前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[远程调用协议的兼容性设计实践 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Maven
...aven的最新动态与实践应用将有助于开发者更好地掌握这一项目管理工具。近期,Apache Maven团队发布了Maven 4.0-alpha-1版本,引入了一系列改进和新特性,包括对构建生命周期的优化、性能提升以及对Java 16+版本的支持。此版本更加注重标准化和向后兼容性,减少了无效生命周期阶段错误的可能性。 此外,对于持续集成和DevOps场景,Jenkins、GitLab CI/CD等工具已全面支持Maven项目的自动化构建与部署,用户可通过配置文件精确控制Maven生命周期的执行顺序与插件使用,从而避免出现Invalidlifecyclephase错误。同时,建议开发者关注官方文档的更新内容,紧跟Maven社区的发展步伐,及时了解并适应新的最佳实践。 另外,有开发专家在技术博客中深度剖析了Maven插件的自定义实现与扩展机制,通过引证实际案例说明如何正确编写插件以遵循Maven规范,防止因插件问题导致的生命周期阶段错误。这为解决Invalidlifecyclephase问题提供了更深层次的理解和更为灵活的应对策略。 总之,在面对Maven Invalidlifecyclephase这类问题时,不仅需要扎实的基础知识,还要保持对Maven生态发展的敏锐度,并积极参考行业内的实践经验和前沿解读,才能确保在项目构建过程中高效无误地推进。
2023-05-18 13:56:53
155
凌波微步_t
c++
...深入探讨 类型安全与兼容性 类型转换不仅解决了问题,还涉及到了程序的类型安全性和兼容性。哎呀,兄弟,用对了类型转换,你的代码就像变魔术一样灵活,能适应各种场合,可是一不小心用多了,就像在厨房里放太多调料,味道可能就怪怪的,还可能影响速度,甚至有时候你都发现不了问题出在哪。所以啊,用类型转换得有个度,不能太贪心,适量就好! 5. 实例三 类型转换与函数参数 考虑这样一个场景,你需要将不同的类型作为函数的参数传递,而这些类型之间可能存在转换的需求: cpp include template auto add(T a, U b) -> decltype(a + b) { return a + b; } int main() { int a = 5; float b = 3.14; auto result = add(a, b); std::cout << "a + b = " << result << std::endl; return 0; } 这里我们定义了一个模板函数add,它可以接受任意类型的参数,并且通过decltype确保了返回类型的一致性,即使输入类型不同。 6. 结论 从困惑到精通 通过以上的示例和讨论,我们可以看到类型不匹配在C++编程中的常见性和解决方法。哎呀,这事儿关键啊,就是得搞懂不同类型的转换规则,还有怎么在编程的时候机智地用上类型转换,这样子才能避免踩坑!就像是在玩变形金刚的游戏,知道怎么变形成不同的形态,才能在战斗中游刃有余,对吧?所以,这事儿可得仔细琢磨,别让小错误给你整得满头大汗的。随着实践的增多,你会逐渐习惯于处理这类问题,从而在编程过程中更加游刃有余。 编程是一门艺术,也是一门需要不断学习和实践的技能。哎呀,遇到C++这种语言的类型不匹配问题了?别急,咱得有点好奇心,敢想敢干才行!就像在探险一样,每次遇到难题都是新发现的机会。别怕动手尝试,多实践几次,你会发现,驾驭这门强大的语言其实挺有趣的。就像解开一个又一个谜题,每一次成功都让你成就感满满。别忘了,创作精彩代码,就跟做艺术品一样,需要点想象力和创意。加油,你肯定能做出让人眼前一亮的作品!
2024-09-14 16:07:23
23
笑傲江湖
RabbitMQ
...与HTTP和gRPC协议无缝集成后,我们发现现代分布式架构对消息队列的依赖正日益增强。事实上,随着云原生技术和微服务架构的发展,Kafka、NATS和Pulsar等其他高效的消息中间件也逐渐崭露头角,并在不同场景下展现出各自的优势。 近期,Google Cloud Pub/Sub就因其强大的可扩展性和实时性,在大规模数据处理和事件驱动架构中受到广泛关注。其设计借鉴了消息队列模式,同时优化了对大数据量、高并发场景的支持。而在微服务通信领域,gRPC除了能与RabbitMQ结合使用外,还与Istio等服务网格技术紧密结合,为服务间通信提供了更强大且安全的解决方案。 此外,对于追求极简设计和高性能的服务间通信,NATS.io提供了一种轻量级的发布/订阅模型,特别适用于容器化和边缘计算环境。其设计理念强调低延迟和高吞吐,使得NATS在物联网(IoT)和实时应用中有独特优势。 综上所述,尽管RabbitMQ在与HTTP和gRPC集成方面表现突出,但在实际应用中,开发团队还需根据项目需求、性能指标及运维复杂度,灵活选择最适合的消息传递工具和技术栈,以构建更为健壮、高效的分布式系统。与此同时,持续关注业界动态和技术发展趋势,将有助于我们在瞬息万变的技术浪潮中找到最佳实践。
2024-02-23 11:44:00
93
笑傲江湖-t
HessianRPC
...RPC是一种轻量级的远程过程调用(RPC)协议,以其高效、快速的性能而受到开发者们的青睐。然而,随着系统规模的扩大,连接池管理成为了一个不容忽视的问题。本文将探讨HessianRPC的连接池优化策略,带你走进这个看似简单实则复杂的领域。 二、HessianRPC简介 1.1 什么是HessianRPC HessianRPC由Yahoo!开发,它将Java对象序列化为XML或JSON格式,通过HTTP进行传输。其特点是序列化和反序列化速度快,适合对性能要求较高的场景。 1.2 HessianRPC的工作原理 HessianRPC的核心是HessianSerializer,它负责对象的序列化和反序列化。你在手机APP上点击那个神奇的“调用”按钮,它就像个小能手一样,瞬间通过网络把你的请求打包成一个小包裹,然后嗖的一下发送给服务器。服务器收到后,就像拆快递一样迅速处理那些方法,搞定一切后又会给客户端回复反馈,整个过程悄无声息又高效极了。 三、连接池的重要性 2.1 连接池的定义 连接池是一种复用资源的技术,用于管理和维护一个预先创建好的连接集合,当有新的请求时,从连接池中获取,使用完毕后归还,避免频繁创建和销毁连接带来的性能损耗。 2.2 连接池在HessianRPC中的作用 对于HessianRPC,连接池可以显著减少网络开销,特别是在高并发场景下,避免了频繁的TCP三次握手,提高了响应速度。不过嘛,我们要琢磨的是怎么恰当地摆弄那个连接池,别整得太过了反而浪费资源,这是接下来的头等大事。 四、连接池优化策略 3.1 连接池大小设置 - 理论上,连接池大小应根据系统的最大并发请求量来设定。要是设置得不够给力,咱们的新链接就可能像赶集似的不断涌现,让服务器压力山大;可要是设置得太过豪放,又会像个大胃王一样猛吞内存,资源紧张啊。 - 示例代码: java HessianProxyFactory factory = new HessianProxyFactory(); factory.setConnectionPoolSize(100); // 设置连接池大小为100 MyService service = (MyService) factory.create("http://example.com/api"); 3.2 连接超时和重试策略 - 针对网络不稳定的情况,我们需要设置合理的连接超时时间,并在超时后尝试重试。 - 示例代码: java factory.setConnectTimeout(5000); // 设置连接超时时间为5秒 factory.setRetryCount(3); // 设置最多重试次数为3次 3.3 连接池维护 - 定期检查连接池的状态,清理无用连接,防止连接老化导致性能下降。 - 示例代码(使用Apache HttpClient的PoolingHttpClientConnectionManager): java CloseableHttpClient httpClient = HttpClients.custom() .setConnectionManager(new PoolingHttpClientConnectionManager()) .build(); 五、连接池优化实践与反思 4.1 实践案例 在实际项目中,我们可以通过监控系统的连接数、请求成功率等指标,结合业务场景调整连接池参数。例如,根据负载均衡器的流量数据动态调整连接池大小。 4.2 思考与挑战 尽管连接池优化有助于提高性能,但过度优化也可能带来复杂性。你知道吗,我们总是在找寻那个奇妙的平衡点,就是在提升功能强大度的同时,还能让代码像诗一样简洁,易读又易修,这事儿挺有意思的,对吧? 六、结论 HessianRPC的连接池优化是一个持续的过程,需要根据具体环境和需求进行动态调整。要想真正摸透它的运作机制,还得把你实践经验的那套和实时监控的数据结合起来,这样咱才能找出那个最对路的项目优化妙招,懂吧?记住,优化不是目的,提升用户体验才是关键。希望这篇文章能帮助你更好地理解和应用HessianRPC连接池优化技术。
2024-03-31 10:36:28
504
寂静森林
HessianRPC
...Hessian服务的调用频率或QPS? 在分布式系统中,HessianRPC作为一种轻量级、高性能的远程服务调用框架被广泛应用。不过,在实际情况里头,我们可能得对服务的呼叫次数或者每秒查问数量(QPS)动手脚,好比调节个阀门,防止一下子涌进来的超高流量把服务给压垮了,甚至闹出崩溃这种大动静。本文将探讨如何实现这一目标,并通过实例代码展示具体操作过程。 1. HessianRPC简介 首先,我们简要回顾一下HessianRPC。这个东西,是Caucho Technology公司精心研发的一种利用HTTP协议的二进制RPC传输技术。说白了,就是一种能让数据以超快的速度进行打包和解包的黑科技,特别适合在微服务架构这种环境下用来远程“召唤”其他服务,效率贼高!但在默认情况下,HessianRPC并不提供对服务调用频率或QPS的直接限制功能。 2. 为何需要限制QPS? 在高并发环境下,服务端如果没有适当的保护措施,可能会因短时间内接收到过多请求而超负荷运转,进而影响系统的稳定性和响应速度。因此,为HessianRPC服务设置合理的QPS限制是保障系统健康运行的重要手段之一。 3. 实现方案 使用RateLimiter进行限流 Google Guava库中的RateLimiter组件可以很好地帮助我们实现QPS的限制。下面是一个使用Guava RateLimiter配合HessianRPC进行限流的示例: java import com.caucho.hessian.client.HessianProxyFactory; import com.google.common.util.concurrent.RateLimiter; public class HessianServiceCaller { private final HessianProxyFactory factory = new HessianProxyFactory(); private final RateLimiter rateLimiter = RateLimiter.create(10); // 每秒最大10个请求 public void callService() { if (rateLimiter.tryAcquire()) { // 尝试获取令牌,成功则执行调用 SomeService service = (SomeService) factory.create(SomeService.class, "http://localhost:8080/someService"); service.someMethod(); // 调用远程方法 } else { System.out.println("调用过于频繁,请稍后再试"); // 获取令牌失败,提示用户限流 } } } 在这个示例中,我们创建了一个RateLimiter实例,设定每秒最多允许10次请求。在打算呼唤Hessian服务之前,咱们先来个“夺令牌大作战”,从RateLimiter那里试试能不能拿到通行证。如果幸运地拿到令牌了,那太棒了,咱们就继续下一步,执行服务调用。但如果不幸没拿到,那就说明现在请求的频率已经超过我们预先设定的安全值啦,这时候只好对这次请求说抱歉,暂时不能让它通过。 4. 进阶策略 结合服务熔断与降级 单纯依赖QPS限制还不够全面,通常还需要结合服务熔断和服务降级机制,例如采用Hystrix等工具来增强系统的韧性。在咱们实际做项目的时候,完全可以按照业务的具体需求,灵活设计些更高级、更复杂的限流方案。比如说,就像“滑动窗口限流”这种方式,就像是给流量装上一个可以灵活移动的挡板;又或者是采用“漏桶算法”,这就如同你拿个桶接水,不管水流多猛,都只能以桶能承受的速度慢慢流出。这样的策略,既实用又能精准控制流量,让我们的系统运行更加稳健。 5. 总结 在面对复杂多变的生产环境时,理解并合理运用HessianRPC的服务调用频率控制至关重要。使用Guava的RateLimiter或者其他的限流神器,我们就能轻松把控服务的每秒请求数(QPS),这样一来,就算流量洪水猛兽般袭来,也能保证咱的服务稳如泰山,不会被冲垮。同时呢,我们也要像鹰一样,始终保持对技术的锐利眼光,瞅准业务的特点和需求,灵活机动地挑选并运用那些最适合的限流策略。这样一来,咱们就能让整个分布式系统的稳定性和健壮性蹭蹭往上涨,就像给系统注入了满满的活力。
2023-12-08 21:23:59
523
追梦人
Etcd
...Etcd与服务治理的实践 一、初识Etcd 从概念到应用 在深入讨论Etcd如何助力服务治理之前,我们先聊聊什么是Etcd。Etcd是一款高可用的分布式键值存储系统,常用于配置共享和服务发现。这家伙不仅能搞定可靠的分布式锁和Leader选举这些活儿,还在Kubernetes里大展身手,成了管理集群状态的得力干将。想象一下,有这么一群人站在一个大屋子里,每个人都想找个好位置站,又怕挤到别人,所以大家都小心翼翼地挪动着,想找一个既舒服又不太挤的地方。这时候就得有个东西来协调大家的位置了,Etcd就像个指挥家,用简单的指令(键值对)告诉大家该往哪儿挪动。 二、服务注册与发现 Etcd的初次登场 在服务治理领域,服务注册与发现是至关重要的环节。简单来说,就是让服务知道其他服务的存在。以Etcd为例,我们可以通过它来实现服务的动态注册和发现。例如,假设我们有一个微服务架构的应用,其中包含多个微服务。我们可以利用Etcd来注册这些服务实例,并允许其他服务通过查询Etcd来发现它们。 代码示例1:使用Python客户端操作Etcd进行服务注册。 python from etcd3 import Client 创建Etcd客户端 etcd = Client(host='127.0.0.1', port=2379) 定义服务名称和地址 service_name = "example_service" service_address = "192.168.1.100:8080" 注册服务到Etcd def register_service(): key = f'/services/{service_name}' value = service_address.encode('utf-8') 设置键值对,代表服务注册 etcd.put(key, value) print(f"服务已注册:{key} -> {value.decode()}") register_service() 三、动态配置管理 灵活性的提升 服务治理不仅限于静态的服务发现,还包括动态配置管理。通过Etcd,我们可以轻松地管理和更新应用程序的配置信息,而无需重启服务。这种方式极大地提高了系统的灵活性和响应速度。 代码示例2:动态读取配置并根据配置调整服务行为。 python import json 获取服务配置 def get_config(service_name): key = f'/config/{service_name}' result = etcd.get(key) if result: return json.loads(result[0].decode()) return {} 根据配置调整服务行为 def adjust_behavior(config): if config.get("debug_mode", False): print("当前处于调试模式") else: print("正常运行模式") 示例调用 config = get_config(service_name) adjust_behavior(config) 四、服务健康检查与负载均衡 保证服务稳定性的关键 为了确保服务的稳定性和高效运行,我们还需要实施健康检查和负载均衡策略。通过Etcd,我们可以定期检查服务节点的状态,并将流量分配给健康的节点,从而提高系统的整体性能和稳定性。 代码示例3:模拟健康检查流程。 python import time 健康检查函数 def health_check(service_name): 模拟检查逻辑,实际场景可能涉及更复杂的网络请求等 print(f"正在进行服务 {service_name} 的健康检查...") time.sleep(2) 模拟耗时 return True 返回服务是否健康 负载均衡策略 def load_balance(service_list): for service in service_list: if health_check(service): return service return None 示例调用 healthy_service = load_balance([f'{service_name}-1', f'{service_name}-2']) print(f"选择的服务为:{healthy_service}") 结语:探索与创新的旅程 通过上述几个方面,我们看到了Etcd在服务治理中的重要作用。从最基本的服务注册和发现,到动态配置管理以及复杂的服务健康检查和负载均衡策略,Etcd简直就是个全能的小帮手,功能强大又灵活多变。当然啦,在实际应用里头,我们还会碰到不少难题,比如说怎么保障安全啊,怎么提升性能啊之类的。但是嘛,只要咱们保持好奇心,敢去探险,肯定能在这个满是奇遇的技术世界里找到自己的路。希望这篇文章能激发你的灵感,让我们一起在服务治理的道路上不断前行吧!
