前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[JSON格式响应解析实战 百度下拉词 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Hive
...SQL语法错误:深度解析与实战纠错 1. 引言 在大数据处理的世界里,Apache Hive作为一款基于Hadoop的数据仓库工具,因其强大的数据存储、管理和分析能力而广受青睐。然而,在实际操作的时候,我们偶尔会碰到Hive SQL语法这家伙给我们找点小麻烦,它一闹腾,可能就把我们数据分析的进度给绊住了。这篇文会手把手带着大家,用一些鲜活的实例和通俗易懂的讲解,让大家能更好地理解和搞定在使用Hive查询时可能会遇到的各种SQL语法难题。 2. 常见的Hive SQL语法错误类型 2.1 表达式或关键字拼写错误 我们在编写Hive SQL时,有时可能因一时疏忽造成关键字或函数名拼写错误,导致查询失败。例如: sql -- 错误示例 SELECT emplyee_name FROM employees; -- 'emplyee_name'应为'employee_name' -- 正确示例 SELECT employee_name FROM employees; 2.2 结构性错误 Hive SQL的语句结构有严格的规定,如不遵循则会出现错误。比如分组、排序、JOIN等操作的位置和顺序都有讲究。下面是一个GROUP BY语句放置位置不当的例子: sql -- 错误示例 SELECT COUNT() total, department FROM employees WHERE salary > 50000 GROUP BY department; -- 正确示例 SELECT department, COUNT() as total FROM employees WHERE salary > 50000 GROUP BY department; 2.3 数据类型不匹配 在Hive中,进行运算或者比较操作时,如果涉及的数据类型不一致,也会引发错误。如下所示: sql -- 错误示例 SELECT name, salary days AS total_salary FROM employees; -- 若days字段是字符串类型,则会导致类型不匹配错误 -- 解决方案(假设days应为整数) CAST(days AS INT) AS days_casted, salary days_casted AS total_salary FROM employees; 3. 探究与思考 如何避免和调试SQL语法错误? - 养成良好的编程习惯:细心检查关键字、函数名及字段名的拼写,确保符合Hive SQL的标准规范。 - 理解SQL语法规则:深入学习Hive SQL的语法规则,尤其关注那些容易混淆的操作符、关键字和语句结构。 - 善用IDE提示与验证:利用诸如Hue、Hive CLI或IntelliJ IDEA等集成开发环境,它们通常具备自动补全和语法高亮功能,能在很大程度上减少人为错误。 - 实时反馈与调试:当SQL执行失败时,Hive会返回详细的错误信息,这些信息是我们定位问题的关键线索。学会阅读并理解这些错误信息,有助于快速找到问题所在并进行修复。 - 测试与验证:对于复杂的查询语句,先尝试在小规模数据集上运行并验证结果,逐步完善后再应用到大规模数据中。 4. 总结 在Hive查询过程中遭遇SQL语法错误,虽让人头疼,但只要我们深入了解Hive SQL的工作原理,掌握常见的错误类型,并通过实践不断提升自己的排查能力,就能从容应对这些问题。记住了啊,每一个搞砸的时候,其实都是个难得的学习机会,它能让我们更接地气地领悟到Hive这家伙究竟有多强大,还有它那一套严谨得不行的规则体系。只有经历过“跌倒”,才能更好地“奔跑”在大数据的广阔天地之中!
2023-06-02 21:22:10
608
心灵驿站
SpringBoot
...tBody:轻松装配JSON数据 SpringBoot作为Java生态中的一款强大且高效的开发框架,以其简洁的配置和强大的功能深受开发者喜爱。在平常处理HTTP请求这事儿上,我们常常遇到这么个情况:得把请求内容里的JSON数据给捯饬成Java对象,这样一来,接下来的操作才能更顺手、更方便。本文将以“@RequestBody 装配json数据”为主题,通过生动详尽的代码示例和探讨性话术,带你深入了解SpringBoot如何优雅地实现这一过程。 1. @RequestBody 简介 在SpringMVC(SpringBoot基于此构建)中,@RequestBody注解扮演了至关重要的角色。这个东西呢,主要就是在方法的参数那儿发挥作用,告诉Spring框架,你得把HTTP请求里边那个大段的内容,对号入座地塞进我指定的对象参数里头去。这就意味着,当我们平常发送一个POST或者PUT请求,并且这个请求里面包含了JSON格式的数据时,“@RequestBody”这个小家伙就像个超级翻译员,它可以自动把我们提交的JSON数据给神奇地变成相应的Java对象。这样一来,我们的工作流程就轻松简单多了,省去了不少麻烦步骤。 例如,假设我们有一个名为User的Java类: java public class User { private String username; private String email; // getters and setters... } 2. 如何使用@RequestBody装配JSON数据 现在,让我们在Controller层创建一个处理POST请求的方法,利用@RequestBody接收并解析JSON数据: java import org.springframework.web.bind.annotation.PostMapping; import org.springframework.web.bind.annotation.RequestBody; import org.springframework.web.bind.annotation.RestController; @RestController public class UserController { @PostMapping("/users") public String createUser(@RequestBody User user) { System.out.println("Creating user with username: " + user.getUsername() + ", email: " + user.getEmail()); // 这里实际上会调用持久层逻辑进行用户创建,这里为了简单演示只打印信息 return "User created successfully!"; } } 在这个例子中,当客户端向"/users"端点发送一个带有JSON格式数据的POST请求时,如 {"username": "testUser", "email": "test@example.com"},SpringBoot会自动将JSON数据转换成User对象,并将其传递给createUser方法的参数user。 3. 深入理解@RequestBody的工作原理 那么,你可能会好奇,@RequestBody是如何做到如此神奇的事情呢?其实背后离不开Spring的HttpMessageConverter机制。HttpMessageConverter是一个接口,Spring为其提供了多种实现,如MappingJackson2HttpMessageConverter用于处理JSON格式的数据。当你在方法参数上用上@RequestBody这个小家伙的时候,Spring这家伙就会超级智能地根据请求里边的Content-Type,挑一个最合适的HttpMessageConverter来帮忙。它会把那些请求体里的内容,咔嚓一下,变成我们Java对象需要的那种类型,是不是很神奇? 这个过程就像是一个聪明的翻译官,它能识别不同的“语言”(即各种数据格式),并将其转换为我们熟悉的Java对象,这样我们就能够直接操作这些对象,而无需手动解析JSON字符串,极大地提高了开发效率和代码可读性。 4. 总结与探讨 在实际开发过程中,@RequestBody无疑是我们处理HTTP请求体中JSON数据的强大工具。然而,值得注意的是,对于复杂的JSON结构,确保你的Java模型类与其匹配至关重要。另外,你知道吗?SpringBoot在处理那些出错的或者格式不合规矩的JSON数据时,也相当有一套。比如,我们可以自己动手定制异常处理器,这样一来,当出现错误的时候,就能返回一些让人一看就明白的友好提示信息,是不是很贴心呢? 总而言之,在SpringBoot的世界里,借助@RequestBody,我们得以轻松应对JSON数据的装配问题,让API的设计与实现更为流畅、高效。这不仅体现了SpringBoot对开发者体验的重视,也展示了其设计理念——简化开发,提升生产力。希望这次深入浅出的讨论能帮助你在日常开发中更好地运用这一特性,让你的代码更加健壮和优雅。
2024-01-02 08:54:06
101
桃李春风一杯酒_
Netty
...ponse"问题深度解析与实战示例 1. 引言 在使用Netty进行WebSocket编程时,我们可能会遇到一个常见的异常情况——Invalid or incomplete WebSocket handshake response。这个让人头疼的错误提示,常常让开发者们伤透脑筋,特别是在捣鼓那些要求贼高、既要处理大量并发、又要保证高性能的实时通信系统时,更是让他们挠破了头。本文将通过深入剖析这一问题的本质,并辅以丰富的代码实例,帮助大家理解和解决此类问题。 2. 问题背景 WebSocket握手与Netty WebSocket是一种双向通信协议,允许服务端和客户端之间建立持久化的连接并进行全双工通信。在建立连接的过程中,首先需要完成一次“握手”操作,即客户端发送一个HTTP Upgrade请求,服务端响应确认升级为WebSocket协议。当这个握手过程出现问题时,Netty会抛出Invalid or incomplete WebSocket handshake response异常。 3. 握手失败原因分析 (1)格式不正确:WebSocket握手响应必须遵循特定的格式规范,包括但不限于状态码101(Switching Protocols)、Upgrade头部字段值为websocket、Connection头部字段值包含upgrade等。如果这些条件未满足,Netty在解析握手响应时就会报错。 java // 正确的WebSocket握手响应示例 HttpResponse response = new DefaultHttpResponse(HttpVersion.HTTP_1_1, HttpResponseStatus.SWITCHING_PROTOCOLS); response.headers().set(HttpHeaderNames.UPGRADE, "websocket"); response.headers().set(HttpHeaderNames.CONNECTION, "Upgrade"); (2)缺失关键信息:WebSocket握手过程中,客户端和服务端还会交换Sec-WebSocket-Key和Sec-WebSocket-Accept两个特殊头部字段。要是服务端在搞Sec-WebSocket-Accept这个值的时候算错了,或者压根儿没把这个值传回给客户端,那就等于说这次握手要黄了,也会造成连接失败的情况。 java // 计算Sec-WebSocket-Accept的Java代码片段 String key = request.headers().get(HttpHeaderNames.SEC_WEBSOCKET_KEY); String accept = Base64.getEncoder().encodeToString( sha1(key + "258EAFA5-E914-47DA-95CA-C5AB0DC85B11").getBytes(StandardCharsets.UTF_8) ); response.headers().set(HttpHeaderNames.SEC_WEBSOCKET_ACCEPT, accept); 4. 实战调试 排查与修复 当我们遇到Invalid or incomplete WebSocket handshake response异常时,可以通过以下步骤来定位问题: - 查看日志:详细阅读Netty打印的异常堆栈信息,通常可以从中发现具体的错误描述和发生错误的位置。 - 检查代码:对照WebSocket握手协议规范,逐一检查服务器端处理握手请求的代码逻辑,确保所有必需的头部字段都被正确设置和处理。 - 模拟客户端:利用如Wireshark或者Postman工具模拟发送握手请求,观察服务端的实际响应内容,对比规范看是否存在问题。 5. 结语 在Netty的世界里,Invalid or incomplete WebSocket handshake response并非无法逾越的鸿沟,它更像是我们在探索高性能网络编程旅程中的一个小小挑战。要知道,深入研究WebSocket那个握手协议的门道,再配上Netty这个神器的威力,我们就能轻轻松松地揪出并解决那些捣蛋的问题。这样一来,咱们就能稳稳当当地打造出既稳定又高效的WebSocket应用,让数据传输嗖嗖的,贼溜贼溜的!在实际开发中,让我们一起面对挑战,享受解决技术难题带来的乐趣吧!
