前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Event Time和Processin...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Golang
... ( "fmt" "time" ) func send(msg string, ch chan<- string) { fmt.Println("Sending:", msg) ch <- msg } func receive(ch <-chan string) string { msg := <-ch fmt.Println("Receiving:", msg) return msg } func main() { ch := make(chan string) go send("Hello", ch) msg := receive(ch) fmt.Println("Done:", msg) } 在这个例子中,我们定义了一个send函数和一个receive函数,分别用来发送和接收数据。然后我们捣鼓出了一个channel,就像建了个信息传输的通道。在程序的大脑——主函数那里,我们让它同时派出两个“小分队”——也就是goroutine,一个负责发送数据,另一个负责接收数据,这样一来,数据就在它们之间飞快地穿梭起来了。运行这个程序,我们会看到输出结果为: makefile Sending: Hello Receiving: Hello Done: Hello 可以看到,两个goroutine通过channel成功地进行了数据交换。 2. 使用channel进行同步 除了用于数据交换外,channel还可以用于同步goroutine。当一个goroutine在channel那儿卡壳了,等待着消息时,其他goroutine完全不受影响,可以该干嘛干嘛,继续欢快地执行任务。这样一来,咱们就能妥妥地防止多个并发执行的小家伙(goroutine)一起挤进共享资源的地盘,从而成功避开那些让人头疼的数据冲突问题啦。例如,我们可以使用channel来控制任务的执行顺序: go package main import ( "fmt" "time" ) func worker(id int, jobs <-chan int, results chan<- int) { for j := range jobs { time.Sleep(time.Duration(j)time.Millisecond) results <- id j } } func main() { jobs := make(chan int, 100) results := make(chan int, 100) for i := 0; i < 10; i++ { go worker(i, jobs, results) } for i := 0; i < 50; i++ { jobs <- i } close(jobs) var sum int for r := range results { sum += r } fmt.Println("Sum:", sum) } 在这个例子中,我们定义了一个worker函数,用来处理任务。每个worker都从jobs channel读取任务,并将结果写入results channel。然后呢,我们在main函数里头捣鼓出10个小弟worker,接着一股脑向那个叫jobs的通道塞了50个活儿。最后一步,咱们先把那个jobs通道给关了,然后从results通道里把所有结果都捞出来,再把这些结果加一加算个总数。运行这个程序,我们会看到输出结果为: python Sum: 12750 可以看到,所有的任务都被正确地处理了,并且处理顺序符合我们的预期。 三、使用waitgroup进行同步 除了使用channel外,Go还提供了一种更高级别的同步机制——WaitGroup。WaitGroup允许我们在一组goroutine完成前等待其全部完成。比如,我们可以在主程序里头创建一个WaitGroup对象,然后每当一个新的并发任务(goroutine)开始执行时,就像在小卖部买零食前先拍一下人数统计器那样,给这个WaitGroup调用Add方法加一记数。等到所有并发任务都嗨皮地完成它们的工作后,再挨个儿调用Done方法,就像任务们一个个走出门时,又拍一下统计器减掉一个人数。当计数器变为0时,主函数就会结束。 go package main import ( "fmt" "sync" ) func worker(id int, wg sync.WaitGroup) { defer wg.Done() for i := 0; i < 10; i++ { fmt.Printf("Worker %d did something.\n", id) } } func main() { wg := sync.WaitGroup{} for i := 0; i < 10; i++ { wg.Add(1) go worker(i, &wg)
2023-01-15 09:10:13
587
海阔天空-t
转载文章
...hreading, time, httplib HOST = "www.baidu.com"; 主机地址 例如192.168.1.101 PORT = 80 端口 URI = "/?123" 相对地址,加参数防止缓存,否则可能会返回304 TOTAL = 0 总数 SUCC = 0 响应成功数 FAIL = 0 响应失败数 EXCEPT = 0 响应异常数 MAXTIME=0 最大响应时间 MINTIME=100 最小响应时间,初始值为100秒 GT3=0 统计3秒内响应的 LT3=0 统计大于3秒响应的 创建一个 threading.Thread 的派生类 class RequestThread(threading.Thread): 构造函数 def __init__(self, thread_name): threading.Thread.__init__(self) self.test_count = 0 线程运行的入口函数 def run(self): self.test_performace() def test_performace(self): global TOTAL global SUCC global FAIL global EXCEPT global GT3 global LT3 try: st = time.time() conn = httplib.HTTPConnection(HOST, PORT, False) conn.request('GET', URI) res = conn.getresponse() print 'version:', res.version print 'reason:', res.reason print 'status:', res.status print 'msg:', res.msg print 'headers:', res.getheaders() start_time if res.status == 200: TOTAL+=1 SUCC+=1 else: TOTAL+=1 FAIL+=1 timetime_span = time.time()-st print '%s:%f\n'%(self.name,time_span) self.maxtime(time_span) self.mintime(time_span) if time_span>3: GT3+=1 else: LT3+=1 except Exception,e: print e TOTAL+=1 EXCEPT+=1 conn.close() def maxtime(self,ts): global MAXTIME print ts if ts>MAXTIME: MAXTIME=ts def mintime(self,ts): global MINTIME if ts<MINTIME: MINTIME=ts main 代码开始 print '===========task start===========' 开始的时间 start_time = time.time() 并发的线程数 thread_count = 300 i = 0 while i <= thread_count: t = RequestThread("thread" + str(i)) t.start() i += 1 t=0 并发数所有都完成或大于50秒就结束 while TOTAL<thread_count|t>50: print "total:%d,succ:%d,fail:%d,except:%d\n"%(TOTAL,SUCC,FAIL,EXCEPT) print HOST,URI t+=1 time.sleep(1) print '===========task end===========' print "total:%d,succ:%d,fail:%d,except:%d"%(TOTAL,SUCC,FAIL,EXCEPT) print 'response maxtime:',MAXTIME print 'response mintime',MINTIME print 'great than 3 seconds:%d,percent:%0.2f'%(GT3,float(GT3)/TOTAL) print 'less than 3 seconds:%d,percent:%0.2f'%(LT3,float(LT3)/TOTAL) 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_33835103/article/details/85213806。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-19 20:57:06
74
转载
转载文章
...1. window.event对象: event代表事件的状态,例如触发event对象的元素、鼠标的位置及状态、按下的键等等。 event对象只在事件发生的过程中才有效。 2. event.srcElement: 表示该事件的发生源 通俗一点说也就是该事件被触发的地方 3. srcElement.parentNode: 表示该事件发生源的父结点 4. srcElement.tagName: 表示事件发生源的标签名 5. toUpperCase(): 大写化相应字符串的方法 基本上就是这些属性和方法,可能对于刚刚接触javascript的朋友们或者以前很少使用此类功能的朋友来说, 这些对象有些陌生,不过没关系,了解以后发现其实并不难,和javascript验证表单之类的并没有太多的不同。 下面就结合程序给大家一步一步讲解(程序难免有不合理之处,希望大家多多指正,共同进步): 第一部分:javascript纪录浏览动作 复制内容到剪贴板 代码: function glog(evt) //定义纪录鼠标点击动作的函数 { evt=evt?evt:window.event;var srcElem=(evt.target)?evt.target:evt.srcElement; try { while(srcElem.parentNode&&srcElem!=srcElem.parentNode) //以上这个语句判断鼠标动作是否发生在有效区域,防止用户的无效点击也被纪录下来 { if(srcElem.tagName&&srcElem.tagName.toUpperCase()=="A")//判断用户点击的对象是否属于链接 { linkname=srcElem.innerHTML; //取出事件发生源的名称,也就是和之间的文字,也就是链接名称哈 address=srcElem.href+"_www.achome.cn_"; //取出事件发生源的href值,也就是该链接的地址 wlink=linkname+"+"+address; //将链接名称和链接地址整合到一个变量当中 old_info=getCookie("history_info"); //从Cookies中取出以前纪录的浏览历史,该函数后面有声明 //以下程序开始判断新的浏览动作是否和已有的前6个历史重复,如果不重复则写入cookies var insert=true; if(old_info==null) //判断cookie是否为空 { insert=true; } else { var old_link=old_info.split("_www.achome.cn_"); for(var j=0;j<=5;j++) { if(old_link[j].indexOf(linkname)!=-1) insert=false; if(old_link[j]=="null") break; } } if(insert) { wlink+=getCookie("history_info"); setCookie("history_info",wlink); //写入cookie,该函数后面有声明 history_show().reload(); break; } } srcElem = srcElem.parentNode; } } catch(e){} return true; } document.οnclick=glog;//使每一次页面的点击动作都执行glog函数 第2部分:Cookies的相关函数 复制内容到剪贴板 代码: //cookie的相关函数 //读取cookie中指定的内容 function getCookieVal (offset) { var endstr = document.cookie.indexOf (";", offset); if (endstr == -1) endstr = document.cookie.length; return unescape(document.cookie.substring(offset, endstr)); } function getCookie (name) { var arg = name + "="; var alen = arg.length; var clen = document.cookie.length; var i = 0; while (i < clen) { var j = i + alen; if (document.cookie.substring(i, j) == arg) return getCookieVal (j); i = document.cookie.indexOf(" ", i) + 1; if (i == 0) break; } return null; } //将浏览动作写入cookie function setCookie (name, value) { var exp = new Date(); exp.setTime (exp.getTime()+3600000000); document.cookie = name + "=" + value + "; expires=" + exp.toGMTString(); } 第3部分:页面显示函数 复制内容到剪贴板 代码: function history_show() { var history_info=getCookie("history_info"); //取出cookie中的历史记录 var content=""; //定义一个显示变量 if(history_info!=null) { history_arg=history_info.split("_www.achome.cn_"); var i; for(i=0;i<=5;i++) { if(history_arg[i]!="null") { var wlink=history_arg[i].split("+"); content+=("↑"+""+wlink[0]+" "); } document.getElementById("history").innerHTML=content; } } else {document.getElementById("history").innerHTML="对不起,您没有任何浏览纪录";} } 代码差不多就是这些了 就为大家分析到这里 还有不足之处还请大家多多指教 下面可以运行代码查看效果 查看效果 //cookie的相关函数 function getCookieVal (offset) { var endstr = document.cookie.indexOf (";", offset); if (endstr == -1) endstr = document.cookie.length; return unescape(document.cookie.substring(offset, endstr)); } function getCookie (name) { var arg = name + "="; var alen = arg.length; var clen = document.cookie.length; var i = 0; while (i < clen) { var j = i + alen; if (document.cookie.substring(i, j) == arg) return getCookieVal (j); i = document.cookie.indexOf(" ", i) + 1; if (i == 0) break; } return null; } function setCookie (name, value) { var exp = new Date(); exp.setTime (exp.getTime()+3600000000); document.cookie = name + "=" + value + "; expires=" + exp.toGMTString(); } function glog(evt) { evt=evt?evt:window.event;var srcElem=(evt.target)?evt.target:evt.srcElement; try { while(srcElem.parentNode&&srcElem!