2024-11-27 16:15:08
56
心灵驿站
SpringCloud
...可以不用吗?可以直接调用Service层吗? 1. 引言 在现代分布式系统架构设计中,Spring Cloud 微服务框架以其强大的功能和易用性赢得了开发者的青睐。当我们谈论微服务时,往往绕不开一个重要组件——注册中心。那么问题来了,在构建Spring Cloud微服务架构时,注册中心是否是必不可少的环节呢?我们是否可以直接通过远程调用来访问其他服务的Service层方法? 1.1 注册中心的重要性 注册中心在微服务架构中的角色就像一个中央通讯录,例如Eureka、Consul或Nacos等,它们负责服务实例的注册与发现。当每个微服务启动后,它们就像一个个小员工,兴奋地跑到注册中心那报到,把自己的详细地址(也就是IP和端口)登记在册。这样一来,消费者服务这个“需求方”就可以像查电话簿一样,轻松找到生产者服务这个“供给方”的具体位置了。没有注册中心,各个服务之间的交互将变得异常复杂且难以管理。 java // Spring Cloud Eureka客户端配置示例 @Configuration @EnableEurekaClient public class EurekaClientConfig { } 2. 可以不用注册中心吗? 答案是理论上可以,但实际上不推荐。 - 无注册中心方案:在没有注册中心的情况下,服务间通信需要硬编码或者使用配置中心存储服务实例地址。这种做法在服务数量不多,变动也不是很频繁的时候,勉勉强强还能对付过去。不过,一旦服务规模开始吹气球般地膨胀起来,或者需要灵活调整服务数量时,手动去管理这些服务之间的“牵一发动全身”的依赖关系,那就真的会让人头疼得不行,甚至很可能成为引发系统故障的罪魁祸首。 - 可用性挑战:没有注册中心意味着服务发现能力的缺失,无法实时感知服务实例的上线、下线以及健康状态的变化,这会直接影响系统的稳定性和高可用性。 3. 直接调用Service层? 对于这个问题,从技术角度讲,直接跨服务调用Service层是可能的,但这并不符合微服务的设计原则。 - 侵入式调用:假设两个微服务A和B,如果服务A直接通过RPC或RESTful API的方式调用服务B的Service层方法,这就打破了微服务的边界,使得服务之间高度耦合。如果服务B的内部结构或者方式发生变动,那可能就像多米诺骨牌一样,引发一连串反应影响到服务A,这样一来,我们整个系统的维护保养和未来扩展升级就可能会遇到麻烦了。 java @Service public class ServiceA { @Autowired private RestTemplate restTemplate; public void callServiceB() { // 这里虽然可以实现远程调用,但不符合微服务的最佳实践 String serviceBUrl = "http://service-b/service-method"; ResponseEntity response = restTemplate.getForEntity(serviceBUrl, String.class); // ... } } - 面向接口而非实现:遵循微服务的原则,服务间的通信应当基于API契约进行,即调用方只关心服务提供的接口及其返回结果,而不应关心对方具体的实现细节。所以,正确的做法就像是这样:给各个服务之间设立明确、易懂的API接口,然后就像过家家一样,通过网关或者直接“喊话”调用这些接口来实现彼此的沟通交流。 4. 探讨与建议 在实践中,构建健康的微服务生态系统离不开注册中心的支持。它不仅简化了服务间的依赖管理和通信,也极大地提升了系统的健壮性和弹性。讲到直接调用Service层这事儿,乍一看在一些简单场景里确实好像省事儿不少,不过你要是从长远角度琢磨一下,其实并不利于咱们系统的松耦合和扩展性发展。 结论:即使面临短期成本或复杂度增加的问题,为了保障系统的长期稳定和易于维护,我们强烈建议在Spring Cloud微服务架构中采用注册中心,并遵循服务间通过API进行通信的最佳实践。这样才能充分发挥微服务架构的优势,让每个服务都能独立部署、迭代和扩展。
2023-11-23 11:39:17
37
岁月如歌_
NodeJS
...:Node.js 的实践之旅 1. 引言 在现代软件开发领域,微服务架构因其解耦、灵活扩展和高效运维的特性而备受推崇。嘿,你知道吗?Node.js这家伙,它有个绝活儿,就是那个异步非阻塞I/O模型,加上事件驱动的机制,真是个性能小旋风,在搭建微服务架构时,表现得那叫一个亮眼,有着不可替代的独特优势!本文将带您深入探讨如何利用 Node.js 实现微服务,并通过具体的代码示例来帮助您理解并掌握这一过程。 2. Node.js 与微服务架构的契合点 Node.js 的轻量级和高性能使其成为实现微服务的理想选择。它的设计采用了单线程和事件循环模式,这意味着每个服务能够超级高效地同时应对大批量的请求,就像是一个技艺高超的小哥在忙碌的餐厅里轻松处理众多点单一样。这种机制特别适合搭建那种独立部署、只专心干一件事的微服务模块,让它们各司其职,把单一业务功能发挥到极致。此外,Node.js 生态系统中的大量库和框架(如Express、Koa等)也为快速搭建微服务提供了便利。 3. 利用 Node.js 创建微服务实例 下面我们将通过一个简单的 Node.js 微服务创建示例来演示其实现过程: javascript // 引入 express 框架 const express = require('express'); const app = express(); // 定义一个用户服务接口 app.get('/users', (req, res) => { // 假设我们从数据库获取用户列表 const users = [ { id: 1, name: 'Alice' }, { id: 2, name: 'Bob' } ]; res.json(users); }); // 启动微服务并监听指定端口 app.listen(3000, () => { console.log('User service is running on port 3000...'); }); 上述代码中,我们创建了一个简单的基于 Express 的微服务,它提供了一个获取用户列表的接口。这个啊,其实就是个入门级的小栗子。在真实的项目场景里,这个服务可能会跟数据库或者其他服务“打交道”,从它们那里拿到需要的数据。然后,它会通过API Gateway这位“中间人”,对外提供一个统一的服务接口,让其他应用可以方便地和它互动交流。 4. 微服务间通信 使用gRPC或HTTP 在微服务架构下,各个服务间的通信至关重要。Node.js 支持多种通信方式,例如 gRPC 和 HTTP。以下是一个使用 HTTP 进行微服务间通信的例子: javascript // 在另一个服务中调用上述用户服务 const axios = require('axios'); app.get('/orders/:userId', async (req, res) => { try { const response = await axios.get(http://user-service:3000/users/${req.params.userId}); const user = response.data; // 假设我们从订单服务获取用户的订单信息 const orders = getOrdersFromDatabase(user.id); res.json(orders); } catch (error) { res.status(500).json({ error: 'Failed to fetch user data' }); } }); 在这个例子中,我们的“订单服务”通过HTTP客户端向“用户服务”发起请求,获取特定用户的详细信息,然后根据用户ID查询订单数据。 5. 总结与思考 利用 Node.js 构建微服务架构,我们可以享受到其带来的快速响应、高并发处理能力以及丰富的生态系统支持。不过呢,每种技术都有它最适合施展拳脚的地方和需要面对的挑战。比如说,当碰到那些特别消耗CPU的任务时,Node.js可能就不是最理想的解决方案了。所以在实际操作中,咱们得瞅准具体的业务需求和技术特性,小心翼翼地掂量一下,看怎样才能恰到好处地用 Node.js 来构建一个既结实又高效的微服务架构。就像是做菜一样,要根据食材和口味来精心调配,才能炒出一盘色香味俱全的好菜。同时,随着我们提供的服务越来越多,咱们不得不面对一些额外的挑战,比如怎么管理好这些服务、如何进行有效的监控、出错了怎么快速恢复这类问题。这些问题就像是我们搭建积木过程中的隐藏关卡,需要我们在构建和完善服务体系的过程中,不断去摸索、去改进、去优化,让整个系统更健壮、更稳定。
2023-02-11 11:17:08
128
风轻云淡
CSS
...、层次分明,就像一位设计师给网站精心搭配衣服和妆容一样。CSS就像个超级精准的造型师,它先用选择器这个“定位神器”,找到HTML文档中那些需要打扮的元素宝宝们。然后,它会通过各种属性和对应的值,给这些元素宝宝们量身定制出独一无二的样式,让页面变得美美的、活灵活现! 举个例子,假设我们有一个HTML结构如下: php-template 这是一个标题 这是一段文字。 我们可以使用CSS来设置这个标题的字体大小和颜色,以及这段文字的行高和颜色。下面是相应的CSS代码: css .container { background-color: f0f0f0; } .title { font-size: 2em; color: 333; } .para { line-height: 1.5; color: 666; } 这样,我们就成功地设置了容器的背景色,标题的字体大小和颜色,以及段落的行高和颜色。这就是CSS的基本用法,也是我们在后续讨论中需要用到的基础知识。 第3章 JS函数未定义的原因 回到我们一开始提出的问题,“js函数未定义是怎么回事?”这个问题实际上是在问:“为什么我在某个地方使用了一个函数,但是却出现了函数未定义的错误?”这个问题的答案可能有很多,下面我们一一来看一下。 第一个可能的原因是,我们确实没有定义这个函数。比如说,我们有一个名为helloWorld的函数,但是在其他地方却忘记定义它了。这种情况简直是最直截了当的啦,解决起来也超级简单,你只需要在需要用到这个函数的地方给它加上一个定义就OK啦,就像给菜加点盐那么简单。 javascript function helloWorld() { console.log("Hello, world!"); } helloWorld(); // 输出 "Hello, world!" 第二个可能的原因是,我们虽然定义了这个函数,但是在使用的时候却拼错了函数名或者写错了参数。这种情况也比较多见,特别是在大型项目中,很容易出现这种错误。 javascript function helloWorld() { console.log("Hello, world!"); } helloWord(); // 报错,因为函数名拼错了 第三个可能的原因是,我们使用的函数在一个作用域内是可以访问的,但是在另一个作用域内却不可以访问。这种情况比较复杂,需要我们深入理解作用域的概念才能解决。 javascript let x = 1; if (true) { function foo() { console.log(x); // 输出 1 } } else { function foo() { console.log(x); // 报错,因为x在else的作用域内不可访问 } } foo(); // 报错,因为foo在if的作用域外不可访问 以上就是“js函数未定义是怎么回事”的一些可能原因,我们在日常开发中需要根据具体的情况进行分析和处理。 第4章 如何避免“js函数未定义”的问题? 避免“js函数未定义”的问题,其实有很多方法。下面我们就来介绍一些常用的技巧。 首先是要注意命名规范。当我们在创建函数的时候,可别忘了给它起个既规范又有意思的名字。就像咱们常说的“驼峰式命名法”,就是一种挺实用的命名规则,你可以把函数名想象成一只可爱的小骆驼,每个单词首字母都像驼峰一样高高地耸起来,这样一来,不仅看起来顺眼,读起来也朗朗上口,更容易让人记住。这样可以让我们的代码更加清晰易懂,也可以减少出错的可能性。 其次是要注意作用域的限制。在JavaScript这个编程语言里,每个函数都拥有自己的独立小天地,也就是作用域。这就意味着,当我们呼唤一个函数来干活的时候,得留个心眼儿,千万要注意别跨出这个小天地去调用还没被定义过的函数,否则就可能闹出“函数未定义”的乌龙事件。 最后是要注意版本兼容性。假如我们正在玩转一些最新的JavaScript黑科技,但心里也得惦记着那些还在用老旧浏览器的用户群体。这就意味着,咱们还得琢磨琢磨怎么在这些老爷爷级别的浏览器上,找到能兼容这些新特性的备选方案,让它们也能顺畅运行起来。这就意味着咱们得摸清楚各个浏览器的不同版本之间是怎么个兼容法,还有学会如何运用各种小工具和技巧来对付这些可能出现的兼容性问题。 总之,“js函数未定义”的问题是一个比较常见的问题,但是只要我们注意一些基本的原则和技巧,就能够有效地避免这个问题。希望本文能够对你有所帮助,如果你还有其他的问题,欢迎随时联系我。
2023-08-12 12:30:02
429
岁月静好_t
转载文章
...解微服务架构中RPC调用超时中断机制的实现后,我们可以进一步探索当前行业对此类问题的研究进展与实践案例。近期,随着云原生技术的发展和Kubernetes等容器编排平台的广泛应用,服务网格(Service Mesh)的概念逐渐成为解决服务间通信、流量控制及熔断限流等问题的新热点。 例如,Istio作为一款开源的服务网格解决方案,内置了丰富的流量管理特性,其中包括对服务间调用的超时设置和重试策略的支持,能够更精细地控制微服务间的交互行为,增强了系统的稳定性和容错性。另外,Envoy代理作为Istio数据平面的核心组件,其通过异步非阻塞模型以及智能的超时与重试机制,在保障性能的同时,有效避免了因第三方服务响应慢而导致的系统级雪崩效应。 此外,阿里巴巴集团在其内部大规模微服务实践中,也深入研究并优化了RPC框架Dubbo的超时控制机制,并结合Hystrix等开源库实现了服务降级和熔断功能,为高并发场景下的服务稳定性提供了有力保障。这些最新的技术动态和实践经验都为我们理解和优化微服务架构中的超时中断机制提供了宝贵的参考依据。 同时,对于分布式系统设计原则的探究也不能忽视,例如《微服务设计模式》一书中提出的“Circuit Breaker”(断路器模式),就详细阐述了如何利用超时中断等手段在系统出现故障时快速隔离问题服务,防止故障蔓延,确保整体系统的可用性。此类理论研究与实操经验相结合,有助于我们不断优化和完善微服务架构中的各类关键组件,以适应日趋复杂的业务需求和技术挑战。
2023-10-05 16:28:16
84
转载
Hadoop
...Gateway的最新实践与挑战 随着云计算的普及,越来越多的企业开始将数据存储和处理转移到云端,以获得更高的灵活性、弹性和成本效益。然而,这一转变也带来了数据安全的新挑战。特别是在涉及到敏感数据和合规性要求时,确保数据在云环境中的安全成为了企业关注的焦点。在这个背景下,Hadoop Cloud Storage Gateway(HCSG)作为连接本地存储与云存储的桥梁,扮演着至关重要的角色。 最新实践: 在最新的云计算实践中,HCSG的应用范围正在不断扩大,尤其是在大数据分析、实时数据处理和混合云策略的实施方面。例如,许多企业正采用HCSG来优化其Hadoop集群的数据访问,通过在本地存储数据的快速缓存层,显著提高了数据处理速度,同时将长期存储数据迁移到成本更低的云存储服务中。这种策略不仅提升了数据处理效率,还降低了总体拥有成本(TCO)。 挑战与应对: 尽管HCSG提供了诸多优势,但在实际应用中仍面临一些挑战。首先,数据安全问题不容忽视。在数据传输和存储过程中,确保数据的加密和完整性,以及遵守相关数据保护法规(如GDPR、HIPAA等),是企业必须面对的难题。其次,随着数据量的快速增长,如何高效地管理和扩展HCSG服务成为了一个技术难题。最后,不同云服务提供商的API和接口差异,也可能影响到HCSG的部署和维护。 未来趋势: 为了应对上述挑战,预计未来的HCSG发展将侧重于以下几个方向: 1. 增强安全性:开发更先进的加密算法和技术,加强数据在传输和存储过程中的保护,同时提供更灵活的访问控制策略。 2. 自动化与智能化:引入更多的自动化工具和智能算法,简化HCSG的部署、管理和优化过程,提高整体效率。 3. 跨云互操作性:加强不同云平台之间的兼容性和互操作性,使得HCSG能够更便捷地在多云环境中部署和管理。 4. 边缘计算融合:结合边缘计算技术,使得HCSG能够更有效地处理靠近数据源的数据处理任务,减少延迟,提高响应速度。 总之,Hadoop Cloud Storage Gateway作为云计算与数据安全之间的关键链接,其未来发展将围绕着提升安全性、自动化水平、跨云互操作性和边缘计算融合等方面展开。通过持续的技术创新和实践优化,HCSG有望为数据密集型应用提供更为安全、高效和灵活的存储解决方案。
2024-09-11 16:26:34
110
青春印记
ActiveMQ
...探讨其部署策略和最佳实践。 一、ActiveMQ的基础配置与多语言兼容性 在开始之前,我们需要确保ActiveMQ服务端能够在不同的语言环境中运行稳定。ActiveMQ的核心是其消息传输机制,它通过提供API接口支持多种编程语言的集成。例如,Java、Python、C、JavaScript等语言都有对应的ActiveMQ客户端库。 示例代码(Java): 假设我们已经在本地安装了ActiveMQ,并启动了服务。接下来,我们可以通过Java的ActiveMQ客户端库来发送一条消息: java import org.apache.activemq.ActiveMQConnectionFactory; public class Sender { public static void main(String[] args) throws Exception { String url = "tcp://localhost:61616"; // 连接URL ActiveMQConnectionFactory factory = new ActiveMQConnectionFactory(url); Connection connection = factory.createConnection(); connection.start(); Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE); Destination destination = session.createQueue("myQueue"); MessageProducer producer = session.createProducer(destination); TextMessage message = session.createTextMessage("Hello, this is a test message!"); producer.send(message); System.out.println("Sent message successfully."); session.close(); connection.close(); } } 二、多语言环境中的ActiveMQ部署策略 在多语言环境下部署ActiveMQ,关键在于确保各个语言环境之间能够无缝通信。这通常涉及以下步骤: 1. 统一消息格式 确保所有语言版本的客户端都使用相同的协议和数据格式,如JSON或XML,以减少跨语言通信的复杂性。 2. 使用统一的API 尽管不同语言有不同的客户端库,但它们都应该遵循统一的API规范,这样可以简化开发和维护。 3. 配置共享资源 在部署时,确保所有语言环境都能访问到同一台ActiveMQ服务器,或者设置多个独立的服务器实例来满足不同语言环境的需求。 4. 性能优化 针对不同语言环境的特点进行性能调优,例如,对于并发处理需求较高的语言(如Java),可能需要更精细地调整ActiveMQ的参数。 示例代码(Python): 利用Apache Paho库来接收刚刚发送的消息: python import paho.mqtt.client as mqtt import json def on_connect(client, userdata, flags, rc): print("Connected with result code "+str(rc)) client.subscribe("myQueue") def on_message(client, userdata, msg): message = json.loads(msg.payload.decode()) print("Received message:", message) client = mqtt.Client() client.on_connect = on_connect client.on_message = on_message client.connect("localhost", 1883, 60) client.loop_forever() 三、实践案例 多语言环境下的一体化消息系统 在一家电商公司中,我们面临了构建一个支持多语言环境的实时消息系统的需求。哎呀,这个系统啊,得有点儿本事才行!首先,它得能给咱们的商品更新发个通知,就像是快递到了,你得知道一样。还有,用户那边的活动提醒也不能少,就像朋友生日快到了,你得记得送礼物那种感觉。最后,后台的任务调度嘛,那就像是家里的电器都自动工作,你不用操心一样。这整个系统要能搞定Java、Python和Node.js这些编程语言,得是个多才多艺的家伙呢! 实现细节: - 消息格式:采用JSON格式,便于解析和处理。 - 消息队列:使用ActiveMQ作为消息中间件,确保消息的可靠传递。 - 语言间通信:通过统一的消息API接口,确保不同语言环境的客户端能够一致地发送和接收消息。 - 负载均衡:通过配置多个ActiveMQ实例,实现消息系统的高可用性和负载均衡。 四、结论与展望 ActiveMQ在多语言环境下的部署不仅提升了开发效率,也增强了系统的灵活性和可扩展性。哎呀,你知道的,编程这事儿,就像是个拼图游戏,每个程序员手里的拼图都代表一种编程语言。每种语言都有自己的长处,比如有的擅长处理并发任务,有的则在数据处理上特别牛。所以,聪明的开发者会好好规划,把最适合的拼图放在最合适的位置上。这样一来,咱们就能打造出既快又稳的分布式系统了。就像是在厨房里,有的人负责洗菜切菜,有的人专门炒菜,分工合作,效率噌噌往上涨!哎呀,你懂的,现在微服务这东西越来越火,加上云原生应用也搞得风生水起的,这不,多语言环境下的应用啊,那可真是遍地开花。你看,ActiveMQ这个家伙,它就像个大忙人似的,天天在多语言环境中跑来跑去,传递消息,可不就是缺不了它嘛!这货一出场,就给多语言环境下的消息通信添上了不少色彩,推动它往更高级的方向发展,你说它是不是有两把刷子? --- 通过上述内容的探讨,我们不仅了解了如何在多语言环境下部署和使用ActiveMQ,还看到了其实现复杂业务逻辑的强大潜力。无论是对于企业级应用还是新兴的微服务架构,ActiveMQ都是一个值得信赖的选择。哎呀,随着科技这玩意儿天天在变新,我们能期待的可是超棒的创新点子和解决办法!这些新鲜玩意儿能让我们在不同语言的世界里写程序时更爽快,系统的运行也更顺溜,就像喝了一大杯冰凉透心的柠檬水一样,那叫一个舒坦!