2023-11-19 08:30:06
211
凌波微步
Beego
...一不留神就给HTTP响应头设置了多次,这些都有可能导致这个冲突的发生。本文将深入探讨此问题,辅以实例代码分析,并给出相应的解决方案。 2. HTTP头部的基本概念和重要性 (1)HTTP头部简介 HTTP头部是HTTP协议的重要组成部分,它承载了关于请求或响应的各种附加信息,如内容类型、编码方式、缓存策略、认证信息等。在服务器这边,咱们可以通过调整响应头部的设置,来灵活掌控客户端接收到数据后的具体处理方式,就像是给客户端发了个“操作指南”,让它们按照咱们的心意去精准处理返回的数据。 go // Beego 中设置HTTP响应头部示例 func (this UserController) Get() { this.Ctx.ResponseWriter.Header().Set("Content-Type", "application/json") // ... } (2)头部设置冲突的现象 在Beego框架中,如果在不同的地方对同一个头部字段进行多次设置,后设置的值会覆盖先前的值。在某些情况下,可能会出现这么个问题,就是你期望的行为和最后得到的结果对不上号,这就有点像咱们平时说的“脑袋里的想法打架了”,也可以称之为“头部设置冲突”。 3. Beego中的HTTP头部设置冲突实例解析 (3.1)中间件间的头部冲突 假设我们有两个中间件,分别尝试设置Cache-Control头部: go // 中间件1 func Middleware1(ctx context.Context) { ctx.Output.Header("Cache-Control", "no-cache") } // 中间件2 func Middleware2(ctx context.Context) { ctx.Output.Header("Cache-Control", "max-age=3600") // 这将覆盖Middleware1的设置 } // 在beego中注册中间件 beego.InsertFilter("", beego.BeforeRouter, Middleware1) beego.InsertFilter("", beego.BeforeRouter, Middleware2) (3.2)控制器内的头部冲突 同样地,在一个控制器的方法中,若多次设置同一头部字段,也会发生类似的情况: go func (c MainController) Get() { c.Ctx.ResponseWriter.Header().Set("Pragma", "no-cache") // ...一些业务逻辑... c.Ctx.ResponseWriter.Header().Set("Pragma", "public") // 这将覆盖之前的设置 } 4. 解决Beego中HTTP头部设置冲突的策略 (4.1)明确设置优先级 根据业务需求,确定各个地方设置HTTP头部的优先级,确保关键的头部设置不会被意外覆盖。例如,我们可以调整中间件执行顺序来控制头部设置的生效顺序。 (4.2)合并头部设置 对于部分可叠加的头部属性(如Cache-Control),可以通过遍历已存在的值并进行合并,而不是直接覆盖: go func mergeCacheControlHeader(ctx context.Context, newValue string) { existingValues := ctx.Output.Header["Cache-Control"] if len(existingValues) > 0 { newValue = strings.Join(append(existingValues, newValue), ", ") } ctx.Output.Header("Cache-Control", newValue) } // 使用示例 mergeCacheControlHeader(c.Ctx, "no-cache") mergeCacheControlHeader(c.Ctx, "max-age=3600") (4.3)统一管理头部设置 为了减少冲突,可以在全局或模块层面设计一套统一的头部设置机制,避免分散在各个中间件和控制器中随意设置。 总结来说,Beego框架中的HTTP头部设置冲突是一个需要开发者关注的实际问题。理解其产生原因并采取恰当的策略规避或解决此类冲突,有助于我们构建更稳定、高效的Web服务。在这一整个挖掘问题和解决问题的过程中,我们不能光靠死板的技术知识“啃硬骨头”,更要灵活运用咱们的“人情味儿”设计思维,这样一来,才能更好地把那个威力强大的Beego开发工具玩转起来,让它乖乖听话,帮我们干活儿。
2023-04-16 17:17:44
437
岁月静好
Bootstrap
...者能够更精确地监听并响应用户操作。此外,Bootstrap 5.3更加注重性能与兼容性,针对动态生成元素的事件委托机制进行了改进,确保即使在大量数据渲染或频繁DOM操作的情况下,也能保证事件的有效绑定与触发。 同时,jQuery虽然一直是Bootstrap的重要依赖项,但在现代Web开发中,原生JavaScript以及第三方库(如Vue.js、React.js)的使用越来越广泛。因此,Bootstrap团队也在积极拥抱这些变化,鼓励开发者利用框架提供的实用工具函数结合原生事件API来处理组件事件,从而提升应用性能并降低依赖风险。 对于想要进一步深入研究Bootstrap组件事件绑定实践的开发者来说,建议关注官方文档的更新说明,并结合实际项目进行尝试,同时可参考业界专家和技术博主撰写的实战教程与深度解析文章,以紧跟技术发展趋势,实现高效且优雅的前端交互体验。
2023-01-21 12:58:12
545
月影清风
Java
...因有两个:一是服务器响应时间过长;二是网络连接问题。这两个问题都需要我们一一排查。 首先,我们需要检查一下服务器的响应时间。这可以通过浏览器的开发者工具来查看。如果发现服务器的反应速度有点慢,就像个老人家在处理复杂问题似的磨磨蹭蹭,那我们就得琢磨琢磨了,是不是该给服务器“动个小手术”,提升一下它的性能呢?或者,也可能是请求参数设置得不太对劲儿,需要我们适当调整一下,让它变得更加灵活高效。 其次,我们需要检查一下网络连接。这可以通过ping命令或者traceroute命令来查看。如果发现网络连接有问题,那么我们就需要尝试修复网络连接。 四、实战演练 好了,理论讲完了,下面我们来通过一个具体的例子来看看如何解决这个问题。想象一下,如果我们从后台得到的数据打包成了一个JSON格式的小礼物,我们现在想要把这个小礼物传递给前端,让他们展示出来。下面是我使用的代码: java const router = new VueRouter({ mode: 'history', routes: [ { path: '/', name: 'home', component: Home, meta: { requireAuth: true } }, { path: '/users', name: 'users', component: Users, meta: { requireAuth: true } }, { path: '/login', name: 'login', component: Login } ] }) 在这段代码中,我们可以看到我们在创建路由实例时,传入了一个名为router的变量。这个变量实际上是我们之前定义的一个Vue Router实例。 五、总结 总的来说,处理这个问题的关键是要找到问题的根源,并针对性地进行解决。如果你也碰到了类似的问题,不如就试试我刚刚说的那些办法吧,我打包票,你肯定能顺利解决掉这个问题哒! 六、结语 通过这篇文章,我想让大家明白一个问题:编程不仅仅是编写代码,更重要的是解决问题。每一次解决问题都是一次学习的机会,都能让我们变得更加优秀。所以,甭管你在捣鼓编程的时候遇到啥头疼的问题,都千万别轻易举白旗投降啊!一定要咬紧牙关坚持到底,信我,到时候你绝对会发现,你付出的每一份努力,都会像种下的种子一样,结出满满的果实来回报你。