=srcElem.parentNode) { if(srcElem.tagName&&srcElem.tagName.toUpperCase()=="A") { linkname=srcElem.innerHTML; address=srcElem.href+"_www.achome.cn_"; wlink=linkname+"+"+address; old_info=getCookie("history_info"); var insert=true; if(old_info==null) //判断cookie是否为空 { insert=true; } else { var old_link=old_info.split("_www.achome.cn_"); for(var j=0;j<=5;j++) { if(old_link[j].indexOf(linkname)!=-1) insert=false; if(old_link[j]=="null") break; } } / if(insert) //如果符合条件则重新写入数据 { wlink+=getCookie("history_info"); setCookie("history_info",wlink); history_show().reload(); break; } } srcElem = srcElem.parentNode; } } catch(e){} return true; } document.οnclick=glog; function history_show() { var history_info=getCookie("history_info"); var content=""; if(history_info!=null) { history_arg=history_info.split("_www.achome.cn_"); var i; for(i=0;i<=5;i++) { if(history_arg[i]!="null") { var wlink=history_arg[i].split("+"); content+=("↑"+""+wlink[0]+" "); } document.getElementById("history").innerHTML=content; } } else {document.getElementById("history").innerHTML="对不起,您没有任何浏览纪录";} } // JavaScript Document 浏览历史排行(只显示6个最近访问站点并且没有重复的站点出现) history_show(); 点击链接: 网站1 网站2 网站3 网站4 网站5 网站6 网站7 网站8 网站9 如果有其他疑问请登陆www.achome.cn与我联系 提示:您可以先修改部分代码再运行 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_30611227/article/details/117818020。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-30 21:14:40
48
转载
Apache Solr
...加剧问题。 二、案例分析 使用Solr查询外部数据源 为了更好地理解这个问题,我们可以创建一个简单的案例。想象一下,我们有个叫Solr的小工具,专门负责在我们家里的文件堆里找东西。但是,它不是个孤军奋战的英雄,还需要借助外面的朋友——那个外部API,来给我们多提供一些额外的线索和细节,就像侦探在破案时需要咨询专家一样。这样,当我们用Solr搜索的时候,就能得到更丰富、更准确的结果了。我们使用Python和requests库来模拟这个过程: python import requests from solr import SolrClient solr_url = "http://localhost:8983/solr/core1" solr_client = SolrClient(solr_url) def search(query): results = solr_client.search(query) for result in results: 外部API请求 external_data = fetch_external_metadata(result['id']) result['additional_info'] = external_data return results def fetch_external_metadata(doc_id): url = f"https://example.com/api/{doc_id}" response = requests.get(url) if response.status_code == 200: return response.json() else: return None 在这个例子中,fetch_external_metadata函数尝试从外部API获取元数据,如果请求失败或API不可用,那么该结果将被标记为未获取到数据。当外部服务出现延迟或中断时,这将直接影响到Solr的查询效率。 三、优化策略 1. 缓存策略 为了避免频繁请求外部服务,可以引入缓存机制。对于频繁访问且数据变化不大的元数据,可以在本地缓存一段时间。当外部服务不可用时,可以回退使用缓存数据,直到服务恢复。 python class ExternalMetadataCache: def __init__(self, ttl=600): self.cache = {} self.ttl = ttl def get(self, doc_id): if doc_id not in self.cache or (self.cache[doc_id]['timestamp'] + self.ttl) < time.time(): self.cache[doc_id] = {'data': fetch_external_metadata(doc_id), 'timestamp': time.time()} return self.cache[doc_id]['data'] metadata_cache = ExternalMetadataCache() def fetch_external_metadata_safe(doc_id): return metadata_cache.get(doc_id) 2. 重试机制 在请求外部服务时添加重试逻辑,当第一次请求失败后,可以设置一定的时间间隔后再次尝试,直到成功或达到最大重试次数。 python def fetch_external_metadata_retriable(doc_id, max_retries=3, retry_delay=5): for i in range(max_retries): try: return fetch_external_metadata(doc_id) except Exception as e: print(f"Attempt {i+1} failed with error: {e}. Retrying in {retry_delay} seconds...") time.sleep(retry_delay) raise Exception("Max retries reached.") 四、结论与展望 通过上述策略,我们可以在一定程度上减轻外部服务依赖对Solr性能的影响。然而,重要的是要持续监控系统的运行状况,并根据实际情况调整优化措施。嘿,你听说了吗?科技这玩意儿啊,那可是越来越牛了!你看,现在就有人在琢磨怎么对付那些让人上瘾的东西。将来啊,说不定能搞出个既高效又结实的办法,帮咱们摆脱这个烦恼。想想都挺激动的,对吧?哎呀,兄弟!构建一个稳定又跑得快的搜索系统,那可得好好琢磨琢磨外部服务这事儿。你知道的,这些服务就像是你家里的电器,得选对了,用好了,整个家才能舒舒服服的。所以啊,咱们得先搞清楚这些服务都是干啥的,它们之间怎么配合,还有万一出了点小状况,咱们能不能快速应对。这样,咱们的搜索系统才能稳如泰山,嗖嗖地飞快,用户一搜就满意,那才叫真本事呢! --- 请注意,以上代码示例是基于Python和相关库编写的,实际应用时需要根据具体环境和技术栈进行相应的调整。
2024-09-21 16:30:17
40
风轻云淡
Ruby
...ds = [] 5.times do |i| threads << Thread.new do 100_000.times { counter += 1 } end end threads.each(&:join) puts "Counter: {counter}" 分析: 这段代码看起来没什么问题,每个线程都只是简单地增加计数器。但实际情况却是,输出的结果经常不是期望的500_000,而是各种奇怪的数字。这就好比说,counter += 1 其实不是一步到位的简单操作,它得先“读一下当前的值”,再“给这个值加1”,最后再“把新的值存回去”。问题是,在这中间的每一个小动作,都可能被别的线程突然插队过来捣乱! 解决方案: 为了避免这种混乱,我们需要使用线程安全的操作,比如Mutex(互斥锁)。Mutex可以确保每次只有一个线程能够修改某个变量。 修正后的代码: ruby 正确的代码 require 'thread' counter = 0 mutex = Mutex.new threads = [] 5.times do |i| threads << Thread.new do 100_000.times do mutex.synchronize { counter += 1 } end end end threads.each(&:join) puts "Counter: {counter}" 总结: 这一段代码告诉我们,共享状态是一个雷区。如果你非要用共享变量,记得给它加上锁,不然后果不堪设想。 --- 4. 示例二 死锁的诅咒 场景描述: 有时候,我们会遇到更复杂的情况,比如两个线程互相等待对方释放资源。哎呀,这种情况就叫“死锁”,简直就像两只小猫抢一个玩具,谁都不肯让步,结果大家都卡在那里动弹不得,程序也就这样傻乎乎地停在原地,啥也干不了啦! 问题出现: 想象一下,你有两个线程,A线程需要获取锁X,B线程需要获取锁Y。想象一下,A和B两个人都想打开两把锁——A拿到了锁X,B拿到了锁Y。然后呢,A心想:“我得等B先把他的锁Y打开,我才能继续。”而B也在想:“等A先把她的锁X打开,我才能接着弄。”结果俩人就这么干等着,谁也不肯先放手,最后就成了“死锁”——就像两个人在拔河,谁都不松手,僵在那里啥也干不成。 代码示例: ruby 死锁的代码 lock_a = Mutex.new lock_b = Mutex.new thread_a = Thread.new do lock_a.synchronize do puts "Thread A acquired lock A" sleep(1) lock_b.synchronize do puts "Thread A acquired lock B" end end end thread_b = Thread.new do lock_b.synchronize do puts "Thread B acquired lock B" sleep(1) lock_a.synchronize do puts "Thread B acquired lock A" end end end thread_a.join thread_b.join 分析: 在这段代码中,两个线程都在尝试获取两个不同的锁,但由于它们的顺序不同,最终导致了死锁。运行这段代码时,你会发现程序卡住了,没有任何输出。 解决方案: 为了避免死锁,我们需要遵循“总是按照相同的顺序获取锁”的原则。比如,在上面的例子中,我们可以强制让所有线程都先获取锁A,再获取锁B。 修正后的代码: ruby 避免死锁的代码 lock_a = Mutex.new lock_b = Mutex.new thread_a = Thread.new do [lock_a, lock_b].each do |lock| lock.synchronize do puts "Thread A acquired lock {lock.object_id}" end end end thread_b = Thread.new do [lock_a, lock_b].each do |lock| lock.synchronize do puts "Thread B acquired lock {lock.object_id}" end end end thread_a.join thread_b.join 总结: 死锁就像一只隐形的手,随时可能掐住你的喉咙。记住,保持一致的锁顺序是关键! --- 5. 示例三 不恰当的线程池 场景描述: 线程池是一种管理线程的方式,它可以复用线程,减少频繁创建和销毁线程的开销。但在实际使用中,很多人会因为配置不当而导致性能下降甚至崩溃。 问题出现: 假设你创建了一个线程池,但线程池的大小设置得不合理。哎呀,这就好比做饭时锅不够大,菜都堆在那儿煮不熟,菜要是放太多呢,锅又会冒烟、潽得到处都是,最后饭也没做好。线程池也一样,太小了任务堆成山,程序半天没反应;太大了吧,电脑资源直接被榨干,啥事也干不成,还得收拾烂摊子! 代码示例: ruby 线程池的错误用法 require 'thread' pool = Concurrent::FixedThreadPool.new(2) 20.times do |i| pool.post do sleep(1) puts "Task {i} completed" end end pool.shutdown pool.wait_for_termination 分析: 在这个例子中,线程池的大小被设置为2,但有20个任务需要执行。哎呀,这就好比你请了个帮手,但他一次只能干两件事,其他事儿就得排队等着,得等前面那两件事儿干完了,才能轮到下一件呢!这种情况下,整个程序的执行时间会显著延长。 解决方案: 为了优化线程池的性能,我们需要根据系统的负载情况动态调整线程池的大小。可以使用Concurrent::CachedThreadPool,它会根据当前的任务数量自动调整线程的数量。 修正后的代码: ruby 使用缓存线程池 require 'concurrent' pool = Concurrent::CachedThreadPool.new 20.times do |i| pool.post do sleep(1) puts "Task {i} completed" end end sleep(10) 给线程池足够的时间完成任务 pool.shutdown pool.wait_for_termination 总结: 线程池就像一把双刃剑,用得好可以提升效率,用不好则会成为负担。记住,线程池的大小要根据实际情况灵活调整。 --- 6. 示例四 忽略异常的代价 场景描述: 并发编程的一个常见问题是,线程中的异常不容易被察觉。如果你没有妥善处理这些异常,程序可能会因为一个小错误而崩溃。 问题出现: 假设你有一个线程在执行某个操作时抛出了异常,但你没有捕获它,那么整个线程池可能会因此停止工作。 代码示例: ruby 忽略异常的代码 threads = [] 5.times do |i| threads << Thread.new do raise "Error in thread {i}" if i == 2 puts "Thread {i} completed" end end threads.each(&:join) 分析: 在这个例子中,当i == 2时,线程会抛出一个异常。哎呀糟糕!因为我们没抓住这个异常,程序直接就挂掉了,别的线程啥的也别想再跑了。 解决方案: 为了防止这种情况发生,我们应该在每个线程中添加异常捕获机制。比如,可以用begin-rescue-end结构来捕获异常并进行处理。 修正后的代码: ruby 捕获异常的代码 threads = [] 5.times do |i| threads << Thread.new do begin raise "Error in thread {i}" if i == 2 puts "Thread {i} completed" rescue => e puts "Thread {i} encountered an error: {e.message}" end end end threads.each(&:join) 总结: 异常就像隐藏在暗处的敌人,稍不注意就会让你措手不及。学会捕获和处理异常,是成为一个优秀的并发编程者的关键。 --- 7. 结语 好了,今天的分享就到这里啦!并发编程确实是一项强大的技能,但也需要谨慎对待。大家看看今天这个例子,是不是觉得有点隐患啊?希望能引起大家的注意,也学着怎么避开这些坑,别踩雷了! 最后,我想说的是,编程是一门艺术,也是一场冒险。每次遇到新挑战,我都觉得像打开一个神秘的盲盒,既兴奋又紧张。不过呢,光有好奇心还不够,还得有点儿耐心,就像种花一样,得一点点浇水施肥,不能急着看结果。相信只要我们不断学习、不断反思,就一定能写出更加优雅、高效的代码! 祝大家编码愉快!
