前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[容器间跨VLAN通信实现方法 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Apache Atlas
...ubernetes等容器编排系统的集成成为业界关注焦点。Apache Atlas正在研究如何更好地适应这些现代基础设施,通过与服务网格(如Istio)的整合实现更精细的服务间通信控制,从而在网络波动时仍能保证高可用性和一致性。 此外,对于企业用户而言,《利用Apache Atlas优化大数据治理:实战指南》一书提供了深度解读和实用案例,详尽阐述了在实际业务场景下如何设计健壮的大数据元数据管理系统,包括但不限于网络故障恢复、缓存策略以及集群环境下的高可用性设置等内容。 总的来说,在大数据生态持续演进的背景下,深入理解并掌握Apache Atlas在复杂网络环境中的最佳使用方式,不仅有助于提升现有系统的稳定性,也是紧跟技术发展趋势、确保企业数字化转型顺利推进的关键所在。
2024-01-10 17:08:06
410
冬日暖阳
Docker
Docker与VLAN:探索VLAN与IP地址的区别 一、引言 在容器化技术的世界里,Docker作为最主流的轻量级虚拟化工具之一,为我们构建、部署和管理微服务提供了强大的支持。当我们谈论Docker网络时,经常会涉及到VLAN(Virtual Local Area Network,虚拟局域网)以及IP地址的概念。虽然两者都是网络通讯中的重要元素,但在Docker环境中它们承担的角色却大相径庭。这篇文儿呀,咱们要把它掰开了揉碎了,好好讲讲VLAN和IP地址在Docker这个家伙里头是怎么用的,还有它们俩到底有啥不一样。咱不光说理论,还会手把手地通过实际代码例子,带你一步步走过整个操作流程,保证让你看得明明白白、实实在在的。 二、什么是VLAN 1. VLAN简介 VLAN是一种逻辑上的网络划分方式,它允许我们在物理网络中创建多个独立的广播域,即使这些广播域共享同一物理介质。你知道吗,每个VLAN就像一个小社区,都有自己独立的广播范围。这意味着,如果两个设备身处不同的VLAN里,它们就不能直接“对话”。想要实现通信,就得依靠路由器或者三层交换机这位“信使”,帮忙传递信息才行。VLAN的主要作用是提高网络安全性和资源利用率。 2. Docker与VLAN结合示例 在Docker中,我们可以利用network配置选项启用VLAN网络模式。下面是一个创建带VLAN标签的Docker网络的示例: bash docker network create --driver=vlan \ --subnet=172.16.80.0/24 --gateway=172.16.80.1 \ --opt parent=eth0.10 my_vlan_network 上述命令创建了一个名为my_vlan_network的网络,其基于宿主机的VLAN 10 (parent=eth0.10)划分子网172.16.80.0/24并设置了默认网关。 三、IP地址与Docker容器 1. IP地址基础概念 IP地址(Internet Protocol Address)是互联网协议的核心组成部分,用于唯一标识网络中的设备。根据IPv4协议,IP地址由32位二进制组成,通常被表示为四个十进制数,如192.168.1.1。在Docker这个大家庭里,每个小容器都会被赋予一个独一无二的IP地址,这样一来,它们之间就可以像好朋友一样自由地聊天交流,不仅限于此,它们还能轻松地和它们所在的主机大哥,甚至更远的外部网络世界进行沟通联络。 2. Docker容器IP地址分配 在Docker默认的桥接网络(bridge)模式中,每个容器会获取一个属于172.17.0.0/16范围的私有IP地址。另外,你还可以选择自己动手配置一些个性化的网络设置,像是“host”啦、“overlay”啦,或者之前我们提到的那个“vlan”,这样就能给容器分配特定的一段IP地址,让它们各用各的,互不干扰。 四、VLAN与IP地址在Docker网络中的关系 1. IP地址在VLAN网络中的角色 当Docker容器运行在一个包含VLAN网络中时,它们会继承VLAN网络的IP地址配置,从而在同一VLAN内相互通信。