前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[数据库分区技术改善查询响应时间]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Superset
数据驱动的世界 , 指的是依赖数据来进行决策和业务运营的现代经济和社会模式。在数据驱动的世界里,数据被视为资产,被用来预测趋势、优化流程、改善决策和创造价值。 数据可视化工具 , 指的是专门用于将数据转换为图形、图表或其他视觉表示形式的软件或应用程序。这些工具使用户能够更容易地理解复杂数据集的模式、趋势和关联性,从而促进数据的分析和决策过程。 实时性 , 在数据领域中,实时性指的是数据的更新和可用性与事件发生的时间之间的关系。高实时性意味着数据能够及时反映最新的状态或变化,这对于需要快速响应的业务环境尤其重要。 SQL查询优化策略 , 是指一系列技术和方法,旨在提高SQL查询的执行效率,减少查询时间,优化资源使用。这包括但不限于使用索引、避免全表扫描、优化查询结构、批量处理等策略,以确保数据查询在处理大量数据时保持高效。 缓存优化指南 , 是针对缓存机制的一系列策略和实践,旨在提高数据访问速度和减少延迟。缓存通过存储经常访问的数据副本,使得数据可以在本地快速获取,而不是每次都从原始数据源加载。有效的缓存策略需要考虑缓存的大小、过期策略、数据一致性维护等多方面因素。 自动化脚本构建 , 指的是使用编程语言(如Python、Shell脚本等)编写自动执行任务的脚本。在数据管理和分析场景中,自动化脚本可以用于执行定期的数据验证、数据更新、错误检测和修复等任务,提高工作效率和减少人为错误。 分页查询最佳实践 , 是指在处理大型数据集时,使用分页查询技术的一种优化策略。分页查询允许系统一次只加载一部分数据,从而减少内存使用和加载时间,提高查询性能。这种策略在数据量大、需要频繁查询的场景下特别有用。 云计算和边缘计算技术 , 云计算指的是通过互联网提供可扩展的计算资源和服务,用户无需直接管理硬件基础设施。边缘计算则是在数据产生源附近处理数据,减少数据传输延迟,提高响应速度和效率。两者都对实时数据分析和处理有重要作用,能够帮助企业更快速、更有效地利用数据。 智能化水平 , 指的是通过自动化、机器学习、人工智能等技术提高系统或过程的自主性和效率的能力。在数据管理和分析领域,智能化水平的提升可以帮助企业自动化重复性工作、预测趋势、优化决策,从而提高整体运营效率和竞争力。
2024-08-21 16:16:57
110
青春印记
Impala
Impala与大数据量处理挑战:深度解析与实例探讨 1. 引言 在当今的大数据世界里,Impala作为一款基于Hadoop的开源MPP(大规模并行处理)SQL查询引擎,因其对HDFS和HBase的支持以及高效的交互式查询能力而广受青睐。然而,在面对大数据量的处理场景时,Impala的表现并不总是尽如人意。在这篇文章里,我们要好好掰扯一下Impala在对付海量数据时可能遇到的那些头疼问题。咱不仅会通过实际的代码实例,抽丝剥茧地找出问题背后的秘密,还会带着咱们作为探索者的人性化视角和情感化的思考过程,一起走进这场大数据的冒险之旅。 2. Impala的基本原理与优势 首先,让我们回顾一下Impala的设计理念。你知道Impala吗?这家伙可厉害了,它采用了超级酷炫的分布式架构设计,可以直接从HDFS或者HBase这些大数据仓库里拽出数据来用,完全不需要像传统那样繁琐地进行ETL数据清洗和转化过程。这样一来,你就能享受到飞一般的速度和超低的查询延迟,轻轻松松实现SQL查询啦!这全靠它那个聪明绝顶的查询优化器和咱们亲手用C++编写的执行引擎,让你能够瞬间对海量数据进行各种复杂的分析操作,就像在现实生活中实时互动一样流畅。 sql -- 示例:使用Impala查询HDFS上的表数据 USE my_database; SELECT FROM large_table WHERE column_a = 'value'; 3. Impala在大数据量下的性能瓶颈 然而,尽管Impala具有诸多优点,但在处理超大数据集时,它却可能面临以下挑战: - 内存资源限制:Impala在处理大量数据时严重依赖内存。当Impala Daemon的内存不够用,无法承载更多的工作负载时,就可能会引发频繁的磁盘数据交换(I/O操作),这样一来,查询速度可就要大打折扣啦,明显慢下来不少。例如,如果一个大型JOIN操作无法完全装入内存,就可能引发此类问题。 sql -- 示例:假设两个大表join操作超出内存限制 SELECT a., b. FROM large_table_a AS a JOIN large_table_b AS b ON a.key = b.key; - 分区策略与数据分布:Impala的性能也受到表分区策略的影响。假如数据分布得不够均匀,或者咱们分区的方法没整对,就很可能让部分节点“压力山大”,这样一来,整体查询速度也跟着“掉链子”啦。 - 并发查询管理:在高并发查询环境下,Impala的资源调度机制也可能成为制约因素。特别是在处理海量数据的时候,大量的同时请求可能会把集群资源挤得够呛,这样一来,查询响应的速度就难免会受到拖累了。 4. 针对性优化措施与思考 面对以上挑战,我们可以采取如下策略来改善Impala处理大数据的能力: - 合理配置硬件资源:根据实际业务需求,为Impala集群增加更多的内存资源,确保其能够有效应对大数据量的查询任务。 - 优化分区策略:对于大数据表,采用合适的分区策略(如范围分区、哈希分区等),保证数据在集群中的均衡分布,减少热点问题。 - 调整并发控制参数:根据集群规模和业务特性,合理设置Impala的并发查询参数(如impalad.memory.limit、query.max-runtime等),以平衡系统资源分配。 - 数据预处理与缓存:对于经常访问的热数据,可以考虑进行适当的预处理和缓存,减轻Impala的在线处理压力。 综上所述,虽然Impala在处理大数据量时存在一定的局限性,但通过深入了解其内在工作机制,结合实际业务需求进行有针对性的优化,我们完全可以将其打造成高效的数据查询利器。在这个过程中,我们实实在在地感受到了人类智慧在挑战技术极限时的那股冲劲儿,同时,也亲眼目睹了科技与挑战之间一场永不停歇、像打乒乓球一样的精彩博弈。 结语 技术的发展总是在不断解决问题的过程中前行,Impala在大数据处理领域的挑战同样推动着我们在实践中去挖掘其潜力,寻求更优解。今后,随着软硬件技术的不断升级和突破,我们完全可以满怀信心地期待,Impala会在处理大数据这个大难题上更上一层楼,为大家带来更加惊艳、无可挑剔的服务体验。
2023-11-16 09:10:53
783
雪落无痕
Spark
在大数据处理领域,Apache Spark作为一款高效、分布式计算框架,其对大量小文件的处理性能优化一直是研究与实践的焦点。近期,随着技术的发展和社区的不断探索,Spark在这一方面的性能优化又有了新的突破。 首先,针对小文件问题,Apache Spark 3.0版本引入了一种称为“DataSource V2”的新接口,它允许数据源实现更细粒度的分区读取策略,从而降低小文件场景下的I/O开销。通过DataSource V2 API,开发者可以自定义数据源以适应大量小文件的读取需求,极大提升了处理效率。 其次,业界也开始尝试结合云存储服务进行优化。例如,AWS Glue团队与EMR团队合作,推出了专门针对S3中大量小文件场景的优化方案,通过整合动态分区剪枝、数据压缩以及智能合并等技术手段,有效改善了Spark在处理S3中小文件时的性能瓶颈。 此外,有研究人员深入探讨了如何利用Spark现有的资源管理策略,如动态资源分配和任务调度机制,来进一步提升处理大量小文件的工作负载效能。他们提出通过合理调整并行度、优化内存使用及预聚合等策略,可以在一定程度上缓解小文件带来的性能影响。 综上所述,尽管处理大量小文件是Spark面临的一大挑战,但随着技术的迭代更新以及实践经验的积累,我们正逐步找到更多有效的解决方案,并将持续优化Spark在此类场景下的表现,以更好地服务于实际业务需求。
2023-09-19 23:31:34
45
清风徐来-t
Consul
...置管理以及相关工具和技术发展的读者来说,以下内容将为您提供有益的 最近,HashiCorp发布了Consul 1.10版本,引入了多项改进和新功能,其中包括增强的KV Store性能和扩展性。这一版本优化了对大型数据集的支持,并提高了查询与操作的响应速度,使得Consul在处理复杂分布式架构中的配置和服务发现时更为高效(来源:HashiCorp官方博客,发布日期:202X年X月X日)。 同时,InfoQ的一篇深度分析文章《Consul在微服务架构中的实践与挑战》详细阐述了Consul如何在实际场景中解决服务治理问题,并对比了与其他服务发现工具如Etcd和Zookeeper的异同。作者从一致性算法、容错机制以及社区支持等方面展开讨论,为读者提供了全面而实用的指导(来源:InfoQ,发表日期:202X年X月X日)。 此外,随着云原生技术的发展,CNCF基金会下的开源项目Linkerd和Istio等服务网格解决方案也在服务发现领域崭露头角。它们与Consul虽有功能重叠,但在抽象层次、自动化运维以及安全策略方面有所区别。通过对比研究这些新兴技术,《云原生时代的Consul与服务网格之争》一文为我们揭示了未来服务发现架构可能的发展趋势(来源:云技术实践杂志,出版日期:202X年X月X日)。 综上所述,持续关注Consul及其竞品的最新动态和发展趋势,结合实际应用场景理解并运用其强大的数据存储机制,将有助于提升现代分布式系统的可靠性和可维护性。
2024-03-04 11:46:36
433
人生如戏-t
Beego
...采取更为先进的策略和技术来预防和快速恢复服务中断。 针对服务不可用问题,业界正在探索多种解决方案。首先,采用分布式系统设计原则,比如服务网格(Service Mesh)和故障注入(Fault Injection),可以模拟和测试系统在不同故障条件下的表现,从而提前发现并修复潜在的弱点。其次,实施自动化的监控和预警系统,能够实时捕捉到服务性能的异常变化,并迅速触发相应的恢复措施。此外,利用人工智能和机器学习技术预测服务的健康状况,可以提前预防可能出现的问题,进一步提高系统的鲁棒性。 除了技术层面的努力,建立健全的服务级协议(SLA)也是提高服务可用性的重要手段。SLA明确了服务提供商对服务质量的承诺,包括响应时间、故障恢复时间等关键指标。通过明确的SLA,企业和用户之间建立了清晰的责任边界,有助于在服务出现问题时迅速界定责任,加快问题解决的进程。 总的来说,面对服务不可用问题,不仅需要依靠先进的技术手段来提升系统的韧性,还需要从组织管理和合同约定等多个维度出发,构建全方位的防御体系。随着云计算、边缘计算等新技术的发展,未来的服务可用性管理将面临更多机遇和挑战,如何在这个动态的环境中保持竞争力,将是企业持续关注的重点。
2024-10-10 16:02:03
102
月影清风
HBase
近期,随着大数据技术的飞速发展,HBase作为一款分布式NoSQL数据库,其性能优化的重要性愈发凸显。例如,在某大型电商公司的实时推荐系统中,HBase集群的响应速度直接影响了用户的购物体验。据报道,该公司最近对HBase集群进行了全面升级,不仅将RegionServer的堆内存从8GB提升至16GB,还引入了新的Compaction算法,大幅减少了数据碎片化问题。这一系列调整使得查询延迟降低了约30%,整体吞吐量提升了近50%。 与此同时,开源社区也在不断推进HBase的功能迭代。最新发布的HBase 2.5版本引入了多项性能增强特性,包括支持异步I/O操作以减少网络延迟,以及改进了Region分裂和合并逻辑,从而提高了数据分布的均匀性。此外,社区还特别强调了监控的重要性,建议用户充分利用Prometheus和Grafana等现代监控工具,实现对HBase集群的全方位观测。 值得注意的是,HBase的性能优化并非一蹴而就,而是需要结合实际业务场景进行细致调优。例如,在金融行业中,高频交易系统对数据一致性要求极高,因此需要特别关注GC时间对事务处理的影响;而在物联网领域,则可能更侧重于降低单点延迟,确保海量设备的数据上报能够及时响应。 回顾历史,HBase自2008年开源以来,一直致力于为企业级应用场景提供可靠的数据存储解决方案。正如Apache基金会主席比尔·霍普金斯所说:“HBase的成功离不开全球开发者社区的支持。”未来,随着5G、边缘计算等新技术的普及,HBase有望在更多新兴领域发挥重要作用,成为企业数字化转型不可或缺的一部分。
2025-04-14 16:00:01
63
落叶归根
MemCache
...候。作为一个喜欢捣鼓技术的小程序员,我之前也被这个问题搞得头都快秃了,天天挠头叹气的。不过经过无数次的失败和摸索,总算琢磨出了一些门道!这篇文章可不只是告诉你“问题出在哪”,它还会手把手带着你,用代码例子一步一步把问题给解决了!就像有个编程小老师在旁边耐心指导一样,超贴心的!别急着离开,这可是干货满满哦! --- 1. 什么是MemCache?它为什么这么受欢迎? 先简单介绍一下MemCache吧!MemCache是一种高性能的分布式内存对象缓存系统,主要用于减轻数据库的压力,提升应用的响应速度。其实说白了就是这么个事儿——把数据都存到内存里,用的时候直接拿出来,省得每次都要跑去数据库翻箱倒柜找一遍,多麻烦啊! 举个例子,假设你正在做一个电商网站,用户点击商品详情页时,如果每次都要从数据库拉取商品信息,那服务器负载肯定爆表。但如果我们将这些数据缓存在MemCache中,用户访问时直接从内存读取,岂不是快如闪电? 不过呢,事情可没那么简单。MemCache这小子虽然挺能干的,但也不是省油的灯啊!比如说吧,你老是疯狂地去请求数据,结果服务器偏偏不给面子,连个响应都没有,那它就直接给你来个“服务连接超时”的报错,气得你直跺脚。这就像你去餐厅点菜,服务员一直不在,你说能不急吗? --- 2. 服务连接超时到底是个啥? 服务连接超时,简单来说就是你的程序试图与MemCache服务器建立连接,但因为某些原因(比如网络延迟、服务器过载等),连接请求迟迟得不到回应,最终超时失败。这种错误通常会伴随着一条令人沮丧的信息:“连接超时”。 让我分享一个小故事:有一次我在调试一个项目时,发现某个接口总是返回“服务连接超时”,我当时的第一反应是“天啊,是不是MemCache崩了?”于是我赶紧登录服务器检查日志,结果发现MemCache运行正常,只是偶尔响应慢了一点。后来我才意识到,可能是客户端配置的问题。 所以,当遇到这种错误时,不要慌!我们得冷静下来,分析一下可能的原因。 --- 2.1 可能的原因有哪些? 1. 网络问题 MemCache服务器和客户端之间的网络不稳定。 2. MemCache配置不当 比如设置了太短的超时时间。 3. 服务器负载过高 MemCache服务器被太多请求压垮。 4. 客户端代码问题 比如没有正确处理异常情况。 --- 3. 如何解决服务连接超时? 接下来,咱们就从代码层面入手,看看如何优雅地解决这个问题。我会结合实际例子,手把手教你如何避免“服务连接超时”。 --- 3.1 检查网络连接 首先,确保你的MemCache服务器和客户端之间网络通畅。你可以试试用ping命令测试一下: bash ping your-memcache-server 如果网络不通畅,那就得找运维同事帮忙优化网络环境了。不过,如果你确定网络没问题,那就继续往下看。 --- 3.2 调整超时时间 很多时候,“服务连接超时”是因为你设置的超时时间太短了。默认情况下,MemCache的超时时间可能比较保守,你需要根据实际情况调整它。 在Java中,可以这样设置超时时间: java import net.spy.memcached.AddrUtil; import net.spy.memcached.MemcachedClient; public class MemCacheExample { public static void main(String[] args) throws Exception { // 创建MemCache客户端,设置超时时间为5秒 MemcachedClient memcachedClient = new MemcachedClient(AddrUtil.getAddresses("localhost:11211"), 5000); System.out.println("成功连接到MemCache服务器!"); } } 这里的关键是5000,表示超时时间为5秒。你可以根据实际情况调整这个值,比如改成10秒或者20秒。 --- 3.3 使用重试机制 有时候,一次连接失败并不代表MemCache服务器真的挂了。在这种情况下,我们可以加入重试机制,让程序自动尝试重新连接。 下面是一个简单的Python示例: python import time from pymemcache.client.base import Client def connect_to_memcache(): attempts = 3 while attempts > 0: try: client = Client(('localhost', 11211)) print("成功连接到MemCache服务器!") return client except Exception as e: print(f"连接失败,重试中... ({attempts}次机会)") time.sleep(2) attempts -= 1 raise Exception("无法连接到MemCache服务器,请检查配置!") client = connect_to_memcache() 在这个例子中,程序会尝试三次连接MemCache服务器,每次失败后等待两秒钟再重试。如果三次都失败,就抛出异常提示用户。 --- 3.4 监控MemCache状态 最后,建议你定期监控MemCache服务器的状态。你可以通过工具(比如MemAdmin)查看服务器的健康状况,包括内存使用率、连接数等指标。 如果你发现服务器负载过高,可以考虑增加MemCache实例数量,或者优化业务逻辑减少不必要的请求。 --- 4. 总结 服务连接超时不可怕,可怕的是不去面对 好了,到这里,关于“服务连接超时”的问题基本就说完了。虽然MemCache确实容易让人踩坑,但只要我们用心去研究,总能找到解决方案。 最后想说的是,技术这条路没有捷径,遇到问题不要急躁,多思考、多实践才是王道。希望我的分享对你有所帮助,如果你还有什么疑问,欢迎随时来找我讨论!😄 祝大家编码愉快!