2024-10-09 16:20:47
66
素颜如水
DorisDB
...,包括硬件故障、软件兼容性问题、配置错误等。哎呀,兄弟!今天咱们得聊点实际的,就是用DorisDB处理数据备份时可能会遇到的一些小麻烦。咱们不光要理论分析,还得看看真家伙是怎么出问题的,然后怎么解决。就是要让你我都能明明白白地知道,这些事儿该怎么处理,别让它们成为你的技术路上的绊脚石。咱们得学着从实战中吸取经验,这样下次遇到类似的问题,你就不会一头雾水了,对吧? 2. DorisDB简介与优势 DorisDB是一款高性能、分布式列式存储系统,专为大规模数据集提供实时查询服务。它支持SQL查询语言,并能高效地处理PB级别的数据。哎呀,你瞧,DorisDB这玩意儿可真给力!它提供了超棒的数据备份工具和机制,保证你的数据既完整又一致。不管遇到多复杂的状况,它都能稳稳地运行,就像个忠诚的守护神一样,保护着你的数据安全无虞。是不是感觉用起来既安心又省心呢? 3. 备份策略的重要性 在DorisDB中,制定有效的备份策略至关重要。哎呀,这事儿可得仔细想想!咱们得定期给数据做个备份,以防万一,万一哪天电脑突然罢工或者数据出啥问题,咱还能有东西可补救。别小瞧了这一步,选对备份文件存放在哪儿,多久检查一次备份,还有万一需要恢复数据,咱得有个顺溜的流程,这每一步都挺关键的。就像是给宝贝儿们做保险计划一样,得周全,还得实用,不能光图个形式,对吧?哎呀,兄弟,咱们得给数据做个保险啊!就像你出门前检查门窗一样,定期备份数据,能大大降低数据丢了找不回来的风险。万一哪天电脑罢工或者硬盘坏掉啥的,你也不至于急得团团转,还得去求那些所谓的“数据恢复大师”。而且,备份做得好,恢复数据的时候也快多了,省时间又省心,这事儿得重视起来! 4. 遇到问题时的常见错误及解决方法 错误1:备份失败,日志提示“空间不足” 原因:这通常是因为备份文件的大小超过了可用磁盘空间。 解决方法: 1. 检查磁盘空间 首先确认备份目录的磁盘空间是否足够。 2. 调整备份策略 考虑使用增量备份,仅备份自上次备份以来发生变化的数据部分,减少单次备份的大小。 3. 优化数据存储 定期清理不再需要的数据,释放更多空间。 python 示例代码:设置增量备份 dorisdb_backup = dorisdb.BackupManager() dorisdb_backup.set_incremental_mode(True) 错误2:备份过程中断电导致数据损坏 原因:断电可能导致正在执行的备份任务中断,数据完整性受损。 解决方法: 1. 使用持久化存储 确保备份操作在非易失性存储设备上进行,如SSD或RAID阵列。 2. 实施数据同步 在多个节点间同步数据,即使部分节点在断电时仍能继续备份过程。 python 示例代码:设置持久化备份 dorisdb_backup = dorisdb.BackupManager() dorisdb_backup.enable_persistence() 5. 数据恢复实战 当备份数据出现问题时,及时且正确的恢复策略至关重要。DorisDB提供了多种恢复选项,从完全恢复到特定时间点的恢复,应根据实际情况灵活选择。 步骤1:识别问题并定位 首先,确定是哪个备份文件或时间点出了问题,这需要详细的日志记录和监控系统来辅助。 步骤2:选择恢复方式 - 完全恢复:将数据库回滚到最近的备份状态。 - 时间点恢复:选择一个具体的时间点进行恢复,以最小化数据丢失。 步骤3:执行恢复操作 使用DorisDB的恢复功能,确保数据的一致性和完整性。 python 示例代码:执行时间点恢复 dorisdb_restore = dorisdb.RestoreManager() dorisdb_restore.restore_to_timepoint('2023-03-15T10:30:00Z') 6. 结语 数据备份和恢复是数据库管理中的重要环节,正确理解和应用DorisDB的相关功能,能够有效避免和解决备份过程中遇到的问题。通过本篇讨论,我们不仅了解了常见的备份错误及其解决方案,还学习了如何利用DorisDB的强大功能,确保数据的安全性和业务的连续性。记住,每一次面对挑战都是成长的机会,不断学习和实践,你的数据管理技能将愈发成熟。 --- 以上内容基于实际应用场景进行了概括和举例说明,旨在提供一种实用的指导框架,帮助读者在实际工作中应对数据备份和恢复过程中可能出现的问题。希望这些信息能够对您有所帮助!
2024-07-28 16:23:58
432
山涧溪流
c++
在《异常安全的设计:通过资源管理确保程序完整性》一文中,我们深入探讨了如何利用C++的特性,特别是资源管理机制,构建异常安全的程序设计。随着软件开发的日益复杂化,资源管理成为了确保程序稳定性和安全性的关键环节。然而,在实际应用中,资源管理并非总是那么简单,尤其是在多线程环境、网络编程或大型分布式系统中。接下来,我们将深入分析资源管理在现代软件开发中的挑战与应对策略。 面临的挑战 1. 并发与线程安全:在多线程环境中,资源管理变得复杂。共享资源的访问需要进行精细控制,以防止死锁、竞争条件和数据不一致等问题。例如,使用互斥锁(mutex)、读写锁(read-write locks)或原子操作等技术来保证线程安全。 2. 跨平台兼容性:不同操作系统和硬件平台对资源管理的支持程度不同。确保资源管理代码在各种环境中都能正确运行,需要考虑平台差异和标准一致性。 3. 性能优化:资源管理操作,如资源获取和释放,可能会对程序性能产生影响。在追求资源管理的同时,需要平衡性能需求,避免不必要的开销。 4. 资源泄露与内存管理:在动态分配资源的情况下,确保资源在不再需要时被正确释放,是避免内存泄漏和资源泄露的关键。智能指针虽然有效,但在某些场景下仍需谨慎使用,特别是在与第三方库交互时。 应对策略 1. 采用现代C++特性:利用C++11及之后版本的特性,如范围基类(range-based for loops)、智能指针(std::unique_ptr, std::shared_ptr)和RAII原则,简化资源管理过程,提高代码可读性和安全性。 2. 使用线程安全库:选择支持线程安全的库,如Boost.Thread或Intel TBB(Threading Building Blocks),可以简化多线程编程,减少资源管理相关的错误。 3. 深入理解并使用现代内存管理技术:掌握C++的智能指针、RAII、RAII原则和现代内存管理概念,如RAII(Resource Acquisition Is Initialization),能够有效地管理资源,减少内存泄漏的风险。 4. 性能优化与测试:在实现资源管理策略时,结合性能分析工具(如Valgrind、gperftools)进行性能评估,确保资源管理操作不会对程序性能产生负面影响。同时,进行充分的单元测试和压力测试,验证资源管理的正确性和鲁棒性。 5. 持续学习与适应新技术:软件开发领域不断演进,新技术和最佳实践层出不穷。持续关注C++和软件工程领域的最新发展,学习新的资源管理工具和技术,如现代容器类库(如std::optional, std::variant)和并发库,能够帮助开发者更好地应对资源管理的挑战。 通过上述策略,开发者可以更有效地管理资源,确保程序在各种复杂场景下的稳定性和安全性,同时优化性能,满足现代软件开发的需求。
2024-10-05 16:01:00
49
春暖花开
Kotlin
...以及对Java语言的兼容性,赢得了无数开发者的心。哎呀,兄弟,你这语言用得确实牛批,但就像开车一样,再溜的车也难免会碰上坑坑洼洼。在这堆问题里头,有一种特别让人头疼的家伙,叫 IllegalArgumentException。这家伙就像是突然冒出来的路障,让你措手不及,一不小心就踩中了,结果就是程序卡壳,半天解不开。这不就是我们在编程路上的“小麻烦”嘛!今天,我们就来一起探索一下这个“非法参数异常”背后的故事。 第一章:何为 IllegalArgumentException 在Kotlin中,当我们尝试调用一个方法时,如果传入的参数不符合该方法的要求或者类型不匹配,就会抛出 IllegalArgumentException。这事儿就像你去参加一个超级认真的补习班,老师布置了一道题目让你做,结果你交上去的答案全错了,那肯定得被老师好好点名批评一番了。 第二章:深入剖析 IllegalArgumentException 假设我们有一个简单的函数 calculateAge,它接受一个人的出生年份作为参数,并计算出当前年龄: kotlin fun calculateAge(birthYear: Int): Int { val currentYear = 2023 return currentYear - birthYear } 如果我们不小心传入了一个非整数类型的参数,比如一个字符串,Kotlin会立即察觉到这一点,并优雅地抛出 IllegalArgumentException: kotlin fun test() { val age = calculateAge("2000") println("Your age is $age.") } // 运行结果:编译错误,因为calculateAge接受的是Int类型参数,而"2000"是String类型。 第三章:如何避免 IllegalArgumentException 避免 IllegalArgumentException 的关键在于确保所有传入函数的参数都符合预期的类型和格式。我们可以利用Kotlin的静态类型系统来帮助我们进行这一工作: - 类型检查:确保所有输入的参数都是正确的类型。例如,可以使用 assert 函数在运行时验证类型: kotlin fun safeCalculateAge(birthYear: Any): Int { assert(birthYear is Int) { "Expected an Integer for birthYear" } val currentYear = 2023 return currentYear - birthYear.toInt() } // 使用示例: val age = safeCalculateAge(2000) println("Your age is $age.") - 函数参数验证:在定义函数时就加入类型检查逻辑: kotlin fun calculateAgeWithValidation(birthYear: Int): Int { if (birthYear < 0 || birthYear > 2023) { throw IllegalArgumentException("Birth year must be within the range of 0 to 2023.") } val currentYear = 2023 return currentYear - birthYear } 第四章:实战演练:创建一个更复杂的示例 假设我们要构建一个简单的日历应用,其中包含一个用于计算天数的函数。为了增加复杂性,我们添加了对月份和年份的验证: kotlin data class Date(val day: Int, val month: Int, val year: Int) fun calculateDaysSinceBirthday(dateOfBirth: Date): Int { val currentYear = Calendar.getInstance().get(Calendar.YEAR) val currentMonth = Calendar.getInstance().get(Calendar.MONTH) + 1 // 注意月份是从0开始的 val currentDay = Calendar.getInstance().get(Calendar.DAY_OF_MONTH) val birthday = dateOfBirth.day to dateOfBirth.month to dateOfBirth.year val birthDate = Date(birthday) val daysSinceBirthday = (currentYear - birthDate.year) 365 + (currentMonth - birthDate.month) 30 + (currentDay - birthDate.day) return daysSinceBirthday } fun main() { val birthDate = Date(day = 1, month = 1, year = 2000) val days = calculateDaysSinceBirthday(birthDate) println("Days since your birthday: $days") } 在上面的代码中,我们通过 Calendar 类获取当前日期,并与生日日期进行比较,计算出天数差值。嘿,兄弟!咱们就拿一年有365天,一个月有30天来打个比方,这可是咱们简化了一下,方便大家理解。实际上啊,生活里头可没这么简单,得分清闰年和普通年是怎么回事,这样日子才过得有模有样呢! 结语:面对挑战,拥抱学习 每一次遇到 IllegalArgumentException 都是一次学习的机会。它们提醒我们,即使在看似完美的代码中,也可能隐藏着一些小错误。通过仔细检查和验证我们的参数,我们可以编写出更加健壮、可维护的代码。哎呀,你瞧这Kotlin,它可真是个能手呢!它那一大堆好用的工具和特性,就像是魔法一样,帮我们解决了好多麻烦事儿。比如说,静态类型这一招,就像是一道坚固的防线,能提前发现那些可能出错的地方。还有函数注解,就像是给代码贴上了标签,让我们一眼就能看出这是干啥的。而模式匹配嘛,简直就是解谜神器,轻轻松松就能解开那些复杂的逻辑难题。这些玩意儿合在一起,就形成了一个强大的武器库,帮我们防患于未然,解决问题更是不在话下。你说是不是,这Kotlin,简直就是程序员的好伙伴!让我们带着好奇心和探索精神,继续在编程的海洋中航行吧! --- 在这篇文章中,我们不仅探讨了 IllegalArgumentException 的由来和解决方法,还通过一系列的代码示例展示了如何在实践中应用这些知识。嘿,兄弟!读完这篇文章后,希望你对Kotlin里的异常处理方式有了一番全新的领悟。别担心,这不像是AI在跟你说话,就像跟老朋友聊天一样轻松。你得尝试将这些小技巧应用到你的实际项目中,让代码不仅好看,而且超级稳定,就像是给你的程序穿上了一件坚固的盔甲。这样,无论遇到什么问题,它都能稳如泰山。所以,拿起你的键盘,动手实践吧!记住,编程是一场持续的学习之旅,每一次遇到困难都是成长的机会。加油!