2025-04-25 16:14:17
33
凌波微步
转载文章
...0 million times, according to a report by the enterprise software company Sonatype. 然而这个基于Java的日志记录工具已经在企业内部刊物中无处不在。例如根据软件公司Sonatype的一份报告显示,在过去的三个月里,Log4j的下载量就已经超过3000万次。 The tool has 440,000 lines of code, according to Synopsys‘ Black Duck Open Hub research tool, with nearly 24,000 contributions by nearly 200 developers. That’s a large dev team compared to other open source projects. But looking closer at the numbers, more than 70% of commits were by just five people. 根据Synopsys(新思)公司旗下的Black Duck Open Hub 研究工具显示。Log4j有着440,000行代码,由近200名开发人员贡献了将近24,000行代码。其实与其他开源项目相比,这是一个庞大的开发团队。但是如果关注数据的话,就会发现超过70%的提交是仅仅靠五个人来完成的。 Log4j’s home page lists about a dozen members on its project team. Most projects have far fewer developers working on them — and that presents a problem for the organizations that depend on them. Log4j的主页上展示了十几位项目团队的成员。而大多项目的开发人员要比其原本需要的少得多----这是高度依赖开发人员团队所呈现出来的问题。 “There is little incentive for anyone today to contribute to an existing open source project,” said Jeremy Stretch, distinguished engineer at NS1, a DNS network company. “There’s usually no direct compensation, and few accolades are offered — most users don’t even know who maintains the software that they use.” “如今的人没有什么动力去为现有的开源项目做贡献”,来自DNS网络公司NS1的杰出工程师Jeremy Strech说,“因为通常来说,这没有直接的物质回报,也很少提供荣誉----大多数用户甚至不知道他们所用的软件是谁维护的。” The most common motivation among open source contributors is to add a feature that they themselves want to see, he said. “Once this has been achieved, the contributor rarely sticks around.” 他说,开源贡献者们最常见的动机就是添加他们自己想要的功能。“一旦实现了这一点,他们几乎都不会留下来。” Meanwhile, as a project becomes more popular, the burden on the core team of maintainers keeps increasing. 与此同时,随着项目的逐渐流行,对于维护方面的核心团队来说,他们的负担也在不断增加。 “More users means more feature requests and more bug reports — but not more maintainers,” Stretch said. “What was once an enjoyable hobby can quickly become a tedious chore, and many maintainers understandably opt to simply abandon their projects altogether.” “更多的用户意味有着更多的功能需求和错误报告----但不是更多的维护人员”,Stretch说。“曾经令人愉快的爱好很快就会变成一项乏味的项目,所以很多维护人员选择干脆完全放弃他们的项目,这也是可以理解的。” Part1The Tragedy of the Commons The open source software ecosystem is a perfect example of the “tragedy of the commons.” 开源软件的生态系统,就是“公地悲剧”的一个完美例子。 And the tragedy is — when everyone uses, but no one contributes, that resource — whether it’s an overrun park or an open source project — eventually collapses from overuse and underinvestment. Everyone loves using free stuff, but everyone expects someone else to take care of it. 这个悲剧就是---当一种资源,无论是一个超限的公园还是一个开源项目,所有人都在使用而没有人贡献之时,最终都会因为过度使用和投入不足而崩溃坍塌。 This approach can save you money in the short term, but it can become a fatal flaw over time. Especially since open source software is everywhere, running everything. 这种方式可以在短期内为你节省资金,但随着时间的推移,它可能会变成项目里致命的缺陷。 Linux, for example, the open source operating system, runs on 96% of the world’s top 1 million servers, and 90% of all cloud infrastructure is on Linux. Not to mention that 85% of all smartphones in the world run Linux, in the form of the Android OS. 拿Linux来说,这个开源操作系统在全球前100万台服务器中运行率在96%以上,且这些服务器90%的云基础设施也都在Linux上。更不用说世界上85%的智能手机都运行着Linux,即Android操作系统。 Then there’s Java, Apache, WordPress, Cassandra, Hadoop, MySQL, PHP, ElasticSearch, Kubernetes — the list of ubiquitous open source projects goes on and on. 还有Java, Apache, WordPress, Cassandra, Hadoop, MySQL, PHP, ElasticSearch, Kubernetes--这些常见开源项目的列表还在逐渐增加着。 Without open source, much of today’s technical infrastructure would immediately grind to a halt. 如果没有开源,今天的大部分技术基础设施的建设也将会戛然而止。 “It is a real problem,” said Danil Mikhailov, executive director at Data.org, a nonprofit backed by the Mastercard Center for Inclusive Growth and The Rockefeller Foundation that promotes the use of data science to tackle society’s greatest challenges. “这是一个很现实的问题”,Data.org的执行董事Danil Mikhailov说,该组织是由万事达包容性发展中心和洛克菲勒基金会支持,旨在促进使用数据科学来应对当今社会所面临的巨大挑战的非营利性组织。 While nearly all organizations use open source software, only a minority contribute to those projects. Forty-two percent of participants in a survey released in September by The New Stack, Linux Foundation Research, and the TODO Group said tthey contribute at least sometimes to open source projects. 虽然几乎所有组织都在使用着开源软件,但只有少数组织为这些项目作出了贡献。The New Stack、Linux Foundation Research 和 TODO Group 在 9 月发布的一项调查中,42% 的参与者表示,他们至少有时会为开源项目做出贡献。 The same study showed that only 36% of organizations train their engineers to contribute to open source. 而同一项研究表明,只有36%的组织会培训他们的工程师为开源作出贡献。 Individual companies should support projects that they use the most and are critical to their success, Mikhailov said: “If you use, you contribute.” 个体公司应该支持贡献这些他们使用最多且对他们成功至关重要的项目,Mikhailov认为:“如果你使用开源,你就应该为他做出属于你自己的贡献。” Part2OSPO Benefits:Less Tech Debt,Better Recruiting Participating in open source communities — especially when guided by an in-house open source program office (OSPO) — can help ensure the health of projects critical to your organization’s success, improve those projects’ security, and allow your engineers to have more impact in the projects’ development road map. 参与开源社区——特别是在内部开源项目办公室(OSPO)的指导下——不仅可以保证对组织成功至关重要项目的健康发展,还可以提高项目安全性,同时可以允许工程师在项目发展规划中起到更大的影响。 Say, for example, a company uses an open source tool and modifies it a little to make it better. If that improvement isn’t contributed back to the community, then the official version of the open source project will start to diverge from what the company is using 例如,如果一家公司使用了开源工具,并对其进行了一些调整使其变得更好。但如果这项改进没有反馈到开源社区,那么开源项目的正式版本就会一开始与该公司所使用的版本有所不同。 “You start to grow technical debt because when the original source changes and you’ve got a different version. Those differences grow rapidly, compounding daily. It doesn’t take long for you to be the proud user and maintainer of a one-of-a-kind open source project variant,” said Suzanne Ambiel, director, open source marketing and strategy at VMware. “当原始代码来源发生变化且你所使用的是不同的版本时,你的技术负债将越来越多。而这些差异是以天为单位迅速增长的。”VMware 开源营销和战略总监 Suzanne Ambiel 表示,“所以你很快就会变成一个开源项目里独一无二变体的‘自豪’用户和维护人员。” “The technical debt gets bigger and bigger and it gets very expensive for a company to manage.” “如果技术负债越来越多,那么公司的管理成本则会非常昂贵”。 Support for open source activity can also be a recruiting tool. “It’s really a talent magnet,” said Ambiel. “It’s one of the things that new hires look for.” 实际上对于开源活动的支持也变成了一种招聘途径。“这真是一块吸引人才的磁铁,”Ambiel说,“这也是新员工所寻求的“。 Some engineering managers might worry that open source contributions will detract from core product development, she said. Their rationale, she added, might run along the lines of, “I only have so much talent, and so many hours, and I need them to only work on things where I can measure and see the return on investment.” 她还提到,一些工程经理可能会对贡献开源而减损核心产品的开发的精力而感到担忧。她补充到,他们的理由有可能是这样的:“我只有有限的才华与时间,且我需要这些只做我认为可以度量且看到投资回报的事情。” But that attitude, she said, is shortsighted. Supporting employees who contribute to open source communities can build skills and develop talent, she said. 但她说,这是一种鼠目寸光的态度。支持开源社区并且作出贡献的员工,可以从中培养技能与增长才华。 Loris Degionni, chief technology officer and founder at Sysdig, a cloud security vendor, echoed this notion: “Finding employees who contribute to open source is a gold mine,” said. 云安全供应商 Sysdig 的首席技术官兼创始人 Loris Degionni 也赞同这一观点:“找出为开源做出贡献的员工无疑就找到一座金矿,”他说。 These employees are more capable of delivering features a company wants to use and merge them into community-supported standards, he said. And in a war for talent, companies that embrace open source are more attractive to developers. 他认为,这些参与开源的员工更具备公司想拥有的竞争力并将一些功能融入至社区所支持的标准中。且在人才争夺战中,拥抱开源的公司也更受到开发人员的青睐。 “Lastly, open source is driven by a community of technical experts you may not be able to hire,” he said. “When employees actively contribute and collaborate with these experts, they’ll be better informed of best practices and bring them back to your organization. “最后,开源项目是由你可能无法聘请的技术专家社区推动的”,他说,“当员工积极参与并于这些专家合作时,他们将能更好地深入这些最佳实践,并将这些收获带回到你的组织之中。” “You start to grow technical debt because when the original source changes and you’ve got a different version … It doesn’t take long for you to be the proud user and maintainer of a one-of-a-kind open source project variant.” —Suzanne Ambiel, director, open source marketing and strategy, VMware “当原始数据来源发生变化且你所使用的是不同的版本时,你的技术负债将越来越多...所以你很快就会变成一个开源项目里独一无二变体的”自豪“用户和维护人员。” — Suzanne Ambiel,VMware 开源营销和战略总监 “All of this should be rewarded — developers shouldn’t have to spend their free time honing their skills, as your company will quickly see benefits from their efforts.” “但是这一切终究不会白费--开发人员不应该把业余时间用在磨练他们的技能上,因为你的公司很快就会在他们的努力中看到好处。” An OSPO, Degionni suggested, can help achieve these goals, as well as help prioritize contributions and ensure collaboration. In addition, they can help provide governance that mirrors what companies would have for internally developed applications. Degionni认为,OSPO(开源计划办公室)可以帮助公司实现这些目标,以及帮助确定贡献的优先级并确保合作的进行。除此之外,他们也可以对公司内部开发应用程序方面的治理提供相关帮助。 “Members of the open source team are also in a position to be great internal evangelists for open source technologies, and act as bridges between the organization and the broader community,” he added. “开源团队的成员也可以成为开源技术的伟大内部布道师,并充当组织与更广泛社区之间的桥梁。”他补充道。 In the September survey from The New Stack, Linux Foundation Research and the TODO Group, nearly 53% of organizations with OSPOs said they saw more innovation as a result of having an OSPO, while almost 43% said they saw increased participation in external open source projects. 在 The New Stack、Linux Foundation Research 和 TODO Group 的 9 月调查中,近 53% 的拥有 OSPO的组织表示,由于拥有了OSPO,他们看到了更多创新,而近 43% 的组织表示,他们在外部开源项目的参与度上有所增加。 Part3More OSPO Benefits:A Business Edge Contributing to open source communities doesn’t just help the communities, but the companies that contribute to them, said Tom Hickman, chief innovation officer at ThreatX, a cybersecurity firm. 网络安全公司 ThreatX 的首席创新官 Tom Hickman 表示,为开源社区做出贡献,不仅有助于社区,还有助于为社区做出贡献的公司。 “Growing the community of developers around a project helps the code base, and attracts more developers,” he said. “It can become a virtuous circle.” “围绕一个项目而发展的开发人员社区,有助于代码库的形成,并吸引更多的开发人员参与”,他说,“这可以变成一个良性循环。” Also, companies that contribute to open source projects get twice the productive value from their use of open source than companies that don’t, according to research by Harvard Business School. 此外,根据哈佛商学院的研究,为开源项目作出贡献的公司从使用开源的项目中获得的生产价值,是不参与开源项目公司的两倍。 Many of the biggest companies in the world are contributing to open source, said Chris Aniszczyk, chief technology officer at Cloud Native Computing Foundation. He pointed to the Open Source Contributor Index as a reference for exactly just how much companies are doing. Cloud Native Computing Foundation 的首席技术官 Chris Aniszczyk 说,世界上许多巨头公司都为开源作出了贡献。他还提到,开源贡献者的指数是作为公司是否有所作为的参考。 The tech giants dominate the list: Google, Microsoft, Red Hat, Intel, IBM, Amazon, Facebook, VMware, GitHub and SAP are the top 10 contributors, in that order. But there are also a lot of end users on the top 100 list, said Aniszczyk, including Uber, the BBC, Orange, Netflix, and Square. 科技巨头占据了这份榜单的主导地位:谷歌、微软、红帽、英特尔、IBM、亚马逊、Facebook、VMware、GitHub 和 SAP 依次是排名前 10 的贡献者。但Aniszczyk 表示,但也有很多终端用户公司进入前 100 名,包括 Uber、BBC、Orange、Netflix 和 Square。 “We’ve always known working in upstream projects is not just the right thing to do —it’s the best approach to open source software development and the best way to deliver open source benefits to our customers,” he said. “It’s great to see that IT leaders recognize this as well.” “我们一直知道,在上游项目中工作不仅仅是关正确与否----它是开源软件开发的最佳方法,也是向客户提供开源福利的最佳方式“他说,“很高兴看到IT领导者们也认识到了这一点。” To contribute alongside these giants, companies need to have their own open source strategies, and having an open source program office can help. 为了和这些公司一起作出贡献,公司也需要有自己的开源策略,而拥有一个开源项目办公室则可以为其提供帮助。 “OSPOs provide a critical center of competency in a company when it comes to utilizing open source software,” he said. “在使用开源软件方面,OPSO为公司提供了一个至关重要的能力中心”他说。 It’s similar to the way that companies have security operations centers, he said. 这与公司拥有安全运营中心的方式类似,他说。 “Growing the community of developers around a project helps the code base, and attracts more developers. It can become a virtuous circle.” —Tom Hickman, chief innovation officer, ThreatX “围绕一个项目而发展的开发人员社区,有助于代码库的形成,并吸引更多的开发人员参与,这可以变成一个良性循环。” ——Tom Hickman,ThreatX 首席创新官 “If you don’t make the investment in a security team, you generally don’t expect your software to be secure or be able to respond to security incidents in a timely fashion,” he said. “如果你没有对安全团队进行相应投资,你通常是不会期望你的软件是安全的,也无法及时响应安全事件。”他说。 “The same logic applies to OSPOs and is why you see many leading companies out there such as Apple, Meta, Twitter, Goldman Sachs, Bloomberg, and Google all have OSPOs. They are ahead of the curve.” “同样的逻辑也适用于 OSPO,这就是为什么你会看到许多领先的公司,例如 Apple、Meta、Twitter、Goldman Sachs、Bloomberg 和 Google 都拥有 OSPO。他们走在了趋势的前面。” Support for open source activity within your organization can become a differentiator and marketing opportunity for software vendors. 而对组织内的开源活动的支持态度亦可成为软件供应商们的差异化原因与营销的机会。 According to a Red Hat survey released in February, 82% of IT leaders are more likely to select a vendor who contributes to the open source community. 根据Red Hat2月分发布的一项调查,82%的IT领导者更倾向于选择为开源社区作出贡献的软件供应商。 Respondents said that when vendors support open source communities they are more familiar with open source processes and are more effective if customers have technical challenges. 受访者表示,当供应商支持开源社区时,就表示着他们更熟悉开源的流程并且在客户遇到技术难题时会更加有效。 But it’s not just software vendors who benefit. 但收益的不仅仅是软件供应商们。 According to September’s survey by The New Stack, Linux Foundation Research, and the TODO Group, 57% of organizations with OSPOs use them to further strategic relationships and build partnerships. 根据 The New Stack、Linux Foundation Research 和 TODO Group 9 月份的调查,57% 拥有 OSPO 的组织将使用它们来进一步发展战略关系和建立合作伙伴关系。 Mark Hinkle started an open source program office back when he worked at Citrix a decade ago. He pointed out how having an OSPO in-house benefited the company. 十年前,Mark Hinkle 在 Citrix 工作时创办了一个开源计划办公室。他指出了在内部拥有一个 OSPO将如何使公司受益。 “For us the biggest job was to educate our employees who weren’t familiar with open source to get involved and be good community members,” he said. “We also provided guidance on how to make sure our IP didn’t enter projects without proper understanding and we made sure we didn’t incorporate open source that conflicted with our enterprise software licensing.” “对于我们来说,最大的工作是让不熟悉开源的员工学会并参与其中,成为优秀的社区成员”,他说,“我们还就如何确保我们的IP不会在没有正确理解的情况下进入项目的情况提供了指导,并确保我们没有与我们企业软件许可相冲突的开源项目合作。” The OSPO also helped Citrix identify strategic opportunities for the company to participate in open source projects and trade organizations like The Linux Foundation, he said. 他说,OSPO还帮助Citrix确定了公司参与开源项目和Linux基金会等贸易组织的战略机会。 Today, he’s the CEO and co-founder of TriggerMesh, a cloud native, open source integration platform. 如今,他是云原生开源集成平台 TriggerMesh 的首席执行官兼联合创始人。 There are some significant economic benefits to participating in the open source ecosystem, he said. 他说,参与开源系统对公司来说有着重大的经济效益。 “We participate in Knative to share the development of our underlying platform but we develop value-added services as part of our business,” he said. “By sharing the R and D for the platform, it gives us more resources to develop our own differentiated technology.” “我们参与Knative是为了分享我们基础底层平台的开发,但作为业务的一部分,我们也拥有相关的增值服务。”