2025-04-08 15:44:16
87
雪落无痕
转载文章
...了更为先进的内存管理技术,如颜色指针、读屏障等,以实现更低延迟的并发标记清理过程。关注这些前沿GC算法的研究与发展,可以更全面地了解现代JVM如何高效处理大规模堆内存引用关系。 2. G1垃圾收集器与RSet深入解读:G1作为当前HotSpot JVM推荐的默认垃圾收集器,其内部机制中除了卡表外,Remembered Set(RSet)也是关键组件。详细了解RSet如何辅助卡表追踪跨区域引用,以及分区并发压缩等特性,将有助于读者掌握G1高效回收内存的具体实现原理。 3. 实际生产环境案例分析:通过阅读一些大型互联网企业或开源社区分享的实战经验文章,了解他们在使用CMS、G1等垃圾收集器时如何针对特定业务场景调整卡表相关参数,解决实际遇到的性能瓶颈问题。比如,如何根据应用特点选择合适的卡表大小、调整扫描频率以平衡GC开销与应用响应时间。 4. 学术研究论文:查阅近年来关于垃圾收集器优化的学术论文,比如《A Study of the G1 Garbage Collector》、《The Z Garbage Collector》等,可深入了解卡表设计背后的理论依据,以及研究人员为提升GC效率所做的各种尝试和改进。 5. 官方文档及源码阅读:直接研读Oracle官方发布的Java SE HotSpot VM Garbage Collection Tuning Guide,以及JDK源码中的CardTableBarrierSet等相关类实现,可以更直观地把握卡表的具体工作流程和技术细节。同时,关注JDK开发团队的博客、邮件列表讨论等,获取第一手的更新信息和未来发展方向。
2023-12-16 20:37:50
246
转载
转载文章
...联系我们,我们将第一时间进行核实并删除相应内容。 在PC端点击图片,鼠标右键可把图片素材另存到桌面使用,手机端可长按图片保存到本地相册,夏欢和认为有用的话就点个赞,三连就更满足我的期待了 JPanel切换案例 package swing; public class mains { public static void main(String[] args) { new swingJpanelQieHuan(); } } package swing; import java.awt.Color; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import javax.swing.; public class swingJpanelQieHuan extends JFrame{ public static JPanel jpRed,jpPink,jpBlueRightBottom1, jpGreenRightBottom2; public static JButton anNiu1,anNiu2; JLabel JLabel1; public static JLabel JLabel2; public swingJpanelQieHuan(){ this.setLayout(null); this.setSize(700,700); this.setLocationRelativeTo(null); jpRed=new JPanel(); jpPink=new JPanel(); jpBlueRightBottom1=new JPanel(); jpGreenRightBottom2=new JPanel(); jpRed.setLayout(null); anNiu1=new JButton("点赞界面"); anNiu2=new JButton("三连关注界面"); anNiu1.setBounds(150,30,120,30); anNiu2.setBounds(300,30,120,30); anNiu1.addActionListener(new swingJpanelShiJian(this)); anNiu2.addActionListener(new swingJpanelShiJian(this)); jpRed.add(anNiu1);jpRed.add(anNiu2); jpRed.setBorder(BorderFactory.createLineBorder(Color.red)); jpPink.setBorder(BorderFactory.createLineBorder(Color.pink)); jpBlueRightBottom1.setBorder (BorderFactory.createLineBorder(Color.blue)); jpGreenRightBottom2.setBorder (BorderFactory.createLineBorder(Color.green)); jpRed.setBounds(10,10,600,150); jpPink.setBounds(10,170,200,450); jpBlueRightBottom1.setBounds(220, 170, 380, 450); jpGreenRightBottom2.setBounds(220, 170, 380, 450); JLabel1 = new JLabel(); JLabel2=new JLabel(); JLabel1. setIcon(new ImageIcon("img//1.png")); JLabel2. setIcon(new ImageIcon("img//2.png")); jpBlueRightBottom1.add(JLabel1); jpGreenRightBottom2.add(JLabel2); this.add(jpRed);this.add(jpPink); this.add(jpGreenRightBottom2); this.add(jpBlueRightBottom1); this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); this.setVisible(true); } } class swingJpanelShiJian implements ActionListener{ //jieShou接收 //chuangTi窗体 public static swingJpanelQieHuan jieShou; public swingJpanelShiJian(swingJpanelQieHuan chuangTi){ jieShou=chuangTi; } @Override public void actionPerformed(ActionEvent arg0) { String neiRong=arg0.getActionCommand(); if(neiRong.equals("点赞界面")){ jieShou.jpBlueRightBottom1.setVisible(true); jieShou.jpGreenRightBottom2.setVisible(false); }else if(neiRong.equals("三连关注界面")){ jieShou.jpBlueRightBottom1.setVisible(false); jieShou.jpGreenRightBottom2.setVisible(true); } } } JTree树形控件点击内容弹出新的窗体 package swing; public class mains { public static void main(String[] args) { new swingJpanelQieHuan(); } } package swing; import java.awt.Color; import java.awt.Font; import javax.swing.; public class newDengLu extends JFrame{ public static JLabel lb1,lb2,lb3,lb4=null; public static JTextField txt1=null; public static JPasswordField pwd=null; public static JComboBox com=null; public static JButton btn1,btn2=null; public newDengLu(){ this.setTitle("诗书画唱登录页面"); this.setLayout(null); this.setSize(500,400); this.setLocationRelativeTo(null); lb1=new JLabel("用户名"); lb2=new JLabel("用户密码"); lb3=new JLabel("用户类型"); lb4=new JLabel("登录窗体"); Font f=new Font("微软雅黑",Font.BOLD,35); lb4.setFont(f); lb4.setForeground(Color.red); lb4.setBounds(160,30,140,40); lb1.setBounds(100, 100, 70,30); lb2.setBounds(100,140,70,30); lb3.setBounds(100,180,70,30); txt1=new JTextField(); txt1.setBounds(170,100,150,30); pwd=new JPasswordField(); pwd.setBounds(170,140,150,30); com=new JComboBox(); com.addItem("会员用户"); com.addItem("普通用户"); com.setBounds(170,180,150,30); btn1=new JButton("登录"); btn1.setBounds(130,220,70,30); btn2=new JButton("取消"); btn2.setBounds(240,220,70,30); this.add(lb1);this.add(lb2);this.add(lb3); this.add(txt1);this.add(pwd);this.add(com); this.add(btn1);this.add(btn2);this.add(lb4); //this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); this.setVisible(true); } } package swing; import java.awt.Color; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import javax.swing.; import javax.swing.event.TreeSelectionEvent; import javax.swing.event.TreeSelectionListener; import javax.swing.tree.DefaultMutableTreeNode; public class swingJpanelQieHuan extends JFrame{ public static JPanel jpRed,jpPinkLeft,jpBlueRightBottom1, jpGreenRightBottom2; public static JTree JTree1,JTree2; public static JButton anNiu1,anNiu2; public static JLabel JLabel1,JLabel2; public swingJpanelQieHuan(){ this.setLayout(null); this.setSize(700,700); this.setLocationRelativeTo(null); jpRed=new JPanel(); jpPinkLeft=new JPanel(); jpBlueRightBottom1=new JPanel(); jpGreenRightBottom2=new JPanel(); jpRed.setLayout(null); anNiu1=new JButton("点赞界面"); anNiu2=new JButton("三连关注界面"); anNiu1.setBounds(150,30,120,30); anNiu2.setBounds(300,30,120,30); anNiu1.addActionListener(new swingJpanelShiJian(this)); anNiu2.addActionListener(new swingJpanelShiJian(this)); jpRed.add(anNiu1);jpRed.add(anNiu2); jpRed.setBorder(BorderFactory.createLineBorder(Color.red)); jpPinkLeft.setBorder(BorderFactory.createLineBorder(Color.pink)); jpBlueRightBottom1.setBorder (BorderFactory.createLineBorder(Color.blue)); jpGreenRightBottom2.setBorder (BorderFactory.createLineBorder(Color.green)); jpRed.setBounds(10,10,600,150); jpPinkLeft.setBounds(10,170,200,450); jpBlueRightBottom1.setBounds(220, 170, 380, 450); jpGreenRightBottom2.setBounds(220, 170, 380, 450); JLabel1 = new JLabel(); JLabel2=new JLabel(); JLabel1. setIcon(new ImageIcon("img//1.png")); JLabel2. setIcon(new ImageIcon("img//2.png")); jpBlueRightBottom1.add(JLabel1); jpGreenRightBottom2.add(JLabel2); DefaultMutableTreeNode dmtn1 = new DefaultMutableTreeNode("图书管理"); DefaultMutableTreeNode dmtn_yonghu = new DefaultMutableTreeNode ("用户管理"); DefaultMutableTreeNode dmtnQieHuan = new DefaultMutableTreeNode ("切换到登录界面"); DefaultMutableTreeNode dmtn_yonghu_insert = new DefaultMutableTreeNode("增加用户"); DefaultMutableTreeNode dmtn_yonghu_update = new DefaultMutableTreeNode("修改用户"); DefaultMutableTreeNode dmtn_yonghu_delete = new DefaultMutableTreeNode("删除用户"); DefaultMutableTreeNode dmtn_yonghu_select = new DefaultMutableTreeNode("查询用户"); DefaultMutableTreeNode dmtn_jieyue = new DefaultMutableTreeNode("借阅管理"); DefaultMutableTreeNode dmtn_jieyue_insert = new DefaultMutableTreeNode("增加借阅信息"); DefaultMutableTreeNode dmtn_jieyue_update = new DefaultMutableTreeNode("修改借阅信息"); DefaultMutableTreeNode dmtn_jieyue_delete = new DefaultMutableTreeNode("删除借阅信息"); DefaultMutableTreeNode dmtn_jieyue_select = new DefaultMutableTreeNode("查询借阅信息"); dmtn_yonghu.add(dmtnQieHuan); dmtn_yonghu.add(dmtn_yonghu_insert); dmtn_yonghu.add(dmtn_yonghu_update); dmtn_yonghu.add(dmtn_yonghu_delete); dmtn_yonghu.add(dmtn_yonghu_select); dmtn_jieyue.add(dmtn_jieyue_insert); dmtn_jieyue.add(dmtn_jieyue_update); dmtn_jieyue.add(dmtn_jieyue_delete); dmtn_jieyue.add(dmtn_jieyue_select); dmtn1.add(dmtn_yonghu); dmtn1.add(dmtn_jieyue); JTree1 = new JTree(dmtn1); JTree1.addTreeSelectionListener(new swingJpanelShiJian(this)); JTree1.setBackground(Color.white); jpPinkLeft.setBackground(Color.white); //JTree1.setBounds(10,170,200,450);在这里是一句没效果的代码 jpPinkLeft.add(JTree1); this.add(jpRed);this.add(jpPinkLeft); this.add(jpGreenRightBottom2); this.add(jpBlueRightBottom1); this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); this.setVisible(true); } } class swingJpanelShiJian implements ActionListener, TreeSelectionListener{ //jieShou接收 //chuangTi窗体 public static swingJpanelQieHuan jieShou; public swingJpanelShiJian(swingJpanelQieHuan chuangTi){ jieShou=chuangTi; } @Override public void actionPerformed(ActionEvent arg0) { String neiRong=arg0.getActionCommand(); if(neiRong.equals("点赞界面")){ jieShou.jpBlueRightBottom1.setVisible(true); jieShou.jpGreenRightBottom2.setVisible(false); }else if(neiRong.equals("三连关注界面")){ jieShou.jpBlueRightBottom1.setVisible(false); jieShou.jpGreenRightBottom2.setVisible(true); } } @Override public void valueChanged(TreeSelectionEvent arg0) { DefaultMutableTreeNode str = (DefaultMutableTreeNode) jieShou.JTree1 .getLastSelectedPathComponent(); if (str.toString().equals("切换到登录界面")) { new newDengLu(); } else { } } } JTable初始化表格 package swing; public class mains { public static void main(String[] args) { new swingBiaoGe(); } } package swing; import java.util.Vector; import javax.swing.; import javax.swing.table.DefaultTableModel; public class swingBiaoGe extends JFrame{ //要声明 : 装载内容的容器,table的控件, 容器的标题, 容器的具体的内容。 public static JTable biaoGe=null;//JTable为表格的控件 //要声明装载内容的容器,如下: public static DefaultTableModel DTM=null; //Vector中: //一个放标题,一个放内容 //>表示只接受集合的类型 Vector biaoTi; Vector> neiRong; public swingBiaoGe(){ this.setLayout(null); this.setSize(600,600); this.setLocationRelativeTo(null); //给标题赋值: biaoTi=new Vector(); biaoTi.add("编号");biaoTi.add("姓名"); biaoTi.add("性别");biaoTi.add("年龄"); //给内容赋值: neiRong=new Vector>(); for(int i=0;i<5;i++){ Vector v=new Vector(); v.add("编号"+(i+6));v.add("诗书画唱"+(i+6)); v.add("性别"+(i+6));v.add("年龄"+(i+6)); neiRong.add(v); } //将内容添加到装载内容的容器中: DTM=new DefaultTableModel(neiRong,biaoTi); DTM=new DefaultTableModel(neiRong,biaoTi) { @Override public boolean isCellEditable(int a, int b) { return false; } }; biaoGe=new JTable(DTM); //设置滚动条: JScrollPane jsp=new JScrollPane(biaoGe); jsp.setBounds(10,10,400,400); this.add(jsp); this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); this.setVisible(true); } } JTable初始化数据,数据要求链接JDBC获取 create database yonghu select from shangpin; select from sp_Type; create table sp_Type( sp_TypeID int primary key identity(1,1), sp_TypeName varchar(100) not null ); insert into sp_Type values('水果'); insert into sp_Type values('零食'); insert into sp_Type values('小吃'); insert into sp_Type values('日常用品'); create table shangpin( sp_ID int primary key identity(1,1), sp_Name varchar(100) not null, sp_Price decimal(10,2) not null, sp_TypeID int, sp_Jieshao varchar(300) ); insert into shangpin values('苹果',12,1,'好吃的苹果'); insert into shangpin values('香蕉',2,1,'好吃的香蕉'); insert into shangpin values('橘子',4,1,'好吃的橘子'); insert into shangpin values('娃哈哈',3,2,'好吃营养好'); insert