2024-09-18 16:04:27
113
追梦人
Go Gin
...,这也得益于Gin的设计理念:尽可能简化开发流程,让程序员专注于业务逻辑而不是框架细节。 --- 三、实时处理的核心 WebSocket支持 既然我们要讨论实时处理,那么就不得不提WebSocket。WebSocket就像是一个永不掉线的“聊天热线”,能让浏览器和服务器一直保持着畅通的联系。跟传统的请求-响应模式不一样,它可以让双方随时自由地“唠嗑”,想发啥就发啥,特别适合那些需要实时互动的应用,比如聊天室里你一言我一语,或者股票行情那种分分钟都在变化的东西,用它简直太合适了! Gin内置了对WebSocket的支持,我们可以直接通过中间件来实现这一功能。下面是一个完整的WebSocket示例: go package main import ( "log" "net/http" "github.com/gin-gonic/gin" "github.com/gorilla/websocket" ) var upgrader = websocket.Upgrader{ ReadBufferSize: 1024, WriteBufferSize: 1024, CheckOrigin: func(r http.Request) bool { return true // 允许跨域 }, } func handleWebSocket(c gin.Context) { ws, err := upgrader.Upgrade(c.Writer, c.Request, nil) if err != nil { log.Println("Failed to upgrade:", err) return } defer ws.Close() for { messageType, msg, err := ws.ReadMessage() if err != nil { log.Println("Error reading message:", err) break } log.Printf("Received: %s\n", string(msg)) err = ws.WriteMessage(messageType, msg) if err != nil { log.Println("Error writing message:", err) break } } } func main() { r := gin.Default() r.GET("/ws", handleWebSocket) r.Run(":8080") } 在这段代码中,我们利用gorilla/websocket包实现了WebSocket升级,并在handleWebSocket函数中处理了消息的读取与发送。你可以试着在浏览器里输入这个地址:ws://localhost:8080/ws,然后用JavaScript发个消息试试,看能不能马上收到服务器的回应。 深入探讨 说实话,刚开始写这部分代码的时候,我还担心WebSocket的兼容性问题。后来发现,只要正确设置了CheckOrigin方法,大多数现代浏览器都能正常工作。这让我更加坚定了对Gin的信心——它虽然简单,但足够强大! --- 四、进阶技巧 并发与性能优化 在实际项目中,我们可能会遇到高并发的情况。为了保证系统的稳定性,我们需要合理地管理线程池和内存分配。Gin提供了一些工具可以帮助我们做到这一点。 例如,我们可以使用sync.Pool来复用对象,减少垃圾回收的压力。下面是一个示例: go package main import ( "sync" "time" "github.com/gin-gonic/gin" ) var pool sync.Pool func init() { pool = &sync.Pool{ New: func() interface{} { return make([]byte, 1024) }, } } func handler(c gin.Context) { data := pool.Get().([]byte) defer pool.Put(data) copy(data, []byte("Hello World!")) time.Sleep(100 time.Millisecond) // 模拟耗时操作 c.String(http.StatusOK, string(data)) } func main() { r := gin.Default() r.GET("/", handler) r.Run(":8080") } 在这个例子中,我们定义了一个sync.Pool来存储临时数据。每次处理请求时,从池中获取缓冲区,处理完毕后再放回池中。这样可以避免频繁的内存分配和释放,从而提升性能。 反思与总结 其实,刚开始学习这段代码的时候,我对sync.Pool的理解还停留在表面。直到后来真正用它解决了性能瓶颈,我才意识到它的价值所在。这也让我明白,优秀的框架只是起点,关键还是要结合实际需求去探索和实践。 --- 五、未来展望 Gin与实时处理的无限可能 Gin的强大之处不仅仅在于它的易用性和灵活性,更在于它为开发者提供了广阔的想象空间。无论是构建大型分布式系统,还是打造小型实验项目,Gin都能胜任。 如果你也想尝试用Gin构建实时处理系统,不妨从一个小目标开始——比如做一个简单的在线聊天室。相信我,当你第一次看到用户实时交流的画面时,那种成就感绝对会让你欲罢不能! 最后的话 写这篇文章的过程,其实也是我自己重新审视Gin的过程。其实这个东西吧,说白了挺简单的,但让我学到了一个本事——用最利索的办法搞定事情。希望能这篇文章也能点醒你,让你在今后的开发路上,慢慢琢磨出属于自己的那套玩法!加油吧,程序员们!
2025-04-07 16:03:11
66
时光倒流
HessianRPC
...sianRPC这样的远程调用框架,在企业级应用中扮演着重要角色,而数据库连接池作为其核心组件之一,直接影响系统的可靠性和扩展能力。最近,某知名电商公司在一次促销活动中遭遇了严重的数据库连接池故障,导致订单处理延迟甚至部分服务中断。这一事件再次提醒我们,即使是最基础的技术模块,一旦配置不当或监控缺失,也可能成为系统瓶颈。 据内部人士透露,此次故障的主要原因在于连接池的回收策略设置过于保守,未能及时释放空闲连接,加之高峰时段请求激增,使得可用连接迅速耗尽。尽管该公司事后紧急调整了相关参数,并引入了更智能的负载均衡算法,但损失的用户体验和经济成本已难以挽回。这起事故引发了业内对数据库连接池最佳实践的重新审视。 实际上,类似的案例并非孤例。早在2022年,某大型金融科技公司也因连接池配置不当导致交易系统瘫痪。事后调查显示,其问题根源同样在于对连接池生命周期管理的忽视。专家指出,现代分布式系统的设计应更加注重自动化运维能力,例如通过AI驱动的监控平台实时检测连接池状态,预测潜在风险,并提前采取措施。此外,开源社区也在积极完善相关工具,如HikariCP等高性能连接池库,提供了更为精细的配置选项和诊断功能。 对于开发者而言,除了掌握基本的连接池配置知识外,还需要结合实际业务场景进行压力测试,模拟各种极端情况,从而制定更具弹性的策略。同时,定期回顾和优化系统架构也是必不可少的一环。正如一位资深架构师所言:“技术迭代日新月异,但安全与稳定始终是底线。”在未来,随着更多智能化技术的应用,相信这类问题将逐步得到缓解,为企业创造更大的价值。
2025-05-14 16:14:51
71
风轻云淡
转载文章
...以及更高效的网络传输协议,以适应不断变化的高性能计算环境需求。 同时,微软Azure云平台和AWS Amazon EC2等云服务提供商也相继推出了预装MPI的高性能计算实例,用户无需在本地搭建复杂环境,即可直接在云端进行MPI并行程序开发与测试,极大地降低了使用门槛,促进了并行计算技术的普及与应用。 另外,随着跨平台开发需求的增长,开源社区也在积极推动MPICH在Linux、macOS等其他操作系统上的兼容性和性能优化。例如,Microsoft Research团队合作推出的Open MPI项目,旨在提供一个高度可扩展且跨平台的MPI实现,为开发者提供更多选择和灵活性。 此外,对于希望深入了解MPI编程原理及其实战技巧的读者,可以参考《Using MPI - 3rd Edition》这本书,作者详细解析了MPI的各种函数用法,并提供了大量实例代码,是MPI编程入门到精通的绝佳教程资源。 综上所述,无论是从MPI技术的最新进展、云计算环境下的并行计算解决方案,还是深入学习MPI编程的专业书籍推荐,都为那些想要在并行计算领域持续探索和实践的读者提供了丰富的延伸阅读内容。
2023-04-09 11:52:38
114
转载
转载文章
...须满足的条件: 1、远程RPC调用,支付宝和余额宝存在接口调用 2、支付宝和余额宝使用不同的数据库 如图: 2、分布式事务解决方案 1、基于数据库XA协议的两段提交 XA协议是数据库支持的一种协议,其核心是一个事务管理器用来统一管理两个分布式数据库,如图 事务管理器负责跟支付宝数据库和余额宝数据库打交道,一旦有一个数据库连接失败,另一个数据库的操作就不会进行,一个数据库操作失败就会导致另一个数据库回滚,只有他们全部成功两个数据库的事务才会提交。 基于XA协议的两段和三段提交是一种严格的安全确认机制,其安全性是非常高的,但是保证安全性的前提是牺牲了性能,这个就是分布式系统里面的CAP理论,做任何架构的前提需要有取舍。所以基于XA协议的分布式事务并发性不高,不适合高并发场景。 2、基于activemq的解决方案 如图: 1、支付宝扣款成功时往message表插入消息 2、message表有message_id(流水id,标识夸系统的一次转账操作),status(confirm,unconfirm) 3、timer扫描message表的unconfirm状态记录往activemq插入消息 4、余额宝收到消息消费消息时先查询message表如果有记录就不处理如果没记录就进行数据库增款操作 5、如果余额宝数据库操作成功往余额宝message表插入消息,表字段跟支付宝message一致 6、如果5操作成功,回调支付宝接口修改message表状态,把unconfirm状态转换成confirm状态 问题描述: 1、支付宝设计message表的目的 如果支付宝往activemq插入消息而余额宝消费消息异常,有可能是消费消息成功而事务操作异常,有可能是网络异常等等不确定因素。如果出现异常而activemq收到了确认消息的信号,这时候activemq中的消息是删除了的,消息丢失了。设置message表就是有一个消息存根,activemq中消息丢失了message表中的消息还在。解决了activemq消息丢失问题 2、余额宝设计message表的目的 当余额宝消费成功并且数据库操作成功时,回调支付宝的消息确认接口,如果回调接口时出现异常导致支付宝状态修改失败还是unconfirm状态,这时候还会被timer扫描到,又会往activemq插入消息,又会被余额宝消费一边,但是这条消息已经消费成功了的只是回调失败而已,所以就需要有一个这样的message表,当余额宝消费时先插入message表,如果message根据message_id能查询到记录就说明之前这条消息被消费过就不再消费只需要回调成功即可,如果查询不到消息就消费这条消息继续数据库操作,数据库操作成功就往message表插入消息。 这样就解决了消息重复消费问题,这也是消费端的幂等操作。 基于消息中间件的分布式事务是最理想的分布式事务解决方案,兼顾了安全性和并发性! 接下来贴代码: 支付宝代码: @Controller@RequestMapping("/order")public class OrderController {/ @Description TODO @param @return 参数 @return String 返回类型 @throws userID:转账的用户ID amount:转多少钱/@Autowired@Qualifier("activemq")OrderService orderService;@RequestMapping("/transfer")public @ResponseBody String transferAmount(String userId,String messageId, int amount) {try {orderService.updateAmount(amount,messageId, userId);}catch (Exception e) {e.printStackTrace();return "===============================transferAmount failed===================";}return "===============================transferAmount successfull===================";}@RequestMapping("/callback")public String callback(String param) {JSONObject parse = JSONObject.parseObject(param);String respCode = parse.getString("respCode");if(!"OK".equalsIgnoreCase(respCode)) {return null;}try {orderService.updateMessage(param);}catch (Exception e) {e.printStackTrace();return "fail";}return "ok";} } public interface OrderService {public void updateAmount(int amount, String userId,String messageId);public void updateMessage(String param);} @Service("activemq")@Transactional(rollbackFor = Exception.class)public class OrderServiceActivemqImpl implements OrderService {Logger logger = LoggerFactory.getLogger(getClass());@AutowiredJdbcTemplate jdbcTemplate;@AutowiredJmsTemplate jmsTemplate;@Overridepublic void updateAmount(final int amount, final String messageId, final String userId) {String sql = "update account set amount = amount - ?,update_time=now() where user_id = ?";int count = jdbcTemplate.update(sql, new Object[]{amount, userId});if (count == 1) {//插入到消息记录表sql = "insert into message(user_id,message_id,amount,status) values (?,?,?,?)";int row = jdbcTemplate.update(sql,new Object[]{userId,messageId,amount,"unconfirm"});if(row == 1) {//往activemq中插入消息jmsTemplate.send("zg.jack.queue", new MessageCreator() {@Overridepublic Message createMessage(Session session) throws JMSException {com.zhuguang.jack.bean.Message message = new com.zhuguang.jack.bean.Message();message.setAmount(Integer.valueOf(amount));message.setStatus("unconfirm");message.setUserId(userId);message.setMessageId(messageId);return session.createObjectMessage(message);} });} }}@Overridepublic void updateMessage(String param) {JSONObject parse = JSONObject.parseObject(param);String messageId = parse.getString("messageId");String sql = "update message set status = ? where message_id = ?";int count = jdbcTemplate.update(sql,new Object[]{"confirm",messageId});if(count == 1) {logger.info(messageId + " callback successfull");} }} activemq.xml <?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xmlns:amq="http://activemq.apache.org/schema/core"xmlns:jms="http://www.springframework.org/schema/jms"xmlns:context="http://www.springframework.org/schema/context"xmlns:mvc="http://www.springframework.org/schema/mvc"xsi:schemaLocation="http://www.springframework.org/schema/beanshttp://www.springframework.org/schema/beans/spring-beans-4.1.xsdhttp://www.springframework.org/schema/contexthttp://www.springframework.org/schema/context/spring-context-4.1.xsdhttp://www.springframework.org/schema/mvchttp://www.springframework.org/schema/mvc/spring-mvc-4.1.xsdhttp://www.springframework.org/schema/jmshttp://www.springframework.org/schema/jms/spring-jms-4.1.xsdhttp://activemq.apache.org/schema/corehttp://activemq.apache.org/schema/core/activemq-core-5.12.1.xsd"><context:component-scan base-package="com.zhuguang.jack" /><mvc:annotation-driven /><amq:connectionFactory id="amqConnectionFactory"brokerURL="tcp://192.168.88.131:61616"userName="system"password="manager" /><!-- 配置JMS连接工长 --><bean id="connectionFactory"class="org.springframework.jms.connection.CachingConnectionFactory"><constructor-arg ref="amqConnectionFactory" /><property name="sessionCacheSize" value="100" /></bean><!-- 定义消息队列(Queue) --><bean id="demoQueueDestination" class="org.apache.activemq.command.ActiveMQQueue"><!-- 设置消息队列的名字 --><constructor-arg><value>zg.jack.queue</value></constructor-arg></bean><!-- 配置JMS模板(Queue),Spring提供的JMS工具类,它发送、接收消息。 --><bean id="jmsTemplate" class="org.springframework.jms.core.JmsTemplate"><property name="connectionFactory" ref="connectionFactory" /><property name="defaultDestination" ref="demoQueueDestination" /><property name="receiveTimeout" value="10000" /><!-- true是topic,false是queue,默认是false,此处显示写出false --><property name="pubSubDomain" value="false" /></bean></beans> spring-dispatcher.xml <beans xmlns="http://www.springframework.org/schema/beans"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:p="http://www.springframework.org/schema/p"xmlns:context="http://www.springframework.org/schema/context"xmlns:task="http://www.springframework.org/schema/task" xmlns:aop="http://www.springframework.org/schema/aop"xmlns:tx="http://www.springframework.org/schema/tx"xmlns:util="http://www.springframework.org/schema/util" xmlns:mvc="http://www.springframework.org/schema/mvc"xsi:schemaLocation="http://www.springframework.org/schema/utilhttp://www.springframework.org/schema/util/spring-util-3.2.xsdhttp://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.2.xsdhttp://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context-3.2.xsdhttp://www.springframework.org/schema/mvchttp://www.springframework.org/schema/mvc/spring-mvc-3.2.xsdhttp://www.springframework.org/schema/task http://www.springframework.org/schema/task/spring-task-3.0.xsdhttp://www.springframework.org/schema/txhttp://www.springframework.org/schema/tx/spring-tx-3.0.xsdhttp://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-3.0.xsd"><!