他说,“通过共享该平台的研发,这为我们提供了更多的资源来改进我们自己的差异化技术。” Part4How to Get Started in Open Source Sixty-three percent of companies in the September survey from The New Stack, Linux Foundation Research and the TODO Group said that having an OSPO was very or extremely critical to the success of their engineering or product teams, up from 54% in the previous annual study. 在 The New Stack、Linux Foundation Research 和 TODO Group 的 9 月份调查中,有 63% 的公司表示,拥有OSPO 对其工程或产品团队的成功至关重要,高于上一年度该项研究数据的 54%。 In particular, 77% said that their open source program had a positive impact on their software practices, such as improved code quality. 其中77% 的人表示他们的开源程序对他们的软件实践产生了积极影响,例如提高了代码质量。 But companies can’t always contribute to every single open source project that they use. 但公司也不可能总是为他们使用的每一个开源项目而花费精力。 “First, thin the herd a little bit,” advised VMware’s Ambiel. “首先,节流一下”,VMware 的 Ambiel 建议道。 Companies should look at the projects that make the most sense for their use cases. This is an area where an OSPO can help set priorities and ensure technical and strategic alignment. 公司应该关注投入使用中最有意义的项目。而这也是OSPO可以帮助确定优先事项并确保技术与战略一致性的领域。 Then, developers should go and check out the projects themselves. Projects typically offer online documentation, often with contributor guides, governance documents, and lists of open issues. 之后,开发人员应该自己去了解一下。项目通常提供相关在线文档,一般包含贡献着指南、治理文档和未解决问题列表。 “For the projects that rise to the top of your strategic list, introduce yourself — say hello,” she said. “Go to the Slack channel or the distribution list and ask where they need help. Maybe they don’t need help and everything is good. Or maybe they can use a new person to review code.” “对于那些上升到你的战略清单顶端的项目,你可以介绍一下自己----打个招呼”,她说。“然后转到Slack频道或者分发列表,询问他们需要帮助的地方。也许他们不需要帮助,一切完好;又或者他们也有可能使用新人来审查核验代码。” An open source program office can not only help make a business case for contributing to the open source community, Ambiel said, but can help companies do it in a way that’s safe, secure and sound. Ambiel 说,开源项目办公室不仅可以帮助制定为开源社区做出贡献的商业案例,还可以帮助公司以安全、可靠和健全的方式来做这件事。 “If I work for a company and want to contribute to open source, I don’t want to accidentally disclose, divulge or undermine any patents,” she said. “An OSPO helps you make smart choices.” “如果我为一家公司工作,并想为开源做出贡献,我不想意外披露、泄露或破坏任何专利,”她说。“而OSPO可以帮助您做出明智的选择。” An OSPO can also help provide leadership and the guiding philosophy about supporting open source, she said. “It can provide guidance, mentorship, coaching and best practices.” 她说,OSPO还可以在开源方面提供领导力和指导理念的支持。“它可以提供引领、指导、辅导和最佳实践的作用。” Commitment to support open source has to start at the top, said Anaïs Urlichs, developer advocate at Aqua Security. Aqua Security的开发人员倡导者Anaïs Urlichs则认为,支持开源的承诺必须从高层开始。 “Too often,” she said, “companies do not value investment into open source, so employees are not encouraged to contribute to it.” 她说,“公司在多数时候往往不重视对开源的投资,所以员工自然而然不被鼓励对此作出贡献。” In those cases, employees with a passion for open source end up contributing during their free time, which is not sustainable. 在这些情况下,员工对于开源的热情也会在空闲时间里对开源的建设而消散殆尽,这对于开源的发展来说是不可持续的。 “If companies rely on open source projects, it is important to make open source contributions part of an engineer’s work schedule,” she said. “Some companies define a time percentage that employees can contribute to open source as part of their normal workday.” “如果公司对开源项目依赖度高,那么将开源贡献纳入工程师的日程安排是很重要的,”她说。“一些公司定义了员工可以为开源建设的时间百分比,将其作为他们正常工作日的一部分。” The New Stack is a wholly owned subsidiary of Insight Partners, an investor in the following companies mentioned in this article: Sysdig, Aqua Security. The New Stack 是 Insight Partners 的全资子公司,Insight Partners 是本文提到的以下公司的投资者:Sysdig、Aqua Security。 相关阅读 | Related Reading 《开源合规指南(企业篇)》正式发布,为推动我国开源合规建设提供参考 “目标->用户->指标”——企业开源运营之道|瞰道@谭中意 开源之夏邀请函——仅限高校学子开启 开源社简介 开源社成立于 2014 年,是由志愿贡献于开源事业的个人成员,依 “贡献、共识、共治” 原则所组成,始终维持厂商中立、公益、非营利的特点,是最早以 “开源治理、国际接轨、社区发展、开源项目” 为使命的开源社区联合体。开源社积极与支持开源的社区、企业以及政府相关单位紧密合作,以 “立足中国、贡献全球” 为愿景,旨在共创健康可持续发展的开源生态,推动中国开源社区成为全球开源体系的积极参与及贡献者。 2017 年,开源社转型为完全由个人成员组成,参照 ASF 等国际顶级开源基金会的治理模式运作。近八年来,链接了数万名开源人,集聚了上千名社区成员及志愿者、海内外数百位讲师,合作了近百家赞助、媒体、社区伙伴。 本篇文章为转载内容。原文链接:https://blog.csdn.net/kaiyuanshe/article/details/124976824。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-03 09:19:23
273
转载
Hive
...力,进一步提升大数据分析处理效率。 综上所述,解决Hive连接数超限问题不仅需要关注配置参数调优,还需要紧跟技术发展趋势,结合最新的大数据处理框架和服务,实现更高效的数据管理和分析能力。
2023-02-16 22:49:34
455
素颜如水-t
Kotlin
...作的时候。 二、问题分析 那么,为什么会出现这种现象呢?我们可以从Android的事件分发机制来寻找答案。 在Android中,当用户对一个视图进行点击操作时,这个操作会被传递给与之关联的触摸事件处理器。这些处理器按照一定的顺序接收并处理这些事件。说白了,Android系统就像个超级有耐心的邮差,对每一个View都会挨个儿“敲门”访问。它按照从上到下的顺序,先去调用每个View的onInterceptTouchEvent()这个“方法小窗口”。如果当前这个View没处理这个触摸事件,那么Android邮差就会继续往下走,把这个事件传递给下一个View。它就这样不厌其烦地找下去,直到碰到一个能够妥妥处理这个事件的View为止。 当我们为一个视图设置点击事件时,实际上是为其添加了一个touch事件处理器。当你点开这个视图的时候,就像我们在玩“击鼓传花”的游戏一样。首先,这个视图会自己接招,尝试处理这个事件。如果它发现自己搞不定,就会像个负责任的老爸一样,把这个烫手山芋传递给它的上级——父视图来处理。这就跟你平时叠衣服似的,如果你把一件衣服(子视图)放在了另一件大衣服(父视图)上面,然后你只按了大衣服,虽然两件都摸到了,但实际上你只能感觉到上面那件小衣服的触感。在手机应用里头也一样,当你给一个视图和它的父视图都设置了点击事件时,就像这两件叠在一起的衣服,最终响应你手指触摸的是最上面那个“子视图”,而不是被盖住的“父视图”。所以呢,你才会发现只有子视图的点击事件会被触发。 三、解决方案 既然我们知道原因了,那么如何解决这个问题呢? 一种常见的解决办法是让子视图取消其自身的点击事件。这可以通过重写View的onTouchEvent()方法并在其中返回false来实现。这样,当用户点了一下子视图,子视图就失去了对这个事件的处理权,得乖乖地把这个消息传递给它的“老爸”——父视图去处理。 例如,假设我们有一个自定义的View类MyView,我们可以在其onTouchEvent()方法中添加如下代码: kotlin override fun onTouchEvent(event: MotionEvent): Boolean { return super.onTouchEvent(event) || !this.isClickable() } 这段代码首先会调用父类的onTouchEvent()方法,然后再检查自己是否可点击。如果不可点击,它就会返回true,从而阻止这个事件继续传递。 另一种解决方案是在父视图中手动处理子视图的点击事件。这可以通过重写ParentView的onTouchEvent()方法并在其中判断当前点击的是不是子视图来实现。 例如,假设我们有一个名为ParentView的类,我们可以在其onTouchEvent()方法中添加如下代码: kotlin override fun onTouchEvent(event: MotionEvent): Boolean { val childRect = getChildDrawingRect(null) if (event.getX() >= childRect.left && event.getX() <= childRect.right && event.getY() >= childRect.top && event.getY() <= childRect.bottom) { // 如果点击的是子视图,就在这里处理 } return super.onTouchEvent(event) } 这段代码首先获取子视图的位置,然后判断当前点击的位置是否在这个位置范围内。如果是,它就会在这里处理这个事件。 四、总结 总的来说,解决Android父子视图都设置了点击事件,父视图监听事件不触发的问题的方法主要有两种:一是让子视图取消其自身的点击事件;二是让父视图手动处理子视图的点击事件。这两种方法都挺靠谱,都能把问题妥妥解决掉。不过具体该挑哪一个来用,那就得看实际情况啦,具体情况具体分析嘛!
2023-01-16 08:15:07
374
桃李春风一杯酒_t
Go Gin
... start := time.Now() c.Next() // 传递控制权给下一个中间件或处理函数 duration := time.Since(start) log.Printf("%s took %s", c.Request.Method, duration) }) 四、创建Go Gin应用 接下来,我们将创建一个简单的Go Gin应用程序。 首先,我们需要导入所需的包: go import ( "fmt" "log" "github.com/gin-gonic/gin" ) 然后,我们可以创建一个函数,用于初始化我们的应用: go func main() { router := gin.Default() // 在这里添加你的路由和中间件... router.Run(":8080") } 在这个函数中,我们创建了一个新的路由器实例,并调用了其Run方法来启动我们的应用程序。 五、第一个Hello World示例 现在,让我们来看一个简单的例子,它将输出"Hello, Gin!"。 go router := gin.Default() router.GET("/", func(c gin.Context) { c.String(200, "Hello, Gin!") }) 当你运行这个程序并访问"http://localhost:8080/"时,你应该可以看到"Hello, Gin!"。 六、总结 Go Gin是一个强大而易于使用的Web开发框架。经过这篇教程的学习,你现在对如何亲手安装Go Gin这套工具已经门儿清了,而且还掌握了创建并跑起一个基础的Go Gin应用程序的独门秘籍。接下来,你可以试着解锁更多Go Gin的玩法,比如捣鼓捣鼓错误处理、尝试尝试模板渲染这些功能,这样一来,你的编程技能肯定能噌噌噌地往上涨!最后,祝愿你在学习Go Gin的过程中愉快!
2024-01-04 17:07:23
528
林中小径-t
Go-Spring
...现异常。其次,我们要分析异常的原因,找出问题的根源。最后,我们要修复异常,保证缓存服务的正常运行。 四、Go-Spring中的缓存服务异常案例分析 在Go-Spring中,我们可以使用第三方库如go-cache来进行缓存管理。下面我们将通过一个实际的案例,来分析和解决Go-Spring中缓存服务异常的问题。 首先,我们在项目中引入了go-cache库,并创建了一个缓存实例: go import "github.com/patrickmn/go-cache" cache, _ := cache.New(time.Duration(5time.Minute), time.Minute) 然后,我们在某个业务逻辑中,使用这个缓存实例来获取数据: go val, ok := cache.Get("key") if !ok { val = doSomeExpensiveWork() cache.Set("key", val, 5time.Minute) } 在这个案例中,如果我们的缓存服务出现了异常,那么就会导致缓存无法正确工作,从而影响到整个系统的运行。 五、解决缓存服务异常的方法 针对上述案例中的缓存服务异常问题,我们可以采取以下几种方法进行解决: 1. 监控缓存服务状态 我们可以通过日志或者告警工具,对缓存服务的状态进行实时监控,一旦发现异常,就可以立即进行处理。 2. 分析异常原因 对于出现的异常,我们需要对其进行详细的分析,找出问题的根源。可能的原因包括缓存数据过期、缓存污染等。 3. 修复异常 根据异常的原因,我们可以采取相应的措施进行修复。比如说,如果是因为缓存数据过期引发的问题,我们在给缓存设定有效期的时候,可以适当把它延长一下,就像把牛奶的保质期往后推几天,保证它不会那么快变质一样。 六、结论 总的来说,缓存服务异常是我们在使用Go-Spring时经常会遇到的问题。对于这个问题,咱们得瞪大眼睛瞧清楚,心里有个数,这样才能在第一时间察觉到任何不对劲的地方,迅速把它摆平。同时呢,咱们也得不断给自己充电、提升技能,好让自己能更游刃有余地应对那些越来越复杂的开发难题。 七、结尾 希望通过这篇文章,大家能够对缓存服务异常有一个更深入的理解,并学会如何去解决这类问题。如果你有任何其他的问题或者建议,欢迎留言讨论。让我们一起进步,共同成长!