比如,想象一下容器A和容器B这两个家伙,他们都住在VLAN 10这个小区里面,虽然住在不同的单元格,但都能通过各自专属的“门牌号”(也就是VLAN标签)和“电话号码”(IP地址)互相串门聊天,完全不需要经过小区管理员——宿主机的同意或者帮忙。 2. 跨VLAN通信 若想让VLAN网络内的容器能够与宿主机或其他VLAN网络内的容器通信,就需要配置多层路由或者使用VXLAN等隧道技术,使得数据包穿越不同的VLAN标签并在相应的IP地址空间内正确路由。 五、结论 综上所述,VLAN与IP地址在Docker网络场景中各有其核心作用。VLAN这个小家伙,就像是咱们物理网络里的隐形隔离墙和保安队长,它在幕后默默地进行逻辑分割和安全管理工作。而IP地址呢,更像是虚拟化网络环境中的邮差和导航员,主要负责在各个容器间传递信息,同时还能带领外部的访问者找到正确的路径,实现内外的互联互通。当这两者联手一起用的时候,就像是给网络装上了灵动的隔断墙,既能灵活分区,又能巧妙地避开那些可能引发“打架”的冲突风险。这样一来,咱们微服务架构下的网络环境就能稳稳当当地高效运转了,就像一台精密调校过的机器一样。在咱们实际做项目开发这事儿的时候,要想把Docker网络策略设计得合理、实施得妥当,就得真正理解并牢牢掌握这两者之间的关系,这可是相当关键的一环。
2024-02-12 10:50:11
479
追梦人_t
转载文章
...C调用超时中断机制的实现后,我们可以进一步探索当前行业对此类问题的研究进展与实践案例。近期,随着云原生技术的发展和Kubernetes等容器编排平台的广泛应用,服务网格(Service Mesh)的概念逐渐成为解决服务间通信、流量控制及熔断限流等问题的新热点。 例如,Istio作为一款开源的服务网格解决方案,内置了丰富的流量管理特性,其中包括对服务间调用的超时设置和重试策略的支持,能够更精细地控制微服务间的交互行为,增强了系统的稳定性和容错性。另外,Envoy代理作为Istio数据平面的核心组件,其通过异步非阻塞模型以及智能的超时与重试机制,在保障性能的同时,有效避免了因第三方服务响应慢而导致的系统级雪崩效应。 此外,阿里巴巴集团在其内部大规模微服务实践中,也深入研究并优化了RPC框架Dubbo的超时控制机制,并结合Hystrix等开源库实现了服务降级和熔断功能,为高并发场景下的服务稳定性提供了有力保障。这些最新的技术动态和实践经验都为我们理解和优化微服务架构中的超时中断机制提供了宝贵的参考依据。 同时,对于分布式系统设计原则的探究也不能忽视,例如《微服务设计模式》一书中提出的“Circuit Breaker”(断路器模式),就详细阐述了如何利用超时中断等手段在系统出现故障时快速隔离问题服务,防止故障蔓延,确保整体系统的可用性。此类理论研究与实操经验相结合,有助于我们不断优化和完善微服务架构中的各类关键组件,以适应日趋复杂的业务需求和技术挑战。
2023-10-05 16:28:16
83
转载
SpringBoot
...的一个注解,用于标记方法,使其在特定的时间间隔内自动执行。开发者可以配置注解的属性,如执行频率(固定延迟或固定速率)和cron表达式,以实现定时任务的功能。 Redis分布式锁 , 一种在分布式系统中实现锁机制的方法,通过在Redis中存储一个键值对来标识锁的状态。当多个节点尝试获取同一把锁时,只有最先成功设置键值对的节点获得锁,其他节点等待。这在处理并发任务时确保了任务的执行顺序和一致性。 RabbitMQ , 一个开源的消息队列系统,用于在分布式系统中实现异步通信。通过将任务发布到队列中,多个消费者可以按照消息的到达顺序进行处理,从而实现了任务的解耦和高可用性。 Zookeeper , 一个分布式协调服务,常用于配置管理、服务发现和分布式锁等场景。它允许多个节点之间共享状态信息,确保任务在多节点环境中的正确执行和同步。 Consul , 一个开源的服务发现和配置平台,帮助管理分布式系统的节点和服务。通过Consul,SpringBoot应用可以动态注册和注销自己,确保服务发现的可靠性。 微服务化 , 一种软件开发模式,将单一大型应用拆分成一组小的、独立的服务,每个服务运行在其自己的进程中,通过API接口互相通信。这种模式有利于扩展性、容错性和独立部署。 Kubernetes , 一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用。在微服务环境中,Kubernetes可以帮助管理和调度定时任务服务的容器实例。 Prometheus , 一个开源的监控系统,用于收集、存储和查询时间序列数据。在微服务架构中,它有助于追踪和分析定时任务的性能指标。 Jaeger , 一个分布式追踪系统,用于收集和展示服务间调用链路的信息。在微服务环境中,Jaeger有助于诊断和优化服务间的通信性能。