-- 引入同文件夹下的redis属性配置文件 --><!-- 解决springMVC响应数据乱码 text/plain就是响应的时候原样返回数据--><import resource="../activemq/activemq.xml"/><!--<context:property-placeholder ignore-unresolvable="true" location="classpath:config/core/core.properties,classpath:config/redis/redis-config.properties" />--><bean id="propertyConfigurerForProject1" class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer"><property name="order" value="1" /><property name="ignoreUnresolvablePlaceholders" value="true" /><property name="location"><value>classpath:config/core/core.properties</value></property></bean><mvc:annotation-driven><mvc:message-converters register-defaults="true"><bean class="org.springframework.http.converter.StringHttpMessageConverter"><property name="supportedMediaTypes" value = "text/plain;charset=UTF-8" /></bean></mvc:message-converters></mvc:annotation-driven><!-- 避免IE执行AJAX时,返回JSON出现下载文件 --><bean id="mappingJacksonHttpMessageConverter" class="org.springframework.http.converter.json.MappingJacksonHttpMessageConverter"><property name="supportedMediaTypes"><list><value>text/html;charset=UTF-8</value></list></property></bean><!-- 开启controller注解支持 --><!-- 注:如果base-package=com.avicit 则注解事务不起作用 TODO 读源码 --><context:component-scan base-package="com.zhuguang"></context:component-scan><mvc:view-controller path="/" view-name="redirect:/index" /><beanclass="org.springframework.web.servlet.mvc.annotation.DefaultAnnotationHandlerMapping" /><bean id="handlerAdapter"class="org.springframework.web.servlet.mvc.annotation.AnnotationMethodHandlerAdapter"></bean><beanclass="org.springframework.web.servlet.view.ContentNegotiatingViewResolver"><property name="mediaTypes"><map><entry key="json" value="application/json" /><entry key="xml" value="application/xml" /><entry key="html" value="text/html" /></map></property><property name="viewResolvers"><list><bean class="org.springframework.web.servlet.view.BeanNameViewResolver" /><bean class="org.springframework.web.servlet.view.UrlBasedViewResolver"><property name="viewClass" value="org.springframework.web.servlet.view.JstlView" /><property name="prefix" value="/" /><property name="suffix" value=".jsp" /></bean></list></property></bean><!-- 支持上传文件 --> <!-- 控制器异常处理 --><bean id="exceptionResolver"class="org.springframework.web.servlet.handler.SimpleMappingExceptionResolver"><property name="exceptionMappings"><props><prop key="java.lang.Exception">error</prop></props></property></bean><bean id="dataSource" class="com.mchange.v2.c3p0.ComboPooledDataSource" destroy-method="close"><property name="driverClass"><value>${jdbc.driverClassName}</value></property><property name="jdbcUrl"><value>${jdbc.url}</value></property><property name="user"><value>${jdbc.username}</value></property><property name="password"><value>${jdbc.password}</value></property><property name="minPoolSize" value="10" /><property name="maxPoolSize" value="100" /><property name="maxIdleTime" value="1800" /><property name="acquireIncrement" value="3" /><property name="maxStatements" value="1000" /><property name="initialPoolSize" value="10" /><property name="idleConnectionTestPeriod" value="60" /><property name="acquireRetryAttempts" value="30" /><property name="breakAfterAcquireFailure" value="false" /><property name="testConnectionOnCheckout" value="false" /><property name="acquireRetryDelay"><value>100</value></property></bean><bean id="jdbcTemplate" class="org.springframework.jdbc.core.JdbcTemplate"><property name="dataSource" ref="dataSource"></property></bean><bean id="transactionManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager"><property name="dataSource" ref="dataSource"/></bean><tx:annotation-driven transaction-manager="transactionManager" proxy-target-class="true" /><aop:aspectj-autoproxy expose-proxy="true"/></beans> logback.xml <?xml version="1.0" encoding="UTF-8"?><!--scan:当此属性设置为true时,配置文件如果发生改变,将会被重新加载,默认值为true。scanPeriod:设置监测配置文件是否有修改的时间间隔,如果没有给出时间单位,默认单位是毫秒当scan为true时,此属性生效。默认的时间间隔为1分钟。debug:当此属性设置为true时,将打印出logback内部日志信息,实时查看logback运行状态。默认值为false。--><configuration scan="false" scanPeriod="60 seconds" debug="false"><!-- 定义日志的根目录 --><!-- <property name="LOG_HOME" value="/app/log" /> --><!-- 定义日志文件名称 --><property name="appName" value="netty"></property><!-- ch.qos.logback.core.ConsoleAppender 表示控制台输出 --><appender name="stdout" class="ch.qos.logback.core.ConsoleAppender"><Encoding>UTF-8</Encoding><!--日志输出格式:%d表示日期时间,%thread表示线程名,%-5level:级别从左显示5个字符宽度%logger{50} 表示logger名字最长50个字符,否则按照句点分割。 %msg:日志消息,%n是换行符--><encoder><pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{50} - %msg%n</pattern></encoder></appender><!-- 滚动记录文件,先将日志记录到指定文件,当符合某个条件时,将日志记录到其他文件 --> <appender name="appLogAppender" class="ch.qos.logback.core.rolling.RollingFileAppender"><Encoding>UTF-8</Encoding><!-- 指定日志文件的名称 --> <file>${appName}.log</file><!--当发生滚动时,决定 RollingFileAppender 的行为,涉及文件移动和重命名TimeBasedRollingPolicy: 最常用的滚动策略,它根据时间来制定滚动策略,既负责滚动也负责出发滚动。--><rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy"><!--滚动时产生的文件的存放位置及文件名称 %d{yyyy-MM-dd}:按天进行日志滚动 %i:当文件大小超过maxFileSize时,按照i进行文件滚动--><fileNamePattern>${appName}-%d{yyyy-MM-dd}-%i.log</fileNamePattern><!-- 可选节点,控制保留的归档文件的最大数量,超出数量就删除旧文件。假设设置每天滚动,且maxHistory是365,则只保存最近365天的文件,删除之前的旧文件。注意,删除旧文件是,那些为了归档而创建的目录也会被删除。--><MaxHistory>365</MaxHistory><!-- 当日志文件超过maxFileSize指定的大小是,根据上面提到的%i进行日志文件滚动 注意此处配置SizeBasedTriggeringPolicy是无法实现按文件大小进行滚动的,必须配置timeBasedFileNamingAndTriggeringPolicy--><timeBasedFileNamingAndTriggeringPolicy class="ch.qos.logback.core.rolling.SizeAndTimeBasedFNATP"><maxFileSize>100MB</maxFileSize></timeBasedFileNamingAndTriggeringPolicy></rollingPolicy><!--日志输出格式:%d表示日期时间,%thread表示线程名,%-5level:级别从左显示5个字符宽度 %logger{50} 表示logger名字最长50个字符,否则按照句点分割。 %msg:日志消息,%n是换行符--> <encoder><pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [ %thread ] - [ %-5level ] [ %logger{50} : %line ] - %msg%n</pattern></encoder></appender><!-- logger主要用于存放日志对象,也可以定义日志类型、级别name:表示匹配的logger类型前缀,也就是包的前半部分level:要记录的日志级别,包括 TRACE < DEBUG < INFO < WARN < ERRORadditivity:作用在于children-logger是否使用 rootLogger配置的appender进行输出,false:表示只用当前logger的appender-ref,true:表示当前logger的appender-ref和rootLogger的appender-ref都有效--><!-- <logger name="edu.hyh" level="info" additivity="true"><appender-ref ref="appLogAppender" /></logger> --><!-- root与logger是父子关系,没有特别定义则默认为root,任何一个类只会和一个logger对应,要么是定义的logger,要么是root,判断的关键在于找到这个logger,然后判断这个logger的appender和level。 --><root level="debug"><appender-ref ref="stdout" /><appender-ref ref="appLogAppender" /></root></configuration> 2、余额宝代码 package com.zhuguang.jack.controller;import com.alibaba.fastjson.JSONObject;import com.zhuguang.jack.service.OrderService;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.stereotype.Controller;import org.springframework.web.bind.annotation.RequestMapping;import org.springframework.web.bind.annotation.ResponseBody;@Controller@RequestMapping("/order")public class OrderController {/ @Description TODO @param @return 参数 @return String 返回类型 @throws 模拟银行转账 userID:转账的用户ID amount:转多少钱/@AutowiredOrderService orderService;@RequestMapping("/transfer")public @ResponseBody String transferAmount(String userId, String amount) {try {orderService.updateAmount(Integer.valueOf(amount), userId);}catch (Exception e) {e.printStackTrace();return "===============================transferAmount failed===================";}return "===============================transferAmount successfull===================";} } 消息监听器 package com.zhuguang.jack.listener;import com.alibaba.fastjson.JSONObject;import com.zhuguang.jack.service.OrderService;import org.slf4j.Logger;import org.slf4j.LoggerFactory;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.http.client.SimpleClientHttpRequestFactory;import org.springframework.stereotype.Service;import org.springframework.transaction.annotation.Transactional;import org.springframework.web.client.RestTemplate;import javax.jms.JMSException;import javax.jms.Message;import javax.jms.MessageListener;import javax.jms.ObjectMessage;@Service("queueMessageListener")public class QueueMessageListener implements MessageListener {private Logger logger = LoggerFactory.getLogger(getClass());@AutowiredOrderService orderService;@Transactional(rollbackFor = Exception.class)@Overridepublic void onMessage(Message message) {if (message instanceof ObjectMessage) {ObjectMessage objectMessage = (ObjectMessage) message;try {com.zhuguang.jack.bean.Message message1 = (com.zhuguang.jack.bean.Message) objectMessage.getObject();String userId = message1.getUserId();int count = orderService.queryMessageCountByUserId(userId);if (count == 0) {orderService.updateAmount(message1.getAmount(), message1.getUserId());orderService.insertMessage(message1.getUserId(), message1.getMessageId(), message1.getAmount(), "ok");} else {logger.info("异常转账");}RestTemplate restTemplate = createRestTemplate();JSONObject jo = new JSONObject();jo.put("messageId", message1.getMessageId());jo.put("respCode", "OK");String url = "http://jack.bank_a.com:8080/alipay/order/callback?param="+ jo.toJSONString();restTemplate.getForObject(url,null);} catch (JMSException e) {e.printStackTrace();throw new RuntimeException("异常");} }}public RestTemplate createRestTemplate() {SimpleClientHttpRequestFactory simpleClientHttpRequestFactory = new SimpleClientHttpRequestFactory();simpleClientHttpRequestFactory.setConnectTimeout(3000);simpleClientHttpRequestFactory.setReadTimeout(2000);return new RestTemplate(simpleClientHttpRequestFactory);} } package