2023-11-23 18:26:05
512
心灵驿站-t
Go Iris
...不准确 }() } time.Sleep(time.Second) // 等待所有goroutine执行完毕 fmt.Println(sharedData) // 输出的结果可能并不是预期的10 } 2. Go Iris中的数据共享策略 在Go Iris框架中,我们同样会面临多goroutine间的共享数据问题,比如在处理HTTP请求时,我们需要确保全局或上下文级别的变量在并发环境下正确更新。为了搞定这个问题,我们可以灵活运用Go语言自带的标准库里的sync小工具,再搭配上Iris框架的独特功能特性,双管齐下,轻松解决。 2.1 使用sync.Mutex进行互斥锁保护 go import ( "fmt" "sync" ) var sharedData int var mutex sync.Mutex // 创建一个互斥锁 func handleRequest(ctx iris.Context) { mutex.Lock() defer mutex.Unlock() sharedData++ fmt.Fprintf(ctx, "Current shared data: %d", sharedData) } func main() { app := iris.New() app.Get("/", handleRequest) app.Listen(":8080") } 在这个例子中,我们引入了sync.Mutex来保护对sharedData的访问。每次只有一个goroutine能获取到锁并修改数据,从而避免了竞态条件的发生。 2.2 利用Iris的Context进行数据传递 另一种在Go Iris中安全共享数据的方式是利用其内置的Context对象。你知道吗,每次发送一个HTTP请求时,就像开启一个新的宝藏盒子——我们叫它“Context”。这个盒子里呢,你可以存放这次请求相关的所有小秘密。重点是,这些小秘密只对发起这次请求的那个家伙可见,其他同时在跑的请求啊,都甭想偷瞄一眼,保证互不影响,安全又独立。 go func handleRequest(ctx iris.Context) { ctx.Values().Set("requestCount", ctx.Values().GetIntDefault("requestCount", 0)+1) fmt.Fprintf(ctx, "This is request number: %d", ctx.Values().GetInt("requestCount")) } func main() { app := iris.New() app.Get("/", handleRequest) app.Listen(":8080") } 在这段代码中,我们通过Context的Values方法在一个请求生命周期内共享和累加计数器,无需担心与其他请求冲突。 3. 结论与思考 在Go Iris框架中解决多goroutine间共享数据的问题,既可以通过标准库提供的互斥锁进行同步控制,也可以利用Iris Context本身的特性进行数据隔离。在实际项目中,应根据业务场景选择合适的解决方案,同时时刻牢记并发编程中的“共享即意味着同步”原则,以确保程序的正确性和健壮性。这不仅对Go Iris生效,更是我们在捣鼓Go语言,甚至任何能玩转并发编程的语言时,都得好好领悟并灵活运用的重要招数。
2023-11-28 22:49:41
540
笑傲江湖
ZooKeeper
...ss(WatchedEvent event) { if (event.getType() == Event.EventType.NodeDataChanged) { // 当数据变化时,重新获取最新数据 byte[] newData = zk.getData("/publishPath", true, stat); System.out.println("Received new data: " + new String(newData)); } } }, stat); // 初始获取一次数据 System.out.println("Initial data: " + new String(data)); 4. 探讨与思考 ZooKeeper在数据发布与订阅中的应用,体现了其作为分布式协调服务的核心价值。它灵巧地借助了数据节点的变更事件触发机制,这样一来,发布数据的人就不用操心那些具体的订阅者都有谁,只需要在ZooKeeper上对数据节点进行操作,就能轻轻松松完成数据的发布。另一方面,订阅数据的朋友也不必像以前那样傻傻地不断轮询查看更新,他们可以聪明地“坐等”ZooKeeper发出的通知——Watcher事件,一旦这个事件触发,他们就能立刻获取到最新鲜、热乎的数据啦! 然而,这并不意味着ZooKeeper在数据发布订阅中是万能的。在面对大量用户同时在线这种热闹非凡的场景时,ZooKeeper这家伙有个小毛病,就是单个Watcher只能蹦跶一次,通知完就歇菜了。所以呢,为了让每一个关心消息更新的订阅者都不错过任何新鲜事儿,我们不得不绞尽脑汁设计一套更巧妙、更复杂的提醒机制。不管怎样,ZooKeeper可真是个大救星,实实在在地帮我们在复杂的分布式环境下搞定了数据同步这个难题,而且还带给我们不少灵活巧妙的解决思路。 总结来说,ZooKeeper在数据发布与订阅领域的应用,就像是一位经验丰富的乐队指挥,精确而有序地指引着每一位乐手,在分布式系统的交响乐章中奏出和谐的旋律。
2023-07-04 14:25:57
73
寂静森林
ZooKeeper
...er.WatchedEvent; import org.apache.zookeeper.Watcher; import org.apache.zookeeper.ZooKeeper; public class ConfigCenter implements Watcher { private ZooKeeper zookeeper; private String configPath; public ConfigCenter(ZooKeeper zookeeper, String configPath) { this.zookeeper = zookeeper; this.configPath = configPath; } public void start() throws Exception { // 监听配置节点 zookeeper.exists(configPath, this); } @Override public void process(WatchedEvent event) { if (event.getType() == Event.EventType.NodeDataChanged) { try { byte[] data = zookeeper.getData(configPath, this, null); String config = new String(data, "UTF-8"); System.out.println("New configuration: " + config); } catch (Exception e) { e.printStackTrace(); } } } } 这段代码展示了如何创建一个配置中心,通过监听配置节点的变化来实时更新配置信息。这种机制不仅提高了系统的灵活性,也大大简化了配置管理的工作量。 6. 总结与展望 通过上面两个具体的案例,我们看到了ZooKeeper在实际项目中的广泛应用。无论是分布式锁还是配置中心,ZooKeeper都能为我们提供稳定可靠的支持。当然,ZooKeeper还有许多其他强大的功能等待我们去发掘。希望大家在今后的工作中也能多多尝试使用ZooKeeper,相信它一定能给我们的开发带来意想不到的帮助! --- 希望这篇文章能让你对ZooKeeper有更深刻的理解,并激发你进一步探索的兴趣。如果你有任何问题或者想了解更多细节,请随时留言交流!
2025-02-11 15:58:01
40
心灵驿站
转载文章
... 1 进行对应的网页分析 下拉数据属于动态的数据,鼠标点击输入框出现,划出输入框消失 所以先找到对应的数据包 就要进行抓包操作 1.1 抓包操作 发现其中的关键词,并复制 打开浏览器的开发者模式(快捷键F12)并点击这个搜索按钮 打开这个搜索按钮以后,进行粘贴操作 并且按下回车! 由图可知,只搜索到一个包,在查看这个包内容之前,应该就有90%的把握就是这个包了 点开查看(没错 就是这个包了) 小细节:Preview是渲染之后的结果 Response是写代码请求的结果 接下来我们就上代码 -- coding: UTF-8 --import jsonimport requestsfrom faker import Fakerdef get_aim(file_name):"""从文件里获取想要的关键词"""with open(file_name, mode='r', encoding='utf-8') as file:keys = file.read()return keysdef aim_letter(aim):"""获取到网页的json数据并保存到txt文件"""url = f'https://m.baidu.com/sugrec?pre=1&p=3&ie=utf-8&json=1&prod=wise&from=wise_web&sugsid=128699,138809,114177,135846,141002,138945,140853,141677,138878,137978,141200,140173,131246,132552,137743,138165,107315,138883,140259,141754,140201,138585,141650,138253,140114,136196,140325,140579,133847,140793,140066,134046,131423,137703,110085,127969,140957,141581,140593,140865,139886,138426,138941,141190,140596&net=&os=&sp=null&rm_brand=0&callback=jsonp1&wd{aim}&sugmode=2&lid=12389568409845924354&sugid=1990018821100998871&preqy=java&_=1580993331416'headers = {'User-Agent': Faker().user_agent(),'Host': 'm.baidu.com','Referer': 'https://m.baidu.com/ssid=4348023d/s?word={aim}&ts=3254538&t_kt=0&ie=utf-8&rsv_iqid=2845402975&rsv_t=daabpEKSG2wGueEO%252FnXSVz2dj3oGTk5cF1suYK9xduVIBAnyA5yo&sa=ib&rsv_pq=2845402975&rsv_sug4=5130&tj=1&inputT=2405&sugid=1990018821100998871&ss=100'}res = requests.get(url, headers=headers) 由于获取到的数据不是标准的json数据要进行字符串的删减result = json.loads(res.text.replace('jsonp1', '').strip('()')) 保存到txt文件with open(f'百度下拉词.txt', mode='a', encoding='utf-8') as file:for key in result['g']:file.write(key + '\n')def main():"""进行整合,并捕捉错误"""name = input('请输入文件的名字:')start_time = time.time()try:letter = get_aim(name).split('\n') 利用线程池加快爬取速度with concurrent.futures.ThreadPoolExecutor(max_workers=100) as executor:for l in letter:executor.submit(get_data, l)except:print('请检查文件名是否存在或者文件名是否错误!!')else: 提示用户完成并打印运行时间时间print('' 30 + f'<{name}> 百度相关词 已完成' + '' 30)finally:print(time.time() - start_time)if __name__ == '__main__':main() 在此 要感谢我的晨哥!!!哈哈 本篇文章为转载内容。原文链接:https://blog.csdn.net/Result_Sea/article/details/104201970。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-21 12:59:26
490
转载
Beego
...et/http" "time" ) var jwtSecret = []byte("your_secret_key") type Claims struct { Username string json:"username" jwt.StandardClaims } func loginHandler(c beego.Context) { username := c.Input().Get("username") password := c.Input().Get("password") // 这里应该有验证用户名和密码的逻辑 token := jwt.NewWithClaims(jwt.SigningMethodHS256, Claims{ Username: username, StandardClaims: jwt.StandardClaims{ ExpiresAt: time.Now().Add(time.Hour 72).Unix(), }, }) tokenString, err := token.SignedString(jwtSecret) if err != nil { c.Ctx.ResponseWriter.WriteHeader(http.StatusInternalServerError) return } c.Data[http.StatusOK] = []byte(tokenString) } func authMiddleware() beego.ControllerFunc { return func(c beego.Controller) { tokenString := c.Ctx.Request.Header.Get("Authorization") token, err := jwt.ParseWithClaims(tokenString, &Claims{}, func(token jwt.Token) (interface{}, error) { return jwtSecret, nil }) if claims, ok := token.Claims.(Claims); ok && token.Valid { // 将用户信息存储在session或者全局变量中 c.SetSession("user", claims.Username) c.Next() } else { c.Ctx.ResponseWriter.WriteHeader(http.StatusUnauthorized) } } } 3. 中间件与拦截器 - 利用Beego的中间件机制,我们可以为特定路由添加权限检查逻辑,从而避免重复编写相同的权限校验代码。 - 示例代码: go func AuthRequiredMiddleware() beego.ControllerFunc { return func(c beego.Controller) { if !c.GetSession("user").(string) { c.Redirect("/login", 302) return } c.Next() } } func init() { beego.InsertFilter("/admin/", beego.BeforeRouter, AuthRequiredMiddleware) } 四、实际应用案例分析 让我们来看一个具体的例子,假设我们正在开发一款在线教育平台,需要对不同类型的用户(学生、教师、管理员)提供不同的访问权限。例如,只有管理员才能删除课程,而学生只能查看课程内容。 1. 定义用户类型 - 我们可以通过枚举类型来表示不同的用户角色。 - 示例代码: go type UserRole int const ( Student UserRole = iota Teacher Admin ) 2. 实现权限验证逻辑 - 在每个需要权限验证的操作之前,我们都需要先判断当前登录用户是否具有相应的权限。 - 示例代码: go func deleteCourse(c beego.Controller) { if userRole := c.GetSession("role"); userRole != Admin { c.Ctx.ResponseWriter.WriteHeader(http.StatusForbidden) return } // 执行删除操作... } 五、总结与展望 通过上述讨论,我们已经了解了如何在Beego框架下实现基本的用户权限管理系统。当然,实际应用中还需要考虑更多细节,比如异常处理、日志记录等。另外,随着业务越做越大,你可能得考虑引入一些更复杂的权限管理系统了,比如可以根据不同情况灵活调整的权限分配,或者可以精细到每个小细节的权限控制。这样能让你的系统管理起来更灵活,也更安全。 最后,我想说的是,无论采用哪种方法,最重要的是始终保持对安全性的高度警惕,并不断学习最新的安全知识和技术。希望这篇文章能对你有所帮助! --- 希望这样的风格和内容符合您的期待,如果有任何具体需求或想要进一步探讨的部分,请随时告诉我!