2024-06-03 15:47:34
46
梦幻星空_
Go-Spring
...,服务之间互相协调、通信,为用户提供最终价值。在GoSpring框架的上下文中,微服务架构允许开发者构建高度模块化的应用程序,每个服务可以独立部署、扩展和维护,从而提高了系统的灵活性和可维护性。 名词 , 配置管理。 解释 , 配置管理是指对系统配置信息的规划、控制和维护过程,确保系统配置的一致性、可靠性和安全性。在GoSpring框架中,配置管理通过支持环境变量和配置文件的集成,提供了动态调整应用行为的能力,使得开发者可以根据不同的运行环境或需求,灵活地调整应用配置,而无需修改源代码。 名词 , 容器化。 解释 , 容器化是一种软件交付方法,它通过将应用及其依赖打包到轻量级、可移植的容器中,实现了应用的隔离执行。在现代软件开发实践中,容器化使得应用能够在任何环境下一致地运行,降低了环境依赖性,提高了部署效率。虽然本文重点讨论的是GoSpring框架的配置管理机制,但容器化作为一种常见的应用部署方式,与配置管理紧密相关,共同促进着应用的快速迭代和高效部署。
2024-09-09 15:51:14
75
彩虹之上
SpringCloud
...,服务之间采用轻量级通信机制互相调用,每个服务都围绕着系统中的特定业务能力进行构建,并且能够独立部署和扩展。在本文中,Spring Cloud Gateway作为微服务架构中的核心组件,负责服务治理、路由转发等功能。 Spring Cloud Gateway , Spring Cloud Gateway是Spring Cloud生态体系中的一款API网关服务,它提供了统一的路由入口和过滤器链功能,可以实现动态路由、负载均衡、熔断限流、权限校验等众多功能,从而增强了微服务架构的安全性和稳定性。在实际应用中,它可以作为所有微服务请求的入口,对请求进行预处理、路由以及后置处理。 云原生技术 , 云原生技术是指专为云计算环境设计和优化的一系列技术方法、工具和理念,包括容器化(如Docker)、服务网格(如Istio)、声明式API(如Kubernetes)等。在文中提到的云原生技术与Spring Cloud Gateway的集成使用,意味着开发者可以通过这些技术来更好地管理和部署Gateway服务,进一步提升系统的弹性和可扩展性,确保微服务架构能够在云环境中高效稳定地运行。
2023-07-06 09:47:52
95
晚秋落叶_
转载文章
...励开发者基于接口而非实现进行编程,从而极大地提升了系统的灵活性和可维护性。 近期,在微服务架构的设计中,面向接口编程的重要性更为凸显。每个微服务定义并实现自己的业务接口,通过API Gateway进行通信,这种设计方式有效降低了不同微服务间的耦合度,使得各个服务可以独立部署、扩展和升级,实现了真正的松耦合架构。 另外,随着云原生时代的到来,Kubernetes等容器编排工具也广泛运用了面向接口的思想。Pods之间的通信是通过Service定义的网络端点接口进行,而非直接绑定到具体的Pod实例,这就确保了当Pod发生故障或滚动更新时,上层服务无需关心具体实现细节,只需对接口进行调用,真正体现了“抽象不应该依赖细节,细节应该依赖抽象”的原则。 同时,业界对于设计模式的研究也在不断深入,如策略模式、工厂方法模式等都充分运用了面向接口编程的理念,通过阅读相关的设计模式书籍如《设计模式:可复用面向对象软件的基础》等,可以帮助我们更深入地理解和掌握这一编程范式,并将其灵活运用于解决实际问题中。 总之,面向接口编程不仅是一种编程技术,更是现代软件工程领域的重要理念。随着技术的发展和需求的变化,它将继续在提高代码质量、降低系统复杂性和增强扩展性等方面发挥关键作用。紧跟行业动态,结合经典理论与实战经验,将有助于我们在日常开发中更好地运用面向接口编程的原则和技术。
2023-08-26 15:35:43
633
转载
Apache Solr
...括但不限于SSL加密通信、防火墙规则设定以及内建的安全插件使用方法。 对于那些致力于构建高可用性搜索服务的开发者来说,不妨关注一些行业内的最佳实践案例,了解他们是如何利用Zookeeper进行Solr集群状态管理,或者结合Kubernetes实现Solr云原生部署,从而提升系统的稳定性和扩展性。 总之,持续跟进Apache Solr的最新发展动态和技术实践,不仅有助于解决实际运维中的痛点问题,更能确保搜索服务始终处于行业领先水平,满足业务高速发展的需求。