com.zhuguang.jack.service;public interface OrderService {public void updateAmount(int amount, String userId);public int queryMessageCountByUserId(String userId);public int insertMessage(String userId,String messageId,int amount,String status);} package com.zhuguang.jack.service;import org.slf4j.Logger;import org.slf4j.LoggerFactory;import org.springframework.beans.factory.annotation.Autowired;import org.springframework.http.client.SimpleClientHttpRequestFactory;import org.springframework.jdbc.core.JdbcTemplate;import org.springframework.stereotype.Service;import org.springframework.transaction.annotation.Transactional;import org.springframework.web.client.RestTemplate;@Service@Transactional(rollbackFor = Exception.class)public class OrderServiceImpl implements OrderService {private Logger logger = LoggerFactory.getLogger(getClass());@AutowiredJdbcTemplate jdbcTemplate;/ 更新数据库表,把账户余额减去amountd/@Overridepublic void updateAmount(int amount, String userId) {//1、农业银行转账3000,也就说农业银行jack账户要减3000String sql = "update account set amount = amount + ?,update_time=now() where user_id = ?";int count = jdbcTemplate.update(sql, new Object[] {amount, userId});if (count != 1) {throw new RuntimeException("订单创建失败,农业银行转账失败!");} }public RestTemplate createRestTemplate() {SimpleClientHttpRequestFactory simpleClientHttpRequestFactory = new SimpleClientHttpRequestFactory();simpleClientHttpRequestFactory.setConnectTimeout(3000);simpleClientHttpRequestFactory.setReadTimeout(2000);return new RestTemplate(simpleClientHttpRequestFactory);}@Overridepublic int queryMessageCountByUserId(String messageId) {String sql = "select count() from message where message_id = ?";int count = jdbcTemplate.queryForInt(sql, new Object[]{messageId});return count;}@Overridepublic int insertMessage(String userId, String message_id,int amount, String status) {String sql = "insert into message(user_id,message_id,amount,status) values(?,?,?)";int count = jdbcTemplate.update(sql, new Object[]{userId, message_id,amount, status});if(count == 1) {logger.info("Ok");}return count;} } activemq.xml <?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xmlns:amq="http://activemq.apache.org/schema/core"xmlns:jms="http://www.springframework.org/schema/jms"xmlns:context="http://www.springframework.org/schema/context"xmlns:mvc="http://www.springframework.org/schema/mvc"xsi:schemaLocation="http://www.springframework.org/schema/beanshttp://www.springframework.org/schema/beans/spring-beans-4.1.xsdhttp://www.springframework.org/schema/contexthttp://www.springframework.org/schema/context/spring-context-4.1.xsdhttp://www.springframework.org/schema/mvchttp://www.springframework.org/schema/mvc/spring-mvc-4.1.xsdhttp://www.springframework.org/schema/jmshttp://www.springframework.org/schema/jms/spring-jms-4.1.xsdhttp://activemq.apache.org/schema/corehttp://activemq.apache.org/schema/core/activemq-core-5.12.1.xsd"><context:component-scan base-package="com.zhuguang.jack" /><mvc:annotation-driven /><amq:connectionFactory id="amqConnectionFactory"brokerURL="tcp://192.168.88.131:61616"userName="system"password="manager" /><!-- 配置JMS连接工长 --><bean id="connectionFactory"class="org.springframework.jms.connection.CachingConnectionFactory"><constructor-arg ref="amqConnectionFactory" /><property name="sessionCacheSize" value="100" /></bean><!-- 定义消息队列(Queue) --><bean id="demoQueueDestination" class="org.apache.activemq.command.ActiveMQQueue"><!-- 设置消息队列的名字 --><constructor-arg><value>zg.jack.queue</value></constructor-arg></bean><!-- 显示注入消息监听容器(Queue),配置连接工厂,监听的目标是demoQueueDestination,监听器是上面定义的监听器 --><bean id="queueListenerContainer"class="org.springframework.jms.listener.DefaultMessageListenerContainer"><property name="connectionFactory" ref="connectionFactory" /><property name="destination" ref="demoQueueDestination" /><property name="messageListener" ref="queueMessageListener" /></bean><!-- 配置JMS模板(Queue),Spring提供的JMS工具类,它发送、接收消息。 --><bean id="jmsTemplate" class="org.springframework.jms.core.JmsTemplate"><property name="connectionFactory" ref="connectionFactory" /><property name="defaultDestination" ref="demoQueueDestination" /><property name="receiveTimeout" value="10000" /><!-- true是topic,false是queue,默认是false,此处显示写出false --><property name="pubSubDomain" value="false" /></bean></beans> OK~~~~~~~~~~~~大功告成!!!, 如果大家觉得满意并且对技术感兴趣请加群:171239762, 纯技术交流群,非诚勿扰。 本篇文章为转载内容。原文链接:https://blog.csdn.net/luoyang_java/article/details/84953241。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-16 22:34:52
500
转载
转载文章
...。不过真要在自己企业实践容器的时候,会认识到容器化不是一个简单工程,甚至会有一种茫然不知从何入手的感觉。 本文总结了通用的企业容器化实施线路图,主要针对企业有存量系统改造为容器,或者部分新开发的系统使用容器技术的场景。不包含企业系统从0开始全新构建的场景,这种场景相对简单。 容器实践路线图 企业着手实践容器的路线,建议从3个维度评估,然后根据评估结果落地实施。3个评估维度为:商业目标,技术选型,团队配合。 商业目标是重中之重,需要回答为何要容器化,这个也是牵引团队在容器实践路上不断前行的动力,是遇到问题是解决问题的方向指引,最重要的是让决策者认同商业目标,并能了解到支持商业目标的技术原理,上下目标对齐才好办事。 商业目标确定之后,需要确定容器相关的技术选型,容器是一种轻量化的虚拟化技术,与传统虚拟机比较有优点也有缺点,要找出这些差异点识别出对基础设施与应用的影响,提前识别风险并采取应对措施。 技术选型明确之后,在公司或部门内部推广与评审,让开发人员、架构师、测试人员、运维人员相关人员与团队理解与认同方案,听取他们意见,他们是直接使用容器的客户,不要让他们有抱怨。 最后是落地策略,一般是选取一些辅助业务先试点,在实践过程中不断总结经验。 商业目标 容器技术是以应用为中心的轻量级虚拟化技术,而传统的Xen与KVM是以资源为中心的虚拟化技术,这是两者的本质差异。以应用为中心是容器技术演进的指导原则,正是在这个原则指导下,容器技术相对于传统虚拟化有几个特点:打包既部署、镜像分层、应用资源调度。 打包即部署:打包即部署是指在容器镜像制作过程包含了传统软件包部署的过程(安装依赖的操作系统库或工具、创建用户、创建运行目录、解压、设置文件权限等等),这么做的好处是把应用及其依赖封装到了一个相对封闭的环境,减少了应用对外部环境的依赖,增强了应用在各种不同环境下的行为一致性,同时也减少了应用部署时间。 镜像分层:容器镜像包是分层结构,同一个主机上的镜像层是可以在多个容器之间共享的,这个机制可以极大减少镜像更新时候拉取镜像包的时间,通常应用程序更新升级都只是更新业务层(如Java程序的jar包),而镜像中的操作系统Lib层、运行时(如Jre)层等文件不会频繁更新。因此新版本镜像实质有变化的只有很小的一部分,在更新升级时候也只会从镜像仓库拉取很小的文件,所以速度很快。 应用资源调度:资源(计算/存储/网络)都是以应用为中心的,中心体现在资源分配是按照应用粒度分配资源、资源随应用迁移。 基于上述容器技术特点,可以推导出容器技术的3大使用场景:CI/CD、提升资源利用率、弹性伸缩。这3个使用场景自然推导出通用的商业层面收益:CI/CD提升研发效率、提升资源利用率降低成本、按需弹性伸缩在体验与成本之间达成平衡。 当然,除了商业目标之外,可能还有其他一些考虑因素,如基于容器技术实现计算任务调度平台、保持团队技术先进性等。 CI/CD提升研发效率 为什么容器技术适合CI/CD CI/CD是DevOps的关键组成部分,DevOps是一套软件工程的流程,用于持续提升软件开发效率与软件交付质量。DevOps流程来源于制造业的精益生产理念,在这个领域的领头羊是丰田公司,《丰田套路》这本书总结丰田公司如何通过PDCA(Plan-Do-Check-Act)方法实施持续改进。PDCA通常也称为PDCA循环,PDCA实施过程简要描述为:确定目标状态、分析当前状态、找出与目标状态的差距、制定实施计划、实施并总结、开始下一个PDCA过程。 DevOps基本也是这么一个PDCA流程循环,很容易认知到PDCA过程中效率是关键,同一时间段内,实施更多数量的PDCA过程,收益越高。在软件开发领域的DevOps流程中,各种等待(等待编译、等待打包、等待部署等)、各种中断(部署失败、机器故障)是影响DevOps流程效率的重要因素。 容器技术出来之后,将容器技术应用到DevOps场景下,可以从技术手段消除DevOps流程中的部分等待与中断,从而大幅度提升DevOps流程中CI/CD的效率。 容器的OCI标准定义了容器镜像规范,容器镜像包与传统的压缩包(zip/tgz等)相比有两个关键区别点:1)分层存储;2)打包即部署。 分层存储可以极大减少镜像更新时候拉取镜像包的时间,通常应用程序更新升级都只是更新业务层(如Java程序的jar包),而镜像中的操作系统Lib层、运行时(如Jre)层等文件不会频繁更新。因此新版本镜像实质有变化的只有很小的一部分,在更新升级时候也只会从镜像仓库拉取很小的文件,所以速度很快。 打包即部署是指在容器镜像制作过程包含了传统软件包部署的过程(安装依赖的操作系统库或工具、创建用户、创建运行目录、解压、设置文件权限等等),这么做的好处是把应用及其依赖封装到了一个相对封闭的环境,减少了应用对外部环境的依赖,增强了应用在各种不同环境下的行为一致性,同时也减少了应用部署时间。 基于容器镜像的这些优势,容器镜像用到CI/CD场景下,可以减少CI/CD过程中的等待时间,减少因环境差异而导致的部署中断,从而提升CI/CD的效率,提升整体研发效率。 CI/CD的关键诉求与挑战 快 开发人员本地开发调试完成后,提交代码,执行构建与部署,等待部署完成后验证功能。这个等待的过程尽可能短,否则开发人员工作容易被打断,造成后果就是效率降低。如果提交代码后几秒钟就能够完成部署,那么开发人员几乎不用等待,工作也不会被打断;如果需要好几分钟或十几分钟,那么可以想象,这十几分钟就是浪费了,这时候很容易做点别的事情,那么思路又被打断了。 所以构建CI/CD环境时候,快是第一个需要考虑的因素。要达到快,除了有足够的机器资源免除排队等待,引入并行编译技术也是常用做法,如Maven3支持多核并行构建。 自定义流程 不同行业存在不同的行业规范、监管要求,各个企业有一套内部质量规范,这些要求都对软件交付流程有定制需求,如要求使用商用的代码扫描工具做安全扫描,如构建结果与企业内部通信系统对接发送消息。 在团队协同方面,不同的公司,对DevOps流程在不同团队之间分工有差异,典型的有开发者负责代码编写构建出构建物(如jar包),而部署模板、配置由运维人员负责;有的企业开发人员负责构建并部署到测试环境;有的企业开发人员直接可以部署到生产环境。这些不同的场景,对CI/CD的流程、权限管控都有定制需求。 提升资源利用率 OCI标准包含容器镜像标准与容器运行时标准两部分,容器运行时标准聚焦在定义如何将镜像包从镜像仓库拉取到本地并更新、如何隔离运行时资源这些方面。得益于分层存储与打包即部署的特性,容器镜像从到镜像仓库拉取到本地运行速度非常快(通常小于30秒,依赖镜像本身大小等因素),基于此可以实现按需分配容器运行时资源(cpu与内存),并限定单个容器资源用量;然后根据容器进程资源使用率设定弹性伸缩规则,实现自动的弹性伸缩。 这种方式相对于传统的按峰值配置资源方式,可以提升资源利用率。 按需弹性伸缩在体验与成本之间达成平衡 联动弹性伸缩 应用运行到容器,按需分配资源之后,理想情况下,Kubernetes的池子里没有空闲的资源。这时候扩容应用实例数,新扩容的实例会因资源不足调度失败。这时候需要资源池能自动扩容,加入新的虚拟机,调度新扩容的应用。 由于应用对资源的配比与Flavor有要求,因此新加入的虚拟机,应当是与应用所需要的资源配比与Flavor一致的。缩容也是类似。 弹性伸缩还有一个诉求点是“平滑”,对业务做到不感知,也称为“优雅”扩容/缩容。 请求风暴 上面提到的弹性伸缩一般是有计划或缓慢增压的场景,存在另外一种无法预期的请求风暴场景,这种场景的特征是无法预测、突然请求量增大数倍或数十倍、持续时间短。典型的例子如行情交易系统,当行情突变的时候,用户访问量徒增,持续几十分钟或一个小时。 这种场景的弹性诉求,要求短时间内能将资源池扩大数倍,关键是速度要快(秒级),否则会来不及扩容,系统已经被冲垮(如果无限流的话)。 目前基于 Virtual Kubelet 与云厂家的 Serverless 容器,理论上可以提供应对请求风暴的方案。不过在具体实施时候,需要考虑传统托管式Kubernetes容器管理平台与Serverless容器之间互通的问题,需要基于具体厂家提供的能力来评估。 基于容器技术实现计算调度平台 计算(大数据/AI训练等)场景的特征是短时间内需要大量算力,算完即释放。容器的环境一致性以及调度便利性适合这种场景。 技术选型 容器技术是属于基础设施范围,但是与传统虚拟化技术(Xen/KVM)比较,容器技术是应用虚拟化,不是纯粹的资源虚拟化,与传统虚拟化存在差异。在容器技术选型时候,需要结合当前团队在应用管理与资源管理的现状,对照容器技术与虚拟化技术的差异,选择最合适的容器技术栈。 什么是容器技术 (1)容器是一种轻量化的应用虚拟化技术。 在讨论具体的容器技术栈的时候,先介绍目前几种常用的应用虚拟化技术,当前有3种主流的应用虚拟化技术: LXC,MicroVM,UniKernel(LibOS)。 LXC: Linux Container,通过 Linux的 namespace/cgroups/chroot 等技术隔离进程资源,目前应用最广的docker就是基于LXC实现应用虚拟化的。 MicroVM: MicroVM 介于 传统的VM 与 LXC之间,隔离性比LXC好,但是比传统的VM要轻量,轻量体现在体积小(几M到几十M)、启动快(小于1s)。 AWS Firecracker 就是一种MicroVM的实现,用于AWS的Serverless计算领域,Serverless要求启动快,租户之间隔离性好。 UniKernel: 是一种专用的(特定编程语言技术栈专用)、单地址空间、使用 library OS 构建出来的镜像。UniKernel要解决的问题是减少应用软件的技术栈层次,现代软件层次太多导致越来越臃肿:硬件+HostOS+虚拟化模拟+GuestOS+APP。UniKernel目标是:硬件+HostOS+虚拟化模拟+APP-with-libos。 三种技术对比表: 开销 体积 启动速度 隔离/安全 生态 LXC 低(几乎为0) 小 快(等同进程启动) 差(内核共享) 好 MicroVM 高 大 慢(小于1s) 好 中(Kata项目) UniKernel 中 中 中 好 差 根据上述对比来看,LXC是应用虚拟化首选的技术,如果LXC无法满足隔离性要,则可以考虑MicroVM这种技术。当前社区已经在着手融合LXC与MicroVM这两种技术,从应用打包/发布调度/运行层面统一规范,Kubernetes集成Kata支持混合应用调度特性可以了解一下。 UniKernel 在应用生态方面相对比较落后,目前在追赶中,目前通过 linuxkit 工具可以在UniKernel应用镜像中使用docker镜像。这种方式笔者还未验证过,另外docker镜像运行起来之后,如何监控目前还未知。 从上述三种应用虚拟化技术对比,可以得出结论: (2)容器技术与传统虚拟化技术不断融合中。 再从规范视角来看容器技术,可以将容器技术定义为: (3)容器=OCI+CRI+辅助工具。 OCI规范包含两部分,镜像规范与运行时规范。简要的说,要实现一个OCI的规范,需要能够下载镜像并解压镜像到文件系统上组成成一个文件目录结构,运行时工具能够理解这个目录结构并基于此目录结构管理(创建/启动/停止/删除)进程。 容器(container)的技术构成就是实现OCI规范的技术集合。 对于不同的操作系统(Linux/Windows),OCI规范的实现技术不同,当前docker的实现,支持Windows与Linux与MacOS操作系统。当前使用最广的是Linux系统,OCI的实现,在Linux上组成容器的主要技术: chroot: 通过分层文件系统堆叠出容器进程的rootfs,然后通过chroot设置容器进程的根文件系统为堆叠出的rootfs。 cgroups: 通过cgroups技术隔离容器进程的cpu/内存资源。 namesapce: 通过pid, uts, mount, network, user namesapce 分别隔离容器进程的进程ID,时间,文件系统挂载,网络,用户资源。 网络虚拟化: 容器进程被放置到独立的网络命名空间,通过Linux网络虚拟化veth, macvlan, bridge等技术连接主机网络与容器虚拟网络。 存储驱动: 本地文件系统,使用容器镜像分层文件堆叠的各种实现驱动,当前推荐的是overlay2。 广义的容器还包含容器编排,即当下很火热的Kubernetes。Kubernetes为了把控容器调度的生态,发布了CRI规范,通过CRI规范解耦Kubelet与容器,只要实现了CRI接口,都可以与Kubelet交互,从而被Kubernetes调度。OCI规范的容器实现与CRI标准接口对接的实现是CRI-O。 辅助工具用户构建镜像,验证镜像签名,管理存储卷等。 容器定义 容器是一种轻量化的应用虚拟化技术。 容器=OCI+CRI+辅助工具。 