2023-03-05 23:22:24
343
星辰大海_t
Go Gin
...JWT身份验证 , JSON Web Token(JWT)是一种轻量级的身份验证协议,用于在各方之间安全地传输信息。在Go Gin应用中,JWT常用于在API请求中验证用户身份,通过中间件处理,确保只有授权的用户才能访问特定资源。 高并发请求 , 指在短时间内有大量的客户端同时向服务器发送请求的情况。Go Gin因其高性能和并发处理能力,使得它在处理高并发场景下表现出色,能够有效地响应大量请求,保证服务的稳定和响应速度。 API速率限制器 , 一种机制,用来控制特定时间段内对API的调用频率,防止滥用或恶意攻击。在Go Gin中,通过中间件实现API速率限制,有助于保护API资源,维持服务的正常运行。 自动路由发现 , 在微服务架构中,通过注册与发现服务的方式,使得客户端能够自动找到并连接到正确的服务实例。Go Gin结合服务发现工具(如Consul、Eureka等),实现了服务间的路由自动管理。 Gin Swagger , 一种用于生成Go Gin API文档的工具,通过注解和配置,自动生成清晰、格式化的API文档,有助于开发者理解和使用API,提高开发效率。 Kubernetes , 一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用。与Go Gin结合,Kubernetes能够帮助管理微服务的生命周期和负载均衡,确保服务的高可用性。
2024-04-12 11:12:32
501
梦幻星空
NodeJS
... Resolver(解析器) , 在GraphQL中,Resolver是实现数据获取逻辑的核心部分。它是一个函数,负责根据客户端发送的查询语句中的字段,从数据源(如数据库、缓存或第三方API等)中获取实际的数据。在文章中,作者展示了如何定义并实现Resolver函数以响应用户对用户信息及其相关帖子数据的查询请求。 DataLoader , DataLoader是一个通用库,常用于优化GraphQL服务端的数据加载效率。尽管在原文中并未直接提及DataLoader,但在实践中,它经常与Node.js和GraphQL结合使用,特别是在处理批量数据加载场景时。DataLoader通过批量执行相同类型的操作并在内部缓存结果,避免了N+1查询问题,极大地提升了数据获取速度和服务器性能。 express-graphql , 这是一个Node.js中间件,用于将GraphQL服务集成到基于Express框架构建的应用程序中。在文章示例代码中,express-graphql库被用来创建一个简单的GraphQL HTTP服务器,使得客户端可以通过HTTP协议向服务器发起GraphQL查询请求,并接收结构化的JSON响应结果。 JWT(JSON Web Tokens) , 虽然在文章中JWT仅作为权限控制的一种潜在解决方案被简要提到,但它在现代Web应用的安全认证方面扮演着重要角色。JWT是一种开放标准(RFC 7519),用于安全地在各方之间传输声明。在GraphQL API中结合JWT,可以在resolver执行前验证请求的权限,确保只有经过身份验证和授权的用户才能访问特定数据。
2024-02-08 11:34:34
65
落叶归根
Logstash
...当我们面对复杂的日志格式,尤其是那些跨越多行的日志时,为了在Elasticsearch或其他分析工具中进行有效和准确的搜索、分析与可视化,将这些多行日志合并成单个事件就显得尤为重要。在ELK这个大名鼎鼎的套装(Elasticsearch、Logstash、Kibana)里头,Logstash可是个不可或缺的重要角色。它就像个超级能干的日志小管家,专门负责把那些乱七八糟的日志信息统统收集起来,然后精心过滤、精准传输。而在这个过程中,有个相当关键的小法宝就是内置的multiline codec或者filter插件,这玩意儿就是用来解决日志多行合并问题的一把好手。 1. 多行日志问题背景 在某些情况下,比如Java异常堆栈跟踪、长格式的JSON日志等,日志信息可能被分割到连续的几行中。要是不把这些日志合并在一起瞅,那就等于把每行日志都当做一个独立的小事去处理,这样一来,信息就很可能出现断片儿的情况,就像一本残缺不全的书,没法让我们全面了解整个故事。这必然会给后续的数据分析、故障排查等工作带来麻烦,让它们变得棘手不少。 2. 使用multiline Codec实现日志合并 示例1:使用input阶段的multiline codec 从Logstash的较新版本开始,推荐的做法是在input阶段配置multiline codec来直接合并多行日志: ruby input { file { path => "/path/to/your/logs/.log" start_position => "beginning" 或者是 "end" 以追加模式读取 codec => multiline { pattern => "^%{TIMESTAMP_ISO8601}" 自定义匹配下一行开始的正则表达式 what => "previous" 表示当前行与上一行合并 negate => true 匹配失败才合并,对于堆栈跟踪等通常第一行不匹配模式的情况有用 } } } 在这个例子中,codec会根据指定的pattern识别出新的一行日志的开始,并将之前的所有行合并为一个事件。当遇到新的时间戳时,Logstash认为一个新的事件开始了,然后重新开始合并过程。 3. 使用multiline Filter的旧版方案 在Logstash的早期版本中,multiline功能是通过filter插件实现的: ruby input { file { path => "/path/to/your/logs/.log" start_position => "beginning" } } filter { multiline { pattern => "^%{TIMESTAMP_ISO8601}" what => "previous" negate => true } } 尽管在最新版本中这一做法已不再推荐,但在某些场景下,你仍可能需要参考这种旧有的配置方法。 4. 解析多行日志实战思考 在实际应用中,理解并调整multiline配置参数至关重要。比如,这个pattern呐,它就像是个超级侦探,得按照你日志的“穿衣风格”准确无误地找到每一段多行日志的开头标志。再来说说这个what字段,它就相当于我们的小助手,告诉我们哪几行该凑到一块儿去,可能是上一个兄弟,也可能是下一个邻居。最后,还有个灵活的小开关negate,你可以用它来反转匹配规则,这样就能轻松应对各种千奇百怪的日志格式啦! 当你调试多行日志合并规则时,可能会经历一些曲折,因为不同的应用程序可能有着迥异的日志格式。这就需要我们化身成侦探,用敏锐的眼光去洞察,用智慧的大脑去推理,手握正则表达式的“试验田”,不断试错、不断调整优化。直到有一天,我们手中的正则表达式如同一把无比精准的钥匙,咔嚓一声,就打开了与日志结构完美匹配的那扇大门。 总结起来,在Logstash中处理多行日志合并是一个涉及对日志结构深入理解的过程,也是利用Logstash强大灵活性的一个体现。你知道吗,如果我们灵巧地使用multiline这个codec或者filter小工具,就能把那些本来七零八落的上下文信息,像拼图一样拼接起来,对齐得整整齐齐的。这样一来,后面我们再做数据分析时,不仅效率蹭蹭往上涨,而且结果也会准得没话说,简直不要太给力!