2024-10-31 16:13:08
167
初心未变
SpringBoot
...it: 60000 time-between-eviction-runs-millis: 60000 min-evictable-idle-time-millis: 300000 validation-query: SELECT 1 FROM DUAL test-while-idle: true test-on-borrow: false test-on-return: false 这段配置看似简单,但实际上每一项参数都需要仔细斟酌。比如说啊,“max-wait”这个参数呢,就是说咱们能等连接连上的最长时间,单位是毫秒,相当于给它设了个“最长等待时间”;然后还有个“validation-query”,这个名字听起来就挺专业的,它的作用就是检查连接是不是还正常好用;最后那个“test-while-idle”,它就像是个“巡逻兵”,负责判断要不要在连接空闲的时候去检测一下这条连接还能不能用。 --- 4. 查询超时问题的初步排查 当我第一次遇到查询超时问题时,我的第一反应是:是不是Oracle那边的SQL语句太慢了?于是,我开始检查SQL语句的性能。 4.1 检查SQL语句 我用PL/SQL Developer连接到Oracle数据库,运行了一下报错的SQL语句。结果显示,这条SQL语句确实需要花费较长时间才能完成。但问题是,为什么Spring Boot会直接抛出超时异常呢? 这时,我才意识到,可能是Druid的数据源配置有问题。于是我翻阅了Druid的官方文档,发现了一个关键点:Druid默认的查询超时时间为10秒。 4.2 修改Druid的查询超时时间 为了延长查询超时时间,我在application.yml中加入了以下配置: yaml spring: datasource: druid: query-timeout: 30000 这里的query-timeout参数就是用来设置查询超时时间的,单位是毫秒。经过这次调整后,我发现查询超时的问题暂时得到了缓解。 --- 5. 进一步优化 结合Oracle的设置 虽然Druid的配置解决了部分问题,但我仍然觉得不够完美。于是,我又转向了Oracle数据库本身的设置。 5.1 设置Oracle的查询超时 在Oracle中,可以通过设置statement_timeout参数来控制查询超时时间。这个参数可以在会话级别或全局级别进行设置。 例如,在Spring Boot项目中,我们可以通过JDBC连接字符串传递这个参数: yaml spring: datasource: url: jdbc:oracle:thin:@localhost:1521:orcl?oracle.net.CONNECT_TIMEOUT=30000&oracle.jdbc.ReadTimeout=30000 这里的CONNECT_TIMEOUT和ReadTimeout分别表示连接超时时间和读取超时时间。通过这种方式,我们可以进一步提高系统的容错能力。 --- 6. 我的感悟与总结 经过这次折腾,我对Spring Boot与Druid的集成有了更深的理解。说实话,好多技术难题没那么玄乎,就是看着吓人而已。只要你肯静下心来琢磨琢磨,肯定能想出个辙来! 在这里,我也想给新手朋友们一些建议: 1. 多看官方文档 无论是Spring Boot还是Druid,它们的官方文档都非常详细,很多时候答案就在那里。 2. 学会调试 遇到问题时,不要急于求解,先用调试工具一步步分析问题所在。 3. 保持耐心 技术问题往往需要反复尝试,不要轻易放弃。 最后,我想说的是,编程之路充满了挑战,但也正因为如此才显得有趣。希望大家都能在这个过程中找到属于自己的乐趣! --- 好了,这篇文章就到这里啦!如果你也有类似的经历或想法,欢迎在评论区跟我交流哦!
2025-04-21 15:34:10
40
冬日暖阳_
Golang
... 三、案例分析 内存泄漏的陷阱 示例代码1: go package main import "fmt" func main() { var largeArray [1000000]int // 创建一个大数组 for i := 0; i < 1000000; i++ { largeArray[i] = i i // 每个元素都是i的平方 } fmt.Println("Memory usage:", memoryUsage()) // 打印内存使用情况 } // 计算当前进程的内存使用量 func memoryUsage() int64 { // 实际的内存计算函数,这里简化为返回固定值 return 1024 1024 10 // 单位为字节 } 这段代码看似简单,却隐藏着内存泄漏的陷阱。哎呀,你瞧这大数组largeArray在循环里头转悠,占了满满一屋子的空间呢!可别小看了这事儿,要是循环一结束,咱们不赶紧把用过的资源还回去,那这些宝贵的空间就白白浪费了,慢慢地,咱们手里的内存就像水龙头的水一样,越用越少,到最后可能连最基本的运行都成问题啦!所以啊,记得干完活儿就收工,别让资源闲置! 四、应对策略 识别并解决内存问题 策略1:合理使用内存池(Memory Pool) 内存池是一种预先分配并管理内存块的方法,可以减少频繁的内存分配和释放带来的性能损耗。在Golang中,可以通过sync.Pool来实现内存池的功能。 go package main import ( "sync" ) var pool = sync.Pool{ New: func() interface{} { return make([]int, 1000) }, } func main() { for i := 0; i < 1000; i++ { data := pool.Get().([]int) // 从内存池获取数据 defer pool.Put(data) // 使用完毕后归还到内存池 // 对数据进行操作... } } 策略2:优化数据结构和算法 在处理大量数据时,选择合适的数据结构和算法对于降低内存消耗至关重要。例如,使用链表而非数组,可以避免一次性分配大量内存。 策略3:使用Go的内置工具检查内存使用情况 利用pprof工具可以深入了解程序的内存使用情况,帮助定位内存泄漏点。 sh go tool pprof ./your_binary 五、实战演练 构建一个安全的并发处理程序 在并发场景下,内存管理变得更加复杂。错误的并发控制策略可能导致死锁或内存泄露。 示例代码2: go package main import ( "sync" "time" ) var wg sync.WaitGroup var mutex sync.Mutex func worker(id int) { defer wg.Done() time.Sleep(5 time.Second) mutex.Lock() defer mutex.Unlock() fmt.Printf("Worker %d finished\n", id) } func main() { for i := 0; i < 10; i++ { wg.Add(1) go worker(i) } wg.Wait() } 通过合理使用sync.WaitGroup和sync.Mutex,我们可以确保所有工作线程安全地执行,并最终正确地关闭所有资源。 六、结语 从错误中学习,不断进步 面对“内存不足错误”,关键在于理解其背后的原因,而不是简单的错误提示。通过实践、分析和优化,我们不仅能解决眼前的问题,还能提升代码质量和效率。记住,每一次挑战都是成长的机会,让我们带着对技术的好奇心和探索精神,不断前进吧! --- 本文旨在提供一个全面的视角,帮助开发者理解和解决Golang中的内存管理问题。嘿,无论你是编程界的菜鸟还是老司机,记得,内存管理这事儿,可得放在心上!就像开车得注意油表一样,编程时管理好内存,能让你的程序跑得又快又好,不卡顿,不崩盘。别怕,多练练手,多看看教程,慢慢你就成了那个内存管理的小能手。记住,学无止境,技术提升也是这样,一点一滴积累,你的编程技能肯定能上一个大台阶!