into shangpin values('牙刷',5,4,'全自动牙刷'); package SwingJdbc; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import java.awt.event.MouseEvent; import java.awt.event.MouseListener; import java.sql.ResultSet; import java.sql.SQLException; import java.util.Vector; import javax.swing.JButton; import javax.swing.JComboBox; import javax.swing.JFrame; import javax.swing.JLabel; import javax.swing.JOptionPane; import javax.swing.JPanel; import javax.swing.JScrollPane; import javax.swing.JTable; import javax.swing.JTextField; import javax.swing.table.DefaultTableModel; public class biaoGe extends JFrame { class shiJian implements MouseListener, ActionListener { public biaoGe jieShou = null; public shiJian(biaoGe chuangTi) { this.jieShou = chuangTi; } @Override public void actionPerformed(ActionEvent arg0) { String name = jieShou.wenBenKuangName.getText(); String price = jieShou.wenBenKuangPrice.getText(); String type = jieShou.wenBenKuangTypeId.getText(); String jieshao = jieShou.wenBenKuangJieShao. getText(); String sql = "insert into shangpin values('" + name + "'" + ", " + price + "," + type + ",'" + jieshao + "')"; if (DBUtils.ZSG(sql)) { JOptionPane.showMessageDialog(null, "增加成功"); jieShou.chaxunchushihua(); } else { JOptionPane.showMessageDialog(null, "出现了未知的错误,增加失败"); } } @Override public void mouseClicked(MouseEvent arg0) { if (arg0.getClickCount() == 2) { int row = jieShou.biaoGe1.getSelectedRow(); jieShou.wenBenKuangBianHao .setText(jieShou.biaoGe1.getValueAt( row, 0).toString()); jieShou.wenBenKuangName .setText(jieShou.biaoGe1.getValueAt( row, 1).toString()); jieShou.wenBenKuangPrice .setText(jieShou.biaoGe1.getValueAt( row, 2).toString()); jieShou.wenBenKuangTypeId .setText(jieShou.biaoGe1.getValueAt( row, 3).toString()); jieShou.wenBenKuangJieShao .setText(jieShou.biaoGe1.getValueAt( row, 4).toString()); } if (arg0.isMetaDown()) { int num = JOptionPane.showConfirmDialog(null, "是否确认删除这条信息?"); if (num == 0) { int row = jieShou.biaoGe1 .getSelectedRow(); String sql = "delete shangpin where sp_id=" + jieShou.biaoGe1.getValueAt( row, 0) + ""; if (DBUtils.ZSG(sql)) { JOptionPane.showMessageDialog(null, "册除成功"); jieShou.chaxunchushihua(); } else { JOptionPane.showMessageDialog(null, "出现了未知的错误,请重试"); } } } } @Override public void mouseEntered(MouseEvent arg0) { // TODO Auto-generated method stub } @Override public void mouseExited(MouseEvent arg0) { // TODO Auto-generated method stub } @Override public void mousePressed(MouseEvent arg0) { // TODO Auto-generated method stub } @Override public void mouseReleased(MouseEvent arg0) { // TODO Auto-generated method stub } } static JButton zengJiaAnNiu = null; static DefaultTableModel biaoGeMoXing1 = null; static JScrollPane gunDongTiao = null; static JTable biaoGe1 = null; static JLabel wenZiBianHao, wenZiName, wenZiPrice, wenZiTypeId, wenZiJieShao; static JTextField wenBenKuangBianHao, wenBenKuangName, wenBenKuangPrice, wenBenKuangTypeId, wenBenKuangJieShao; static Vector BiaoTiJiHe = null; static Vector> NeiRongJiHe = null; JPanel mianBan1, mianBan2 = null; public biaoGe() { this.setTitle("登录后的界面"); this.setSize(800, 600); this.setLayout(null); this.setLocationRelativeTo(null); wenZiBianHao = new JLabel("编号"); wenZiName = new JLabel("名称"); wenZiPrice = new JLabel("价格"); wenZiTypeId = new JLabel("类型ID"); wenZiJieShao = new JLabel("介绍"); zengJiaAnNiu = new JButton("添加数据"); zengJiaAnNiu.setBounds(530, 390, 100, 30); zengJiaAnNiu.addActionListener(new shiJian(this)); this.add(zengJiaAnNiu); wenZiBianHao.setBounds(560, 100, 70, 30); wenZiName.setBounds(560, 140, 70, 30); wenZiPrice.setBounds(560, 180, 70, 30); wenZiTypeId.setBounds(560, 220, 70, 30); wenZiJieShao.setBounds(560, 260, 70, 30); this.add(wenZiBianHao); this.add(wenZiName); this.add(wenZiPrice); this.add(wenZiTypeId); this.add(wenZiJieShao); wenBenKuangBianHao = new JTextField(); wenBenKuangBianHao.setEditable(false); wenBenKuangName = new JTextField(); wenBenKuangPrice = new JTextField(); wenBenKuangTypeId = new JTextField(); wenBenKuangJieShao = new JTextField(); wenBenKuangBianHao.setBounds(640, 100, 130, 30); wenBenKuangName.setBounds(640, 140, 130, 30); wenBenKuangPrice.setBounds(640, 180, 130, 30); wenBenKuangTypeId.setBounds(640, 220, 130, 30); wenBenKuangJieShao.setBounds(640, 260, 130, 30); this.add(wenBenKuangBianHao); this.add(wenBenKuangName); this.add(wenBenKuangPrice); this.add(wenBenKuangTypeId); this.add(wenBenKuangJieShao); biaoGeFengZhuangFangFa(); this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); this.setVisible(true); } //biaoGeFengZhuangFangFa表格的封装方法 private void biaoGeFengZhuangFangFa() { BiaoTiJiHe = new Vector(); BiaoTiJiHe.add("编号"); BiaoTiJiHe.add("名称"); BiaoTiJiHe.add("价格"); BiaoTiJiHe.add("类型"); BiaoTiJiHe.add("介绍"); String sql = "select from shangpin"; ResultSet res = DBUtils.Select(sql); try { NeiRongJiHe = new Vector>(); while (res.next()) { Vector v = new Vector(); v.add(res.getInt("sp_ID")); v.add(res.getString("sp_Name")); v.add(res.getDouble("sp_price")); v.add(res.getInt("sp_TypeID")); v.add(res.getString("sp_Jieshao")); NeiRongJiHe.add(v); } biaoGeMoXing1 = new DefaultTableModel(NeiRongJiHe, BiaoTiJiHe) { @Override public boolean isCellEditable(int a, int b) { return false; } }; biaoGe1 = new JTable(biaoGeMoXing1); biaoGe1.addMouseListener(new shiJian(this)); biaoGe1.setBounds(0, 0, 500, 500); gunDongTiao= new JScrollPane(biaoGe1); gunDongTiao .setBounds(0, 0, 550, 150); mianBan1 = new JPanel(); mianBan1.add(gunDongTiao ); mianBan1.setBounds(0, 0, 550, 250); this.add(mianBan1); } catch (SQLException e) { e.printStackTrace(); } } public void chaxunchushihua() { if (this.mianBan1 != null) { this.remove(mianBan1); } biaoGeFengZhuangFangFa(); // 释放资源:this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); this.setVisible(true); } } package SwingJdbc; import java.sql.; public class DBUtils { static Connection con=null; static Statement sta=null; static ResultSet res=null; //在静态代码块中执行 static{ try { Class.forName("com.microsoft.sqlserver.jdbc.SQLServerDriver"); } catch (ClassNotFoundException e) { // TODO Auto-generated catch block e.printStackTrace(); } } //封装链接数据库的方法 public static Connection getCon(){ if(con==null){ try { con=DriverManager.getConnection ("jdbc:sqlserver://localhost;databaseName=yonghu","qqq","123"); } catch (SQLException e) { // TODO Auto-generated catch block e.printStackTrace(); } } return con; } //查询的方法 public static ResultSet Select(String sql){ con=getCon();//建立数据库链接 try { sta=con.createStatement(); res=sta.executeQuery(sql); } catch (SQLException e) { // TODO Auto-generated catch block e.printStackTrace(); } return res; } //增删改查的方法 //返回int类型的数据 public static boolean ZSG(String sql){ con=getCon();//建立数据库链接 boolean b=false; try { sta=con.createStatement(); int num=sta.executeUpdate(sql); //0就是没有执行成功,大于0 就成功了 if(num>0){ b=true; } } catch (SQLException e) { // TODO Auto-generated catch block e.printStackTrace(); } return b; } } package SwingJdbc; public class mains { public static void main(String[] args) { new biaoGe(); } } 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39929646/article/details/114190817。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-18 08:36:23
525
转载
转载文章
...联系我们,我们将第一时间进行核实并删除相应内容。 中小企业MIS系统的管理基本上由两大部份组成,一是前台的可视化操作,二是后台的数据库管理。网管对前台的管理和维护工作包括保障网络链路通畅、处理MIS终端的突发事件以及对操作员的管理、培训等,这是网管们日常做得最多、最辛苦的功课;然而MIS系统架构中同等重要的针对数据库的管理、维护和优化工作,现实中似乎并没有得到网管朋友的足够重视,看起来这都是程序员的事,事实上,一个网管如果能在MIS设计期间就数据表的规范化、表索引优化、容量设计、事务处理等诸多方面与程序员进行卓有成效的沟通和协作,那么日常的前台管理工作将会变得大为轻松,因为在某种意义上,数据库管理系统就相当于操作系统,在系统中占有同样重要的位置。 这正是SQL SERVER等数据库管理系统和dBASEX、ACCESS等数据库文件系统的本质区别,所以,对数据库管理系统操作能力的强弱在某种程度上也折射出了网管的水平——个人认为,称得上优秀的Admin,至少应该是一个称职的DBA(数据库管理员)。 下面以SQL SERVER(下称 SQLS)为例,将数据库管理中难于理解的“索引原理”问题给各位朋友作一个深入浅出的介绍。其他的数据库管理系统如Oracle、Sybase等,朋友们可以融会贯通,举一反三。 一、数据表的基本结构 建立数据库的目的是管理大量数据,而建立索引的目的就是提高数据检索效率,改善数据库工作性能,提高数据访问速度。对于索引,我们要知其然,更要知其所以然,关键在于认识索引的工作原理,才能更好的管理索引。 为认识索引工作原理,首先有必要对数据表的基本结构作一次全面的复习。 SQLS当一个新表被创建之时,系统将在磁盘中分配一段以8K为单位的连续空间,当字段的值从内存写入磁盘时,就在这一既定空间随机保存,当一个8K用完的时候,SQLS指针会自动分配一个8K的空间。这里,每个8K空间被称为一个数据页(Page),又名页面或数据页面,并分配从0-7的页号,每个文件的第0页记录引导信息,叫文件头(File header);每8个数据页(64K)的组合形成扩展区(Extent),称为扩展。全部数据页的组合形成堆(Heap)。 SQLS规定行不能跨越数据页,所以,每行记录的最大数据量只能为8K。这就是char和varchar这两种字符串类型容量要限制在8K以内的原因,存储超过8K的数据应使用text类型,实际上,text类型的字段值不能直接录入和保存,它只是存储一个指针,指向由若干8K的文本数据页所组成的扩展区,真正的数据正是放在这些数据页中。 页面有空间页面和数据页面之分。 当一个扩展区的8个数据页中既包含了空间页面又包括了数据或索引页面时,称为混合扩展(Mixed Extent),每张表都以混合扩展开始;反之,称为一致扩展(Uniform Extent),专门保存数据及索引信息。 表被创建之时,SQLS在混合扩展中为其分配至少一个数据页面,随着数据量的增长,SQLS可即时在混合扩展中分配出7个页面,当数据超过8个页面时,则从一致扩展中分配数据页面。 空间页面专门负责数据空间的分配和管理,包括:PFS页面(Page free space):记录一个页面是否已分配、位于混合扩展还是一致扩展以及页面上还有多少可用空间等信息;GAM页面(Global allocation map)和SGAM页面(Secodary global allocation map):用来记录空闲的扩展或含有空闲页面的混合扩展的位置。SQLS综合利用这三种类型的页面文件在必要时为数据表创建新空间; 数据页或索引页则专门保存数据及索引信息,SQLS使用4种类型的数据页面来管理表或索引:它们是IAM页、数据页、文本/图像页和索引页。 在WINDOWS中,我们对文件执行的每一步操作,在磁盘上的物理位置只有系统(system)才知道;SQL SERVER沿袭了这种工作方式,在插入数据的过程中,不但每个字段值在数据页面中的保存位置是随机的,而且每个数据页面在“堆”中的排列位置也只有系统(system)才知道。 这是为什么呢?众所周知,OS之所以能管理DISK,是因为在系统启动时首先加载了文件分配表:FAT(File Allocation Table),正是由它管理文件系统并记录对文件的一切操作,系统才得以正常运行;同理,作为管理系统级的SQL SERVER,也有这样一张类似FAT的表存在,它就是索引分布映像页:IAM(Index Allocation Map)。 IAM的存在,使SQLS对数据表的物理管理有了可能。 IAM页从混合扩展中分配,记录了8个初始页面的位置和该扩展区的位置,每个IAM页面能管理512,000个数据页面,如果数据量太大,SQLS也可以增加更多的IAM页,可以位于文件的任何位置。第一个IAM页被称为FirstIAM,其中记录了以后的IAM页的位置。 数据页和文本/图像页互反,前者保存非文本/图像类型的数据,因为它们都不超过8K的容量,后者则只保存超过8K容量的文本或图像类型数据。而索引页顾名思义,保存的是与索引结构相关的数据信息。了解页面的问题有助我们下一步准确理解SQLS维护索引的方式,如页拆分、填充因子等。 二、索引的基本概念 索引是一种特殊类型的数据库对象,它与表有着密切的联系。 索引是为检索而存在的。如一些书籍的末尾就专门附有索引,指明了某个关键字在正文中的出现的页码位置,方便我们查找,但大多数的书籍只有目录,目录不是索引,只是书中内容的排序,并不提供真正的检索功能。可见建立索引要单独占用空间;索引也并不是必须要建立的,它们只是为更好、更快的检索和定位关键字而存在。 再进一步说,我们要在图书馆中查阅图书,该怎么办呢?图书馆的前台有很多叫做索引卡片柜的小柜子,里面分了若干的类别供我们检索图书,比如你可以用书名的笔画顺序或者拼音顺序作为查找的依据,你还可以从作者名的笔画顺序或拼音顺序去查询想要的图书,反正有许多检索方式,但有一点很明白,书库中的书并没有按照这些卡片柜中的顺序排列——虽然理论上可以这样做,事实上,所有图书的脊背上都人工的粘贴了一个特定的编号①,它们是以这个顺序在排列。索引卡片中并没有指明这本书摆放在书库中的第几个书架的第几本,仅仅指明了这个特定的编号。管理员则根据这一编号将请求的图书返回到读者手中。这是很形象的例子,以下的讲解将会反复用到它。 SQLS在安装完成之后,安装程序会自动创建master、model、tempdb等几个特殊的系统数据库,其中master是SQLS的主数据库,用于保存和管理其它系统数据库、用户数据库以及SQLS的系统信息,它在SQLS中的地位与WINDOWS下的注册表相当。 master中有一个名为sysindexes的系统表,专门管理索引。SQLS查询数据表的操作都必须用到它,毫无疑义,它是本文主角之一。 查看一张表的索引属性,可以在查询分析器中使用以下命令:select from sysindexes where id=object_id(‘tablename’) ;而要查看表的索引所占空间的大小,可以使用系统存储过程命令:sp_spaceused tablename,其中参数tablename为被索引的表名。 三、平衡树 如果你通过书后的索引知道了一个关键字所在的页码,你有可能通过随机的翻寻,最终到达正确的页码。但更科学更快捷的方法是:首先把书翻到大概二分之一的位置,如果要找的页码比该页的页码小,就把书向前翻到四分之一处,否则,就把书向后翻到四分之三的地方,依此类推,把书页续分成更小的部分,直至正确的页码。这叫“两分法”,微软在官方教程MOC里另有一种说法:叫B树(B-Tree,Balance Tree),即平衡树。 一个表索引由若干页面组成,这些页面构成了一个树形结构。B树由“根”(root)开始,称为根级节点,它通过指向另外两个页,把一个表的记录从逻辑上分成两个部分:“枝”—--非叶级节点(Non-Leaf Level);而非叶级节点又分别指向更小的部分:“叶”——叶级节点(Leaf Level)。根节点、非叶级节点和叶级节点都位于索引页中,统称为索引节点,属于索引页的范筹。这些“枝”、“叶”最终指向了具体的数据页(Page)。在根级节点和叶级节点之间的叶又叫数据中间页。 “根”(root)对应了sysindexes表的Root字段,其中记载了非叶级节点的物理位置(即指针);非叶级节点位于根节点和叶节点之间,记载了指向叶级节点的指针;而叶级节点则最终指向数据页。这就是“平衡树”。 四、聚集索引和非聚集索引 从形式上而言,索引分为聚集索引(Clustered Indexes)和非聚集索引(NonClustered Indexes)。 聚集索引相当于书籍脊背上那个特定的编号。如果对一张表建立了聚集索引,其索引页中就包含着建立索引的列的值(下称索引键值),那么表中的记录将按照该索引键值进行排序。比如,我们如果在“姓名”这一字段上建立了聚集索引,则表中的记录将按照姓名进行排列;如果建立了聚集索引的列是数值类型的,那么记录将按照该键值的数值大小来进行排列。 非聚集索引用于指定数据的逻辑顺序,也就是说,表中的数据并没有按照索引键值指定的顺序排列,而仍然按照插入记录时的顺序存放。其索引页中包含着索引键值和它所指向该行记录在数据页中的物理位置,叫做行定位符(RID:Row ID)。好似书后面的的索引表,索引表中的顺序与实际的页码顺序也是不一致的。而且一本书也许有多个索引。比如主题索引和作者索引。 SQL Server在默认的情况下建立的索引是非聚集索引,由于非聚集索引不对表中的数据进行重组,而只是存储索引键值并用一个指针指向数据所在的页面。一个表如果没有聚集索引时,理论上可以建立249个非聚集索引。每个非聚集索引提供访问数据的不同排序顺序。 五、数据是怎样被访问的 若能真正理解了以上索引的基础知识,那么再回头来看索引的工作原理就简单和轻松多了。 (一)SQLS怎样访问没有建立任何索引数据表: Heap译成汉语叫做“堆”,其本义暗含杂乱无章、无序的意思,前面提到数据值被写进数据页时,由于每一行记录之间并没地有特定的排列顺序,所以行与行的顺序就是随机无序的,当然表中的数据页也就是无序的了,而表中所有数据页就形成了“堆”,可以说,一张没有索引的数据表,就像一个只有书柜而没有索引卡片柜的图书馆,书库里面塞满了一堆乱七八糟的图书。当读者对管理员提交查询请求后,管理员就一头钻进书库,对照查找内容从头开始一架一柜的逐本查找,运气好的话,在第一个书架的第一本书就找到了,运气不好的话,要到最后一个书架的最后一本书才找到。 SQLS在接到查询请求的时候,首先会分析sysindexes表中一个叫做索引标志符(INDID: Index ID)的字段的值,如果该值为0,表示这是一张数据表而不是索引表,SQLS就会使用sysindexes表的另一个字段——也就是在前面提到过的FirstIAM值中找到该表的IAM页链——也就是所有数据页集合。 这就是对一个没有建立索引的数据表进行数据查找的方式,是不是很没效率?对于没有索引的表,对于一“堆”这样的记录,SQLS也只能这样做,而且更没劲的是,即使在第一行就找到了被查询的记录,SQLS仍然要从头到尾的将表扫描一次。这种查询称为“遍历”,又叫“表扫描”。 可见没有建立索引的数据表照样可以运行,不过这种方法对于小规模的表来说没有什么太大的问题,但要查询海量的数据效率就太低了。 (二)SQLS怎样访问建立了非聚集索引的数据表: 如前所述,非聚集索引可以建多个,具有B树结构,其叶级节点不包含数据页,只包含索引行。假定一个表中只有非聚集索引,则每个索引行包含了非聚集索引键值以及行定位符(ROW ID,RID),他们指向具有该键值的数据行。每一个RID由文件ID、页编号和在页中行的编号组成。 当INDID的值在2-250之间时,意味着表中存在非聚集索引页。此时,SQLS调用ROOT字段的值指向非聚集索引B树的ROOT,在其中查找与被查询最相近的值,根据这个值找到在非叶级节点中的页号,然后顺藤摸瓜,在叶级节点相应的页面中找到该值的RID,最后根据这个RID在Heap中定位所在的页和行并返回到查询端。 例如:假定在Lastname上建立了非聚集索引,则执行Select From Member Where Lastname=’Ota’时,查询过程是:①SQLS查询INDID值为2;②立即从根出发,在非叶级节点中定位最接近Ota的值“Martin”,并查到其位于叶级页面的第61页;③仅在叶级页面的第61页的Martin下搜寻Ota的RID,其RID显示为N∶706∶4,表示Lastname字段中名为Ota的记录位于堆的第707页的第4行,N表示文件的ID值,与数据无关;④根据上述信息,SQLS立马在堆的第 707页第4行将该记录“揪”出来并显示于前台(客户端)。视表的数据量大小,整个查询过程费时从百分之几毫秒到数毫秒不等。 在谈到索引基本概念的时候,我们就提到了这种方式: 图书馆的前台有很多索引卡片柜,里面分了若干的类别,诸如按照书名笔画或拼音顺序、作者笔画或拼音顺序等等,但不同之处有二:① 索引卡片上记录了每本书摆放的具体位置——位于某柜某架的第几本——而不是“特殊编号”;② 书脊上并没有那个“特殊编号”。管理员在索引柜中查到所需图书的具体位置(RID)后,根据RID直接在书库中的具体位置将书提出来。 显然,这种查询方式效率很高,但资源占用极大,因为书库中书的位置随时在发生变化,必然要求管理员花费额外的精力和时间随时做好索引更新。 (三)SQLS怎样访问建立了聚集索引的数据表: 在聚集索引中,数据所在的数据页是叶级,索引数据所在的索引页是非叶级。 查询原理和上述对非聚集索引的查询相似,但由于记录是按照聚集索引中索引键值进行排序,换句话说,聚集索引的索引键值也就是具体的数据页。 这就好比书库中的书就是按照书名的拼音在排序,而且也只按照这一种排序方式建立相应的索引卡片,于是查询起来要比上述只建立非聚集索引的方式要简单得多。仍以上面的查询为例: 假定在Lastname字段上建立了聚集索引,则执行Select From Member Where Lastname=’Ota’时,查询过程是:①SQLS查询INDID值为1,这是在系统中只建立了聚集索引的标志;②立即从根出发,在非叶级节点中定位最接近Ota的值“Martin”,并查到其位于叶级页面的第120页;③在位于叶级页面第120页的Martin下搜寻到Ota条目,而这一条目已是数据记录本身;④将该记录返回客户端。 这一次的效率比第二种方法更高,以致于看起来更美,然而它最大的优点也恰好是它最大的缺点——由于同一张表中同时只能按照一种顺序排列,所以在任何一种数据表中的聚集索引只能建立一个;并且建立聚集索引需要至少相当于源表120%的附加空间,以存放源表的副本和索引中间页! 难道鱼和熊掌就不能兼顾了吗?办法是有的。 (四)SQLS怎样访问既有聚集索引、又有非聚集索引的数据表: 如果我们在建立非聚集索引之前先建立了聚集索引的话,那么非聚集索引就可以使用聚集索引的关键字进行检索,就像在图书馆中,前台卡片柜中的可以有不同类别的图书索引卡,然而每张卡片上都载明了那个特殊编号——并不是书籍存放的具体位置。这样在最大程度上既照顾了数据检索的快捷性,又使索引的日常维护变得更加可行,这是最为科学的检索方法。 也就是说,在只建立了非聚集索引的情况下,每个叶级节点指明了记录的行定位符(RID);而在既有聚集索引又有非聚集索引的情况下,每个叶级节点所指向的是该聚集索引的索引键值,即数据记录本身。 假设聚集索引建立在Lastname上,而非聚集索引建立在Firstname上,当执行Select From Member Where Firstname=’Mike’时,查询过程是:①SQLS查询INDID值为2;②立即从根出发,在Firstname的非聚集索引的非叶级节点中定位最接近Mike的值“Jose”条目;③从Jose条目下的叶级页面中查到Mike逻辑位置——不是RID而是聚集索引的指针;④根据这一指针所指示位置,直接进入位于Lastname的聚集索引中的叶级页面中到达Mike数据记录本身;⑤将该记录返回客户端。 这就完全和我们在“索引的基本概念”中讲到的现实场景完全一样了,当数据发生更新的时候,SQLS只负责对聚集索引的健值驾以维护,而不必考虑非聚集索引,只要我们在ID类的字段上建立聚集索引,而在其它经常需要查询的字段上建立非聚集索引,通过这种科学的、有针对性的在一张表上分别建立聚集索引和非聚集索引的方法,我们既享受了索引带来的灵活与快捷,又相对规避了维护索引所导致的大量的额外资源消耗。 六、索引的优点和不足 索引有一些先天不足:1:建立索引,系统要占用大约为表的1.2倍的硬盘和内存空间来保存索引。2:更新数据的时候,系统必须要有额外的时间来同时对索引进行更新,以维持数据和索引的一致性——这就如同图书馆要有专门的位置来摆放索引柜,并且每当库存图书发生变化时都需要有人将索引卡片重整以保持索引与库存的一致。 当然建立索引的优点也是显而易见的:在海量数据的情况下,如果合理的建立了索引,则会大大加强SQLS执行查询、对结果进行排序、分组的操作效率。 实践表明,不恰当的索引不但于事无补,反而会降低系统性能。因为大量的索引在进行插入、修改和删除操作时比没有索引花费更多的系统时间。比如在如下字段建立索引应该是不恰当的:1、很少或从不引用的字段;2、逻辑型的字段,如男或女(是或否)等。 综上所述,提高查询效率是以消耗一定的系统资源为代价的,索引不能盲目的建立,必须要有统筹的规划,一定要在“加快查询速度”与“降低修改速度”之间做好平衡,有得必有失,此消则彼长。这是考验一个DBA是否优秀的很重要的指标。 至此,我们一直在说SQLS在维护索引时要消耗系统资源,那么SQLS维护索引时究竟消耗了什么资源?会产生哪些问题?究竟应该才能优化字段的索引? 在上篇中,我们就索引的基本概念和数据查询原理作了详细阐述,知道了建立索引时一定要在“加快查询速度”与“降低修改速度”之间做好平衡,有得必有失,此消则彼长。那么,SQLS维护索引时究竟怎样消耗资源?应该从哪些方面对索引进行管理与优化?以下就从七个方面来回答这些问题。 一、页分裂 微软MOC教导我们:当一个数据页达到了8K容量,如果此时发生插入或更新数据的操作,将导致页的分裂(又名页拆分): 1、有聚集索引的情况下:聚集索引将被插入和更新的行指向特定的页,该页由聚集索引关键字决定; 2、只有堆的情况下:只要有空间就可以插入新的行,但是如果我们对行数据的更新需要更多的空间,以致大于了当前页的可用空间,行就被移到新的页中,并且在原位置留下一个转发指针,指向被移动的新行,如果具有转发指针的行又被移动了,那么原来的指针将重新指向新的位置; 3、如果堆中有非聚集索引,那么尽管插入和更新操作在堆中不会发生页分裂,但是在非聚集索引上仍然产生页分裂。 无论有无索引,大约一半的数据将保留在老页面,而另一半将放入新页面,并且新页面可能被分配到任何可用的页。所以,频繁页分裂,后果很严重,将使物理表产生大量数据碎片,导致直接造成I/O效率的急剧下降,最后,停止SQLS的运行并重建索引将是我们的唯一选择! 二、填充因子 然而在“混沌之初”,就可以在一定程度上避免不愉快出现:在创建索引时,可以为这个索引指定一个填充因子,以便在索引的每个叶级页面上保留一定百分比的空间,将来数据可以进行扩充和减少页分裂。填充因子是从0到100的百分比数值,设为100时表示将数据页填满。只有当不会对数据进行更改时(例如只读表中)才用此设置。值越小则数据页上的空闲空间越大,这样可以减少在索引增长过程中进行页分裂的需要,但这一操作需要占用更多的硬盘空间。 填充因子只在创建索引时执行,索引创建以后,当表中进行数据的添加、删除或更新时,是不会保持填充因子的,如果想在数据页上保持额外的空间,则有悖于使用填充因子的本意,因为随着数据的输入,SQLS必须在每个页上进行页拆分,以保持填充因子指定的空闲空间。因此,只有在表中的数据进行了较大的变动,才可以填充数据页的空闲空间。这时,可以从容的重建索引,重新指定填充因子,重新分布数据。 反之,填充因子指定不当,就会降低数据库的读取性能,其降低量与填充因子设置值成反比。例如,当填充因子的值为50时,数据库的读取性能会降低两倍!所以,只有在表中根据现有数据创建新索引,并且可以预见将来会对这些数据进行哪些更改时,设置填充因子才有意义。 三、两道数学题 假定数据库设计没有问题,那么是否象上篇中分析的那样,当你建立了众多的索引,在查询工作中SQLS就只能按照“最高指示”用索引处理每一个提交的查询呢?答案是否定的! 上篇“数据是怎样被访问的”章节中提到的四种索引方案只是一种静态的、标准的和理论上的分析比较,实际上,将在外,军令有所不从,SQLS几乎完全是“自主”的决定是否使用索引或使用哪一个索引! 这是怎么回事呢? 让我们先来算一道题:如果某表的一条记录在磁盘上占用1000字节(1K)的话,我们对其中10字节的一个字段建立索引,那么该记录对应的索引大小只有10字节(0.01K)。上篇说过,SQLS的最小空间分配单元是“页(Page)”,一个页面在磁盘上占用8K空间,所以一页只能存储8条“记录”,但可以存储800条“索引”。现在我们要从一个有8000条记录的表中检索符合某个条件的记录(有Where子句),如果没有索引的话,我们需要遍历8000条×1000字节/8K字节=1000个页面才能够找到结果。如果在检索字段上有上述索引的话,那么我们可以在8000条×10字节/8K字节=10个页面中就检索到满足条件的索引块,然后根据索引块上的指针逐一找到结果数据块,这样I/O访问量肯定要少得多。 然而有时用索引还不如不用索引快! 同上,如果要无条件检索全部记录(不用Where子句),不用索引的话,需要访问8000条×1000字节/8K字节=1000个页面;而使用索引的话,首先检索索引,访问8000条×10字节/8K字节=10个页面得到索引检索结果,再根据索引检索结果去对应数据页面,由于是检索全部数据,所以需要再访问8000条×1000字节/8K字节=1000个页面将全部数据读取出来,一共访问了1010个页面,这显然不如不用索引快。 SQLS内部有一套完整的数据索引优化技术,在上述情况下,SQLS会自动使用表扫描的方式检索数据而不会使用任何索引。那么SQLS是怎么知道什么时候用索引,什么时候不用索引的呢?因为SQLS除了维护数据信息外,还维护着数据统计信息! 四、统计信息 打开企业管理器,单击“Database”节点,右击Northwind数据库→单击“属性”→选择“Options”选项卡,观察“Settings”下的各项复选项,你发现了什么? 从Settings中我们可以看到,在数据库中,SQLS将默认的自动创建和更新统计信息,这些统计信息包括数据密度和分布信息,正是它们帮助SQLS确定最佳的查询策略:建立查询计划和是否使用索引以及使用什么样的索引。 在创建索引时,SQLS会创建分布数据页来存放有关索引的两种统计信息:分布表和密度表。查询优化器使用这些统计信息估算使用该索引进行查询的成本(Cost),并在此基础上判断该索引对某个特定查询是否有用。 随着表中的数据发生变化,SQLS自动定期更新这些统计信息。采样是在各个数据页上随机进行。从磁盘读取一个数据页后,该数据页上的所有行都被用来更新统计信息。统计信息更新的频率取决于字段或索引中的数据量以及数据更改量。比如,对于有一万条记录的表,当1000个索引键值发生改变时,该表的统计信息便可能需要更新,因为1000 个值在该表中占了10%,这是一个很大的比例。而对于有1千万条记录的表来说,1000个索引值发生更改的意义则可以忽略不计,因此统计信息就不会自动更新。 至于它们帮助SQLS建立查询计划的具体过程,限于篇幅,这里就省略了,请有兴趣的朋友们自己研究。 顺便多说一句,SQLS除了能自动记录统计信息之外,还可以记录服务器中所发生的其它活动的详细信息,包括I/O 统计信息、CPU 统计信息、锁定请求、T-SQL 和 RPC 统计信息、索引和表扫描、警告和引发的错误、数据库对象的创建/除去、连接/断开、存储过程操作、游标操作等等。这些信息的读取、设置请朋友们在SQLS联机帮助文档(SQL Server Books Online)中搜索字符串“Profiler”查找。 五、索引的人工维护 上面讲到,某些不合适的索引将影响到SQLS的性能,随着应用系统的运行,数据不断地发生变化,当数据变化达到某一个程度时将会影响到索引的使用。这时需要用户自己来维护索引。 随着数据行的插入、删除和数据页的分裂,有些索引页可能只包含几页数据,另外应用在执行大量I/O的时候,重建非聚聚集索引可以维护I/O的效率。重建索引实质上是重新组织B树。需要重建索引的情况有: 1) 数据和使用模式大幅度变化; 2)排序的顺序发生改变; 3)要进行大量插入操作或已经完成; 4)使用I/O查询的磁盘读次数比预料的要多; 5)由于大量数据修改,使得数据页和索引页没有充分使用而导致空间的使用超出估算; 6)dbcc检查出索引有问题。 六、索引的使用原则 接近尾声的时候,让我们再从另一个角度认识索引的两个重要属性----唯一性索引和复合性索引。 在设计表的时候,可以对字段值进行某些限制,比如可以对字段进行主键约束或唯一性约束。 主键约束是指定某个或多个字段不允许重复,用于防止表中出现两条完全相同的记录,这样的字段称为主键,每张表都可以建立并且只能建立一个主键,构成主键的字段不允许空值。例如职员表中“身份证号”字段或成绩表中“学号、课程编号”字段组合。 而唯一性约束与主键约束类似,区别只在于构成唯一性约束的字段允许出现空值。 建立在主键约束和唯一性约束上的索引,由于其字段值具有唯一性,于是我们将这种索引叫做“唯一性索引”,如果这个唯一性索引是由两个以上字段的组合建立的,那么它又叫“复合性索引”。 注意,唯一索引不是聚集索引,如果对一个字段建立了唯一索引,你仅仅不能向这个字段输入重复的值。并不妨碍你可以对其它类型的字段也建立一个唯一性索引,它们可以是聚集的,也可以是非聚集的。 唯一性索引保证在索引列中的全部数据是唯一的,不会包含冗余数据。如果表中已经有一个主键约束或者唯一性约束,那么当创建表或者修改表时,SQLS自动创建一个唯一性索引。但出于必须保证唯一性,那么应该创建主键约束或者唯一性键约束,而不是创建一个唯一性索引。当创建唯一性索引时,应该认真考虑这些规则:当在表中创建主键约束或者唯一性键约束时, SQLS钭自动创建一个唯一性索引;如果表中已经包含有数据,那么当创建索引时,SQLS检查表中已有数据的冗余性,如果发现冗余值,那么SQLS就取消该语句的执行,并且返回一个错误消息,确保表中的每一行数据都有一个唯一值。 复合索引就是一个索引创建在两个列或者多个列上。在搜索时,当两个或者多个列作为一个关键值时,最好在这些列上创建复合索引。当创建复合索引时,应该考虑这些规则:最多可以把16个列合并成一个单独的复合索引,构成复合索引的列的总长度不能超过900字节,也就是说复合列的长度不能太长;在复合索引中,所有的列必须来自同一个表中,不能跨表建立复合列;在复合索引中,列的排列顺序是非常重要的,原则上,应该首先定义最唯一的列,例如在(COL1,COL2)上的索引与在(COL2,COL1)上的索引是不相同的,因为两个索引的列的顺序不同;为了使查询优化器使用复合索引,查询语句中的WHERE子句必须参考复合索引中第一个列;当表中有多个关键列时,复合索引是非常有用的;使用复合索引可以提高查询性能,减少在一个表中所创建的索引数量。 综上所述,我们总结了如下索引使用原则: 1)逻辑主键使用唯一的成组索引,对系统键(作为存储过程)采用唯一的非成组索引,对任何外键列采用非成组索引。考虑数据库的空间有多大,表如何进行访问,还有这些访问是否主要用作读写。 2)不要索引memo/note 字段,不要索引大型字段(有很多字符),这样作会让索引占用太多的存储空间。 3)不要索引常用的小型表 4)一般不要为小型数据表设置过多的索引,假如它们经常有插入和删除操作就更别这样作了,SQLS对这些插入和删除操作提供的索引维护可能比扫描表空间消耗更多的时间。 七、大结局 查询是一个物理过程,表面上是SQLS在东跑西跑,其实真正大部分压马路的工作是由磁盘输入输出系统(I/O)完成,全表扫描需要从磁盘上读表的每一个数据页,如果有索引指向数据值,则I/O读几次磁盘就可以了。但是,在随时发生的增、删、改操作中,索引的存在会大大增加工作量,因此,合理的索引设计是建立在对各种查询的分析和预测上的,只有正确地使索引与程序结合起来,才能产生最佳的优化方案。 一般来说建立索引的思路是: (1)主键时常作为where子句的条件,应在表的主键列上建立聚聚集索引,尤其当经常用它作为连接的时候。 (2)有大量重复值且经常有范围查询和排序、分组发生的列,或者非常频繁地被访问的列,可考虑建立聚聚集索引。 (3)经常同时存取多列,且每列都含有重复值可考虑建立复合索引来覆盖一个或一组查询,并把查询引用最频繁的列作为前导列,如果可能尽量使关键查询形成覆盖查询。 (4)如果知道索引键的所有值都是唯一的,那么确保把索引定义成唯一索引。 (5)在一个经常做插入操作的表上建索引时,使用fillfactor(填充因子)来减少页分裂,同时提高并发度降低死锁的发生。如果在只读表上建索引,则可以把fillfactor置为100。 (6)在选择索引字段时,尽量选择那些小数据类型的字段作为索引键,以使每个索引页能够容纳尽可能多的索引键和指针,通过这种方式,可使一个查询必须遍历的索引页面降到最小。此外,尽可能地使用整数为键值,因为它能够提供比任何数据类型都快的访问速度。 SQLS是一个很复杂的系统,让索引以及查询背后的东西真相大白,可以帮助我们更为深刻的了解我们的系统。一句话,索引就象盐,少则无味多则咸。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_28052907/article/details/75194926。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-30 23:10:07
97
转载
转载文章