2023-08-19 08:55:43
249
春暖花开
HessianRPC
...对象序列化为XML或JSON格式,通过HTTP进行传输。其特点是序列化和反序列化速度快,适合对性能要求较高的场景。 1.2 HessianRPC的工作原理 HessianRPC的核心是HessianSerializer,它负责对象的序列化和反序列化。你在手机APP上点击那个神奇的“调用”按钮,它就像个小能手一样,瞬间通过网络把你的请求打包成一个小包裹,然后嗖的一下发送给服务器。服务器收到后,就像拆快递一样迅速处理那些方法,搞定一切后又会给客户端回复反馈,整个过程悄无声息又高效极了。 三、连接池的重要性 2.1 连接池的定义 连接池是一种复用资源的技术,用于管理和维护一个预先创建好的连接集合,当有新的请求时,从连接池中获取,使用完毕后归还,避免频繁创建和销毁连接带来的性能损耗。 2.2 连接池在HessianRPC中的作用 对于HessianRPC,连接池可以显著减少网络开销,特别是在高并发场景下,避免了频繁的TCP三次握手,提高了响应速度。不过嘛,我们要琢磨的是怎么恰当地摆弄那个连接池,别整得太过了反而浪费资源,这是接下来的头等大事。 四、连接池优化策略 3.1 连接池大小设置 - 理论上,连接池大小应根据系统的最大并发请求量来设定。要是设置得不够给力,咱们的新链接就可能像赶集似的不断涌现,让服务器压力山大;可要是设置得太过豪放,又会像个大胃王一样猛吞内存,资源紧张啊。 - 示例代码: java HessianProxyFactory factory = new HessianProxyFactory(); factory.setConnectionPoolSize(100); // 设置连接池大小为100 MyService service = (MyService) factory.create("http://example.com/api"); 3.2 连接超时和重试策略 - 针对网络不稳定的情况,我们需要设置合理的连接超时时间,并在超时后尝试重试。 - 示例代码: java factory.setConnectTimeout(5000); // 设置连接超时时间为5秒 factory.setRetryCount(3); // 设置最多重试次数为3次 3.3 连接池维护 - 定期检查连接池的状态,清理无用连接,防止连接老化导致性能下降。 - 示例代码(使用Apache HttpClient的PoolingHttpClientConnectionManager): java CloseableHttpClient httpClient = HttpClients.custom() .setConnectionManager(new PoolingHttpClientConnectionManager()) .build(); 五、连接池优化实践与反思 4.1 实践案例 在实际项目中,我们可以通过监控系统的连接数、请求成功率等指标,结合业务场景调整连接池参数。例如,根据负载均衡器的流量数据动态调整连接池大小。 4.2 思考与挑战 尽管连接池优化有助于提高性能,但过度优化也可能带来复杂性。你知道吗,我们总是在找寻那个奇妙的平衡点,就是在提升功能强大度的同时,还能让代码像诗一样简洁,易读又易修,这事儿挺有意思的,对吧? 六、结论 HessianRPC的连接池优化是一个持续的过程,需要根据具体环境和需求进行动态调整。要想真正摸透它的运作机制,还得把你实践经验的那套和实时监控的数据结合起来,这样咱才能找出那个最对路的项目优化妙招,懂吧?记住,优化不是目的,提升用户体验才是关键。希望这篇文章能帮助你更好地理解和应用HessianRPC连接池优化技术。
2024-03-31 10:36:28
503
寂静森林
转载文章
...场景管理类,能偶根据Json文件生成场景物体,保存了实体预制体,还拥有一个静态List和静态方法用于运行时向场景中添加新实体 InteractionMI 用于处理单个实体无法处理或不属于单个实体的逻辑,包括: 幽灵追踪主角时获取角色位置 帮助实体初始化定时器组件 减速陷阱是否可以回复主角速度 主角与灯、宝箱、武器的交互 DamageMI 包含静态方法Damage()专门用于处理伤害逻辑,方便后续服务器验证等逻辑 逻辑实现 主角 Protagonist类用于处理主角相关逻辑 受击逻辑 当主角不处于无敌状态,播放受击动画,扣除血量并进入无敌状态,定时器定时一秒后关闭无敌状态 交互逻辑 用户输入交互信号后,交由InteractionMI判断交互是否成功,返回交互信息,主角播放对应动画 武器逻辑 当主角获得武器后,主角身上保存武器的引用,与武器交互直接调用武器的对应方法(Drop(),Fire()) 结算逻辑 当主角HP小于等于0时,调用Scene的静态方法,请求场景结算 怪物 石像鬼 血量无限,没有受击逻辑,当检测组件检测到主角时,调用继承的Attack方法,攻击主角 幽灵 三种状态:die、patrol,chase 死亡状态下三秒后会在第一个导航点复活 巡逻状态下检测到主角会调用继承的Attack方法攻击主角 追逐状态下会每帧获得主角位置追逐主角 其他场景物品 灯光 初始化时添加计时器用于控制自动开关,用户交互后重置计时器 开启时使用一个锥形的检测器检测幽灵是否在范围内,如果在调用Damage对幽灵造成伤害 存在一个Box Collider,当玩家进入时,调用InteractionMI的方法,将InteractionMI保存的静态SwitchableLight引用置为自己,当玩家交互时这个引用不为null,则调用这个引用的SwitchableLight的ChangeLight方法完成开关灯的交互 减速陷阱 当玩家进入时,调用InteractionMI的方法,使其内置的静态_slowDownCount计数加一,并调用玩家的SetSpeedRatio方法使玩家减速 当玩家离开,设置计时器5秒后调用InteractionMI的方法,使其内置的静态_slowDownCount计数减一,当计数为零时才可以调用玩家的SetSpeedRatio方法使玩家回复正常速度 地刺陷阱 初始化时设置计时器,每三秒改变一次状态,当玩家进入,设置计时器每一秒对玩家造成一次伤害,当玩家离开,取消计时器 宝箱 内置public GameObject GWeapon;用于保存要生成的枪的预制体 当玩家第一次与宝箱交互,播放开宝箱动画,设置计时器1.2秒后根据预制体克隆一个武器,并将武器通过Scene的静态方法加入到Scene维护的SceneObject列表中,自身保存新生成的武器的引用 当武器生成后玩家再与宝箱交互则通过InteractionMI的方法将武器父节点设为玩家,玩家获得武器的引用,自身武器引用置为null 武器 内置private Transform _parent = null;用于保存父物体 Drop方法被调用时,若父物体不为空,设置自身刚体属性,设置速度使武器有抛出效果,设置计时器1秒后恢复到没有物理效果的状态,父物体置为空 Fire方法被调用,若能够开火,则生成并初始化一个子弹,生成时将保存的父物体的Transform给子弹,保证子弹能够向角色前方发射,开火后设置开火状态为不能开火,设置计时器0.5秒后恢复开火状态 当父物体信息为空,与其他交互逻辑类似,通过InteractionMI完成武器捡起的交互逻辑 子弹 初始化时设置初速度,启动定时器1秒后若没有销毁则自动销毁,若碰撞到幽灵,对幽灵造成伤害,其他碰撞销毁自己 本篇文章为转载内容。原文链接:https://blog.csdn.net/Zireael2019/article/details/126690910。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-03-11 12:57:03
768
转载
MemCache
...原理与chunk概念解析 在MemCache内部,它将存储的数据项分割成固定大小的chunks进行存储(默认为1MB)。当一个值(value)过大以至于无法一次性放入一个chunk时,就会抛出“Value too large to be stored in a single chunk”的异常。这就像是你硬要把一只大大的熊宝宝塞进一个超级迷你的小口袋里,任凭你怎么使劲、怎么折腾,这个艰巨的任务都几乎不可能完成。 python import memcache mc = memcache.Client(['127.0.0.1:11211'], debug=1) 假设这里有一个超大的数据对象,比如一个非常长的字符串或复杂的数据结构 huge_value = 'A' (1024 1024 2) 大于默认chunk大小的字符串 try: mc.set('huge_key', huge_value) except ValueError as e: print(f"Oops! We got an error: {e}") 输出:"Value too large to be stored in a single chunk" 3. 解决“Value too large to be stored in a single chunk”问题的方法 面对这种情况,我们可以从两个角度来应对: 3.1 优化数据结构或压缩数据 首先,考虑是否可以对存储的数据进行优化。比如,假如你现在要缓存的是文本信息,你可以尝试简化一下内容,或者换个更省空间的数据格式,就拿JSON来说吧,比起XML它能让你的数据体积变得更小巧。另外,也可以使用压缩算法来减少数据大小,如Gzip。 python import zlib from io import BytesIO compressed_value = zlib.compress(huge_value.encode()) mc.set('compressed_key', compressed_value) 3.2 调整MemCache的chunk大小 其次,如果优化数据结构或压缩后仍无法满足需求,且确实需要缓存大型数据,那么可以尝试调整Memcached服务器的chunk大小。通常情况下,为了让MemCache启动时能分配更大的单个内存块,你需要动手调整一下启动参数,也就是那个 -I 参数(或者,你也可以选择在配置文件里设置 chunk_size 这个选项),把它调大一些。这样就好比给 MemCache 扩大了每个“小仓库”的容量,让它能装下更多的数据。但是,亲,千万要留意,增大chunk大小可是会吃掉更多的内存资源呢。所以在动手做这个调整之前,一定要先摸清楚你的内存使用现状和业务需求,不然的话,可能会有点小麻烦。 bash memcached -m 64 -I 4m 上述命令启动了一个内存大小为64MB且每个chunk大小为4MB的MemCached服务。 4. 总结与思考 在MemCache的世界里,“Value too large to be stored in a single chunk”并非不可逾越的鸿沟,而是一个促使我们反思数据处理策略和资源利用效率的机会。无论是捣鼓数据结构,把数据压缩得更小,还是摆弄MemCache的配置设置,这些都是我们在追求那个超给力缓存解决方案的过程中,实实在在踩过、试过的有效招数。同时呢,这也给我们提了个醒,在捣鼓和构建系统的时候,可别忘了时刻关注并妥善处理好性能、内存使用和业务需求这三者之间那种既微妙又关键的平衡关系。就像亲手做一道美味的大餐,首先得像个挑剔的美食家那样,用心选好各种新鲜上乘的食材(也就是我们需要的数据);然后呢,你得像玩俄罗斯方块一样,巧妙地把它们在有限的空间(也就是内存)里合理摆放好;最后,掌握好火候可是大厨的必杀技,这就好比我们得精准配置各项参数。只有这样,才能烹制出一盘让人垂涎欲滴的佳肴——那就是我们的高效缓存系统啦!