2023-05-31 15:50:32
496
山涧溪流-t
RabbitMQ
...与挑战 随着云计算、容器化技术的普及以及业务需求的不断复杂化,微服务架构成为构建现代应用程序的首选方式。在这种架构下,服务之间的通信变得尤为重要,而消息队列如RabbitMQ则扮演着不可或缺的角色。本文将探讨RabbitMQ在微服务架构中的应用,同时分析其面临的挑战与应对策略。 RabbitMQ在微服务架构中的应用 1. 异步处理与解耦:在微服务架构中,服务之间通常采用异步通信来降低服务间的依赖,提高系统灵活性。RabbitMQ作为异步消息传输的载体,使得服务间可以独立运行、按需通信,有效提升了系统的可扩展性和容错性。 2. 负载均衡与流量控制:借助RabbitMQ的队列分发机制,可以实现对下游服务的负载均衡,避免单点压力过大。同时,通过调整队列的消费者数量,可以动态地控制流量进入下游服务的速度,保障系统的稳定运行。 3. 事件驱动与消息订阅模式:在微服务架构中,事件驱动的模式使得服务可以基于特定事件进行响应,而RabbitMQ提供的消息订阅功能,允许服务根据需求订阅特定的事件,实现高效的数据同步与处理。 面临的挑战与应对策略 1. 性能优化:随着微服务数量的增加,消息队列的压力也随之增大。为应对这一挑战,可以通过优化网络配置、增加服务器资源、引入消息队列水平扩展策略等方式,提升RabbitMQ的吞吐量和响应速度。 2. 数据一致性问题:在高并发环境下,数据的一致性问题尤为突出。通过设计合理的消息处理流程,引入消息队列的事务机制,或者使用幂等性设计,可以在一定程度上解决这一问题。 3. 安全性与权限管理:随着微服务的规模扩大,如何保证消息传输的安全性和权限管理的严谨性成为重要议题。通过实施严格的认证、授权机制,以及加密传输等手段,可以有效提升RabbitMQ的安全性。 4. 监控与日志管理:实时监控RabbitMQ的运行状态,包括消息队列的长度、消费者状态、延迟时间等关键指标,有助于及时发现和解决问题。同时,建立完善的日志体系,便于追踪消息流经的路径和处理过程,对于问题定位和性能优化具有重要意义。 总之,RabbitMQ在微服务架构中的应用既带来了便利,也伴随着挑战。通过持续的技术优化与管理策略的创新,可以有效克服这些问题,充分发挥RabbitMQ在构建高效、可靠、可扩展的现代应用程序中的潜力。
2024-08-01 15:44:54
179
素颜如水
转载文章
...,但是可以使用接口来实现多继承。使用 Java 语言开发程序,需要采用面向对象的思想设计程序和编写代码。 2. 平台无关性 平台无关性的具体表现在于,Java 是“一次编写,到处运行(Write Once,Run any Where)”的语言,因此采用 Java 语言编写的程序具有很好的可移植性,而保证这一点的正是 Java 的虚拟机机制。在引入虚拟机之后,Java 语言在不同的平台上运行不需要重新编译。 Java 语言使用 Java 虚拟机机制屏蔽了具体平台的相关信息,使得 Java 语言编译的程序只需生成虚拟机上的目标代码,就可以在多种平台上不加修改地运行。 3. 简单性 Java 语言的语法与 C 语言和 C++ 语言很相近,使得很多程序员学起来很容易。对 Java 来说,它舍弃了很多 C++ 中难以理解的特性,如操作符的重载和多继承等,而且 Java 语言不使用指针,加入了垃圾回收机制,解决了程序员需要管理内存的问题,使编程变得更加简单。 4. 解释执行 Java 程序在 Java 平台运行时会被编译成字节码文件,然后可以在有 Java 环境的操作系统上运行。在运行文件时,Java 的解释器对这些字节码进行解释执行,执行过程中需要加入的类在连接阶段被载入到运行环境中。 5. 多线程 Java 语言是多线程的,这也是 Java 语言的一大特性,它必须由 Thread 类和它的子类来创建。Java 支持多个线程同时执行,并提供多线程之间的同步机制。任何一个线程都有自己的 run() 方法,要执行的方法就写在 run() 方法体内。 6. 分布式 Java 语言支持 Internet 应用的开发,在 Java 的基本应用编程接口中就有一个网络应用编程接口,它提供了网络应用编程的类库,包括 URL、URLConnection、Socket 等。