...联系我们,我们将第一时间进行核实并删除相应内容。 1、发布订阅模式 1.1 列表的局限 通过队列的 rpush 和 lpop 可以实现消息队列(队尾进队头出),但是消费者需要不停地调用 lpop 查看 List 中是否有等待处理的消息(比如写一个 while 循环)。 为了减少通信的消耗,可以 sleep()一段时间再消费,但是会有两个问题: 1、如果生产者生产消息的速度远大于消费者消费消息的速度,List 会占用大量的内存。 2、消息的实时性降低。 list 还提供了一个阻塞的命令:blpop,没有任何元素可以弹出的时候,连接会被阻塞。 基于 list 实现的消息队列,不支持一对多的消息分发。 1.2 发布订阅模式 除了通过 list 实现消息队列之外,Redis 还提供了一组命令实现发布/订阅模式。 这种方式,发送者和接收者没有直接关联(实现了解耦),接收者也不需要持续尝试获取消息。 1.2.1 订阅频道 首先,我们有很多的频道(channel),我们也可以把这个频道理解成 queue。订阅者可以订阅一个或者多个频道。消息的发布者(生产者)可以给指定的频道发布消息。只要有消息到达了频道,所有订阅了这个频道的订阅者都会收到这条消息。 需要注意的注意是,发出去的消息不会被持久化,因为它已经从队列里面移除了,所以消费者只能收到它开始订阅这个频道之后发布的消息。 下面我们来看一下发布订阅命令的使用方法。 订阅者订阅频道:可以一次订阅多个,比如这个客户端订阅了 3 个频道。 subscribe channel-1 channel-2 channel-3 发布者可以向指定频道发布消息(并不支持一次向多个频道发送消息): publish channel-1 2673 取消订阅(不能在订阅状态下使用): unsubscribe channel-1 1.2.2 按规则(Pattern)订阅频道 支持 ?和 占位符。? 代表一个字符, 代表 0 个或者多个字符。 消费端 1,关注运动信息: psubscribe sport 消费端 2,关注所有新闻: psubscribe news 消费端 3,关注天气新闻: psubscribe news-weather 生产者,发布 3 条信息 publish news-sport yaoming publish news-music jaychou publish news-weather rain 2、Redis 事务 2.1 为什么要用事务 我们知道 Redis 的单个命令是原子性的(比如 get set mget mset),如果涉及到多个命令的时候,需要把多个命令作为一个不可分割的处理序列,就需要用到事务。 例如我们之前说的用 setnx 实现分布式锁,我们先 set,然后设置对 key 设置 expire, 防止 del 发生异常的时候锁不会被释放,业务处理完了以后再 del,这三个动作我们就希望它们作为一组命令执行。 Redis 的事务有两个特点: 1、按进入队列的顺序执行。 2、不会受到其他客户端的请求的影响。 Redis 的事务涉及到四个命令:multi(开启事务),exec(执行事务),discard (取消事务),watch(监视) 2.2 事务的用法 案例场景:tom 和 mic 各有 1000 元,tom 需要向 mic 转账 100 元。tom 的账户余额减少 100 元,mic 的账户余额增加 100 元。 通过 multi 的命令开启事务。事务不能嵌套,多个 multi 命令效果一样。 multi 执行后,客户端可以继续向服务器发送任意多条命令,这些命令不会立即被执行,而是被放到一个队列中,当 exec 命令被调用时,所有队列中的命令才会被执行。 通过 exec 的命令执行事务。如果没有执行 exec,所有的命令都不会被执行。如果中途不想执行事务了,怎么办? 可以调用 discard 可以清空事务队列,放弃执行。 2.3 watch命令 在 Redis 中还提供了一个 watch 命令。 它可以为 Redis 事务提供 CAS 乐观锁行为(Check and Set / Compare and Swap),也就是多个线程更新变量的时候,会跟原值做比较,只有它没有被其他线程修改的情况下,才更新成新的值。 我们可以用 watch 监视一个或者多个 key,如果开启事务之后,至少有一个被监视 key 键在 exec 执行之前被修改了,那么整个事务都会被取消(key 提前过期除外)。可以用 unwatch 取消。 2.4 事务可能遇到的问题 我们把事务执行遇到的问题分成两种,一种是在执行 exec 之前发生错误,一种是在执行 exec 之后发生错误。 2.4.1 在执行 exec 之前发生错误 比如:入队的命令存在语法错误,包括参数数量,参数名等等(编译器错误)。 在这种情况下事务会被拒绝执行,也就是队列中所有的命令都不会得到执行。 2.4.2 在执行 exec 之后发生错误 比如,类型错误,比如对 String 使用了 Hash 的命令,这是一种运行时错误。 最后我们发现 set k1 1 的命令是成功的,也就是在这种发生了运行时异常的情况下, 只有错误的命令没有被执行,但是其他命令没有受到影响。 这个显然不符合我们对原子性的定义,也就是我们没办法用 Redis 的这种事务机制来实现原子性,保证数据的一致。 3、Lua脚本 Lua/ˈluə/是一种轻量级脚本语言,它是用 C 语言编写的,跟数据的存储过程有点类似。 使用 Lua 脚本来执行 Redis 命令的好处: 1、一次发送多个命令,减少网络开销。 2、Redis 会将整个脚本作为一个整体执行,不会被其他请求打断,保持原子性。 3、对于复杂的组合命令,我们可以放在文件中,可以实现程序之间的命令集复用。 3.1 在Redis中调用Lua脚本 使用 eval /ɪ’væl/ 方法,语法格式: redis> eval lua-script key-num [key1 key2 key3 ....] [value1 value2 value3 ....] eval代表执行Lua语言的命令。 lua-script代表Lua语言脚本内容。 key-num表示参数中有多少个key,需要注意的是Redis中key是从1开始的,如果没有key的参数,那么写0。 [key1key2key3…]是key作为参数传递给Lua语言,也可以不填,但是需要和key-num的个数对应起来。 [value1 value2 value3 …]这些参数传递给 Lua 语言,它们是可填可不填的。 示例,返回一个字符串,0 个参数: redis> eval "return 'Hello World'" 0 3.2 在Lua脚本中调用Redis命令 使用 redis.call(command, key [param1, param2…])进行操作。语法格式: redis> eval "redis.call('set',KEYS[1],ARGV[1])" 1 lua-key lua-value command是命令,包括set、get、del等。 key是被操作的键。 param1,param2…代表给key的参数。 注意跟 Java 不一样,定义只有形参,调用只有实参。 Lua 是在调用时用 key 表示形参,argv 表示参数值(实参)。 3.2.1 设置键值对 在 Redis 中调用 Lua 脚本执行 Redis 命令 redis> eval "return redis.call('set',KEYS[1],ARGV[1])" 1 gupao 2673 redis> get gupao 以上命令等价于 set gupao 2673。 在 redis-cli 中直接写 Lua 脚本不够方便,也不能实现编辑和复用,通常我们会把脚本放在文件里面,然后执行这个文件。 3.2.2 在 Redis 中调用 Lua 脚本文件中的命令,操作 Redis 创建 Lua 脚本文件: cd /usr/local/soft/redis5.0.5/src vim gupao.lua Lua 脚本内容,先设置,再取值: cd /usr/local/soft/redis5.0.5/src redis-cli --eval gupao.lua 0 得到返回值: root@localhost src] redis-cli --eval gupao.lua 0 "lua666" 3.2.3 案例:对 IP 进行限流 需求:在 X 秒内只能访问 Y 次。 设计思路:用 key 记录 IP,用 value 记录访问次数。 拿到 IP 以后,对 IP+1。如果是第一次访问,对 key 设置过期时间(参数 1)。否则判断次数,超过限定的次数(参数 2),返回 0。如果没有超过次数则返回 1。超过时间, key 过期之后,可以再次访问。 KEY[1]是 IP, ARGV[1]是过期时间 X,ARGV[2]是限制访问的次数 Y。 -- ip_limit.lua-- IP 限流,对某个 IP 频率进行限制 ,6 秒钟访问 10 次 local num=redis.call('incr',KEYS[1])if tonumber(num)==1 thenredis.call('expire',KEYS[1],ARGV[1])return 1elseif tonumber(num)>tonumber(ARGV[2]) thenreturn 0 elsereturn 1 end 6 秒钟内限制访问 10 次,调用测试(连续调用 10 次): ./redis-cli --eval "ip_limit.lua" app:ip:limit:192.168.8.111 , 6 10 app:ip:limit:192.168.8.111 是 key 值 ,后面是参数值,中间要加上一个空格和一个逗号,再加上一个空格 。 即:./redis-cli –eval [lua 脚本] [key…]空格,空格[args…] 多个参数之间用一个空格分割 。 代码:LuaTest.java 3.2.4 缓存 Lua 脚本 为什么要缓存 在脚本比较长的情况下,如果每次调用脚本都需要把整个脚本传给 Redis 服务端, 会产生比较大的网络开销。为了解决这个问题,Redis 提供了 EVALSHA 命令,允许开发者通过脚本内容的 SHA1 摘要来执行脚本。 如何缓存 Redis 在执行 script load 命令时会计算脚本的 SHA1 摘要并记录在脚本缓存中,执行 EVALSHA 命令时 Redis 会根据提供的摘要从脚本缓存中查找对应的脚本内容,如果找到了则执行脚本,否则会返回错误:“NOSCRIPT No matching script. Please use EVAL.” 127.0.0.1:6379> script load "return 'Hello World'" "470877a599ac74fbfda41caa908de682c5fc7d4b"127.0.0.1:6379> evalsha "470877a599ac74fbfda41caa908de682c5fc7d4b" 0 "Hello World" 3.2.5 自乘案例 Redis 有 incrby 这样的自增命令,但是没有自乘,比如乘以 3,乘以 5。我们可以写一个自乘的运算,让它乘以后面的参数: local curVal = redis.call("get", KEYS[1]) if curVal == false thencurVal = 0 elsecurVal = tonumber(curVal)endcurVal = curVal tonumber(ARGV[1]) redis.call("set", KEYS[1], curVal) return curVal 把这个脚本变成单行,语句之间使用分号隔开 local curVal = redis.call("get", KEYS[1]); if curVal == false then curVal = 0 else curVal = tonumber(curVal) end; curVal = curVal tonumber(ARGV[1]); redis.call("set", KEYS[1], curVal); return curVal script load ‘命令’ 127.0.0.1:6379> script load 'local curVal = redis.call("get", KEYS[1]); if curVal == false then curVal = 0 else curVal = tonumber(curVal) end; curVal = curVal tonumber(ARGV[1]); redis.call("set", KEYS[1], curVal); return curVal' "be4f93d8a5379e5e5b768a74e77c8a4eb0434441" 调用: 127.0.0.1:6379> set num 2OK127.0.0.1:6379> evalsha be4f93d8a5379e5e5b768a74e77c8a4eb0434441 1 num 6 (integer) 12 3.2.6 脚本超时 Redis 的指令执行本身是单线程的,这个线程还要执行客户端的 Lua 脚本,如果 Lua 脚本执行超时或者陷入了死循环,是不是没有办法为客户端提供服务了呢? eval 'while(true) do end' 0 为了防止某个脚本执行时间过长导致 Redis 无法提供服务,Redis 提供了 lua-time-limit 参数限制脚本的最长运行时间,默认为 5 秒钟。 lua-time-limit 5000(redis.conf 配置文件中) 当脚本运行时间超过这一限制后,Redis 将开始接受其他命令但不会执行(以确保脚本的原子性,因为此时脚本并没有被终止),而是会返回“BUSY”错误。 Redis 提供了一个 script kill 的命令来中止脚本的执行。新开一个客户端: script kill 如果当前执行的 Lua 脚本对 Redis 的数据进行了修改(SET、DEL 等),那么通过 script kill 命令是不能终止脚本运行的。 127.0.0.1:6379> eval "redis.call('set','gupao','666') while true do end" 0 因为要保证脚本运行的原子性,如果脚本执行了一部分终止,那就违背了脚本原子性的要求。最终要保证脚本要么都执行,要么都不执行。 127.0.0.1:6379> script kill(error) UNKILLABLE Sorry the script already executed write commands against the dataset. You can either wait the scripttermination or kill the server in a hard way using the SHUTDOWN NOSAVE command. 遇到这种情况,只能通过 shutdown nosave 命令来强行终止 redis。 shutdown nosave 和 shutdown 的区别在于 shutdown nosave 不会进行持久化操作,意味着发生在上一次快照后的数据库修改都会丢失。 4、Redis 为什么这么快? 4.1 Redis到底有多快? 根据官方的数据,Redis 的 QPS 可以达到 10 万左右(每秒请求数)。 4.2 Redis为什么这么快? 总结:1)纯内存结构、2)单线程、3)多路复用 4.2.1 内存 KV 结构的内存数据库,时间复杂度 O(1)。 第二个,要实现这么高的并发性能,是不是要创建非常多的线程? 恰恰相反,Redis 是单线程的。 4.2.2 单线程 单线程有什么好处呢? 1、没有创建线程、销毁线程带来的消耗 2、避免了上线文切换导致的 CPU 消耗 3、避免了线程之间带来的竞争问题,例如加锁释放锁死锁等等 4.2.3 异步非阻塞 异步非阻塞 I/O,多路复用处理并发连接。 4.3 Redis为什么是单线程的? 不是白白浪费了 CPU 的资源吗? 因为单线程已经够用了,CPU 不是 redis 的瓶颈。Redis 的瓶颈最有可能是机器内存或者网络带宽。既然单线程容易实现,而且 CPU 不会成为瓶颈,那就顺理成章地采用单线程的方案了。 4.4 单线程为什么这么快? 因为 Redis 是基于内存的操作,我们先从内存开始说起。 4.4.1 虚拟存储器(虚拟内存 Vitual Memory) 名词解释:主存:内存;辅存:磁盘(硬盘) 计算机主存(内存)可看作一个由 M 个连续的字节大小的单元组成的数组,每个字节有一个唯一的地址,这个地址叫做物理地址(PA)。早期的计算机中,如果 CPU 需要内存,使用物理寻址,直接访问主存储器。 这种方式有几个弊端: 1、在多用户多任务操作系统中,所有的进程共享主存,如果每个进程都独占一块物理地址空间,主存很快就会被用完。我们希望在不同的时刻,不同的进程可以共用同一块物理地址空间。 2、如果所有进程都是直接访问物理内存,那么一个进程就可以修改其他进程的内存数据,导致物理地址空间被破坏,程序运行就会出现异常。 为了解决这些问题,我们就想了一个办法,在 CPU 和主存之间增加一个中间层。CPU 不再使用物理地址访问,而是访问一个虚拟地址,由这个中间层把地址转换成物理地址,最终获得数据。这个中间层就叫做虚拟存储器(Virtual Memory)。 具体的操作如下所示: 在每一个进程开始创建的时候,都会分配一段虚拟地址,然后通过虚拟地址和物理地址的映射来获取真实数据,这样进程就不会直接接触到物理地址,甚至不知道自己调用的哪块物理地址的数据。 目前,大多数操作系统都使用了虚拟内存,如 Windows 系统的虚拟内存、Linux 系统的交换空间等等。Windows 的虚拟内存(pagefile.sys)是磁盘空间的一部分。 在 32 位的系统上,虚拟地址空间大小是 2^32bit=4G。在 64 位系统上,最大虚拟地址空间大小是多少? 是不是 2^64bit=10241014TB=1024PB=16EB?实际上没有用到 64 位,因为用不到这么大的空间,而且会造成很大的系统开销。Linux 一般用低 48 位来表示虚拟地址空间,也就是 2^48bit=256T。 cat /proc/cpuinfo address sizes : 40 bits physical, 48 bits virtual 实际的物理内存可能远远小于虚拟内存的大小。 总结:引入虚拟内存,可以提供更大的地址空间,并且地址空间是连续的,使得程序编写、链接更加简单。并且可以对物理内存进行隔离,不同的进程操作互不影响。还可以通过把同一块物理内存映射到不同的虚拟地址空间实现内存共享。 4.4.2 用户空间和内核空间 为了避免用户进程直接操作内核,保证内核安全,操作系统将虚拟内存划分为两部分,一部分是内核空间(Kernel-space)/ˈkɜːnl /,一部分是用户空间(User-space)。 内核是操作系统的核心,独立于普通的应用程序,可以访问受保护的内存空间,也有访问底层硬件设备的权限。 内核空间中存放的是内核代码和数据,而进程的用户空间中存放的是用户程序的代码和数据。不管是内核空间还是用户空间,它们都处于虚拟空间中,都是对物理地址的映射。 在 Linux 系统中, 内核进程和用户进程所占的虚拟内存比例是 1:3。 当进程运行在内核空间时就处于内核态,而进程运行在用户空间时则处于用户态。 进程在内核空间以执行任意命令,调用系统的一切资源;在用户空间只能执行简单的运算,不能直接调用系统资源,必须通过系统接口(又称 system call),才能向内核发出指令。 top 命令: us 代表 CPU 消耗在 User space 的时间百分比; sy 代表 CPU 消耗在 Kernel space 的时间百分比。 4.4.3 进程切换(上下文切换) 多任务操作系统是怎么实现运行远大于 CPU 数量的任务个数的? 当然,这些任务实际上并不是真的在同时运行,而是因为系统通过时间片分片算法,在很短的时间内,将 CPU 轮流分配给它们,造成多任务同时运行的错觉。 为了控制进程的执行,内核必须有能力挂起正在 CPU 上运行的进程,并恢复以前挂起的某个进程的执行。这种行为被称为进程切换。 什么叫上下文? 在每个任务运行前,CPU 都需要知道任务从哪里加载、又从哪里开始运行,也就是说,需要系统事先帮它设置好 CPU 寄存器和程序计数器(ProgramCounter),这个叫做 CPU 的上下文。 而这些保存下来的上下文,会存储在系统内核中,并在任务重新调度执行时再次加载进来。这样就能保证任务原来的状态不受影响,让任务看起来还是连续运行。 在切换上下文的时候,需要完成一系列的工作,这是一个很消耗资源的操作。 4.4.4 进程的阻塞 正在运行的进程由于提出系统服务请求(如 I/O 操作),但因为某种原因未得到操作系统的立即响应,该进程只能把自己变成阻塞状态,等待相应的事件出现后才被唤醒。 进程在阻塞状态不占用 CPU 资源。 4.4.5 文件描述符 FD Linux 系统将所有设备都当作文件来处理,而 Linux 用文件描述符来标识每个文件对象。 文件描述符(File Descriptor)是内核为了高效管理已被打开的文件所创建的索引,用于指向被打开的文件,所有执行 I/O 操作的系统调用都通过文件描述符;文件描述符是一个简单的非负整数,用以表明每个被进程打开的文件。 Linux 系统里面有三个标准文件描述符。 0:标准输入(键盘); 1:标准输出(显示器); 2:标准错误输出(显示器)。 4.4.6 传统 I/O 数据拷贝 以读操作为例: 当应用程序执行 read 系统调用读取文件描述符(FD)的时候,如果这块数据已经存在于用户进程的页内存中,就直接从内存中读取数据。如果数据不存在,则先将数据从磁盘加载数据到内核缓冲区中,再从内核缓冲区拷贝到用户进程的页内存中。(两次拷贝,两次 user 和 kernel 的上下文切换)。 I/O 的阻塞到底阻塞在哪里? 4.4.7 Blocking I/O 当使用 read 或 write 对某个文件描述符进行过读写时,如果当前 FD 不可读,系统就不会对其他的操作做出响应。从设备复制数据到内核缓冲区是阻塞的,从内核缓冲区拷贝到用户空间,也是阻塞的,直到 copy complete,内核返回结果,用户进程才解除 block 的状态。 为了解决阻塞的问题,我们有几个思路。 1、在服务端创建多个线程或者使用线程池,但是在高并发的情况下需要的线程会很多,系统无法承受,而且创建和释放线程都需要消耗资源。 2、由请求方定期轮询,在数据准备完毕后再从内核缓存缓冲区复制数据到用户空间 (非阻塞式 I/O),这种方式会存在一定的延迟。 能不能用一个线程处理多个客户端请求? 4.4.8 I/O 多路复用(I/O Multiplexing) I/O 指的是网络 I/O。 多路指的是多个 TCP 连接(Socket 或 Channel)。 复用指的是复用一个或多个线程。它的基本原理就是不再由应用程序自己监视连接,而是由内核替应用程序监视文件描述符。 客户端在操作的时候,会产生具有不同事件类型的 socket。在服务端,I/O 多路复用程序(I/O Multiplexing Module)会把消息放入队列中,然后通过文件事件分派器(File event Dispatcher),转发到不同的事件处理器中。 多路复用有很多的实现,以 select 为例,当用户进程调用了多路复用器,进程会被阻塞。内核会监视多路复用器负责的所有 socket,当任何一个 socket 的数据准备好了,多路复用器就会返回。这时候用户进程再调用 read 操作,把数据从内核缓冲区拷贝到用户空间。 所以,I/O 多路复用的特点是通过一种机制一个进程能同时等待多个文件描述符,而这些文件描述符(套接字描述符)其中的任意一个进入读就绪(readable)状态,select() 函数就可以返回。 Redis 的多路复用, 提供了 select, epoll, evport, kqueue 几种选择,在编译的时 候来选择一种。 evport 是 Solaris 系统内核提供支持的; epoll 是 LINUX 系统内核提供支持的; kqueue 是 Mac 系统提供支持的; select 是 POSIX 提供的,一般的操作系统都有支撑(保底方案); 源码 ae_epoll.c、ae_select.c、ae_kqueue.c、ae_evport.c 5、内存回收 Reids 所有的数据都是存储在内存中的,在某些情况下需要对占用的内存空间进行回 收。内存回收主要分为两类,一类是 key 过期,一类是内存使用达到上限(max_memory) 触发内存淘汰。 5.1 过期策略 要实现 key 过期,我们有几种思路。 5.1.1 定时过期(主动淘汰) 每个设置过期时间的 key 都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的 CPU 资源去处理过期的 数据,从而影响缓存的响应时间和吞吐量。 5.1.2 惰性过期(被动淘汰) 只有当访问一个 key 时,才会判断该 key 是否已过期,过期则清除。该策略可以最大化地节省 CPU 资源,却对内存非常不友好。极端情况可能出现大量的过期 key 没有再次被访问,从而不会被清除,占用大量内存。 例如 String,在 getCommand 里面会调用 expireIfNeeded server.c expireIfNeeded(redisDb db, robj key) 第二种情况,每次写入 key 时,发现内存不够,调用 activeExpireCycle 释放一部分内存。 expire.c activeExpireCycle(int type) 5.1.3 定期过期 源码:server.h typedef struct redisDb { dict dict; / 所有的键值对 /dict expires; / 设置了过期时间的键值对 /dict blocking_keys; dict ready_keys; dict watched_keys; int id;long long avg_ttl;list defrag_later; } redisDb; 每隔一定的时间,会扫描一定数量的数据库的 expires 字典中一定数量的 key,并清除其中已过期的 key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得 CPU 和内存资源达到最优的平衡效果。 Redis 中同时使用了惰性过期和定期过期两种过期策略。 5.2 淘汰策略 Redis 的内存淘汰策略,是指当内存使用达到最大内存极限时,需要使用淘汰算法来决定清理掉哪些数据,以保证新数据的存入。 5.2.1 最大内存设置 redis.conf 参数配置: maxmemory <bytes> 如果不设置 maxmemory 或者设置为 0,64 位系统不限制内存,32 位系统最多使用 3GB 内存。 动态修改: redis> config set maxmemory 2GB 到达最大内存以后怎么办? 5.2.2 淘汰策略 https://redis.io/topics/lru-cache redis.conf maxmemory-policy noeviction 先从算法来看: LRU,Least Recently Used:最近最少使用。判断最近被使用的时间,目前最远的数据优先被淘汰。 LFU,Least Frequently Used,最不常用,4.0 版本新增。 random,随机删除。 如果没有符合前提条件的 key 被淘汰,那么 volatile-lru、volatile-random、 volatile-ttl 相当于 noeviction(不做内存回收)。 动态修改淘汰策略: redis> config set maxmemory-policy volatile-lru 建议使用 volatile-lru,在保证正常服务的情况下,优先删除最近最少使用的 key。 5.2.3 LRU 淘汰原理 问题:如果基于传统 LRU 算法实现 Redis LRU 会有什么问题? 需要额外的数据结构存储,消耗内存。 