2023-06-12 16:06:00
50
清风徐来
SpringBoot
...ned”。一到要变成JSON格式,它就自动变身为“null”,然后后端大哥看见了,贴心地给它换个零蛋。 3. 数据验证 SpringBoot的@RequestBody注解默认会对JSON数据进行有效性校验,如果数据不符合约定的格式,它可能被视作无效,从而转化为默认值。检查Model层是否定义了默认值规则。 java // Model层 public class User { private String email; // ...其他字段 @NotBlank(message = "Email cannot be blank") public String getEmail() { return email; } public void setEmail(String email) { this.email = email; } } 四、解决策略 1. 前端校验 确保在发送数据之前对前端数据进行清理和验证,避免空值或非预期值被发送。 2. 明确数据类型 在Vue.js中,可以使用v-model.number或者v-bind:value配合计算属性,确保数据在发送前已转换为正确的类型。 3. 后端配置 SpringBoot可以配置Jackson或Gson等JSON库,设置@JsonInclude(JsonInclude.Include.NON_NULL)来忽略所有空值。 4. 异常处理 添加适当的异常处理,捕获可能的转换异常并提供有用的错误消息。 五、结论 解决这个问题的关键在于理解数据流的每个环节,从前端到后端,每一个可能的类型转换和验证步骤都需要仔细审查。你知道吗,有时候生活就像个惊喜包,比如说JavaScript那些隐藏的小秘密,但别急,咱们一步步找,那问题的源头准能被咱们揪出来!希望这篇文章能帮助你在遇到类似困境时,更好地定位和解决“0”问题,提升开发效率和用户体验。 --- 当然,实际的代码示例可能需要根据你的项目结构和配置进行调整,以上只是一个通用的指导框架。记住,遇到问题时,耐心地查阅文档,结合调试工具,往往能更快地找到答案。祝你在前端与后端的交互之旅中一帆风顺!
2024-04-13 10:41:58
82
柳暗花明又一村_
Logstash
...工具,用于实时收集、解析、过滤并发送事件至各种目的地,如Elasticsearch、Kafka等。其灵活性和强大功能使其成为构建复杂数据流系统的核心组件。 二、错误类型与影响 1. 配置语法错误 不正确的JSON语法会导致Logstash无法解析配置文件,从而无法启动或运行。 2. 过滤规则错误 错误的过滤逻辑可能导致重要信息丢失或误报,影响数据分析的准确性。 3. 目标配置问题 错误的目标配置(如日志存储位置或传输协议)可能导致数据无法正确传递或存储。 4. 性能瓶颈 配置不当可能导致资源消耗过大,影响系统性能或稳定性。 三、案例分析 数据审计失败的场景 假设我们正在审计一家电商公司的用户购买行为数据,目的是识别异常交易模式。配置了如下Logstash管道: json input { beats { port => 5044 } } filter { grok { match => { "message" => "%{TIMESTAMP_ISO8601:time} %{SPACE} %{NUMBER:amount} %{SPACE} %{IPORHOST:host}" } } mutate { rename => { "amount" => "transactionAmount" } add_field => { "category" => "purchase" } } } output { elasticsearch { hosts => ["localhost:9200"] index => "purchase_data-%{+YYYY.MM.dd}" } } 在这段配置中,如果elasticsearch输出配置错误,例如将hosts配置为无效的URL或端口,那么数据将无法被正确地存储到Elasticsearch中,导致审计数据缺失。 四、避免错误的策略 1. 详细阅读文档 了解每个插件的使用方法和限制,避免常见的配置陷阱。 2. 单元测试 在部署前,对Logstash配置进行单元测试,确保所有组件都能按预期工作。 3. 代码审查 让团队成员进行代码审查,可以发现潜在的错误和优化点。 4. 使用模板和最佳实践 借鉴社区中成熟的配置模板和最佳实践,减少自定义配置时的试错成本。 5. 持续监控 部署后,持续监控Logstash的日志和系统性能,及时发现并修复可能出现的问题。 五、总结与展望 通过深入理解Logstash的工作原理和常见错误,我们可以更加有效地利用这一工具,确保数据审计流程的顺利进行。嘿,兄弟!听好了,你得记着,犯错不是啥坏事,那可是咱成长的阶梯。每次摔一跤,都是咱向成功迈进一步的机会。咱们就踏踏实实多练练手,不断调整,优化策略。这样,咱就能打造出让人心头一亮的实时数据处理系统,既高效又稳当,让别人羡慕去吧!哎呀,随着科技这艘大船的航行,未来的Logstash就像个超级多功能的瑞士军刀,越来越厉害了!它能干的事儿越来越多,改进也是一波接一波的,简直就是我们的得力助手,帮咱们轻松搞定大数据这滩浑水,让数据处理变得更简单,更高效!想象一下,未来,它能像魔术师一样,把复杂的数据问题变个无影无踪,咱们只需要坐享其成,享受数据分析的乐趣就好了!是不是超期待的?让我们一起期待Logstash在未来发挥更大的作用,推动数据驱动决策的进程。
2024-09-15 16:15:13
151
笑傲江湖
Apache Lucene
...方案。它支持多种数据格式,包括文本、XML和JSON,广泛应用于各种应用程序中,以实现快速、精确的搜索功能。在本文中,Lucene是实现模糊搜索的关键组件,其FuzzyQuery允许在用户输入不精确时找到相关文档。 FuzzyQuery , Lucene中的一个高级查询工具,用于处理模糊匹配。它通过计算查询词与索引中的单词之间的Levenshtein距离,即编辑距离,来找到相似度达到预设阈值的文档。FuzzyQuery允许一定程度的错误容忍度,使得搜索结果更加灵活,适合纠正拼写错误或者处理用户输入的不确定性。 Levenshtein距离 , 也称为编辑距离,是一种衡量两个字符串间差异的方法,通过计算从一个字符串转换为另一个字符串所需的最少单字符插入、删除或替换操作次数。在FuzzyQuery中,编辑距离用来确定搜索词与索引中的词汇之间的相似度,从而在模糊搜索中找到匹配项。 编辑距离阈值 , 在使用FuzzyQuery时,用户可以设置的一个参数,用于控制模糊匹配的程度。这个值决定了搜索时允许的最大编辑距离,较高的阈值意味着更容易找到与查询词相似的文档,但可能会引入更多的非精确结果。 BM25 , 一种经典的文本检索模型,它根据文档中关键词的出现频率和文档的整体长度等因素计算文档的相关度。在现代搜索引擎中,与BERT结合使用,可以提供更准确的模糊查询结果,尤其是在处理长尾查询时。 BERT , 双向编码器表示变换器,是一种预训练的深度学习模型,特别擅长理解和生成自然语言文本。在搜索引擎中,BERT可以理解查询的语义,从而提高模糊查询的准确性,超越了基于编辑距离的传统方法。 Transformer-based检索模型 , 这类模型基于Transformer架构,如ANCE和ANCE-R,能够捕捉文档间的全局关系,提供更高质量的搜索结果,尤其在处理复杂的模糊查询时,性能优越。 个性化推荐 , 根据用户的个人历史行为、偏好和上下文信息,为用户提供定制化搜索结果的过程。现代搜索引擎通过结合模糊查询和用户行为分析,提供更符合用户需求的搜索体验。
2024-06-11 10:54:39
497
时光倒流
转载文章
...Q的改进之处,如支持JSON格式的消息负载、更灵活的多租户管理和跨数据库的分布式队列功能等。这些新特性使得AQ能够更好地适应当前流行的微服务架构,实现不同服务间高效可靠的数据传输与同步。 此外,在开源社区层面,Apache ActiveMQ Artemis作为一款广泛采用的消息中间件,也在持续演进以满足不断变化的企业需求。其与Oracle AQ的兼容性有所提升,用户现在可以在多种场景下根据实际业务需求选择适合的消息队列解决方案。 同时,对于Java开发者而言,《Java Message Service (JMS)实战》一书提供了大量关于利用JMS进行消息传递的实战案例和最佳实践,有助于读者在实际项目中更加熟练地运用JMS与Oracle AQ结合,构建高性能、高可用的消息驱动系统。 综上所述,无论是紧跟Oracle AQ的最新发展动态,还是探究开源替代方案与相关技术书籍的学习,都将帮助开发者更好地掌握消息队列技术,并将其应用于实际工作中,以提升系统的整体性能与稳定性。
2023-12-17 14:22:22
138
转载
Netty
...据流处理平台中,数据格式多种多样,可能包括JSON、Protobuf、Avro等。Netty提供了一套强大的消息编解码框架,允许开发者根据需求自由定制解码逻辑。 例如,如果你的数据是以Protobuf格式传输的,可以这样做: java public class ProtobufDecoder extends MessageToMessageDecoder { @Override protected void decode(ChannelHandlerContext ctx, ByteBuf in, List out) throws Exception { byte[] data = new byte[in.readableBytes()]; in.readBytes(data); MyProtoMessage message = MyProtoMessage.parseFrom(data); out.add(message); } } 通过这种方式,我们可以轻松解析复杂的数据结构,同时保持代码的整洁性和可维护性。 3.4 容错与重试机制 最后但同样重要的是,Netty内置了强大的容错与重试机制。在网上聊天或者传输文件的时候,有时候会出现消息没发出去、对方迟迟收不到的情况,就像快递丢了或者送慢了。Netty这个小助手可机灵了,它会赶紧发现这些问题,然后试着帮咱们把没送到的消息重新发一遍,就像是给快递员多派一个人手,保证咱们的信息能安全顺利地到达目的地。 java RetryHandler retryHandler = new RetryHandler(maxRetries); ctx.pipeline().addFirst(retryHandler); 上面这段代码展示了如何添加一个重试处理器到Netty的管道中,让它在遇到错误时自动重试。 4. 总结与展望 经过这一番探讨,相信大家已经对Netty及其在大数据流处理平台中的应用有了更深入的理解。Netty可不只是个工具库啊,它更像是个靠谱的小伙伴,陪着咱们一起在高性能网络编程的大海里劈波斩浪、寻宝探险! 当然,Netty也有它的局限性。比如说啊,遇到那种超级复杂的业务场景,你可能就得绞尽脑汁写一堆专门定制的代码,不然根本搞不定。还有呢,这门技术的学习难度有点大,刚上手的小白很容易觉得晕头转向,不知道该怎么下手。但我相信,只要坚持实践,总有一天你会爱上它。 未来,随着5G、物联网等新技术的发展,大数据流处理的需求将会更加旺盛。而Netty凭借其卓越的性能和灵活性,必将在这一领域继续发光发热。所以,不妨大胆拥抱Netty吧,它会让你的开发之旅变得更加精彩! 好了,今天的分享就到这里啦!如果你有任何疑问或者想法,欢迎随时交流。记住,编程之路没有终点,只有不断前进的脚步。加油,朋友们!