容器技术与传统虚拟化技术不断融合中。 什么是容器编排与调度 选择了应用虚拟化技术之后,还需要应用调度编排,当前Kubernetes是容器领域内编排的事实标准,不管使用何种应用虚拟化技术,都已经纳入到了Kubernetes治理框架中。 Kubernetes 通过 CRI 接口规范,将应用编排与应用虚拟化实现解耦:不管使用何种应用虚拟化技术(LXC, MicroVM, LibOS),都能够通过Kubernetes统一编排。 当前使用最多的是docker,其次是cri-o。docker与crio结合kata-runtime都能够支持多种应用虚拟化技术混合编排的场景,如LXC与MicroVM混合编排。 docker(now): Moby 公司贡献的 docker 相关部件,当前主流使用的模式。 docker(daemon) 提供对外访问的API与CLI(docker client) containerd 提供与 kubelet 对接的 CRI 接口实现 shim负责将Pod桥接到Host namespace。 cri-o: 由 RedHat/Intel/SUSE/IBM/Hyper 公司贡献的实现了CRI接口的符合OCI规范的运行时,当前包括 runc 与 kata-runtime ,也就是说使用 cir-o 可以同时运行LXC容器与MicroVM容器,具体在Kata介绍中有详细说明。 CRI-O: 实现了CRI接口的进程,与 kubelet 交互 crictl: 类似 docker 的命令行工具 conmon: Pod监控进程 other cri runtimes: 其他的一些cri实现,目前没有大规模应用到生产环境。 容器与传统虚拟化差异 容器(container)的技术构成 前面主要讲到的是容器与编排,包括CRI接口的各种实现,我们把容器领域的规范归纳为南向与北向两部分,CRI属于北向接口规范,对接编排系统,OCI就属于南向接口规范,实现应用虚拟化。 简单来讲,可以这么定义容器: 容器(container) ~= 应用打包(build) + 应用分发(ship) + 应用运行/资源隔离(run)。 build-ship-run 的内容都被定义到了OCI规范中,因此也可以这么定义容器: 容器(container) == OCI规范 OCI规范包含两部分,镜像规范与运行时规范。简要的说,要实现一个OCI的规范,需要能够下载镜像并解压镜像到文件系统上组成成一个文件目录结构,运行时工具能够理解这个目录结构并基于此目录结构管理(创建/启动/停止/删除)进程。 容器(container)的技术构成就是实现OCI规范的技术集合。 对于不同的操作系统(Linux/Windows),OCI规范的实现技术不同,当前docker的实现,支持Windows与Linux与MacOS操作系统。当前使用最广的是Linux系统,OCI的实现,在Linux上组成容器的主要技术: chroot: 通过分层文件系统堆叠出容器进程的rootfs,然后通过chroot设置容器进程的根文件系统为堆叠出的rootfs。 cgroups: 通过cgroups技术隔离容器进程的cpu/内存资源。 namesapce: 通过pid, uts, mount, network, user namesapce 分别隔离容器进程的进程ID,时间,文件系统挂载,网络,用户资源。 网络虚拟化: 容器进程被放置到独立的网络命名空间,通过Linux网络虚拟化veth, macvlan, bridge等技术连接主机网络与容器虚拟网络。 存储驱动: 本地文件系统,使用容器镜像分层文件堆叠的各种实现驱动,当前推荐的是overlay2。 广义的容器还包含容器编排,即当下很火热的Kubernetes。Kubernetes为了把控容器调度的生态,发布了CRI规范,通过CRI规范解耦Kubelet与容器,只要实现了CRI接口,都可以与Kubelet交互,从而被Kubernetes调度。OCI规范的容器实现与CRI标准接口对接的实现是CRI-O。 容器与虚拟机差异对比 容器与虚拟机的差异可以总结为2点:应用打包与分发的差异,应用资源隔离的差异。当然,导致这两点差异的根基是容器是以应用为中心来设计的,而虚拟化是以资源为中心来设计的,本文对比容器与虚拟机的差异,更多的是站在应用视角来对比。 从3个方面对比差异:资源隔离,应用打包与分发,延伸的日志/监控/DFX差异。 1.资源隔离 隔离机制差异 容器 虚拟化 mem/cpu cgroup, 使用时候设定 require 与 limit 值 QEMU, KVM network Linux网络虚拟化技术(veth,tap,bridge,macvlan,ipvlan), 跨虚拟机或出公网访问:SNAT/DNAT, service转发:iptables/ipvs, SR-IOV Linux网络虚拟化技术(veth,tap,bridge,macvlan,ipvlan), QEMU, SR-IOV storage 本地存储: 容器存储驱动 本地存储:virtio-blk 差异引入问题与实践建议 应用程序未适配 cgroup 的内存隔离导致问题: 典型的是 JVM 虚拟机,在 JVM 启动时候会根据系统内存自动设置 MaxHeapSize 值,通常是系统内存的1/4,但是 JVM 并未考虑 cgroup 场景,读系统内存时候任然读取主机的内存来设置 MaxHeapSize,这样会导致内存超过 cgroup 限制从而导致进程被 kill 。问题详细阐述与解决建议参考Java inside docker: What you must know to not FAIL。 多次网络虚拟化问题: 如果在虚拟机内使用容器,会多一层网络虚拟化,并加入了SNAT/DNAT技术, iptables/ipvs技术,对网络吞吐量与时延都有影响(具体依赖容器网络方案),对问题定位复杂度变高,同时还需要注意网络内核参数调优。 典型的网络调优参数有:转发表大小 /proc/sys/net/netfilter/nf_conntrack_max 使用iptables 作为service转发实现的时候,在转发规则较多的时候,iptables更新由于需要全量更新导致非常耗时,建议使用ipvs。详细参考[华为云在 K8S 大规模场景下的 Service 性能优化实践](https://zhuanlan.zhihu.com/p/37230013)。 容器IP地址频繁变化不固定,周边系统需要协调适配,包括基于IP地址的白名单或防火墙控制策略需要调整,CMDB记录的应用IP地址需要适配动态IP或者使用服务名替代IP地址。 存储驱动带来的性能损耗: 容器本地文件系统是通过联合文件系统方式堆叠出来的,当前主推与默认提供的是overlay2驱动,这种模式应用写本地文件系统文件或修改已有文件,使用Copy-On-Write方式,也就是会先拷贝源文件到可写层然后修改,如果这种操作非常频繁,建议使用 volume 方式。 2.应用打包与分发 应用打包/分发/调度差异 容器 虚拟化 打包 打包既部署 一般不会把应用程序与虚拟机打包在一起,通过部署系统部署应用 分发 使用镜像仓库存储与分发 使用文件存储 调度运行 使用K8S亲和/反亲和调度策略 使用部署系统的调度能力 差异引入问题与实践建议 部署提前到构建阶段,应用需要支持动态配置与静态程序分离;如果在传统部署脚本中依赖外部动态配置,这部分需要做一些调整。 打包格式发生变化,制作容器镜像需要注意安全/效率因素,可参考Dockerfile最佳实践 容器镜像存储与分发是按layer来组织的,镜像在传输过程中放篡改的方式是传统软件包有差异。 3.监控/日志/DFX 差异 容器 虚拟化 监控 cpu/mem的资源上限是cgroup定义的;containerd/shim/docker-daemon等进程的监控 传统进程监控 日志采集 stdout/stderr日志采集方式变化;日志持久化需要挂载到volume;进程会被随机调度到其他节点导致日志需要实时采集否则分散很难定位 传统日志采集 问题定位 进程down之后自动拉起会导致问题定位现场丢失;无法停止进程来定位问题因为停止即删除实例 传统问题定位手段 差异引入问题实践与建议 使用成熟的监控工具,运行在docker中的应用使用cadvisor+prometheus实现采集与警报,cadvisor中预置了常用的监控指标项 对于docker管理进程(containerd/shim/docker-daemon)也需要一并监控 使用成熟的日志采集工具,如果已有日志采集Agent,则可以考虑将日志文件挂载到volume后由Agent采集;需要注意的是stderr/stdout输出也要一并采集 如果希望容器内应用进程退出后保留现场定位问题,则可以将Pod的restartPolicy设置为never,进程退出后进程文件都还保留着(/var/lib/docker/containers)。但是这么做的话需要进程没有及时恢复,会影响业务,需要自己实现进程重拉起。 团队配合 与周边的开发团队、架构团队、测试团队、运维团队评审并交流方案,与周边团队达成一致。 落地策略与注意事项 逐步演进过程中网络互通 根据当前已经存在的基础实施情况,选择容器化落地策略。通常使用逐步演进的方式,由于容器化引入了独立的网络namespace导致容器与传统虚拟机进程网络隔离,逐步演进过程中如何打通隔离的网络是最大的挑战。 分两种场景讨论: 不同服务集群之间使用VIP模式互通: 这种模式相对简单,基于VIP做灰度发布。 不同服务集群之间使用微服务点对点模式互通(SpringCloud/ServiceComb/Dubbo都是这一类): 这种模式相对复杂,在逐步容器化过程中,要求容器网络与传统虚拟机网络能够互通(难点是在虚拟机进程内能够直接访问到容器网络的IP地址),当前解决这个问题有几种方法。 自建Kubernetes场景,可使用开源的kube-router,kube-router 使用BGP协议实现容器网络与传统虚拟机网络之间互通,要求网络交换机支持BGP协议。 使用云厂商托管Kubernetes场景,选择云厂商提供的VPC-Router互通的网络插件,如阿里云的Terway网络插件, 华为云的Underlay网络模式。 选择物理机还是虚拟机 选择物理机运行容器还是虚拟机运行容器,需要结合基础设施与业务隔离性要求综合考虑。分两种场景:自建IDC、租用公有云。 自建IDC: 理想情况是使用物理机组成一个大集群,根据业务诉求,对资源保障与安全性要求高的应用,使用MicorVM方式隔离;普通应用使用LXC方式隔离。所有物理机在一个大集群内,方便削峰填谷提升资源利用率。 租用公有云:当前公有云厂家提供的裸金属服务价格较贵且只能包周期,使用裸金属性价比并不高,使用虚拟机更合适。 集群规模与划分 选择集群时候,是多个应用共用一个大集群,还是按应用分组分成多个小集群呢?我们把节点规模数量>=1000的定义为大集群,节点数<1000的定义为小集群。 大集群的优点是资源池共享容器,方便资源调度(削峰填谷);缺点是随着节点数量与负载数量的增多,会引入管理性能问题(需要量化): DNS 解析表变大,增加/删除 Service 或 增加/删除 Endpoint 导致DNS表刷新慢 K8S Service 转发表变大,导致工作负载增加/删除刷新iptables/ipvs记录变慢 etcd 存储空间变大,如果加上ConfigMap,可能导致 etcd 访问时延增加 小集群的优点是不会有管理性能问题,缺点是会导致资源碎片化,不容易共享。共享分两种情况: 应用之间削峰填谷:目前无法实现 计算任务与应用之间削峰填谷:由于计算任务是短时任务,可以通过上层的任务调度软件,在多个集群之间分发计算任务,从而达到集群之间资源共享的目的。 选择集群规模的时候,可以参考上述分析,结合实际情况选择适合的集群划分。 Helm? Helm是为了解决K8S管理对象散碎的问题,在K8S中并没有"应用"的概念,只有一个个散的对象(Deployment, ConfigMap, Service, etc),而一个"应用"是多个对象组合起来的,且这些对象之间还可能存在一定的版本配套关系。 Helm 通过将K8S多个对象打包为一个包并标注版本号形成一个"应用",通过 Helm 管理进程部署/升级这个"应用"。这种方式解决了一些问题(应用分发更方便)同时也引入了一些问题(引入Helm增加应用发布/管理复杂度、在K8S修改了对象后如何同步到Helm)。对于是否需要使用Helm,建议如下: 在自运维模式下不使用Helm: 自运维模式下,很多场景是开发团队交付一个运行包,运维团队负责部署与配置下发,内部通过兼容性或软件包与配置版本配套清单、管理软件包与配置的配套关系。 在交付软件包模式下使用Helm: 交付软件包模式下,Helm 这种把散碎组件组装为一个应用的模式比较适合,使用Helm实现软件包分发/部署/升级场比较简单。 Reference DOCKER vs LXC vs VIRTUAL MACHINES Cgroup与LXC简介 Introducing Container Runtime Interface (CRI) in Kubernetes frakti rkt appc-spec OCI 和 runc:容器标准化和 docker Linux 容器技术史话:从 chroot 到未来 Linux Namespace和Cgroup Java inside docker: What you must know to not FAIL QEMU,KVM及QEMU-KVM介绍 kvm libvirt qemu实践系列(一)-kvm介绍 KVM 介绍(4):I/O 设备直接分配和 SR-IOV [KVM PCI/PCIe Pass-Through SR-IOV] prometheus-book 到底什么是Unikernel? The Rise and Fall of the Operating System The Design and Implementation of the Anykernel and Rump Kernels UniKernel Unikernel:从不入门到入门 OSv 京东如何打造K8s全球最大集群支撑万亿电商交易 Cloud Native App Hub 更多云最佳实践 https://best.practices.cloud 本篇文章为转载内容。原文链接:https://blog.csdn.net/sinat_33155975/article/details/118013855。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-17 15:03:28
226
转载
转载文章
...桥的openflow协议版本 ovs-vsctl set bridge br0 protocols=OpenFlow13 ovs-vsctl clear bridge br0 protocols 1 2 5.查看某网桥当前流表 ovs-ofctl dump-flows br0 ovs-ofctl -O OpenFlow13 dump-flows br0 ovs-appctl bridge/dump-flows br0 1 2 3 6.设置/删除控制器 ovs-vsctl set-controller br0 tcp:1.2.3.4:6633 ovs-vsctl del-controller br0 1 2 7.查看控制器列表 ovs-vsctl list controller 1 8.设置/删除被动连接控制器 ovs-vsctl set-manager tcp:1.2.3.4:6640 ovs-vsctl get-manager ovs-vsctl del-manager 1 2 3 9.设置/移除可选选项 ovs-vsctl set Interface eth0 options:link_speed=1G ovs-vsctl remove Interface eth0 options link_speed 1 2 10.设置fail模式,支持standalone或者secure standalone(default):清除所有控制器下发的流表,ovs自己接管 secure:按照原来流表继续转发 ovs-vsctl del-fail-mode br0 ovs-vsctl set-fail-mode br0 secure ovs-vsctl get-fail-mode br0 1 2 3 11.查看接口id等 ovs-appctl dpif/show 1 12.查看接口统计 ovs-ofctl dump-ports br0 1 流表类 流表操作 1.添加普通流表 ovs-ofctl add-flow br0 in_port=1,actions=output:2 1 2.删除所有流表 ovs-ofctl del-flows br0 1 3.按匹配项来删除流表 ovs-ofctl del-flows br0 "in_port=1" 1 匹配项 1.匹配vlan tag,范围为0-4095 ovs-ofctl add-flow br0 priority=401,in_port=1,dl_vlan=777,actions=output:2 1 2.匹配vlan pcp,范围为0-7 ovs-ofctl add-flow br0 priority=401,in_port=1,dl_vlan_pcp=7,actions=output:2 1 3.匹配源/目的MAC ovs-ofctl add-flow br0 in_port=1,dl_src=00:00:00:00:00:01/00:00:00:00:00:01,actions=output:2 ovs-ofctl add-flow br0 in_port=1,dl_dst=00:00:00:00:00:01/00:00:00:00:00:01,actions=output:2 1 2 4.匹配以太网类型,范围为0-65535 ovs-ofctl add-flow br0 in_port=1,dl_type=0x0806,actions=output:2 1 5.匹配源/目的IP 条件:指定dl_type=0x0800,或者ip/tcp ovs-ofctl add-flow br0 ip,in_port=1,nw_src=10.10.0.0/16,actions=output:2 ovs-ofctl add-flow br0 ip,in_port=1,nw_dst=10.20.0.0/16,actions=output:2 1 2 6.匹配协议号,范围为0-255 条件:指定dl_type=0x0800或者ip ICMP ovs-ofctl add-flow br0 ip,in_port=1,nw_proto=1,actions=output:2 7.匹配IP ToS/DSCP,tos范围为0-255,DSCP范围为0-63 条件:指定dl_type=0x0800/0x86dd,并且ToS低2位会被忽略(DSCP值为ToS的高6位,并且低2位为预留位) ovs-ofctl add-flow br0 ip,in_port=1,nw_tos=68,actions=output:2 ovs-ofctl add-flow br0 ip,in_port=1,ip_dscp=62,actions=output:2 8.匹配IP ecn位,范围为0-3 条件:指定dl_type=0x0800/0x86dd ovs-ofctl add-flow br0 ip,in_port=1,ip_ecn=2,actions=output:2 9.匹配IP TTL,范围为0-255 ovs-ofctl add-flow br0 ip,in_port=1,nw_ttl=128,actions=output:2 10.匹配tcp/udp,源/目的端口,范围为0-65535 匹配源tcp端口179 ovs-ofctl add-flow br0 tcp,tcp_src=179/0xfff0,actions=output:2 匹配目的tcp端口179 ovs-ofctl add-flow br0 tcp,tcp_dst=179/0xfff0,actions=output:2 匹配源udp端口1234 ovs-ofctl add-flow br0 udp,udp_src=1234/0xfff0,actions=output:2 匹配目的udp端口1234 ovs-ofctl add-flow br0 udp,udp_dst=1234/0xfff0,actions=output:2 11.匹配tcp flags tcp flags=fin,syn,rst,psh,ack,urg,ece,cwr,ns ovs-ofctl add-flow br0 tcp,tcp_flags=ack,actions=output:2 12.匹配icmp code,范围为0-255 条件:指定icmp ovs-ofctl add-flow br0 icmp,icmp_code=2,actions=output:2 13.匹配vlan TCI TCI低12位为vlan id,高3位为priority,例如tci=0xf123则vlan_id为0x123和vlan_pcp=7 ovs-ofctl add-flow br0 in_port=1,vlan_tci=0xf123,actions=output:2 14.匹配mpls label 条件:指定dl_type=0x8847/0x8848 ovs-ofctl add-flow br0 mpls,in_port=1,mpls_label=7,actions=output:2 15.匹配mpls tc,范围为0-7 条件:指定dl_type=0x8847/0x8848 ovs-ofctl add-flow br0 mpls,in_port=1,mpls_tc=7,actions=output:2 1 16.匹配tunnel id,源/目的IP 匹配tunnel id ovs-ofctl add-flow br0 in_port=1,tun_id=0x7/0xf,actions=output:2 匹配tunnel源IP ovs-ofctl add-flow br0 in_port=1,tun_src=192.168.1.0/255.255.255.0,actions=output:2 匹配tunnel目的IP ovs-ofctl add-flow br0 in_port=1,tun_dst=192.168.1.0/255.255.255.0,actions=output:2 一些匹配项的速记符 速记符 匹配项 ip dl_type=0x800 ipv6 dl_type=0x86dd icmp dl_type=0x0800,nw_proto=1 icmp6 dl_type=0x86dd,nw_proto=58 tcp dl_type=0x0800,nw_proto=6 tcp6 dl_type=0x86dd,nw_proto=6 udp dl_type=0x0800,nw_proto=17 udp6 dl_type=0x86dd,nw_proto=17 sctp dl_type=0x0800,nw_proto=132 sctp6 dl_type=0x86dd,nw_proto=132 arp dl_type=0x0806 rarp dl_type=0x8035 mpls dl_type=0x8847 mplsm dl_type=0x8848 指令动作 1.