Redis LRU 对传统的 LRU 算法进行了改良,通过随机采样来调整算法的精度。如果淘汰策略是 LRU,则根据配置的采样值 maxmemory_samples(默认是 5 个), 随机从数据库中选择 m 个 key, 淘汰其中热度最低的 key 对应的缓存数据。所以采样参数m配置的数值越大, 就越能精确的查找到待淘汰的缓存数据,但是也消耗更多的CPU计算,执行效率降低。 问题:如何找出热度最低的数据? Redis 中所有对象结构都有一个 lru 字段, 且使用了 unsigned 的低 24 位,这个字段用来记录对象的热度。对象被创建时会记录 lru 值。在被访问的时候也会更新 lru 的值。 但是不是获取系统当前的时间戳,而是设置为全局变量 server.lruclock 的值。 源码:server.h typedef struct redisObject {unsigned type:4;unsigned encoding:4;unsigned lru:LRU_BITS;int refcount;void ptr; } robj; server.lruclock 的值怎么来的? Redis 中有个定时处理的函数 serverCron,默认每 100 毫秒调用函数 updateCachedTime 更新一次全局变量的 server.lruclock 的值,它记录的是当前 unix 时间戳。 源码:server.c void updateCachedTime(void) { time_t unixtime = time(NULL); atomicSet(server.unixtime,unixtime); server.mstime = mstime();struct tm tm; localtime_r(&server.unixtime,&tm);server.daylight_active = tm.tm_isdst; } 问题:为什么不获取精确的时间而是放在全局变量中?不会有延迟的问题吗? 这样函数 lookupKey 中更新数据的 lru 热度值时,就不用每次调用系统函数 time,可以提高执行效率。 OK,当对象里面已经有了 LRU 字段的值,就可以评估对象的热度了。 函数 estimateObjectIdleTime 评估指定对象的 lru 热度,思想就是对象的 lru 值和全局的 server.lruclock 的差值越大(越久没有得到更新),该对象热度越低。 源码 evict.c / Given an object returns the min number of milliseconds the object was never requested, using an approximated LRU algorithm. /unsigned long long estimateObjectIdleTime(robj o) {unsigned long long lruclock = LRU_CLOCK(); if (lruclock >= o->lru) {return (lruclock - o->lru) LRU_CLOCK_RESOLUTION; } else {return (lruclock + (LRU_CLOCK_MAX - o->lru)) LRU_CLOCK_RESOLUTION;} } server.lruclock 只有 24 位,按秒为单位来表示才能存储 194 天。当超过 24bit 能表 示的最大时间的时候,它会从头开始计算。 server.h define LRU_CLOCK_MAX ((1<<LRU_BITS)-1) / Max value of obj->lru / 在这种情况下,可能会出现对象的 lru 大于 server.lruclock 的情况,如果这种情况 出现那么就两个相加而不是相减来求最久的 key。 为什么不用常规的哈希表+双向链表的方式实现?需要额外的数据结构,消耗资源。而 Redis LRU 算法在 sample 为 10 的情况下,已经能接近传统 LRU 算法了。 问题:除了消耗资源之外,传统 LRU 还有什么问题? 如图,假设 A 在 10 秒内被访问了 5 次,而 B 在 10 秒内被访问了 3 次。因为 B 最后一次被访问的时间比 A 要晚,在同等的情况下,A 反而先被回收。 问题:要实现基于访问频率的淘汰机制,怎么做? 5.2.4 LFU server.h typedef struct redisObject {unsigned type:4;unsigned encoding:4;unsigned lru:LRU_BITS;int refcount;void ptr; } robj; 当这 24 bits 用作 LFU 时,其被分为两部分: 高 16 位用来记录访问时间(单位为分钟,ldt,last decrement time) 低 8 位用来记录访问频率,简称 counter(logc,logistic counter) counter 是用基于概率的对数计数器实现的,8 位可以表示百万次的访问频率。 对象被读写的时候,lfu 的值会被更新。 db.c——lookupKey void updateLFU(robj val) {unsigned long counter = LFUDecrAndReturn(val); counter = LFULogIncr(counter);val->lru = (LFUGetTimeInMinutes()<<8) | counter;} 增长的速率由,lfu-log-factor 越大,counter 增长的越慢 redis.conf 配置文件。 lfu-log-factor 10 如果计数器只会递增不会递减,也不能体现对象的热度。没有被访问的时候,计数器怎么递减呢? 减少的值由衰减因子 lfu-decay-time(分钟)来控制,如果值是 1 的话,N 分钟没有访问就要减少 N。 redis.conf 配置文件 lfu-decay-time 1 6、持久化机制 https://redis.io/topics/persistence Redis 速度快,很大一部分原因是因为它所有的数据都存储在内存中。如果断电或者宕机,都会导致内存中的数据丢失。为了实现重启后数据不丢失,Redis 提供了两种持久化的方案,一种是 RDB 快照(Redis DataBase),一种是 AOF(Append Only File)。 6.1 RDB RDB 是 Redis 默认的持久化方案。当满足一定条件的时候,会把当前内存中的数据写入磁盘,生成一个快照文件 dump.rdb。Redis 重启会通过加载 dump.rdb 文件恢复数据。 什么时候写入 rdb 文件? 6.1.1 RDB 触发 1、自动触发 a)配置规则触发。 redis.conf, SNAPSHOTTING,其中定义了触发把数据保存到磁盘的触发频率。 如果不需要 RDB 方案,注释 save 或者配置成空字符串""。 save 900 1 900 秒内至少有一个 key 被修改(包括添加) save 300 10 400 秒内至少有 10 个 key 被修改save 60 10000 60 秒内至少有 10000 个 key 被修改 注意上面的配置是不冲突的,只要满足任意一个都会触发。 RDB 文件位置和目录: 文件路径,dir ./ 文件名称dbfilename dump.rdb 是否是LZF压缩rdb文件 rdbcompression yes 开启数据校验 rdbchecksum yes 问题:为什么停止 Redis 服务的时候没有 save,重启数据还在? RDB 还有两种触发方式: b)shutdown 触发,保证服务器正常关闭。 c)flushall,RDB 文件是空的,没什么意义(删掉 dump.rdb 演示一下)。 2、手动触发 如果我们需要重启服务或者迁移数据,这个时候就需要手动触 RDB 快照保存。Redis 提供了两条命令: a)save save 在生成快照的时候会阻塞当前 Redis 服务器, Redis 不能处理其他命令。如果内存中的数据比较多,会造成 Redis 长时间的阻塞。生产环境不建议使用这个命令。 为了解决这个问题,Redis 提供了第二种方式。 执行 bgsave 时,Redis 会在后台异步进行快照操作,快照同时还可以响应客户端请求。 具体操作是 Redis 进程执行 fork 操作创建子进程(copy-on-write),RDB 持久化过程由子进程负责,完成后自动结束。它不会记录 fork 之后后续的命令。阻塞只发生在 fork 阶段,一般时间很短。 用 lastsave 命令可以查看最近一次成功生成快照的时间。 6.1.2 RDB 数据的恢复(演示) 1、shutdown 持久化添加键值 添加键值 redis> set k1 1 redis> set k2 2 redis> set k3 3 redis> set k4 4 redis> set k5 5 停服务器,触发 save redis> shutdown 备份 dump.rdb 文件 cp dump.rdb dump.rdb.bak 启动服务器 /usr/local/soft/redis-5.0.5/src/redis-server /usr/local/soft/redis-5.0.5/redis.conf 啥都没有: redis> keys 3、通过备份文件恢复数据停服务器 redis> shutdown 重命名备份文件 mv dump.rdb.bak dump.rdb 启动服务器 /usr/local/soft/redis-5.0.5/src/redis-server /usr/local/soft/redis-5.0.5/redis.conf 查看数据 redis> keys 6.1.3 RDB 文件的优势和劣势 一、优势 1.RDB 是一个非常紧凑(compact)的文件,它保存了 redis 在某个时间点上的数据集。这种文件非常适合用于进行备份和灾难恢复。 2.生成 RDB 文件的时候,redis 主进程会 fork()一个子进程来处理所有保存工作,主进程不需要进行任何磁盘 IO 操作。 3.RDB 在恢复大数据集时的速度比 AOF 的恢复速度要快。 二、劣势 1、RDB 方式数据没办法做到实时持久化/秒级持久化。因为 bgsave 每次运行都要执行 fork 操作创建子进程,频繁执行成本过高。 2、在一定间隔时间做一次备份,所以如果 redis 意外 down 掉的话,就会丢失最后一次快照之后的所有修改(数据有丢失)。 如果数据相对来说比较重要,希望将损失降到最小,则可以使用 AOF 方式进行持久化。 6.2 AOF Append Only File AOF:Redis 默认不开启。AOF 采用日志的形式来记录每个写操作,并追加到文件中。开启后,执行更改 Redis 数据的命令时,就会把命令写入到 AOF 文件中。 Redis 重启时会根据日志文件的内容把写指令从前到后执行一次以完成数据的恢复工作。 6.2.1 AOF 配置 配置文件 redis.conf 开关appendonly no 文件名appendfilename "appendonly.aof" AOF 文件的内容(vim 查看): 问题:数据都是实时持久化到磁盘吗? 由于操作系统的缓存机制,AOF 数据并没有真正地写入硬盘,而是进入了系统的硬盘缓存。什么时候把缓冲区的内容写入到 AOF 文件? 问题:文件越来越大,怎么办? 由于 AOF 持久化是 Redis 不断将写命令记录到 AOF 文件中,随着 Redis 不断的进行,AOF 的文件会越来越大,文件越大,占用服务器内存越大以及 AOF 恢复要求时间越长。 例如 set xxx 666,执行 1000 次,结果都是 xxx=666。 为了解决这个问题,Redis 新增了重写机制,当 AOF 文件的大小超过所设定的阈值时,Redis 就会启动 AOF 文件的内容压缩,只保留可以恢复数据的最小指令集。 可以使用命令 bgrewriteaof 来重写。 AOF 文件重写并不是对原文件进行重新整理,而是直接读取服务器现有的键值对,然后用一条命令去代替之前记录这个键值对的多条命令,生成一个新的文件后去替换原来的 AOF 文件。 重写触发机制 auto-aof-rewrite-percentage 100 auto-aof-rewrite-min-size 64mb 问题:重写过程中,AOF 文件被更改了怎么办? 另外有两个与 AOF 相关的参数: 6.2.2 AOF 数据恢复 重启 Redis 之后就会进行 AOF 文件的恢复。 6.2.3 AOF 优势与劣势 优点: 1、AOF 持久化的方法提供了多种的同步频率,即使使用默认的同步频率每秒同步一次,Redis 最多也就丢失 1 秒的数据而已。 缺点: 1、对于具有相同数据的的 Redis,AOF 文件通常会比 RDB 文件体积更大(RDB 存的是数据快照)。 2、虽然 AOF 提供了多种同步的频率,默认情况下,每秒同步一次的频率也具有较高的性能。在高并发的情况下,RDB 比 AOF 具好更好的性能保证。 6.3 两种方案比较 那么对于 AOF 和 RDB 两种持久化方式,我们应该如何选择呢? 如果可以忍受一小段时间内数据的丢失,毫无疑问使用 RDB 是最好的,定时生成 RDB 快照(snapshot)非常便于进行数据库备份, 并且 RDB 恢复数据集的速度也要比 AOF 恢复的速度要快。 否则就使用 AOF 重写。但是一般情况下建议不要单独使用某一种持久化机制,而是应该两种一起用,在这种情况下,当 redis 重启的时候会优先载入 AOF 文件来恢复原始的数据,因为在通常情况下 AOF 文件保存的数据集要比 RDB 文件保存的数据集要完整。 本篇文章为转载内容。原文链接:https://blog.csdn.net/zhoutaochun/article/details/120075092。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-03-18 12:25:04
541
转载
转载文章
...联系我们,我们将第一时间进行核实并删除相应内容。 豆瓣 当当 亚马逊 China-pub 京东 中国图书网 淘宝 PDF样章试读微盘下载 微云下载 中英词汇索引表 本页内容 基本信息 作者:Jason Gregory (杰森.格雷戈瑞) 译者:Milo Yip(叶劲峰) 原书名:Game Engine Architecture 出版社:电子工业出版社 出版时间:2014-1-1 开本:16 页数:800 字数:1093400 ISBN:9787121222887 内容简介 《游戏引擎架构》同时涵盖游戏引擎软件开发的理论及实践,并对多方面的题目进行探讨。本书讨论到的概念及技巧实际应用于现实中的游戏工作室,如艺电及顽皮狗。虽然书中采用的例子通常依据一些专门的技术,但是讨论范围远超于某个引擎或API。文中的参考及引用也非常有用,可让读者继续深入游戏开发过程的任何特定方向。 《游戏引擎架构》为一个大学程度的游戏编程课程而编写,但也适合软件工程师、业余爱好者、自学游戏程序员,以及游戏产业的从业人员。通过阅读《游戏引擎架构》,资历较浅的游戏工程师可以巩固他们所学的游戏技术及引擎架构的知识,专注某一领域的资深程序员也能从本书更为全面的介绍中获益。 內容包括: 游戏开发中的大规模C++软件架构 游戏编程所需的数学 供调试、源代码控制及性能剖析的游戏开发工具 引擎基础系统、渲染、碰撞、物理、角色动画、游戏世界对象模型等引擎子系统 多平台游戏引擎 多处理器环境下的游戏编程 工作管道及游戏资产数据库 作者/译者简介 作者介绍:Jason Gregory在1994年开始任职专业软件工程师,自1999年3月开始在游戏产业中任职软件工程师。在圣迭哥Midway Home Entertainment公司开始游戏编程的他,为《疯狂飞行员(Freaky Flyers)》及《Crank the Weasel》开发PlayStation 2/Xbox上的动画系统。在2003年,他转到洛杉矶艺电,为《荣誉勋章:血战太平洋(Medal of Honor: Pacific Assault)》开发游戏引擎及游戏性技术,并在《荣誉勋章:空降神兵(Medal of Honor: Airborne)》中担任首席工程师。他现时是顽皮狗公司的通才程序员,为《神秘海域:德雷克船长的宝藏(Uncharted: Drake's Fortune)》及《神秘海域:纵横四海(Uncharted: Among Thieves)》开发引擎及游戏性软件。他也在南加州大学教授游戏技术的课程。 译者简介:叶劲峰(Milo Yip)从小自习编程,并爱好计算机图形学。上中学时兼职开发策略RPG《王子传奇》,该游戏在1995年于台湾发行。其后他获取了香港大学认知科学学士、香港中文大学系统工程及工程管理哲学硕士。毕业后在香港理工大学设计学院从事游戏引擎及相关技术的研发,职至项目主任。除发表学术文章外,也曾合著《DirectX9游戏编程实务》。2008年往上海育碧担任引擎工程师开发《美食从天而降(Cloudy with a Chance of Meatballs)》Xbox360/PS3/Wii/PC,2009年起于麻辣马开发《爱丽丝:疯狂回归(Alice: Madness Returns)》Xbox360/PS3/PC,2011年加入腾讯互动娱乐引擎技术中心担任专家工程师,所研发的技术已用于《斗战神》、《天涯明月刀》、《众神争霸》等项目中。 推荐序1 最初拿到《Game Engine Architecture》一书的英文版,是编辑侠少邮寄给我的打印版。他建议我接下翻译此书的合同。当时我正在杭州带领一个团队开发3D游戏引擎,我和我的同事都对这本书的内容颇有兴趣,两大本打印的英文书立刻在同事间传开。可惜那段时间个人精力顾及不来,把近千页的英文读物精读而后翻译成中文对个人的业余时间是个极大的挑战,不能担此翻译任务颇为遗憾。 不久以后听说Milo Yip(叶劲峰)已开始着手翻译,甚为欣喜。翻译此巨著,他一定是比我更合适的人选。我和Milo虽未曾蒙面,但神交已久。在网络上读过一些他的成长经历,和我颇为相似,心有戚戚。他对游戏3D实时渲染技术研究精深为我所不及,我们曾通过Google Talk讨论过许多技术问题,他都有独到的见解。翻译工作开始后,Milo是香港人,英文技术术语在香港的中文译法和大陆的有许多不同。但此书由大陆出版社出版,考虑到面对的读者主要是大陆程序员,Milo希望能更符合大陆程序员的用词习惯,所以在翻译一开始就通过Google Docs创建了协作页面,邀请大家共同探讨书中技术名词的中译名。从中我们可以一窥他作为译者的慎重。 三年之后,有幸在出版之前就拿到了完整的译本。这是一本用LaTeX精心排版的800页的电子书,我只花了一周时间,几乎是一口气读完。流畅的阅读享受,绝对不仅仅是因为原著精彩的内容,精美的版面和翔实的译注也加了不少分。 在阅读本书的过程中,我不只一次地获得共鸣。例如在第5章的内存管理系统的介绍中,作者介绍的几种游戏特有的内存管理方法我都曾在项目中用过,而这是第一次有书籍专门将这些方法详尽记录;又如第11章动画系统的介绍,我们也同样在3D引擎开发过程中改进原有动画片段混合方法的经历。虽然书中介绍的每个技术点,都可能可以在某篇论文,某本其他的书的章节,某篇网络blog上见过,但之前却无一本书可以把这些东西放在一起相互参照。对于从事游戏引擎开发的程序员来说,了解各种引擎在处理每个具体问题时的方案是相当重要的。而每种方案又各有利弊,即使不做引擎开发工作而是在某一特定游戏引擎上做游戏开发,从中也可以理解引擎的局限性以及可能的改进方法。尤其是第14章介绍的对游戏性相关系统的设计,各个开发人员几乎都是凭经验设计,很少见有书籍对这些做总结。对于基于渲染引擎做开发的游戏程序员,这是必须面对的工作,这一章会有很大的借鉴意义。 本书作者是业内资深的游戏引擎开发人,他所参于的《神秘海域》和《最后生还者》都是我的个人最爱。在玩游戏的过程中,作为游戏程序员的天性,自然会不断地猜想各个技术点是如何实现的,背后需要怎样的工具支持。能在书中一一得到印证是件特别开心的事情。作者反复强调代码实践的重要性,在书中遍布着C++代码。我不认为这些代码有直接取来使用的价值,但它们极大地帮助了读者理解书中的技术点。书中列出的顽皮狗工作室用lisp方言作为游戏配置脚本的范例也给我很大的启发,有了这些具体的代码示例以及作者本身的一线工程师背景,也让我确信书中那些关于主机游戏开发相关等,我所没有接触过的内容都也绝非泛泛而谈。 国内的游戏开发社区的壮大,主要是随最近十年的MMO风潮而生。而就在大型网络游戏在中国有些畸形发展,让这类游戏偏离电子游戏游戏性的趋势时,我们有幸迎来了为移动设备开发游戏的大潮。游戏开发的重心重新回到游戏性本身。我们更需要去借鉴单机游戏是如何为玩家带来更纯粹的游戏体验,我相信书中记录的各种技术点会变的更有帮助。 资深游戏开发及创业者 云风 @简悦云风 推荐序2 在我认识的许多游戏业开发同仁中,只有少数香港同胞,Milo Yip(叶劲峰)却正是这样一位给我印象非常深刻的优秀香港游戏开发者。我俩认识,是在Milo加入腾讯互动娱乐研发部引擎技术中心后,说来到现在也只是两年多时间。其间,他为人的谦逊务实,对待技术问题的严谨求真态度,对算法设计和性能优化的娴熟技术,都为人所称道。Milo一丝不苟的工作风格,甚至表现在对待技术文档排版这类事情上(Milo常执著地用LaTeX将技术文档排到完美),我想这一定是他在香港读大学、硕士及在香港理工大学的多媒体创新中心从事研究员,一贯沿袭至今的好作风。 我很高兴腾讯游戏有实力吸引到这样优秀的技术专家;即使在其已从上海迁回香港家中,依然选择到深圳腾讯互动娱乐总部工作。叶兄从此工作日每天早晚过关,来往香港和深圳两地,虽有舟车劳顿,但是兼顾了对家庭的照顾和在游戏引擎方面的专业研究,希望这样的状况是令他满意的。 认识叶兄当时,我便知道他在进行Jason Gregory所著《游戏引擎架构》一书的中译工作。因为自己从前也有业余翻译游戏开发有关书籍的经历,所以我能理解其中的辛苦和责任重大,对叶兄也更多一分钦佩。我以为,本书以及本书的中文读者最大的幸运便是,遇到叶兄这位对游戏有着如同对家对国般强烈责任感,犹如“游戏科学工作者”般的专业译者! 现在(2013年年末)无疑是游戏史上对独立游戏制作者最友好的年代。开发设备方便获得(相对过往仅由主机厂商授权才能获得专利开发设备,现在有一台智能手机和一台个人电脑就可以开发)、技术工具友好、调试过程简单方便,且互联网上有丰富的例程和开源代码参考,也有网上社区便于交流。很多爱好者能够很快地制作出可运行的游戏原型,其中一些也能发布到应用商店。 但是不全面掌握各方面知识,尤其是游戏引擎架构知识,往往只能停留在勉强修改、凑合重用别人提供的资源的应用程度上,难以做极限的性能改进,更妄谈革命式的架构创新。这样的程度是很难在成千上万的游戏中脱颖而出的。我们所认可的真正的游戏大作,必定是在某方面大幅超越用户期待的产品。为了打造这样的产品,游戏内容创作者(策划、美术等)需要“戴着镣铐跳舞”(在当前的机能下争取更多的创作自由度),而引擎架构合理的游戏可以经得起──也值得进行──反复优化,最终可以提供更多的自由度,这是大作出现的技术前提。 书的作者、译者、出版社的编者,加上读者,大家是因书而结缘的有缘人。因叶兄这本《游戏引擎架构》译著而在线上线下相识的读者们,你们是不是因“了解游戏引擎架构,从而制作/优化好游戏”这样的理想而结了缘呢? 亲爱的读者,愿你的游戏有一天因谜题巧妙绝伦、趣味超凡、虚拟世界气势磅礴、视觉效果逼真精美等专业因素取得业界褒奖,并得到玩家真诚的赞美。希望届时曾读叶兄这本《游戏引擎架构》译作的你,也可以回馈社会,回馈游戏开发的学习社区,帮助新人。希望你也可以建立微信公众号、博客等,或翻译游戏开发书籍,造福外语不好的读者,所以如果你的外语(英语、日语、韩语之于游戏行业比较重要)水平仍需精进,现在也可以同步加油了! 腾讯《天天爱消除》游戏团队Leader 沙鹰 @也是沙鹰 译序 数千年以来,艺术家们通过文学、绘画、雕塑、建筑、音乐、舞蹈、戏剧等传统艺术形式充实人类的精神层面。自20世纪中叶,计算机的普及派生出另一种艺术形式──电子游戏。游戏结合了上述传统艺术以及近代科技派生的其他艺术(如摄影、电影、动画),并且完全脱离了艺术欣赏这种单向传递的方式──游戏必然是互动的,“玩家”并不是“读者”、“观众”或“听众”,而是进入游戏世界、感知并对世界做出反应的参与者。 基于游戏的互动本质,游戏的制作通常比其他大众艺术复杂。商业游戏的制作通常需要各种人才的参与,而他们则需要依赖各种工具及科技。游戏引擎便是专门为游戏而设计的工具及科技集成。之所以称为引擎,如同交通工具中的引擎,提供了最核心的技术部分。因为复杂,研发成本高,人们不希望制作每款游戏(或车款)时都重新设计引擎,重用性是游戏引擎的一个重要设计目标。 