2025-04-26 15:51:26
46
青山绿水
转载文章
...的值。这经常出现在像解析 JSON 或者做其他“动态”事情的应用中。在这种情况下,你可以使用映射实例自身作为委托来实现委托属性。 例如: class User(map: Map 在上例中,委托属性会从构造函数传入的map中取值(通过字符串键——属性的名称),如果遇到声明的属性名在map 中找不到对应的key 名,或者key 对应的value 值的类型与声明的属性的类型不一致,会抛出异常。 内联函数 当一个函数被声明为inline时,它的函数体是内联的,也就是说,函数体会被直接替换到函数被调用地方 inline函数(内联函数)从概念上讲是编译器使用函数实现的真实代码来替换每一次的函数调用,带来的最直接的好处就是节省了函数调用的开销,而缺点就是增加了所生成字节码的尺寸。基于此,在代码量不是很大的情况下,我们是否有必要将所有的函数定义为内联?让我们分两种情况进行说明: 将普通函数定义为内联:众所周知,JVM内部已经实现了内联优化,它会在任何可以通过内联来提升性能的地方将函数调用内联化,并且相对于手动将普通函数定义为内联,通过JVM内联优化所生成的字节码,每个函数的实现只会出现一次,这样在保证减少运行时开销的同时,也没有增加字节码的尺寸;所以我们可以得出结论,对于普通函数,我们没有必要将其声明为内联函数,而是交给JVM自行优化。 将带有lambda参数的函数定义为内联:是的,这种情况下确实可以提高性能;但在使用的过程中,我们会发现它是有诸多限制的,让我们从下面的例子开始展开说明: inline 假如我们这样调用doSomething: fun main(args: Array<String>) { 上面的调用会被编译成: fun main(args: Array<String>) { 从上面编译的结果可以看出,无论doSomething函数还是action参数都被内联了,很棒,那让我们换一种调用方式: fun main(args: Array<String>) { 上面的调用会被编译成: fun main(args: Array<String>) { doSomething函数被内联,而action参数没有被内联,这是因为以函数型变量的形式传递给doSomething的lambda在函数的调用点是不可用的,只有等到doSomething被内联后,该lambda才可以正常使用。 通过上面的例子,我们对lambda表达式何时被内联做一下简单的总结: 当lambda表达式以参数的形式直接传递给内联函数,那么lambda表达式的代码会被直接替换到最终生成的代码中。 当lambda表达式在某个地方被保存起来,然后以变量形式传递给内联函数,那么此时的lambda表达式的代码将不会被内联。 上面对lambda的内联时机进行了讨论,消化片刻后让我们再看最后一个例子: inline 上面的例子是否有问题?是的,编译器会抛出“Illegal usage of inline-parameter”的错误,这是因为Kotlin规定内联函数中的lambda参数只能被直接调用或者传递给另外一个内联函数,除此之外不能作为他用;那我们如果确实想要将某一个lambda传递给一个非内联函数怎么办?我们只需将上述代码这样改造即可: inline 很简单,在不需要内联的lambda参数前加上noinline修饰符就可以了。 以上便是我对内联函数的全部理解,通过掌握该特性的运行机制,相信大家可以做到在正确的时机使用该特性,而非滥用或因恐惧弃而不用。 Kotlin下单例模式 饿汉式实现 //Java实现 懒汉式 //Java实现 上述代码中,我们可以发现在Kotlin实现中,我们让其主构造函数私有化并自定义了其属性访问器,其余内容大同小异。 如果有小伙伴不清楚Kotlin构造函数的使用方式。请点击 - - - 构造函数 不清楚Kotlin的属性与访问器,请点击 - - -属性和字段 线程安全的懒汉式 //Java实现 大家都知道在使用懒汉式会出现线程安全的问题,需要使用使用同步锁,在Kotlin中,如果你需要将方法声明为同步,需要添加@Synchronized注解。 双重校验锁式 //Java实现 哇!小伙伴们惊喜不,感不感动啊。我们居然几行代码就实现了多行的Java代码。其中我们运用到了Kotlin的延迟属性 Lazy。 Lazy内部实现 public 观察上述代码,因为我们传入的mode = LazyThreadSafetyMode.SYNCHRONIZED, 那么会直接走 SynchronizedLazyImpl,我们继续观察SynchronizedLazyImpl。 Lazy接口 SynchronizedLazyImpl实现了Lazy接口,Lazy具体接口如下: public 继续查看SynchronizedLazyImpl,具体实现如下: SynchronizedLazyImpl内部实现 private 通过上述代码,我们发现 SynchronizedLazyImpl 覆盖了Lazy接口的value属性,并且重新了其属性访问器。其具体逻辑与Java的双重检验是类似的。 到里这里其实大家还是肯定有疑问,我这里只是实例化了SynchronizedLazyImpl对象,并没有进行值的获取,它是怎么拿到高阶函数的返回值呢?。这里又涉及到了委托属性。 委托属性语法是:val/var : by 。在 by 后面的表达式是该 委托, 因为属性对应的 get()(和 set())会被委托给它的 getValue() 和 setValue() 方法。属性的委托不必实现任何的接口,但是需要提供一个 getValue() 函数(和 setValue()——对于 var 属性)。 而Lazy.kt文件中,声明了Lazy接口的getValue扩展函数。故在最终赋值的时候会调用该方法。 internal.InlineOnly 静态内部类式 //Java实现 静态内部类的实现方式,也没有什么好说的。Kotlin与Java实现基本雷同。 补充 在该篇文章结束后,有很多小伙伴咨询,如何在Kotlin版的Double Check,给单例添加一个属性,这里我给大家提供了一个实现的方式。(不好意思,最近才抽出时间来解决这个问题) class SingletonDemo private constructor( 其中关于?:操作符,如果 ?: 左侧表达式非空,就返回其左侧表达式,否则返回右侧表达式。请注意,当且仅当左侧为空时,才会对右侧表达式求值。 Kotlin 智能类型转换 对于子父类之间的类型转换 先看这样一段 Java 代码 public 尽管在 main 函数中,对 person 这个对象进行了类型判断,但是在使用的时候还是需要强制转换成 Student 类型,这样是不是很不智能? 同样的情况在 Kotlin 中就变得简单多了 fun main(args: Array<String>) { 在 Kotlin 中,只要对类型进行了判断,就可以直接通过父类的对象去调用子类的函数了 安全的类型转换 还是上面的那个例子,如果我们没有进行类型判断,并且直接进行强转,会怎么样呢? public static void main(String[] args) { 结果就只能是 Exception in thread "main" java.lang.ClassCastException 那么在 Kotlin 中是不是会有更好的解决方法呢? val person: Person = Person() 在转换操作符后面添加一个 ?,就不会把程序 crash 掉了,当转化失败的时候,就会返回一个 null 在空类型中的智能转换 需要提前了解 Kotlin 类型安全的相关知识(Kotlin 中的类型安全(对空指针的优化处理)) String? = aString 在定义的时候定义成了有可能为 null,按照之前的写法,我们需要这样写 String? = 但是已经进行了是否为 String 类型的判断,所以就一定 不是 空类型了,也就可以直接输出它的长度了 T.()->Unit 、 ()->Unit 在做kotlin开发中,经常看到一些系统函数里,用函数作为参数 public .()-Unit与()->Unit的区别是我们调用时,在代码块里面写this,的时候,两个this代表的含义不一样,T.()->Unit里的this代表的是自身实例,而()->Unit里,this代表的是外部类的实例。 推荐阅读 对 Kotlin 与 Java 编程语言的思考 使用 Kotlin 做开发一个月后的感想 扫一扫 关注我的公众号如果你想要跟大家分享你的文章,欢迎投稿~ 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39611037/article/details/109984124。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-23 23:56:14