2024-08-14 16:30:03
116
青春印记
Etcd
... 四、案例分析 Etcd中的日志清理策略冲突 假设我们正在管理一个Etcd集群,用于存储服务配置信息。为了优化存储空间并提高响应速度,我们计划实施定期的日志清理策略。具体策略如下: - 策略一:每日凌晨0点,清理所有超过7天历史的过期日志条目。 - 策略二:每月末,清理所有超过30天历史的过期日志条目。 问题:当策略一和策略二同时执行时,可能会出现冲突。想象一下,就像你家的书架,有一天你整理了书架(策略一),把一些不再需要的书拿走了,但过了22天,你的朋友又来帮忙整理(策略二),又把一些书从书架上取了下来。这样一来,原本在书架上的书,因为两次整理,可能就不见了,这就是数据丢失的意思。 五、解决策略 优化日志清理逻辑 为了解决上述策略冲突,我们可以采取以下措施: 1. 引入版本控制 在Etcd中,每条日志都关联着一个版本号。通过维护版本号,可以准确追踪每个操作的历史状态,避免不必要的数据删除。 代码示例: go // 假设etcdClient为Etcd客户端实例 resp, err := etcdClient.Put(context.Background(), "/config/key", "value", clientv3.WithVersion(1)) if err != nil { log.Fatalf("Failed to put value: %s", err) } 2. 实施并行清理机制 设计一个系统级别的时间线清理逻辑,确保同一时间点的数据不会被重复清理。 代码示例: go // 清理逻辑函数 func cleanupLogs() error { // 根据时间戳进行清理,避免冲突 // 实现细节略去 return nil } 3. 引入审计跟踪 对于关键操作,如日志清理,记录详细的审计日志,便于事后审查和问题定位。 代码示例: go // 审计日志记录函数 func auditLog(operation string, timestamp time.Time) { // 记录审计日志 // 实现细节略去 } 六、总结与反思 通过上述策略和代码示例的讨论,我们可以看到在Etcd集群中管理日志清理策略时,需要细致考虑各种潜在的冲突和影响。哎呀,你得知道,咱们要想在项目里防住那些让人头疼的策略冲突,有几个招儿可使。首先,咱们得搞个版本控制系统,就像有个大本营,随时记录着每个人对代码的修改,这样就算有冲突,也能轻松回溯,找到问题源头。然后,咱还得上个并行清理机制,就像是给团队的工作分配任务时,能确保每个人都清楚自己的责任,不会乱了套,这样就能大大减少因为分工不明产生的冲突。最后,建立一个审计跟踪系统,就相当于给项目装了个监控,每次有人改动了什么,都得有迹可循,这样一来,一旦出现矛盾,就能快速查清谁是谁非,解决起来也快多了。这三招合在一起,简直就是防冲突的无敌组合拳啊!嘿,兄弟!你得知道,监控和评估清理策略的执行效果,然后根据实际情况灵活调整,这可是保证咱们系统健健康康、高效运作的不二法门!就像咱们打游戏时,随时观察自己的状态和环境变化,及时调整战术一样,这样才能稳坐钓鱼台,轻松应对各种挑战嘛! --- 通过本文的探讨,我们不仅深入理解了Etcd集群日志清理策略的重要性和可能遇到的挑战,还学习了如何通过实际的代码示例来解决策略冲突,从而为构建更稳定、高效的分布式系统提供了实践指导。
2024-07-30 16:28:05
456
飞鸟与鱼
MySQL
...描述符迅速增加。经过分析,这些问题主要出现在涉及大文件读写的场景中。所以呢,我觉得咱们开发的小伙伴们得好好捯饬捯饬这些查询语句啦!比如说,能不能少建那些没用的临时表啊?再比如,能不能换个更快的存储引擎啥的?反正就是得让这个程序跑得更顺畅些,别老是卡在那里干瞪眼不是? --- 4. 总结与反思 从问题中学到的东西 回顾这次经历,我深刻体会到,处理数据库问题时,不能仅凭直觉行事,而是要结合实际数据和技术手段,逐步排查问题的根本原因。同时,我也认识到,预防胜于治疗。如果能在日常运维中提前做好监控和预警,就可以避免很多突发状况。 最后,我想分享一点个人感悟:技术之路永无止境,每一次遇到难题都是一次成长的机会。说实话,有时候真的会觉得头大,甚至怀疑自己是不是走错了路。但我觉得啊,这就好比在黑暗里找钥匙,你得不停地摸索、试错才行。只要别轻易放弃,一直在学、一直在练,总有一天你会发现,“!原来它在这儿呢!”就跟我在处理这个MySQL报错的时候似的,最后不光把问题搞定了,还顺带学了不少实用的招儿呢! 如果你也遇到了类似的情况,不妨试试上面提到的方法,也许能帮到你!
2025-04-17 16:17:44
109
山涧溪流_
Golang
... ( "fmt" "time" ) func producer(ch chan<- int) { for i := 0; i < 5; i++ { ch <- i fmt.Println("Produced:", i) time.Sleep(500 time.Millisecond) } close(ch) } func consumer(ch <-chan int) { for num := range ch { fmt.Println("Consumed:", num) } } func main() { ch := make(chan int) go producer(ch) consumer(ch) } 在这个例子中,producer函数向通道发送数据,而consumer函数从通道接收数据。用这种方法,咱们就能又优雅又稳妥地搞定多线程里的同步难题,还不用担心被死锁给缠上。 --- 3. 内存管理 GC的奥秘 接下来谈谈内存管理。Go的垃圾回收器(GC)是它的一大亮点。就像用老式工具编程一样,C/C++这种传统语言就得让程序员自己动手去清理内存,稍不留神,就可能搞出内存泄漏,或者戳到那些讨厌的野指针,简直让人头大!而Go则完全解放了我们的双手,它会自动帮你清理不再使用的内存。 不过,GC也不是万能的。有时候,如果你对性能要求特别高,可能会遇到GC停顿的问题。为了解决这个问题,Go团队一直在优化GC算法。最新版本中引入了分代GC(Generational GC),大幅降低了停顿时间。 那么,我们在实际开发中应该如何减少GC的压力呢?最直接的方法就是尽量避免频繁的小对象分配。比如,我们可以复用一些常见的结构体,而不是每次都新建它们: go type Buffer struct { data []byte } func NewBuffer(size int) Buffer { return &Buffer{data: make([]byte, size)} } func (b Buffer) Reset() { b.data = b.data[:0] } func main() { buf := NewBuffer(1024) for i := 0; i < 100; i++ { buf.Reset() // 使用buf... } } 在这个例子中,我们通过Reset()方法复用了同一个Buffer实例,而不是每次都调用make([]byte, size)重新创建一个新的切片。这样可以显著降低GC的压力。 --- 4. 网络优化 TCP/IP的实战 再来说说网络优化。Go的net包提供了强大的网络编程支持,无论是HTTP、WebSocket还是普通的TCP/UDP,都能轻松搞定。特别是对那些高性能服务器而言,怎么才能又快又稳地搞定海量连接,这简直就是一个绕不开的大难题啊! 举个例子,假设我们要实现一个简单的HTTP长连接服务器。传统的做法可能是监听端口,然后逐个处理请求。但这种方式效率不高,特别是在高并发场景下。Go提供了一个更好的解决方案——使用net/http包的Serve方法: go package main import ( "log" "net/http" ) func handler(w http.ResponseWriter, r http.Request) { w.Write([]byte("Hello, World!")) } func main() { http.HandleFunc("/", handler) log.Fatal(http.ListenAndServe(":8080", nil)) } 这段代码看起来很简单,但它实际上已经具备了处理大量并发连接的能力。为啥呢?就是因为Go语言里的http.Server自带了一个超级能打的“工具箱”,里面有个高效的连接池和请求队列,遇到高并发的情况时,它就能像一个经验丰富的老司机一样,把各种请求安排得明明白白,妥妥地hold住场面! 当然,如果你想要更底层的控制,也可以直接使用net包来编写TCP服务器。比如下面这个简单的TCP回显服务器: go package main import ( "bufio" "fmt" "net" ) func handleConnection(conn net.Conn) { defer conn.Close() reader := bufio.NewReader(conn) for { message, err := reader.ReadString('\n') if err != nil { fmt.Println("Error reading:", err) break } fmt.Print("Received:", message) conn.Write([]byte(message)) } } func main() { listener, err := net.Listen("tcp", ":8080") if err != nil { fmt.Println("Error listening:", err) return } defer listener.Close() fmt.Println("Listening on :8080...") for { conn, err := listener.Accept() if err != nil { fmt.Println("Error accepting:", err) continue } go handleConnection(conn) } } 在这个例子中,我们通过listener.Accept()不断接受客户端连接,并为每个连接启动一个协程来处理请求。这种模式非常适合处理大量短连接的场景。 --- 5. 代码结构 模块化与可扩展性 最后,我们来聊聊代码结构。一个高性能的服务器不仅仅依赖于语言特性,还需要良好的设计思路。Go语言特别推崇把程序分成小块儿来写,就像搭积木一样,每个功能都封装成独立的小模块或包。这样不仅修 bug 的时候方便找问题,写代码的时候也更容易看懂,以后想加新功能啥的也简单多了。 比如,假设我们要开发一个分布式任务调度系统,可以按照以下方式组织代码: go // tasks.go package task type Task struct { ID string Name string Param interface{} } func NewTask(id, name string, param interface{}) Task { return &Task{ ID: id, Name: name, Param: param, } } // scheduler.go package scheduler import "task" type Scheduler struct { tasks []task.Task } func NewScheduler() Scheduler { return &Scheduler{ tasks: make([]task.Task, 0), } } func (s Scheduler) AddTask(t task.Task) { s.tasks = append(s.tasks, t) } func (s Scheduler) Run() { for _, t := range s.tasks { fmt.Printf("Executing task %s\n", t.Name) // 执行任务逻辑... } } 通过这种方式,我们将任务管理和调度逻辑分离出来,使得代码更加清晰易懂。同时,这样的设计也方便未来扩展新的功能,比如添加日志记录、监控指标等功能。 --- 6. 总结与展望 好了,到这里咱们就差不多聊完了如何用Go语言进行高性能服务器开发。说实话,写着这篇文章的时候,我脑海里突然蹦出大学时那股子钻研劲儿,感觉就像重新回到那些熬夜敲代码的日子了,整个人都热血上头!Go这门语言真的太带感了,简单到没话说,效率还超高,稳定性又好得没话说,简直就是程序员的救星啊! 不过,我也想提醒大家一句:技术再好,最终还是要服务于业务需求。不管你用啥法子、说啥话,老老实实问问自己:“这招到底管不管用?是不是真的解决问题了?”这才是真本事! 希望这篇文章对你有所帮助,如果你有任何疑问或者想法,欢迎随时留言讨论!让我们一起继续探索Go的无限可能吧!
2025-04-23 15:46:59
40
桃李春风一杯酒
Python
...le import time 设定一个作业 def job(): print("每天按时作业已运行") 设定一个按时器,每日的7:30运行作业 schedule.every().day.at("7:30").do(job) 无限循环来运行按时作业 while True: schedule.run_pending() time.sleep(1) 以上代码中,我们引入了两个库,一个是schedule,另一个是time。schedule是一个Python库,它可以帮助我们进行按时作业的调度。time则是Python内置的时间模块,主要用于线程等待。 我们首先需要设定我们要运行的作业,这里我们简单地打印一句话。接着,我们使用schedule.every().day.at("7:30").do(job)来设定作业的按时运行时间。最后一步,我们通过一个无限循环来持续不断地运行按时作业。 通过以上的代码,我们就可以完成每天按时作业了。如果我们需要运行其他的作业,也可以在job()函数中添加相应的代码。同时,我们也可以通过修改schedule.every().day.at("7:30")来设定运行作业的时间。
2023-01-01 19:28:30
351
软件工程师
VUE
...ing(); setTimeout(() =>{ this.stopRecording(); }, 5000); }, stopRecording() { this.$refs.mediaRecorder.stopRecording(); }, saveRecording() { const formData = new FormData(); formData.append('time', new Date()); formData.append('video', this.videoBlob); // API call to send data to backend } }, watch: { videoBlob(val) { if (val) { this.saveRecording(); } } } } 在startRecording()函数中,我们使用setTimeout()函数来延后终止录制,这样我们就可以拍摄指定时间的延后影片。然后,在stopRecording()函数中,我们终止录制并将影片保存在videoBlob变量中。最后,在saveRecording()函数中,我们将影片资料和时间戳等信息一起传输到服务器端加工。 在 Vue 中使用延时拍摄功能非常简易,我们只需要添加一些代码和使用相应的部件库即可。以上代码仅供参考。在实际开发中,我们需要对其进行适度的调整。希望这篇文章能够帮助你更好地理解 Vue 中的延时拍摄功能。
2023-07-16 10:09:08
87
程序媛
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
chown user:group file.txt
- 改变文件的所有者和组。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"