Java 的 RIM 机制也是开发分布式应用的重要手段。 7. 健壮性 Java 的强类型机制、异常处理、垃圾回收机制等都是 Java 健壮性的重要保证。对指针的丢弃是 Java 的一大进步。另外,Java 的异常机制也是健壮性的一大体现。 8. 高性能 Java 的高性能主要是相对其他高级脚本语言来说的,随着 JIT(Just in Time)的发展,Java 的运行速度也越来越高。 9. 安全性 Java 通常被用在网络环境中,为此,Java 提供了一个安全机制以防止恶意代码的攻击。除了 Java 语言具有许多的安全特性以外,Java 还对通过网络下载的类增加一个安全防范机制,分配不同的名字空间以防替代本地的同名类,并包含安全管理机制。 Java 语言的众多特性使其在众多的编程语言中占有较大的市场份额,Java 语言对对象的支持和强大的 API 使得编程工作变得更加容易和快捷,大大降低了程序的开发成本。Java 的“一次编写,到处执行”正是它吸引众多商家和编程人员的一大优势。 扩展知识: 按应用范围,Java 可分为 3 个体系,即 Java SE、Java EE 和 Java ME。下面简单介绍这 3 个体系。 1. Java SE Java SE(Java Platform Standard Edition,Java 平台标准版)以前称为 J2SE,它允许开发和部署在桌面、服务器、嵌入式环境和实时环境中使用的 Java 应用程序。Java SE 包含了支持 Java Web 服务开发的类,并为 Java EE 提供基础,如 Java 语言基础、JDBC 操作、I/O 操作、网络通信以及多线程等技术。图 1 所示为 Java SE 的体系结构。 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_73892801/article/details/129181633。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-25 09:18:50
84
转载
Spark
...、实施精准性能调优等方法,全面提升Spark应用的稳定性和性能,从而更好地支撑大数据时代的业务需求。 一、日志记录优化:从被动到主动 传统的日志记录方式往往侧重于问题发生后的记录和事后分析,缺乏事前预警和预防机制。为了提升Spark应用的稳定性,应采用主动监控和预测性分析相结合的日志记录策略: - 日志级别调整:根据应用不同阶段的需求动态调整日志级别,既能保证关键信息的完整记录,又能避免无谓的性能开销。 - 日志聚合与分析:利用现代大数据分析工具(如ELK Stack、Logstash、Kibana等),实现日志的实时聚合、分析与可视化,便于快速识别异常模式和性能瓶颈。 - 自定义告警规则:基于历史数据和业务特性,设定合理的异常阈值和告警规则,实现异常的即时发现和响应。 二、自动化监控工具的引入 自动化监控工具能够持续跟踪Spark应用的运行状况,及时发现潜在问题并采取措施: - 实时监控:通过集成Prometheus、Grafana等监控工具,实现对应用性能、资源使用、任务执行时间等关键指标的实时监控。 - 自动扩展:利用Kubernetes等容器化平台的自动扩展功能,根据负载变化动态调整集群规模,确保资源高效利用。 - 故障恢复:通过HDFS、Zookeeper等组件提供的容错机制,实现任务失败时的自动重试或数据冗余备份,提升应用的高可用性。 三、精准性能调优策略 针对Spark应用的特定场景,实施精准的性能调优策略,可以从以下几个方面入手: - 参数优化:根据具体工作负载,调整Spark配置参数,如executor内存分配、shuffle操作的并行度等,以达到最优性能。 - 数据倾斜处理:采用数据预洗、分桶等技术,减少数据倾斜对任务执行效率的影响。 - 任务调度优化:合理规划任务执行顺序和依赖关系,避免不必要的等待时间,提高任务执行效率。 结论 通过优化日志记录策略、引入自动化监控工具、实施精准性能调优,可以显著提升Apache Spark应用的稳定性和性能,有效应对大数据时代面临的挑战。结合实时数据分析、故障预测与自动恢复等现代技术手段,企业能够构建更加可靠、高效的Spark生态系统,支持复杂业务场景下的数据驱动决策。
2024-09-07 16:03:18
141
秋水共长天一色