470
转载
转载文章
...己定义过很多,比如 下拉刷新,上拉加载更多数据的listview,类似github 上面的pulltorefreshlistview。 还有图片轮询播放的viewpager,也是 继承viewpager,然后自己开启一个线程,去控制 切换的。还比如,跑马灯效果的textview ,scrollview与 listview 相互嵌套 导致 listview 高度计算不正确,我也是 自定义listview,复写了 onmeaure方法,然后解决冲突的。在比如 一些开源的 可以放大缩小的图片,我也是做过,主要是对onmeasure 方法,onlayout方法,ondraw 方法的复写。以及复写一下 view 自己的 touch事件等等,奥 对了,我们公司当时有需求 做一个 锁屏软件,侧滑解锁的,我也是自己定义的,然后展示给他看了一下,当时 那篇文章在这里。传送门http://blog.csdn.net/u011733020/article/details/41863861。 面试官01问:listview的优化、 J哥回答:(PS:这种问题,基本上 都快被问烂了,但是没办法 还是要回答。)listview作为最常见的 用来显示数据的view ,一般 从四个方面 去优化。 1 ,复用convertview, 不然假如有1000条数据,那么我们滑动,就会 产生1000个convertview ,这对内存是很大的浪费,所以 我们一定要复用。 2. 减少 findviewbyid 的次数, 因为 每次 去 执行 findviewbyid 也是要消耗资源的,我们要尽可能的减少,通常 我们定义一个viewholder,去管理 这些id ,然后通过tag 去直接拿到 id。 3, 分页加载,延迟加载 预加载。 这个在我们以前项目,有一个榜单,数据量很大,一次请求过来的数据量很大,这样有两个问题,一个是请求网络 时间可能会很长,另一个展示数据 上面 体验对不是很好,所以 我们做了 第一次加载 20条,然后每次请求 再去 加载10条新数据。 4.就是 对 listview 中一些 类似头像, 图片的 优化。这里 类似 三级缓存,推荐大家看一下 开源 的universal-image-loader 的源码。或者 这篇文章http://www.jb51.net/article/38162.htm,J哥有时间 专门写一篇过于 图片缓存的。 面试官01问: 看你简历上面 做过 社交,通信这块是怎么做的。 J哥回答:我看 咱们公司 也用到了 聊天,咱们公司是 自己做的 还是 用的第三方的类似 环信的。结果被J哥猜中,他说 是集成的环信(但是 有丢包现象,所以打算自己做通信)。 OK,J哥说 ,我们 项目中聊天 是基于xmpp协议的做的,在没有android以前 ,java有个开源的 smack ,android 上 现在有一个asmack ,其实 就是移植到android 中来了, 服务端是基于 openfire的 ,我们就是做的 openfire+asmack 的 聊天,这个原理主要 就是 绑定 ip 拿到 connection 然后 connect ,然后进行通信,我说,这个 跟http请求 其实原理上一样,都是 绑定ip,然后 设置一些property,然后通过类似流进行通信的, asmack,其实底层 就是xml通信的。 面试官01问: touch 事件的传递机制,还特意画了,一个 就是 button LinearLayout 嵌套 。 J哥回答:就是这个, 这也难不倒我。因为J哥觉得 这个问题肯定会问到 所以 早有准备,这里 我就大体说下结论,详细原理 给你传送门。 我回答,这个很简单,只要你继承一下 button 和 linearlayout 复写一下 三个方法 dispatchtouchEvent onInterceptTouchEvent 和onTouchEvent .就能很清楚的明白 传递的过程,我给你总的说下结论的,点击这个button,一般是 外面的父控件 先响应这个down 事件,然后 往子类里面传递,让子类 在往子类的下一级子类去传递,让最终的孩子去决定是不要要消费掉这个点击事件,如果消费掉,那么父类将不会响应,如果子类不消费,那么会退回到次级子类,然后看是否要消费,这样,一句话 就是父传子, 子决定要不要,不要 然后传回去。 这里有很详细 很详细的介绍, 包裹事件的分发。所以我就不罗嗦,http://blog.csdn.net/yanbober/article/details/45887547?ref=myread 面试官01问: 项目中图片的优化。 J哥回答:我给他展示的项目 其中有一款app 是有很多图片 ,但是 很流畅,也没有oom。关于图片 优化,一般我们采用三级缓存,1 。内存加载 2.本地加载 3 网络加载。 首先 我们看 内存中有没有,有直接拿来用,这里 我项目里是这样做的,我先获取一下 分配给我们应用的可用内存是多少,然后 拿1/4 或者 1/8做一个 lrucache. 把我们的bitmap对象添加进去。有些比较常用的图片,我会保存到本地,避免每次重复联网下载。结合 开源的 afinal universalimageloader 以及 13年谷歌官方推荐的volley(号称是 asynchttpclient 和universalimageloader)的结合、 所以 在我的项目中基本没有遇到过图片导致的oom 问题,对于单张的 大图片,我也会利用bitmapFactory,进行计算大小,然后 计算手机分辨率,进行定量的 压缩 处理。 面试官问: GC的回收 J哥回答:我说。GC 回收 应该不只是按照一种方式,应该有多种不同的算法,我看过谷歌 官网介绍的一点,有这样一块区域,他分为 latest(最近) middle(中等)permanent(永久的),这样三块子区域。里面分别存放,刚刚被创建的,以及 时间 靠后的,很久的,对象,不断地新对象 往latest里面添加,当达到相应对象区域的阀值的时候,就会触发GC,GC 进行回收的时候,对于latest 中回收的速度是最快的,而permanent 相对是最久的,而时间 也跟 每块区域中对象的个数有关系, 还有一种算法,是根据最近被引用的时间,或者 被引用的次数 去进行 GC的、、这里随便扯就是了。GC 回收并不是立即执行的。是不定时的。GC回收的时候 会阻塞线程,所以代码中要避免创建不必要的对象,例如for循环中 创建大量对象 就会容易引起GC。 当我们也可以主动 在方法中执行system.gc() 去手动释放一些资源。 面试官01问: 怎么避免 viewpager 预加载 fragment的、 J哥回答:这个问题 我也碰到过,我们都知道,viewpager 它本身会预加载 左右两个 和当前一个对象、而 我们viewpager setOffscreenPageLimit(0) 不生效因为看源码知道,这个方法默认最少也要加载一个。所以 这个fragment 还没有被当前页面显示出来,已经夹在好了,有可能数据不是最新的,我是在 setuservisibilityhint() 这个方法中跟参数 动态去判断 要不要刷新的。 问了一圈,这个哥们大概没什么问的了,然后 就让我等一下,说让他们技术总监过来 。 我就等。。。 然后等了几分钟,进来一小姑娘,坐下,看了我简历,我以为是人事,来跟我谈人生理想。结果,没说几句话,让我讲一下我的项目。我qu,惊呆我了。我问,你也是做android的,我去,是这样的、、把J哥吓到, 然后问了J哥几个问题。 Android 小姑娘问: 看你项目中的listview 中item类型 是统一的,而加入 item 差别挺大的 你怎么复用。 J哥回答:J哥装作很牛的样子说,我暂时想到两种方法,1.给这个对象 加一个type 然后 根据 type 去复用,或者 把这几种类型 一起加载,然后控制显示隐藏。然后 我反问小姑娘,假如 我这里 有一百条数据,这一百条是无序的,包含了 10种 item类型,你有没有什么好方法 去处理这个问题, 小姑娘说,你不是定义了类型吗,我们就是 通过type 去判断的。 Android 小姑娘问: onAttch onDetach还是onAttachedToWindow,onDetachedFromWindow J哥回答:其实 那个小姑娘忘记这两个方法了。我说什么方法,她说onAttachIntent() 和 onDetachIntent(). 反正 J哥是没听说过, 我只见过 onAttach ,但是 这个方法 我也没用过。