然而,各游戏本身的性质以及平台的差异,使研发完全通用的游戏引擎变得极困难,甚至不可能。市面上出售的游戏引擎,有一些虽然已经达到很高的技术水平,但在商业应用中,很多时候还是需要因应个别游戏项目对引擎改造、整合、扩展及优化。因此,即使能使用市面上最好的商用引擎或自研引擎,我们仍需要理解当中的架构、各种机制和技术,并且分析及解决在制作中遇到的问题。这些也是译者曾任于上海两家工作室时的主要工作范畴。 选择翻译此著作,主要原因是在阅读中得到共鸣,并且能知悉一些知名游戏作品实际上所采用的方案。有感坊间大部分游戏开发书籍并不是由业内人士执笔,内容只足够应付一些最简单的游戏开发,欠缺宏观比较各种方案,技术与当今实际情况也有很大差距。而一些Gems类丛书虽然偶有好文章,但受形式所限欠缺系统性、全面性。难得本书原作者身为世界一流游戏工作室的资深游戏开发者(注1),在繁重的游戏开发工作外,还在大学教授游戏开发课程以至编写本著作。此外,从与内地同事的交流中,了解到许多从业者不愿意阅读外文书籍。为了普及知识及反馈业界社会,希望能尽绵力。 或许有些人以为本著作是针对单机/游戏机游戏的,并不适合国内以网游为主的环境。但译者认为这是一种误解,许多游戏本身所涉及的技术是具通用性的。例如游戏性相关的游戏性系统、场景管理、人工智能、物理模拟等部分,许多时候也会同时用于网游的前台和后台。现时,一些动作为主、非MMO的国内端游甚至会直接在后台运行传统意义上的游戏引擎。至于前台相关的技术,单机和端游的区别更少。此外,随着近年移动终端的兴起,其硬件性能已超越传统掌上游戏机,开发手游所需的技术与传统掌上游戏机并无太大差异。还可预料,现时单机/游戏机的一些较高级的架构及技术,将在不远的未来着陆移动终端平台。 译者认为,本书涵括游戏开发技术的方方面面,同时适合入门及经验丰富的游戏程序员。书名中的架构二字,并不单是给出一个系统结构图,而是描述每个子系统的需求、相关技术及与其他子系统的关系。对译者本人而言,本书的第11章(动画系统)及第14章(运行时游戏性基础系统)是本书特別精彩之处,含有许多少见于其他书籍的内容。而第10章(渲染引擎)由于是游戏引擎中的一个极大的部分,有限的篇幅可能未能覆盖广度及深度,推荐读者参考[1](注2),人工智能方面也需参考其他专著。 本译作采用LaTeX排版(注3),以Inkscape编译矢量图片。为了令阅读更流畅,内文中的网址都统一改以脚注标示。另外,由于现时游戏开发相关的文献以英文为主,而且游戏开发涉及的知识面很广,本译作尽量以括号形式保留英文术语。为了方便读者查找内容,在附录中增设中英文双向索引(索引条目与原著的不同)。 本人在香港成长学习及工作,至2008年才赴内地游戏工作室工作,不黯内地的中文写作及用字习惯,翻译中曾遇到不少困难。有幸得到出版社人员以及良师益友的帮助,才能完成本译作。特别感谢周筠老师支持本作的提案,并耐心地给予协助及鼓励。编辑张春雨老师和卢鸫翔老师,以及好友余晟给予了大量翻译上的知识及指导。也感谢游戏业界专家云风、大宝和Dave给予了许多宝贵意见。此书的翻译及排版工作比预期更花时间,感谢妻子及儿女们的体谅。此次翻译工作历时三年半,因工作及家庭事宜导致严重延误,唯有在翻译及排版工作上更尽心尽力,希望求得等待此译作的读者们谅解。无论是批评或建议,诚希阁下通过电邮miloyip@gmail.com、新浪微博、豆瓣等渠道不吝赐教。 叶劲峰(Milo Yip) 2013年10月 原作者是顽皮狗(Naughty Dog)《神秘海域(Uncharted)》系列的通才程序员、《最后生还者(The Last of Us)》的首席程序员,之前还曾在EA和Midway工作。 中括号表示引用附录中的参考文献。一些参考条目加入了其中译本的信息。 具体是使用CTEX套装,它是在MiKTeX的基础上增加中文的支持。 前言 最早的电子游戏完全由硬件构成,但微处理器(microprocessor)的高速发展完全改变了游戏的面貌。现在的游戏是在多用途的PC和专门的电子游戏主机(video game console)上玩的,凭借软件带来绝妙的游戏体验。从最初的游戏诞生至今已有半个世纪,但很多人仍然认为游戏是一个未成熟的产业。即使游戏可能是个年轻的产业,若仔细观察,也会发现它正在高速发展。 现时游戏已成为一个上百亿美元的产业,覆盖不同年龄、性别的广泛受众。 千变万化的游戏,可以分为从纸牌游戏到大型多人在线游戏(massively multiplayer online game,MMOG)等多个种类(category)和“类型(genre)”(注1),也可以运行在任何装有微芯片(microchip)的设备上 。你现在可以在PC、手机及多种特别为游戏而设计的手持/电视游戏主机上玩游戏。家用电视游戏通常代表最尖端的游戏科技,又由于它们是周期性地推出新版本,因此有游戏机“世代”(generation)的说法。最新一代(注2)的游戏机包括微软的Xbox 360和索尼的PlayStation 3,但一定不可忽视长盛不衰的PC,以及最近非常流行的任天堂Wii。 最近,剧增的下载式休闲游戏,使这个多样化的商业游戏世界变得更复杂。虽然如此,大型游戏仍然是一门大生意。今天的游戏平台非常复杂,有难以置信的运算能力,这使软件的复杂度得以进一步提升。所有这些先进的软件都需要由人创造出来,这导致团队人数增加,开发成本上涨。随着产业变得成熟,开发团队要寻求更好、更高效的方式去制作产品,可复用软件(reusable software)和中间件(middleware)便应运而生,以补偿软件复杂度的提升。 由于有这么多风格迥异的游戏及多种游戏平台,因此不可能存在单一理想的软件方案。然而,业界已经发展出一些模式 ,也有大量的潜在方案可供选择。现今的问题是如何找到一个合适的方案去迎合某个项目的需要。再进一步,开发团队必须考虑项目的方方面面,以及如何把各方面集成。对于一个崭新的游戏设计,鲜有可能找到一个完美搭配游戏设计各方面的软件包。 现时业界内的老手,入行时都是“开荒牛”。我们这代人很少是计算机科学专业出身(Matt的专业是航空工程、Jason的专业是系统设计工程),但现时很多学院已设有游戏开发的课程和学位。时至今日,为了获取有用的游戏开发信息,学生和开发者必须找到好的途径。对于高端的图形技术,从研究到实践都有大量高质量的信息。可是,这些信息经常不能直接应用到游戏的生产环境,或者没有一个生产级质量的实现。对于图形以外的游戏开发技术,市面上有一些所谓的入门书籍,没提及参考文献就描述很多内容细节,像自己发明的一样。这种做法根本没有用处,甚至经常带有不准确的内容。另一方面,市场上有一些高端的专门领域书籍,例如物理、碰撞、人工智能等。可是,这类书或者啰嗦到让你难以忍受,或者高深到让部分读者无法理解,又或者内容过于零散而难于融会贯通。有一些甚至会直接和某项技术挂钩,软硬件一旦改动,其内容就会迅速过时。 此外,互联网也是收集相关知识的绝佳工具。可是,除非你确实知道要找些什么,否则断链、不准确的资料、质量差的内容也会成为学习障碍。 好在,我们有Jason Gregory,他是一位拥有在顽皮狗(Naughty Dog)工作经验的业界老手,而顽皮狗是全球高度瞩目的游戏工作室之一。Jason在南加州大学教授游戏编程课程时,找不到概括游戏架构的教科书。值得庆幸的是,他承担了这个任务,填补了这个空白。 Jason把应用到实际发行游戏的生产级别知识,以及整个游戏开发的大局编集于本书。他凭经验,不仅融汇了游戏开发的概念和技巧,还用实际的代码示例及实现例子去说明怎样贯通知识来制作游戏。本书的引用及参考文献可以让读者更深入探索游戏开发过程的各方面。虽然例子经常是基于某些技术的,但是概念和技巧是用来实际创作游戏的,它们可以超越个别引擎或API的束缚。 本书是一本我们入行做游戏时想要的书。我们认为本书能让入门者增长知识,也能为有经验者开拓更大的视野。 Jeff Lander(注3) Matthew Whiting(注4) 译注:Genre一词在文学中为体裁。电影和游戏里通常译作类型。不同的游戏类型可见1.2节。 译注:按一般说法,2005年至今属于第7个游戏机世代。这3款游戏机的发行年份为Xbox 360(2005)、PlayStation 3(2006)、Wii(2006)。有关游戏机世代可参考维基百科。 译注:Jeff Lander现时为Darwin 3D公司的首席技术总监、Game Tech公司创始人,曾为艺电首席程序员、Luxoflux公司游戏性及动画技术程序员。 译注:Matthew Whiting现时为Wholesale Algorithms公司程序员,曾为Luxoflux公司首席软件工程师、Insomniac Games公司程序员。 序言 欢迎来到《游戏引擎架构》世界。本书旨在全面探讨典型商业游戏引擎的主要组件。游戏编程是一个庞大的主题,有许多内容需要讨论。不过相信你会发现,我们讨论的深度将足以使你充分理解本书所涵盖的工程理论及常用实践的方方面面。话虽如此,令人着迷的漫长游戏编程之旅其实才刚刚启程。与此相关的每项技术都包含丰富内容,本书将为你打下基础,并引领你进入更广阔的学习空间。 本书焦点在于游戏引擎的技术及架构。我们会探讨商业游戏引擎中,各个子系统的相关理论,以及实现这些理论所需要的典型数据结构、算法和软件接口。游戏引擎与游戏的界限颇为模糊。我们将把注意力集中在引擎本身,包括多个低阶基础系统(low-level foundation system)、渲染引擎(rendering engine)、碰撞系统(collision system)、物理模拟(physics simulation)、人物动画(character animation),及一个我称为游戏性基础层(gameplay foundation layer)的深入讨论。此层包括游戏对象模型(game object model)、世界编辑器(world editor)、事件系统(event system)及脚本系统(scripting system)。我们也将会接触游戏性编程(gameplay programming)的多个方面,包括玩家机制(player mechanics)、摄像机(camera)及人工智能(artificial intelligence,AI)。然而,这类讨论会被限制在游戏性系统和引擎接口范围。 本书可以作为大学中等级游戏程序设计中两到三门课程的教材。当然,本书也适合软件工程师、业余爱好者、自学的游戏程序员,以及游戏行业从业人员。通过阅读本书,资历较浅的游戏程序员可以巩固他们所学的游戏数学、引擎架构及游戏科技方面的知识。专注某一领域的资深程序员也能从本书更为全面的介绍中获益。 为了更好地学习本书内容,你需要掌握基本的面向对象编程概念并至少拥有一些C++编程经验。尽管游戏行业已经开始尝试使用一些新的、令人兴奋的编程语言,然而工业级的3D游戏引擎仍然是用C或C++编写的,任何认真的游戏程序员都应该掌握C++。我们将在第3章重温一些面向对象编程的基本原则,毫无疑问,你还会从本书学到一些C++的小技巧,不过C++的基础最好还是通过阅读[39]、[31]及[32]来获得。如果你对C++已经有点生疏,建议你在阅读本书的同时,最好能重温这几本或者类似书籍。如果你完全没有C++经验,在看本书之前,可以考虑先阅读[39]的前几章,或者尝试学习一些C++的在线教程。 学习编程技能最好的方法就是写代码。在阅读本书时,强烈建议你选择一些特别感兴趣的主题付诸实践。举例来说,如果你觉得人物动画很有趣,那么可以首先安装OGRE,并测试一下它的蒙皮动画示范。接着还可以尝试用OGRE实现本书谈及的一些动画混合技巧。下一步你可能会打算用游戏手柄控制人物在平面上行走。等你能玩转一些简单的东西了,就应该以此为基础,继续前进!之后可以转移到另一个游戏技术范畴,周而复始。这些项目是什么并不重要,重要的是你在实践游戏编程的艺术,而不是纸上谈兵。 游戏科技是一个活生生、会呼吸的家伙 ,永远不可能将之束缚于书本之上 。因此,附加的资源、勘误、更新、示例代码、项目构思等已经发到本书的网站。 目录 推荐序1 iii推荐序2 v译序 vii序言 xvii前言 xix致谢 xxi第一部分 基础 1第1章 导论 31.1 典型游戏团队的结构 41.2 游戏是什么 71.3 游戏引擎是什么 101.4 不同游戏类型中的引擎差异 111.5 游戏引擎概观 221.6 运行时引擎架构 271.7 工具及资产管道 46第2章 专业工具 532.1 版本控制 532.2 微软Visual Studio 612.3 剖析工具 782.4 内存泄漏和损坏检测 792.5 其他工具 80第3章 游戏软件工程基础 833.1 重温C++及最佳实践 833.2 C/C++的数据、代码及内存 903.3 捕捉及处理错误 118第4章 游戏所需的三维数学 1254.1 在二维中解决三维问题 1254.2 点和矢量 1254.3 矩阵 1394.4 四元数 1564.5 比较各种旋转表达方式 1644.6 其他数学对象 1684.7 硬件加速的SIMD运算 1734.8 产生随机数 180第二部分 低阶引擎系统 183第5章 游戏支持系统 1855.1 子系统的启动和终止 1855.2 内存管理 1935.3 容器 2085.4 字符串 2255.5 引擎配置 234第6章 资源及文件系统 2416.1 文件系统 2416.2 资源管理器 251第7章 游戏循环及实时模拟 2777.1 渲染循环 2777.2 游戏循环 2787.3 游戏循环的架构风格 2807.4 抽象时间线 2837.5 测量及处理时间 2857.6 多处理器的游戏循环 2967.7 网络多人游戏循环 304第8章 人体学接口设备(HID) 3098.1 各种人体学接口设备 3098.2 人体学接口设备的接口技术 3118.3 输入类型 3128.4 输出类型 3168.5 游戏引擎的人体学接口设备系统 3188.6 人体学接口设备使用实践 332第9章 调试及开发工具 3339.1 日志及跟踪 3339.2 调试用的绘图功能 3379.3 游戏内置菜单 3449.4 游戏内置主控台 3479.5 调试用摄像机和游戏暂停 3489.6 作弊 3489.7 屏幕截图及录像 3499.8 游戏内置性能剖析 3499.9 游戏内置的内存统计和泄漏检测 356第三部分 图形及动画 359第10章 渲染引擎 36110.1 采用深度缓冲的三角形光栅化基础 36110.2 渲染管道 40410.3 高级光照及全局光照 42610.4 视觉效果和覆盖层 43810.5 延伸阅读 446第11章 动画系统 44711.1 角色动画的类型 44711.2 骨骼 45211.3 姿势 45411.4 动画片段 45911.5 蒙皮及生成矩阵调色板 47111.6 动画混合 47611.7 后期处理 49311.8 压缩技术 49611.9 动画系统架构 50111.10 动画管道 50211.11 动作状态机 51511.12 动画控制器 535第12章 碰撞及刚体动力学 53712.1 你想在游戏中加入物理吗 53712.2 碰撞/物理中间件 54212.3 碰撞检测系统 54412.4 刚体动力学 56912.5 整合物理引擎至游戏 60112.6 展望:高级物理功能 616第四部分 游戏性 617第13章 游戏性系统简介 61913.1 剖析游戏世界 61913.2 实现动态元素:游戏对象 62313.3 数据驱动游戏引擎 62613.4 游戏世界编辑器 627第14章 运行时游戏性基础系统 63714.1 游戏性基础系统的组件 63714.2 各种运行时对象模型架构 64014.3 世界组块的数据格式 65714.4 游戏世界的加载和串流 66314.5 对象引用与世界查询 67014.6 实时更新游戏对象 67614.7 事件与消息泵 69014.8 脚本 70714.9 高层次的游戏流程 726第五部分 总结 727第15章 还有更多内容吗 72915.1 一些未谈及的引擎系统 72915.2 游戏性系统 730参考文献 733中文索引 737英文索引 755 参考文献 Tomas Akenine-Moller, Eric Haines, and Naty Hoffman. Real-Time Rendering (3rd Edition). Wellesley, MA: A K Peters, 2008. 中译本:《实时计算机图形学(第2版)》,普建涛译,北京大学出版社,2004. Andrei Alexandrescu. Modern C++ Design: Generic Programming and Design Patterns Applied. Resding, MA: Addison-Wesley, 2001. 中译本:《C++设计新思维:泛型编程与设计模式之应用》,侯捷/於春景译,华中科技大学出版社,2003. Grenville Armitage, Mark Claypool and Philip Branch. Networking and Online Games: Understanding and Engineering Multiplayer Internet Games. New York, NY: John Wiley and Sons, 2006. James Arvo (editor). Graphics Gems II. San Diego, CA: Academic Press, 1991. Grady Booch, Robert A. Maksimchuk, Michael W. Engel, Bobbi J. Young, Jim Conallen, and Kelli A. Houston. Object-Oriented Analysis and Design with Applications (3rd Edition). Reading, MA: Addison-Wesley, 2007. 中译本:《面向对象分析与设计(第3版)》,王海鹏/潘加宇译,电子工业出版社,2012. Mark DeLoura (editor). Game Programming Gems. Hingham, MA: Charles River Media, 2000. 中译本:《游戏编程精粹 1》, 王淑礼译,人民邮电出版社,2004. Mark DeLoura (editor). Game Programming Gems 2. Hingham, MA: Charles River Media, 2001. 中译本:《游戏编程精粹 2》,袁国忠译,人民邮电出版社,2003. Philip Dutré, Kavita Bala and Philippe Bekaert. Advanced Global Illumination (2nd Edition). Wellesley, MA: A K Peters, 2006. David H. Eberly. 3D Game Engine Design: A Practical Approach to Real-Time Computer Graphics. San Francisco, CA: Morgan Kaufmann, 2001. 国内英文版:《3D游戏引擎设计:实时计算机图形学的应用方法(第2版)》,人民邮电出版社,2009. David H. Eberly. 3D Game Engine Architecture: Engineering Real-Time Applications with Wild Magic. San Francisco, CA: Morgan Kaufmann, 2005. David H. Eberly. Game Physics. San Francisco, CA: Morgan Kaufmann, 2003. Christer Ericson. Real-Time Collision Detection. San Francisco, CA: Morgan Kaufmann, 2005. 中译本:《实时碰撞检测算法技术》,刘天慧译,清华大学出版社,2010. Randima Fernando (editor). GPU Gems: Programming Techniques, Tips and Tricks for Real-Time Graphics. Reading, MA: Addison-Wesley, 2004. 中译本:《GPU精粹:实时图形编程的技术、技巧和技艺》,姚勇译,人民邮电出版社,2006. James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Computer Graphics: Principles and Practice in C (2nd Edition). Reading, MA: Addison-Wesley, 1995. 中译本:《计算机图形学原理及实践──C语言描述》,唐泽圣/董士海/李华/吴恩华/汪国平译,机械工业出版社,2004. Grant R. Fowles and George L. Cassiday. Analytical Mechanics (7th Edition). Pacific Grove, CA: Brooks Cole, 2005. John David Funge. AI for Games and Animation: A Cognitive Modeling Approach. Wellesley, MA: A K Peters, 1999. Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissiddes. Design Patterns: Elements of Reusable Object-Oriented Software. Reading, MA: Addison-Wesley, 1994. 中译本:《设计模式:可复用面向对象软件的基础》,李英军/马晓星/蔡敏/刘建中译,机械工业出版社,2005. Andrew S. Glassner (editor). Graphics Gems I. San Francisco, CA: Morgan Kaufmann, 1990. Paul S. Heckbert (editor). Graphics Gems IV. San Diego, CA: Academic Press, 1994. Maurice Herlihy, Nir Shavit. The Art of Multiprocessor Programming. San Francisco, CA: Morgan Kaufmann, 2008. 中译本:《多处理器编程的艺术》,金海/胡侃译,机械工业出版社,2009. Roberto Ierusalimschy, Luiz Henrique de Figueiredo and Waldemar Celes. Lua 5.1 Reference Manual. Lua.org, 2006. Roberto Ierusalimschy. Programming in Lua, 2nd Edition. Lua.org, 2006. 中译本:《Lua程序设计(第2版)》,周惟迪译,电子工业出版社,2008. Isaac Victor Kerlow. The Art of 3-D Computer Animation and Imaging (2nd Edition). New York, NY: John Wiley and Sons, 2000. David Kirk (editor). Graphics Gems III. San Francisco, CA: Morgan Kaufmann, 1994. Danny Kodicek. Mathematics and Physics for Game Programmers. Hingham, MA: Charles River Media, 2005. Raph Koster. A Theory of Fun for Game Design. Phoenix, AZ: Paraglyph, 2004. 中译本:《快乐之道:游戏设计的黄金法则》,姜文斌等译,百家出版社,2005. John Lakos. Large-Scale C++ Software Design. Reading, MA: Addison-Wesley, 1995. 中译本:《大规模C++程序设计》,李师贤/明仲/曾新红/刘显明译,中国电力出版社,2003. Eric Lengyel. Mathematics for 3D Game Programming and Computer Graphics (2nd Edition). Hingham, MA: Charles River Media, 2003. Tuoc V. Luong, James S. H. Lok, David J. Taylor and Kevin Driscoll. Internationalization: Developing Software for Global Markets. New York, NY: John Wiley & Sons, 1995. Steve Maguire. Writing Solid Code: Microsoft's Techniques for Developing Bug Free C Programs. Bellevue, WA: Microsoft Press, 1993. 