转载文章
...在Windows安装方法部分提到,GHO镜像是一种常见的系统安装方式,用户可以先将Windows ISO镜像解压获取GHO文件,然后通过PE(预安装环境)启动U盘中的Ghost工具将GHO镜像还原到目标硬盘上以完成系统的快速部署。 VLAN (Virtual Local Area Network) , VLAN是在物理网络的基础上通过软件定义逻辑划分出来的虚拟局域网。在Windows系统配置章节中,使用PowerShell命令对VLAN ID进行设置,说明了VLAN技术如何实现同一物理网络内的多逻辑子网隔离,从而更灵活地管理和控制不同组群间的通信,提高网络安全性及资源利用率。每个VLAN具有独立的广播域,可以基于端口、MAC地址或协议类型等标准进行划分,并通过802.1Q标签协议在交换机间传输数据时标识所属VLAN。
2023-09-10 16:27:10
270
转载
转载文章
...址冲突。文中作者通过实现客户端启动加速方案时,运用了DLL基地址重定位技术来优化软件性能。 trPC , trPC (Tencent RPC) 是腾讯内部广泛使用的一种远程过程调用(Remote Procedure Call, RPC)框架,用于简化分布式服务间的通信与交互,提供高效、稳定、易用的服务间调用能力。文中提到作者在重回腾讯后,花大量精力熟悉了基于trPC的各种腾讯内部技术生态。 Docker , Docker是一种开源的应用容器引擎,它将应用及其依赖打包成独立可移植的容器,实现了应用程序及其环境的一次构建、到处运行的效果,极大地简化了开发、测试和部署流程。在文中,作者提到了随着Docker的广泛应用,底层网络工作方式发生变化,并开始研究网络虚拟化相关技术。 协同算法 , 协同算法是一种通过分析用户行为、兴趣偏好等信息,实现个性化推荐或优化某种目标的技术。文中提及作者在搜狗手机助手项目中,采用用户协同、标签相似、点击反馈等方法,提升了搜索转化率,这里的“协同算法”就是一种利用用户间关联性进行优化的算法。
2023-02-06 11:38:24
232
转载
转载文章
...愈发关键。近期,随着容器化技术和微服务架构的广泛应用,内存映射机制对于提高系统资源利用率、实现高效的数据共享与交换具有重要意义。 例如,在Docker和Kubernetes等容器平台中,mmap系统调用被用于实现容器内部进程与宿主机文件系统的高效交互,以及容器间共享内存通信。通过内存映射,容器可以将宿主机上的持久化存储直接加载到内存中,实现数据的快速读取与更新,极大地提升了I/O性能。 此外,针对云原生环境下的大规模并行计算和实时数据处理场景,研究者们正在探索如何优化mmap以适应更高的并发需求和更低延迟的要求。2021年,有研究人员提出了一种改进的内存映射策略,旨在减少在高负载环境下由于频繁的内存映射操作导致的系统开销,并已在分布式数据库和大数据分析应用中取得了显著效果。 同时,内存映射的安全性问题也引起了业界的关注。今年早些时候,一项安全研究报告揭示了利用mmap进行提权攻击的新方法,再次提醒开发者在享受内存映射带来的便利时,也需要关注其潜在的安全风险,并采取相应的防御措施。 总之,内存映射作为底层系统调用的重要组成部分,其发展与优化将持续影响着整个软件生态系统的性能表现与安全性,值得广大开发者和技术研究者深入探究和实践。
2023-09-20 22:49:12
464
转载
转载文章
...产品与服务。 计算,容器,存储,网络与CDN,安全、中间件、数据库、大数据计算、人工智能与机器学习、媒体服务、企业服务与云通信、物联网、开发工具、迁移与运维管理和专有云等方面,阿里云都做的很不错。 2.2 证件照生成背景 传统做法:通常是人工进行P图,不仅费时费力,而且效果也很难保障,容易有瑕疵。 机器学习做法:通常利用边缘检测算法进行人物轮廓提取。 深度学习做法:通常使用分割算法进行人物分割。例如U-Net网络。 2.3 图像分割算法 《BiHand: Recovering Hand Mesh with Multi-stage Bisected Hourglass Networks》里的SeedNet网络是很经典的网络,它把分割任务转变成多个任务。作者的思想是:尽可能的通过多任务学习收拢语义,这样或许会分割的更好或姿态估计的更好。其实这个模型就是多阶段学习网络的一部分,作者想通过中间监督来提高网络的性能。 我提取bihand网络中的SeedNet与训练权重,进行分割结果展示如下 我是用的模型不是全程的,是第一阶段的。