我就问她,这两个方法是做什么的,小姑娘跟我说 是 把子view绑定到界面上的,那么的话 应该是onAttachedToWindow,onDetachedFromWindow方法了,小姑娘说: 在这个方法 可以计算子 view的高度宽度,在 oncreate 里面不能计算,其实虽然刚开始 在oncreate里面是不能计算,但是还是有方法计算的,(本人觉得面试 问你 API 是 最2的了,忍不住吐槽下,我遇到过,Camera 拍照,问我获取 一个图片,还是 视频的 方法,我去百度 一下,随便就知道,真是不懂 为什么会问方法。随便一个程序员 都会百度。。) 跟小姑娘聊得其他问题 不太记得了,感觉这个女程序员啊。。就问方法 给我的印象不太好,不管方法用没用到,我觉得面试 直接问你方法 好2 好2... 然后技术总监 有进来跟我聊了,后技术总监 有进来跟我聊了、技术总监 年龄30出头吧,到是没有问我什么技术问题, 总监: 问我 做没做过通信这块,能不能做这一块。 J哥回答:,我说做过,通信有几种协议的,我们用的 是xmpp协议的 ,服务器 是 基于apache的 openfire 搭建的,客户端 是用的asmack。还有一些 其他协议的 ,比如我知道有些项目中用的 soap协议的,还有ip 协议的。PS:反正就是扯 我说 通信 客户端这一块 我没问题,但是 服务端 我 从工作以来 一直偏向 android 移动端开发,后台这一块,如果数据量大了,还要考虑并发之类的,我是做不了,让我做个tomcat搭建的demo 我可能可以。 其他也是随便聊了下,然后 就说,让人事来跟我谈理想了。 总监: 问我 什么时候能上班 J哥回答:我说 这个看公司需求啦。 其他也是随便聊了下,然后 就说,让人事来跟我谈理想了。 这里 感觉应该没问题了。差不多能拿下了。 人事1:一进来,就问东问西。问加班看法啊,他们公司技术 一般都八九点走啊。说七点基本没有走的啊、、、 J哥回答:我说,一般遇到项目加功能 ,版本升级,等等 这些加班都没什么,只要不是一直在加班。。。。这里每个人自己看法就好了、、 反正人事 是一直跟我强调这个,她不停强调 我就暗暗下决心,薪资 我是不会要低了。 人事1:看你还年轻啊,还能拼一拼啊、、、、 J哥回答:我说现在 这几年对我人生规划也算比较重要的时期,也是过一年少一年了,其实她的意思 还是侧面强调加班。。。。日了UZI了。 中间一堆废话,然后我问了她 公司一般上下班时间啊。。之类的有没有技术交流啊,之类的。。。 最后到关键问题上啦,最关心的,薪资问题。 人事1:期望薪资 J哥回答:我说16K左右吧。她问 你以前公司多少 握手 15K。她说她们公司 是 14薪。反正 我还是说16K。她说 那好,你等下,然后就出去了。 不知道 跟什么人 讨论了许久,然后又来一个 可能是人事吧。又进来,问了一遍,也问了薪资。。哥还是说16K 。 。。估计是她们公司想要我,但是又觉得有点超出她们薪资期望吧,当场被没有给什么offer。然后就有点婉拒的说,两天给我答复,心里很气愤,饿着肚子 面试到三点,竟然婉拒、、、 反正我是很生气,我说,好,然后我就走。结果,没过一个小时,人事又打电话来,非要约我 见一下她们CEO。这是什么鬼,难道她们CEO要给我煲汤 了?我说可以,然后时间定在后天了,,反正心灵鸡汤对我是没用了、 OK ,这家面试 先写到这里,下面下午还有一家,等下在写。准备睡觉。今天面试回来,累的就睡着了,晚上十点多才醒过来,想了想还是 把今天面试的过程总结一下。 ------------------------------待续------------------------- 第二弹http://blog.csdn.net/u011733020/article/details/46058273 本篇文章为转载内容。原文链接:https://blog.csdn.net/haluoluo211/article/details/51010955。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-19 17:42:52
336
转载
转载文章
...strap这一强大的响应式前端框架在实际开发中的应用越来越广泛。近期,Bootstrap团队发布了其v5版本,带来了更多现代化的功能与优化。新版本中,Bootstrap移除了对Internet Explorer浏览器的支持,全面拥抱现代浏览器,并引入了JavaScript组件库——Bootstrap Icons,提供了一套丰富的SVG图标集,增强了UI设计的一致性和可定制性。 此外,Bootstrap v5在栅格系统上做了改进,进一步简化了布局逻辑,提高了代码的可读性和维护性。它现在完全基于Flexbox布局,使得在不同屏幕尺寸下的响应式设计更加流畅、灵活。同时,该版本还优化了表单控件和按钮组件,增强了无障碍访问功能,以满足日益严格的Web内容可访问性标准(WCAG)。 为了帮助开发者更好地理解和掌握Bootstrap v5的新特性,社区涌现出大量教程文章和技术分享。例如,“深入浅出Bootstrap 5:全新特性解析与实战指南”一文详尽地解读了新版本的各项更新,并结合实例演示如何将这些新特性融入到实际项目中。同时,诸如“Bootstrap 5:打造无障碍、高性能网站的实战案例分析”等深度剖析文章,也从实践角度出发,探讨如何借助Bootstrap v5构建高效、易用且符合现代Web标准的网站。 总之,在快速迭代的前端领域,Bootstrap始终保持着与时俱进的步伐,为开发者提供强大而便捷的工具。了解并掌握Bootstrap最新版本的功能特性,无疑将有助于我们创建更美观、更适应多种设备环境的高质量网页应用。
2023-10-18 14:41:25
150
转载
转载文章
...证插件)、窗口函数、JSON字段支持等。阅读官方文档或技术博客可以掌握这些更新对服务器配置的影响以及如何在my.cnf中启用它们。 2. 数据库性能调优实践:针对特定应用场景调整MySQL服务器配置参数至关重要。例如,通过优化innodb_buffer_pool_size以提升InnoDB存储引擎的性能,或者调整query_cache_size以缓存查询结果。实时案例分析和专家建议可以帮助您更好地理解如何根据服务器硬件资源和工作负载特征进行有效调优。 3. 日志管理与故障排查:MySQL服务器的日志记录功能对于问题诊断和审计有着重要作用。学习如何通过配置慢查询日志、错误日志以及二进制日志实现对系统运行状况的有效监控,并借助相关工具分析日志数据来发现并解决潜在问题。 4. 高可用性和复制策略:在生产环境中,MySQL往往需要部署为集群或采用主从复制模式以确保服务的高可用性。深入研究server-id、binlog_format等相关配置项如何影响复制行为,并结合GTID(全局事务标识符)等高级复制特性进行实战演练。 5. 操作系统级优化配合MySQL:除了直接修改MySQL配置文件外,系统级别的优化也相当重要,包括合理分配内存、磁盘I/O调度策略、网络参数调整等,这些都会间接影响到MySQL服务器的性能表现。及时跟踪Linux或Windows操作系统的最佳实践指南,以实现软硬件层面的协同优化。 综上所述,MySQL服务器配置文件只是数据库运维中的一个环节,后续的学习应结合当前的技术发展动态、行业最佳实践以及自身业务需求,不断深化对MySQL以及其他相关技术栈的理解与应用能力。
2023-10-08 09:56:02
129
转载
转载文章
...题。 2. 技术深度解析:“Redis 6.2版本对事务和Lua脚本执行机制的改进”——随着Redis新版本的迭代更新,其对事务处理和Lua脚本的支持更加完善,比如新增的多线程支持大幅提高了Lua脚本执行性能,同时针对事务模型也进行了增强,以更好地满足高并发环境下的需求。 3. 行业发展趋势:“基于Redis构建微服务架构中的事件驱动系统”——文章讨论了在微服务架构中如何利用Redis的发布订阅模式构建事件驱动的服务间通信机制,并辅以具体实例阐述了这种方式如何提升系统的响应速度与可扩展性。 4. 学术研究视角:“从CAP理论角度看Redis在分布式系统中的作用”——学术界针对Redis在分布式系统中的角色进行了深度剖析,尤其是针对消息队列和发布订阅模式在满足CAP定理中的权衡问题,为开发者提供了理论指导和实践启示。 5. 实用教程分享:“利用Lua脚本实现Redis高级功能实战指南”——一些技术博客和社区发布了系列教程,详细介绍了如何编写高效安全的Lua脚本来处理复杂的Redis操作,如自定义原子操作、限流控制等,是广大开发者进阶Redis应用能力的实用参考资源。
2024-03-18 12:25:04
541
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
alias ll='ls -alh' - 创建一个别名,使ll命令等同于ls
-alh查看详细列表。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"