国内英文版:《编程精粹:编写高质量C语言代码》,人民邮电出版社,2009. Scott Meyers. Effective C++: 55 Specific Ways to Improve Your Programs and Designs (3rd Edition). Reading, MA: Addison-Wesley, 2005. 中译本:《Effective C++:改善程序与设计的55个具体做法(第3版)》,侯捷译,电子工业出版社,2011. Scott Meyers. More Effective C++: 35 New Ways to Improve Your Programs and Designs. Reading, MA: Addison-Wesley, 1996. 中译本:《More Effective C++:35个改善编程与设计的有效方法(中文版)》,侯捷译,电子工业出版社,2011. Scott Meyers. Effective STL: 50 Specific Ways to Improve Your Use of the Standard Template Library. Reading, MA: Addison-Wesley, 2001. 中译本:《Effective STL:50条有效使用STL的经验》,潘爱民/陈铭/邹开红译,电子工业出版社,2013. Ian Millington. Game Physics Engine Development. San Francisco, CA: Morgan Kaufmann, 2007. Hubert Nguyen (editor). GPU Gems 3. Reading, MA: Addison-Wesley, 2007. 中译本:《GPU精粹3》,杨柏林/陈根浪/王聪译,清华大学出版社,2010. Alan W. Paeth (editor). Graphics Gems V. San Francisco, CA: Morgan Kaufmann, 1995. C. Michael Pilato, Ben Collins-Sussman, and Brian W. Fitzpatrick. Version Control with Subversion (2nd Edition). Sebastopol , CA: O'Reilly Media, 2008. (常被称作“The Subversion Book”,线上版本.) 国内英文版:《使用Subversion进行版本控制》,开明出版社,2009. Matt Pharr (editor). GPU Gems 2: Programming Techniques for High-Performance Graphics and General-Purpose Computation. Reading, MA: Addison-Wesley, 2005. 中译本:《GPU精粹2:高性能图形芯片和通用计算编程技巧》,龚敏敏译,清华大学出版社,2007. Bjarne Stroustrup. The C++ Programming Language, Special Edition (3rd Edition). Reading, MA: Addison-Wesley, 2000. 中译本《C++程序设计语言(特别版)》,裘宗燕译,机械工业出版社,2010. Dante Treglia (editor). Game Programming Gems 3. Hingham, MA: Charles River Media, 2002. 中译本:《游戏编程精粹3》,张磊译,人民邮电出版社,2003. Gino van den Bergen. Collision Detection in Interactive 3D Environments. San Francisco, CA: Morgan Kaufmann, 2003. Alan Watt. 3D Computer Graphics (3rd Edition). Reading, MA: Addison Wesley, 1999. James Whitehead II, Bryan McLemore and Matthew Orlando. World of Warcraft Programming: A Guide and Reference for Creating WoW Addons. New York, NY: John Wiley & Sons, 2008. 中译本:《魔兽世界编程宝典:World of Warcraft Addons完全参考手册》,杨柏林/张卫星/王聪译,清华大学出版社,2010. Richard Williams. The Animator's Survival Kit. London, England: Faber & Faber, 2002. 中译本:《原动画基础教程:动画人的生存手册》,邓晓娥译,中国青年出版社,2006. 勘误 第1次印册(2014年2月) P.xviii: 译注中 Wholesale Algoithms -> Wholesale Algorithms P.10: 最后一段第一行 微软的媒体播放器 -> 微软的Windows Media Player (多谢读者OpenGPU来函指正) P.15: 1.4.3节第三点 按妞 -> 按钮 (多谢读者一个小小凡人来函指正) P.40: 正文最后一行 按扭 -> 按钮 P.50: 1.7.8节第二节第一行 同是 -> 同时 (多谢读者czfdd来函指正) P.98: 代码 writeExampleStruct(Example& ex, Stream& ex) 中 Stream& ex -> Stream& stream (多谢读者Snow来函指正) P.106: 第一段中有六处 BBS -> BSS,最后一段代码的注释也有同样错误 (多谢读者trout来函指正) P.119: 译注中 软体工程 -> 软件工程 (多谢读者Snow来函指正) P.214: 正文第一段有两处 虚内存 -> 虚拟内存 (多谢读者Snow来函指正) P.216: 脚注24应标明为译注 (多谢读者Snow来函指正) P.221: 第一段代码的第二个断言应为 ASSERT(link.m_pPrev != NULL); (多谢读者Snow来函指正) P.230: 5.4.4.1节 第二段 软体 -> 软件 P.286: 脚注4应标明为译注 (多谢读者Snow来函指正) P.322: 第二段 按扭事件字 -> 按钮事件 P.349: 9.8节第二段第二行两处 部析器 -> 剖析器 (多谢读者Snow来函指正) P.738-572: 双数页页眉 参考文献 -> 中文索引 P.755-772: 双数页页眉 参考文献 -> 英文索引 P.755: kd tree项应归入K而不是Symbols 以上的错误已于第2次印册中修正。 第2次印册及之前 P.11: 第四行 细致程度 -> 层次细节 (这是level-of-detail/LOD的内地通译,多谢读者OpenGPU来函指正) P.12: 正文第一段及图1.2标题 使命之唤 -> 使命召唤 (多谢读者OpenGPU来函指正) P.12: 正文第一段 战栗时空 -> 半条命 (多谢读者OpenGPU来函指正) P.16: 第一点 表面下散射 -> 次表面散射 (多谢读者OpenGPU来函指正) P.17: 1.4.4节第五行 次文化 -> 亚文化 (此译法在内地更常用。多谢读者OpenGPU来函提示) P.22: 战栗时空 -> 半条命 P.24: 战栗时空2 -> 半条命2 P.34: 1.6.8.2节第一行 提呈 -> 提交 (这术语在本书其他地方都写作提交。多谢读者OpenGPU来函提示) P.35: 第七行 提呈 -> 提交 (这术语在本书其他地方都写作提交。多谢读者OpenGPU来函提示) P.50: 战栗时空2 -> 半条命2 P.365: 第四段第二行: 细致程度 -> 层次细节 P.441: 10.4.3.2节第三行 细致程度 -> 层次细节 P.494: sinusiod -> sinusoid (多谢读者OpenGPU来函指正) P.511: 11.10.4节第一行 谈入 -> 淡入 (多谢读者Snow来函指正) P.541: 战栗时空2 -> 半条命2 P.627: 战栗时空2 -> 半条命2 P.654: 第二行 建康值 -> 血量 (原来是改正错别字,但译者发现应改作前后统一使用的“血量”。多谢读者Snow来函指正) P.692: 第二行 内部分式 -> 内部方式 (多谢读者Snow来函指正) P.696: 14.7.6节第四行 不设实际 -> 不切实际 (多谢读者Snow来函指正) 以上的错误已于第3次印册中修正。 其他意见 P.220: 正文第一段 m_root.m_pElement 和 P.218 第一段代码中的 m_pElem 不统一。原文有此问题,但因为它们是不同的struct,暂不列作错误。 (多谢读者Snow来函提示) P.331: 8.5.8节第二段中 “反覆”较常见的写法为“反复”,但前者也是正确的,暂不列作错误。 (多谢读者Snow来函提示) P.390: 10.1.3.3节静态光照第二段中“取而代之,我们会使用一张光照纹理贴到所有受光源影响范围内的物体上。这样做能令动态物体经过光源时得到正确的光照。” 后面的一句与前句好像难以一起理解。译者认为,作者应该是指,使用同一静态光源去为静态物件生成光照纹理,以及用于动态对象的光照,能使两者的效果维持一致性。译者会考虑对译文作出改善或加入译注解译。(多谢读者店残来函查询) P.689: 第五行 并行处理世代 -> 并行处理时代 是对era较准确的翻译。 (多谢读者Snow来函提示) 本篇文章为转载内容。原文链接:https://blog.csdn.net/mypongo/article/details/38388381。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-12 23:04:05
327
转载
MySQL
...维工作中,MySQL数据库的管理远不止于打开文件夹与基础服务初始化。随着技术的发展和安全需求的提升,对MySQL进行高效、安全的配置与优化显得尤为重要。近期,MySQL 8.0版本推出了一系列新特性,如窗口函数、原子DDL操作以及改进的安全特性(如 caching_sha2_password 密码插件),这些都极大地提升了数据库性能和安全性。 对于管理员来说,掌握如何通过命令行或图形界面工具如MySQL Workbench进行用户权限管理、数据备份与恢复、性能调优等操作是必备技能。例如,可以利用mysqlpump工具实现快速且灵活的数据备份,并结合gtid模式确保备份与恢复的一致性。 此外,在云环境下,越来越多的企业选择使用如Amazon RDS等云托管数据库服务,其中MySQL实例的管理也包含了自动化扩展、高可用架构设计等高级主题。近日,AWS宣布了对MySQL 8.0.27版本的支持,进一步增强了其云上MySQL数据库服务的功能性和稳定性。 深入理解MySQL日志系统(错误日志、慢查询日志和二进制日志)的工作原理,能够帮助开发者和DBA定位问题、优化SQL语句以及实现基于时间点的恢复等功能。同时,数据库审计与合规性要求促使我们关注并启用MySQL的通用日志或审计插件,以满足法规遵从性需求。 综上所述,MySQL数据库管理是一个既包含基础操作又涉及深度优化及安全管理的综合性领域,持续跟进MySQL最新动态和技术演进,将有助于提升整体数据库管理水平和应用系统的健壮性。
2023-11-16 22:43:19
84
键盘勇士
转载文章
...MIT关键字实现分页查询的基础上,我们可以进一步探索数据库分页技术的最新发展和优化策略。近年来,随着大数据应用的普及,对于海量数据的高效分页展示需求日益凸显。例如,在2023年,MySQL 8.0版本对LIMIT的性能优化进行了重大改进,通过增强索引排序和查询优化器的智能分析,显著减少了大表分页查询时的延迟。 此外,针对分页查询可能导致的性能瓶颈问题,许多开发者和数据库专家提出了新的解决方案,如利用覆盖索引避免回表操作、使用内存表或临时表存储中间结果以提升效率、结合缓存机制减少数据库访问压力等。 同时,现代Web应用中的无限滚动加载(Infinite Scroll)模式也对分页查询提出了新的挑战。为了实现无缝的数据加载体验,一些前沿的技术方案采用了“分段查询”配合前端动态渲染的方式,替代传统的静态分页,有效减轻了数据库的压力,并提升了用户体验。 综上所述,MySQL的LIMIT关键字是实现分页查询的基础工具,但面对大规模数据处理和复杂的用户交互场景,我们需要不断跟进最新的数据库优化技术和设计理念,才能确保系统的稳定性和响应速度。而随着数据库技术的持续演进,诸如OFFSET关键字的替代方案以及云原生环境下的分布式数据库分页策略等前沿话题,都值得我们关注并深入研究。
2023-10-29 14:04:02
647
转载
转载文章
...va开发中,处理图像数据并将其转换为适合网络传输和文件上传的格式是一项常见任务。如上所述,我们可以通过将BufferedImage对象转换为MultipartFile实现二维码图片的上传功能。然而,在实际应用中,这一过程可能涉及到更复杂的场景和技术点。 近期,随着微服务架构的普及以及云存储服务的广泛应用,高效、安全地上传和管理各类文件资源的需求日益凸显。例如,某公司近日推出了全新的图片处理中间件,它不仅可以生成高质量的二维码,还内置了丰富的图像转换工具,包括将BufferedImage无缝转换为多种文件格式(如MultipartFile),以便直接与Spring Boot框架的文件上传接口集成。 同时,开发者需要注意的是,虽然上述流程能够完成基本的转换操作,但在大数据量或高并发环境下,还需要考虑内存优化、流式处理及异步上传等策略。例如,通过使用Java NIO(非阻塞I/O)技术提高大文件上传效率,或者利用多线程技术进行并发处理,减少单个请求的响应时间。 此外,对于安全性要求较高的场景,还可以结合现代加密算法对图像数据进行加密处理,确保在流转过程中不被篡改或泄露敏感信息。一些前沿研究甚至探讨了如何在保证数据安全的同时,实现对图像内容的部分模糊处理以保护用户隐私。 总之,从BufferedImage到MultipartFile的转换仅仅是Java图形处理及文件上传功能中的一个环节,深入理解和掌握相关的底层原理和技术方案,有助于开发者应对更多复杂的应用需求,并在实际项目中提供更加稳定、高效的服务。
2023-11-25 22:36:21
314
转载
VUE
...s库执行同步请求获取数据之后,我们可以进一步关注现代Web开发中的异步请求实践以及前端性能优化策略。近期,随着HTTP/3协议的普及和浏览器对Fetch API原生支持的增强,前端开发者有了更多高效、灵活的数据获取手段。 例如,Vue社区内有许多开发者开始尝试采用原生Fetch API替代诸如Axios这样的第三方库,以实现更轻量级的网络请求。Fetch API自带Promise支持,可以方便地处理异步操作,并且提供了丰富的配置选项以满足复杂场景需求。同时,结合Vue的Async Components和Suspense特性,能够有效提升大型单页应用的数据加载体验和整体性能。 另外,针对数据密集型应用,Vue生态也提倡使用Vuex进行状态管理,通过集中式存储管理和响应式机制,确保组件间数据同步的高效与准确。配合Vue的异步数据获取方法,如async/await语法糖,可以在保证代码可读性的同时,显著改善应用程序的数据加载逻辑。 此外,前端性能优化领域,除了关注数据请求方式外,还包括缓存策略、服务端渲染(SSR)、静态生成(SSG)等技术手段。例如,Nuxt.js作为基于Vue的通用应用框架,为开发者提供了一站式的解决方案,包括但不限于服务端渲染、预取数据等功能,从而提升了Vue应用在SEO友好性和首屏加载速度方面的表现。 总之,在Vue应用程序开发过程中,合理选择数据请求方式并结合最新技术和最佳实践,对于构建高性能、用户体验优秀的Web应用至关重要。
2023-02-20 14:35:44
101
编程狂人
MySQL
...L是一个普遍的关系型数据库管理系统,常常被用于保管和管理大量数据。虚拟存储是操作系统提供的一种技术,可以通过硬盘上的空间来扩展系统内存的容量。这篇文章将介绍如何查看MySQL虚拟存储。 步骤如下: 1. 打开MySQL客户端并登陆到MySQL服务器。 2. 使用以下命令查看MySQL的配置参数: show variables like 'query_cache%'; 这个命令将返回所有以“query_cache”开头的配置参数。其中一个参数是“query_cache_size”,表示MySQL的查询缓存的大小。这个值应该是根据当前的硬件资源和实际需要来设定的。 3. 查看操作系统的内存使用情况,以确定MySQL是否使用了虚拟存储。 top 在这个命令下,我们可以看到进程的信息、内存使用情况和处理器使用率。如果MySQL使用了虚拟存储,将会由系统显示相应的信息。 4. 使用以下命令查看MySQL的状态: show status like '%memory%'; 这个命令将返回关于MySQL内存使用情况的详细信息。其中一个参数是“key_blocks_used”,表示使用的MyISAM索引块的数量。如果这个值与我们之前查看的操作系统的虚拟存储使用量相同,就可能表示MySQL正在使用虚拟存储。 概述: 通过上述步骤,我们可以查看MySQL虚拟存储情况,以及系统现有的内存使用情况。这将有助于我们了解数据库的性能瓶颈,并优化系统来提高数据库的响应速度。
2023-03-15 10:31:00
95
程序媛
Javascript
...觉稳定性以及用户交互响应时间等重要信息,进而针对性地进行性能优化。 CPU Throttling , CPU Throttling是一种模拟处理器性能限制的技术,在Chrome DevTools中被用来模拟不同设备上的CPU处理能力。当设置为Slow 3G模式时,CPU处理速度会被降低,以模仿网络信号差或硬件性能低下的设备环境,帮助开发者观察和分析应用程序在这种极端条件下的性能表现及瓶颈。 Network Throttling , Network Throttling是Chrome DevTools提供的另一种模拟功能,它允许开发者模拟不同的网络环境条件,如慢速的移动网络连接。通过调整这一参数,开发人员可以模拟在网络带宽受限或者高延迟情况下的资源加载速度,从而评估应用程序在网络状况不佳时的性能表现,并据此优化网络请求策略、资源加载顺序等,提高应用在实际复杂网络环境中的用户体验。
2023-09-06 18:08:19
274
彩虹之上_t
Hive
...ve连接数 , 在大数据处理工具Apache Hive中,连接数是指同时能够运行的任务或查询的数量。当用户执行一个Hive SQL查询时,系统会创建并分配一个Hive连接用于处理该任务。若系统的并发连接数达到预设的最大值,新的查询请求将无法获取连接资源,从而导致“Hive连接数超限”的问题。 大数据处理 , 大数据处理是指对海量、快速增长的数据集进行高效收集、清洗、存储、管理和分析的过程,以提取有价值的信息和洞察。本文中的大数据处理主要通过使用Apache Hive这一数据仓库工具来实现,它能支持大规模数据的SQL查询和分析。 分区(Partitioning) , 在数据库和大数据领域,分区是数据表的一种物理组织形式,它将大表按照某个或多个列的值划分为多个逻辑子集,每个子集称为一个分区。在Hive中,分区可以提高查询性能和数据管理效率,例如文中提到的“CREATE TABLE my_table ... PARTITIONED BY (year INT, month INT);”,这个语句创建了一个按年份和月份分区的表,这样可以根据时间维度快速定位和处理部分数据,避免全表扫描,降低对Hive连接数的需求。
2023-02-16 22:49:34
455
素颜如水-t
转载文章
...idView控件作为数据展示和编辑的重要工具,其丰富的属性与功能为开发者提供了强大的灵活性。随着.NET框架的不断演进,特别是在.NET Core及.NET 5.0之后版本中,DataGridView的功能得到了进一步增强和完善。例如,对于大数据量处理场景,新增了虚拟模式以提升性能,允许仅加载当前视图中的行数据,有效降低了内存占用。 近期,微软在.NET社区发布了一系列关于DataGridView优化使用的最佳实践和技术指南,其中包括如何利用最新特性进行异步数据绑定、提升界面响应速度,以及如何结合其他现代UI组件(如Blazor)实现跨平台应用的数据表格交互设计。 另外,在实际项目开发中,为了满足多样化的用户需求,许多开发者开始探讨DataGridView与其他流行前端框架(如React或Angular)的集成方案,通过封装或自定义组件的方式实现在Web端也能享受到类似丰富功能的表格组件。 值得注意的是,随着无障碍技术的发展,针对DataGridView控件的可访问性改进也成为热点话题。遵循WCAG标准,开发者需要关注如何设置正确的行高、列宽、颜色对比度以及支持键盘导航等无障碍特性,确保所有用户都能高效便捷地使用DataGridView展现的数据信息。 总的来说,无论是在.NET原生环境下的深度挖掘,还是跨平台融合创新,亦或是紧跟前沿的无障碍设计,DataGridView控件都在持续进化,为开发者提供更多元、更高效的解决方案。而深入理解和掌握这些扩展特性和应用场景,将有助于我们构建出更具竞争力的应用程序。
2023-02-19 21:54:17
62
转载
Hive
...ive 是一个开源的数据仓库工具,为大型分布式存储系统如 Hadoop 提供了数据查询和管理功能。它允许用户通过 SQL 类似的语言(HiveQL)对大规模数据集进行读、写和管理操作,将结构化的数据文件转化为数据库表,并支持复杂的分析查询。 Hadoop 配置参数 , 在 Hadoop 生态系统中,配置参数是指一系列可调整的系统变量,用于控制 Hadoop 及其相关组件(如 Hive)的行为和性能。例如,在本文中提到的“mapred.job.timeout”就是一个 Hadoop 配置参数,它定义了 MapReduce 作业的执行超时时间,若超过这个设定值,任务将被终止,以防止因长时间无响应而导致的资源浪费或连接超时问题。 数据库连接池 , 数据库连接池是一种软件架构技术,用于管理和复用数据库连接资源。在高并发场景下,应用程序可以预先创建并维护一定数量的数据库连接,当有新的查询请求时,从连接池中取出已建立的空闲连接使用,而不用每次都新建连接,从而大大降低了建立数据库连接的开销和延迟,提高了系统的整体性能和稳定性,有效避免因频繁创建和关闭连接导致的数据库连接超时问题。
2023-04-17 12:03:53
515
笑傲江湖-t
PostgreSQL
...能更高效地处理大规模数据表,尤其对于按时间序列或连续数值排序的数据有显著提升。此外,还引入了表达式索引的新特性,允许用户基于列计算结果创建索引,极大地增强了索引的灵活性与适用性。 同时,在数据库优化实践中,了解何时以及如何选择正确的索引类型至关重要。例如,对于频繁进行范围查询的场景,B-tree索引可能是最佳选择;而对于全文搜索,则可能需要使用到gin或者gist索引。值得注意的是,尽管索引能够极大提升查询效率,但过度使用或不当使用也可能导致写操作性能下降及存储空间浪费,因此在设计数据库架构时需综合考量读写负载平衡及存储成本等因素。 此外,随着机器学习和AI技术的发展,智能化索引管理工具也逐渐崭露头角,它们可以根据历史查询模式自动推荐、调整甚至自动生成索引,以实现数据库性能的动态优化。这为数据库管理员提供了更为便捷高效的索引管理手段,有助于持续提升PostgreSQL等关系型数据库的服务质量和响应速度。
2023-11-16 14:06:06
485
晚秋落叶_t
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
read -p "Enter input: " variable
- 在脚本中提示用户输入并存储至变量。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"