为了可视化出最好的效果,我把第一阶段也就是SeedNet网络的输出分别采用不同的方式可视化。 从左边数第一张图为原图,第二张图为sigmoid后利用plt.imshow(colored_mask, cmap=‘jet’)进行彩色映射。第三张图为网络输出的张量经过sigmoid后,二色分割图,阀闸值0.5。第四张为网络的直接输出,利用直接产生的张量图进行颜色映射。第五张为使用sigmoid处理张量后进行的颜色映射。第六张为使用sigmoid处理张量后进行0,1分割掩码映射。使用原模型和网络需要添加很多代码。下面为修改后的的代码: 下面为修改后的net_seedd代码: Copyright (c) Lixin YANG. All Rights Reserved.r"""Networks for heatmap estimation from RGB images using Hourglass Network"Stacked Hourglass Networks for Human Pose Estimation", Alejandro Newell, Kaiyu Yang, Jia Deng, ECCV 2016"""import numpy as npimport torchimport torch.nn as nnimport torch.nn.functional as Ffrom skimage import io,transform,utilfrom termcolor import colored, cprintfrom bihand.models.bases.bottleneck import BottleneckBlockfrom bihand.models.bases.hourglass import HourglassBisectedimport bihand.utils.func as funcimport matplotlib.pyplot as pltfrom bihand.utils import miscimport matplotlib.cm as cmdef color_mask(output_ok): 颜色映射cmap = plt.cm.get_cmap('jet') 将张量转换为numpy数组mask_array = output_ok.detach().numpy() 创建彩色图像cmap = cm.get_cmap('jet')colored_mask = cmap(mask_array)return colored_mask 可视化 plt.imshow(colored_mask, cmap='jet') plt.axis('off') plt.show()def two_color(mask_tensor): 将张量转换为numpy数组mask_array = mask_tensor.detach().numpy() 将0到1之间的值转换为二值化掩码threshold = 0.5 阈值,大于阈值的为白色,小于等于阈值的为黑色binary_mask = np.where(mask_array > threshold, 1, 0)return binary_mask 可视化 plt.imshow(binary_mask, cmap='gray') plt.axis('off') plt.show()class SeedNet(nn.Module):def __init__(self,nstacks=2,nblocks=1,njoints=21,block=BottleneckBlock,):super(SeedNet, self).__init__()self.njoints = njointsself.nstacks = nstacksself.in_planes = 64self.conv1 = nn.Conv2d(3, self.in_planes, kernel_size=7, stride=2, padding=3, bias=True)self.bn1 = nn.BatchNorm2d(self.in_planes)self.relu = nn.ReLU(inplace=True)self.maxpool = nn.MaxPool2d(2, stride=2)self.layer1 = self._make_residual(block, nblocks, self.in_planes, 