34:00
62
转载
VUE
...n items" :key="index" draggable="true" @dragstart="dragStart(index)">{ { item.content } } </div> 然后,在Vue的methods中设定拖放相关的函数。在这个例子中,dragStart函数用于设定被拖曳时的动作。比如: methods: { dragStart(index) { this.draggedItemIndex = index; } } 最后,在被拖曳组件的外部组件(通常是一个容器组件)上添加dragover和drop触发器。在dragover触发器中,需要使用event.preventDefault()函数来保证被拖曳组件可以被安放到指定的容器中。在drop触发器中,需要调用Vue实例中设定的drop函数来处置被拖放组件的最终位置。比如: computed: { containerStyle() { return { height: this.itemHeight + 'px' }; } }, methods: { drop() { const droppedItemIndex = this.draggedItemIndex; const items = [...this.items]; const draggedItem = items.splice(this.draggedItemIndex, 1)[0]; items.splice(this.droppedItemIndex, 0, draggedItem); this.items = items; }, dragOver(index, event) { event.preventDefault(); this.droppedItemIndex = index; } } 通过这种方式,Vue同级拖拽完成了对Web页面上组件的拖放操控,使使用者界面更加友好和易于使用。
2023-02-06 14:33:08
118
键盘勇士
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
nohup command &
- 在后台运行命令且在退出终端后仍继续运行。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"