动作为出接口 从指定接口转发出去 ovs-ofctl add-flow br0 in_port=1,actions=output:2 1 2.动作为指定group group id为已创建的group table ovs-ofctl add-flow br0 in_port=1,actions=group:666 1 3.动作为normal 转为L2/L3处理流程 ovs-ofctl add-flow br0 in_port=1,actions=normal 1 4.动作为flood 从所有物理接口转发出去,除了入接口和已关闭flooding的接口 ovs-ofctl add-flow br0 in_port=1,actions=flood 1 5.动作为all 从所有物理接口转发出去,除了入接口 ovs-ofctl add-flow br0 in_port=1,actions=all 1 6.动作为local 一般是转发给本地网桥 ovs-ofctl add-flow br0 in_port=1,actions=local 1 7.动作为in_port 从入接口转发回去 ovs-ofctl add-flow br0 in_port=1,actions=in_port 1 8.动作为controller 以packet-in消息上送给控制器 ovs-ofctl add-flow br0 in_port=1,actions=controller 1 9.动作为drop 丢弃数据包操作 ovs-ofctl add-flow br0 in_port=1,actions=drop 1 10.动作为mod_vlan_vid 修改报文的vlan id,该选项会使vlan_pcp置为0 ovs-ofctl add-flow br0 in_port=1,actions=mod_vlan_vid:8,output:2 1 11.动作为mod_vlan_pcp 修改报文的vlan优先级,该选项会使vlan_id置为0 ovs-ofctl add-flow br0 in_port=1,actions=mod_vlan_pcp:7,output:2 1 12.动作为strip_vlan 剥掉报文内外层vlan tag ovs-ofctl add-flow br0 in_port=1,actions=strip_vlan,output:2 1 13.动作为push_vlan 在报文外层压入一层vlan tag,需要使用openflow1.1以上版本兼容 ovs-ofctl add-flow -O OpenFlow13 br0 in_port=1,actions=push_vlan:0x8100,set_field:4097-\>vlan_vid,output:2 1 ps: set field值为4096+vlan_id,并且vlan优先级为0,即4096-8191,对应的vlan_id为0-4095 14.动作为push_mpls 修改报文的ethertype,并且压入一个MPLS LSE ovs-ofctl add-flow br0 in_port=1,actions=push_mpls:0x8847,set_field:10-\>mpls_label,output:2 1 15.动作为pop_mpls 剥掉最外层mpls标签,并且修改ethertype为非mpls类型 ovs-ofctl add-flow br0 mpls,in_port=1,mpls_label=20,actions=pop_mpls:0x0800,output:2 1 16.动作为修改源/目的MAC,修改源/目的IP 修改源MAC ovs-ofctl add-flow br0 in_port=1,actions=mod_dl_src:00:00:00:00:00:01,output:2 修改目的MAC ovs-ofctl add-flow br0 in_port=1,actions=mod_dl_dst:00:00:00:00:00:01,output:2 修改源IP ovs-ofctl add-flow br0 in_port=1,actions=mod_nw_src:192.168.1.1,output:2 修改目的IP ovs-ofctl add-flow br0 in_port=1,actions=mod_nw_dst:192.168.1.1,output:2 17.动作为修改TCP/UDP/SCTP源目的端口 修改TCP源端口 ovs-ofctl add-flow br0 tcp,in_port=1,actions=mod_tp_src:67,output:2 修改TCP目的端口 ovs-ofctl add-flow br0 tcp,in_port=1,actions=mod_tp_dst:68,output:2 修改UDP源端口 ovs-ofctl add-flow br0 udp,in_port=1,actions=mod_tp_src:67,output:2 修改UDP目的端口 ovs-ofctl add-flow br0 udp,in_port=1,actions=mod_tp_dst:68,output:2 18.动作为mod_nw_tos 条件:指定dl_type=0x0800 修改ToS字段的高6位,范围为0-255,值必须为4的倍数,并且不会去修改ToS低2位ecn值 ovs-ofctl add-flow br0 ip,in_port=1,actions=mod_nw_tos:68,output:2 1 19.动作为mod_nw_ecn 条件:指定dl_type=0x0800,需要使用openflow1.1以上版本兼容 修改ToS字段的低2位,范围为0-3,并且不会去修改ToS高6位的DSCP值 ovs-ofctl add-flow br0 ip,in_port=1,actions=mod_nw_ecn:2,output:2 1 20.动作为mod_nw_ttl 修改IP报文ttl值,需要使用openflow1.1以上版本兼容 ovs-ofctl add-flow -O OpenFlow13 br0 in_port=1,actions=mod_nw_ttl:6,output:2 1 21.动作为dec_ttl 对IP报文进行ttl自减操作 ovs-ofctl add-flow br0 in_port=1,actions=dec_ttl,output:2 1 22.动作为set_mpls_label 对报文最外层mpls标签进行修改,范围为20bit值 ovs-ofctl add-flow br0 in_port=1,actions=set_mpls_label:666,output:2 1 23.动作为set_mpls_tc 对报文最外层mpls tc进行修改,范围为0-7 ovs-ofctl add-flow br0 in_port=1,actions=set_mpls_tc:7,output:2 1 24.动作为set_mpls_ttl 对报文最外层mpls ttl进行修改,范围为0-255 ovs-ofctl add-flow br0 in_port=1,actions=set_mpls_ttl:255,output:2 1 25.动作为dec_mpls_ttl 对报文最外层mpls ttl进行自减操作 ovs-ofctl add-flow br0 in_port=1,actions=dec_mpls_ttl,output:2 1 26.动作为move NXM字段 使用move参数对NXM字段进行操作 将报文源MAC复制到目的MAC字段,并且将源MAC改为00:00:00:00:00:01 ovs-ofctl add-flow br0 in_port=1,actions=move:NXM_OF_ETH_SRC[]-\>NXM_OF_ETH_DST[],mod_dl_src:00:00:00:00:00:01,output:2 1 2 ps: 常用NXM字段参照表 NXM字段 报文字段 NXM_OF_ETH_SRC 源MAC NXM_OF_ETH_DST 目的MAC NXM_OF_ETH_TYPE 以太网类型 NXM_OF_VLAN_TCI vid NXM_OF_IP_PROTO IP协议号 NXM_OF_IP_TOS IP ToS值 NXM_NX_IP_ECN IP ToS ECN NXM_OF_IP_SRC 源IP NXM_OF_IP_DST 目的IP NXM_OF_TCP_SRC TCP源端口 NXM_OF_TCP_DST TCP目的端口 NXM_OF_UDP_SRC UDP源端口 NXM_OF_UDP_DST UDP目的端口 NXM_OF_SCTP_SRC SCTP源端口 NXM_OF_SCTP_DST SCTP目的端口 27.动作为load NXM字段 使用load参数对NXM字段进行赋值操作 push mpls label,并且把10(0xa)赋值给mpls label ovs-ofctl add-flow br0 in_port=1,actions=push_mpls:0x8847,load:0xa-\>OXM_OF_MPLS_LABEL[],output:2 对目的MAC进行赋值 ovs-ofctl add-flow br0 in_port=1,actions=load:0x001122334455-\>OXM_OF_ETH_DST[],output:2 1 2 3 4 28.动作为pop_vlan 弹出报文最外层vlan tag ovs-ofctl add-flow br0 in_port=1,dl_type=0x8100,dl_vlan=777,actions=pop_vlan,output:2 1 meter表 常用操作 由于meter表是openflow1.3版本以后才支持,所以所有命令需要指定OpenFlow1.3版本以上 ps: 在openvswitch-v2.8之前的版本中,还不支持meter 在v2.8版本之后已经实现,要正常使用的话,需要注意的是datapath类型要指定为netdev,band type暂时只支持drop,还不支持DSCP REMARK 1.查看当前设备对meter的支持 ovs-ofctl -O OpenFlow13 meter-features br0 2.查看meter表 ovs-ofctl -O OpenFlow13 dump-meters br0 3.查看meter统计 ovs-ofctl -O OpenFlow13 meter-stats br0 4.创建meter表 限速类型以kbps(kilobits per second)计算,超过20kb/s则丢弃 ovs-ofctl -O OpenFlow13 add-meter br0 meter=1,kbps,band=type=drop,rate=20 同上,增加burst size参数 ovs-ofctl -O OpenFlow13 add-meter br0 meter=2,kbps,band=type=drop,rate=20,burst_size=256 同上,增加stats参数,对meter进行计数统计 ovs-ofctl -O OpenFlow13 add-meter br0 meter=3,kbps,stats,band=type=drop,rate=20,burst_size=256 限速类型以pktps(packets per second)计算,超过1000pkt/s则丢弃 ovs-ofctl -O OpenFlow13 add-meter br0 meter=4,pktps,band=type=drop,rate=1000 5.删除meter表 删除全部meter表 ovs-ofctl -O OpenFlow13 del-meters br0 删除meter id=1 ovs-ofctl -O OpenFlow13 del-meter br0 meter=1 6.创建流表 ovs-ofctl -O OpenFlow13 add-flow br0 in_port=1,actions=meter:1,output:2 group表 由于group表是openflow1.1版本以后才支持,所以所有命令需要指定OpenFlow1.1版本以上 常用操作 group table支持4种类型 all:所有buckets都执行一遍 select: 每次选择其中一个bucket执行,常用于负载均衡应用 ff(FAST FAILOVER):快速故障修复,用于检测解决接口等故障 indirect:间接执行,类似于一个函数方法,被另一个group来调用 1.查看当前设备对group的支持 ovs-ofctl -O OpenFlow13 dump-group-features br0 2.查看group表 ovs-ofctl -O OpenFlow13 dump-groups br0 3.创建group表 类型为all ovs-ofctl -O OpenFlow13 add-group br0 group_id=1,type=all,bucket=output:1,bucket=output:2,bucket=output:3 类型为select ovs-ofctl -O OpenFlow13 add-group br0 group_id=2,type=select,bucket=output:1,bucket=output:2,bucket=output:3 类型为select,指定hash方法(5元组,OpenFlow1.5+) ovs-ofctl -O OpenFlow15 add-group br0 group_id=3,type=select,selection_method=hash,fields=ip_src,bucket=output:2,bucket=output:3 4.删除group表 ovs-ofctl -O OpenFlow13 del-groups br0 group_id=2 5.创建流表 ovs-ofctl -O OpenFlow13 add-flow br0 in_port=1,actions=group:2 goto table配置 数据流先从table0开始匹配,如actions有goto_table,再进行后续table的匹配,实现多级流水线,如需使用goto table,则创建流表时,指定table id,范围为0-255,不指定则默认为table0 1.在table0中添加一条流表条目 ovs-ofctl add-flow br0 table=0,in_port=1,actions=goto_table=1 2.在table1中添加一条流表条目 ovs-ofctl add-flow br0 table=1,ip,nw_dst=10.10.0.0/16,actions=output:2 tunnel配置 如需配置tunnel,必需确保当前系统对各tunnel的remote ip网络可达 gre 1.创建一个gre接口,并且指定端口id=1001 ovs-vsctl add-port br0 gre1 -- set Interface gre1 type=gre options:remote_ip=1.1.1.1 ofport_request=1001 2.可选选项 将tos或者ttl在隧道上继承,并将tunnel id设置成123 ovs-vsctl set Interface gre1 options:tos=inherit options:ttl=inherit options:key=123 3.创建关于gre流表 封装gre转发 ovs-ofctl add-flow br0 ip,in_port=1,nw_dst=10.10.0.0/16,actions=output:1001 解封gre转发 ovs-ofctl add-flow br0 in_port=1001,actions=output:1 vxlan 1.创建一个vxlan接口,并且指定端口id=2001 ovs-vsctl add-port br0 vxlan1 -- set Interface vxlan1 type=vxlan options:remote_ip=1.1.1.1 ofport_request=2001 2.可选选项 将tos或者ttl在隧道上继承,将vni设置成123,UDP目的端为设置成8472(默认为4789) ovs-vsctl set Interface vxlan1 options:tos=inherit options:ttl=inherit options:key=123 options:dst_port=8472 3.创建关于vxlan流表 封装vxlan转发 ovs-ofctl add-flow br0 ip,in_port=1,nw_dst=10.10.0.0/16,actions=output:2001 解封vxlan转发 ovs-ofctl add-flow br0 in_port=2001,actions=output:1 sflow配置 1.对网桥br0进行sflow监控 agent: 与collector通信所在的网口名,通常为管理口 target: collector监听的IP地址和端口,端口默认为6343 header: sFlow在采样时截取报文头的长度 polling: 采样时间间隔,单位为秒 ovs-vsctl -- --id=@sflow create sflow agent=eth0 target=\"10.0.0.1:6343\" header=128 sampling=64 polling=10 -- set bridge br0 sflow=@sflow 2.查看创建的sflow ovs-vsctl list sflow 3.删除对应的网桥sflow配置,参数为sFlow UUID ovs-vsctl remove bridge br0 sflow 7b9b962e-fe09-407c-b224-5d37d9c1f2b3 4.删除网桥下所有sflow配置 ovs-vsctl -- clear bridge br0 sflow 1 QoS配置 ingress policing 1.配置ingress policing,对接口eth0入流限速10Mbps ovs-vsctl set interface eth0 ingress_policing_rate=10000 ovs-vsctl set interface eth0 ingress_policing_burst=8000 2.清除相应接口的ingress policer配置 ovs-vsctl set interface eth0 ingress_policing_rate=0 ovs-vsctl set interface eth0 ingress_policing_burst=0 3.查看接口ingress policer配置 ovs-vsctl list interface eth0 4.查看网桥支持的Qos类型 ovs-appctl qos/show-types br0 端口镜像配置 1.配置eth0收到/发送的数据包镜像到eth1 ovs-vsctl -- set bridge br0 mirrors=@m \ -- --id=@eth0 get port eth0 \ -- --id=@eth1 get port eth1 \ -- --id=@m create mirror name=mymirror select-dst-port=@eth0 select-src-port=@eth0 output-port=@eth1 2.删除端口镜像配置 ovs-vsctl -- --id=@m get mirror mymirror -- remove bridge br0 mirrors @m 3.清除网桥下所有端口镜像配置 ovs-vsctl clear bridge br0 mirrors 4.查看端口镜像配置 ovs-vsctl get bridge br0 mirrors Open vSwitch中有多个命令,分别有不同的作用,大致如下: ovs-vsctl用于控制ovs db ovs-ofctl用于管理OpenFlow switch 的 flow ovs-dpctl用于管理ovs的datapath ovs-appctl用于查询和管理ovs daemon 转载于:https://www.cnblogs.com/liuhongru/p/10336849.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_30876945/article/details/99916308。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-08 17:13:19
295
转载
转载文章
...戏引擎架构是指构建和设计一款游戏引擎所需的系统结构、组件模块以及它们之间的交互方式。在游戏开发过程中,游戏引擎是核心工具集,它提供了图形渲染、物理模拟、碰撞检测、音频处理、输入输出管理等多种功能支持。游戏引擎架构的设计决定了引擎的性能表现、可扩展性、跨平台兼容性等多个关键特性,并直接影响到游戏内容创作的效率与最终产品的质量。 多处理器环境下的游戏编程 , 多处理器环境下的游戏编程是指针对具有多个CPU核心或多个物理处理器的硬件环境进行的游戏程序开发技术。在这样的环境下,程序员需要利用并发编程和并行计算等技术手段,有效地分配和协调各个处理器资源,以实现高效的任务调度和数据同步,从而提升游戏运行时的性能表现和响应速度。 工作管道(Work Pipeline) , 工作管道在游戏开发中是一种流程化的工作流组织方式,它将游戏资产从创建、修改、优化直至最终集成到游戏中的全过程划分为一系列有序且相互关联的阶段。这个过程涵盖了模型制作、纹理生成、骨骼动画设定、光照烘焙、资源压缩打包等多个步骤。通过合理设置和优化工作管道,可以提高团队协作效率,确保游戏内容的质量和生产进度,同时减少因资产制作流程不合理导致的性能瓶颈问题。 游戏资产数据库 , 游戏资产数据库是一个用于存储、管理和检索游戏中所有数字资产(如3D模型、贴图、音效、动画、脚本文件等)的集中式系统。该数据库不仅提供版本控制、权限管理等功能,还支持快速搜索和调用所需的资源,使得开发人员能够方便地复用已有资源,避免重复劳动,并保证项目中各种数字资产的一致性和完整性,对于大型复杂游戏项目的开发尤其重要。
2023-02-12 23:04:05
328
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
export VAR=value
- 设置环境变量。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"