2self.in_planes) current self.in_planes is 64 2 = 128self.layer2 = self._make_residual(block, nblocks, self.in_planes, 2self.in_planes) current self.in_planes is 128 2 = 256self.layer3 = self._make_residual(block, nblocks, self.in_planes, self.in_planes)ch = self.in_planes 256hg2b, res1, res2, fc1, _fc1, fc2, _fc2= [],[],[],[],[],[],[]hm, _hm, mask, _mask = [], [], [], []for i in range(nstacks): 2hg2b.append(HourglassBisected(block, nblocks, ch, depth=4))res1.append(self._make_residual(block, nblocks, ch, ch))res2.append(self._make_residual(block, nblocks, ch, ch))fc1.append(self._make_fc(ch, ch))fc2.append(self._make_fc(ch, ch))hm.append(nn.Conv2d(ch, njoints, kernel_size=1, bias=True))mask.append(nn.Conv2d(ch, 1, kernel_size=1, bias=True))if i < nstacks-1:_fc1.append(nn.Conv2d(ch, ch, kernel_size=1, bias=False))_fc2.append(nn.Conv2d(ch, ch, kernel_size=1, bias=False))_hm.append(nn.Conv2d(njoints, ch, kernel_size=1, bias=False))_mask.append(nn.Conv2d(1, ch, kernel_size=1, bias=False))self.hg2b = nn.ModuleList(hg2b) hgs: hourglass stackself.res1 = nn.ModuleList(res1)self.fc1 = nn.ModuleList(fc1)self._fc1 = nn.ModuleList(_fc1)self.res2 = nn.ModuleList(res2)self.fc2 = nn.ModuleList(fc2)self._fc2 = nn.ModuleList(_fc2)self.hm = nn.ModuleList(hm)self._hm = nn.ModuleList(_hm)self.mask = nn.ModuleList(mask)self._mask = nn.ModuleList(_mask)def _make_fc(self, in_planes, out_planes):bn = nn.BatchNorm2d(in_planes)conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, bias=False)return nn.Sequential(conv, bn, self.relu)def _make_residual(self, block, nblocks, in_planes, out_planes):layers = []layers.append( block( in_planes, out_planes) )self.in_planes = out_planesfor i in range(1, nblocks):layers.append(block( self.in_planes, out_planes))return nn.Sequential(layers)def forward(self, x):l_hm, l_mask, l_enc = [], [], []x = self.conv1(x) x: (N,64,128,128)x = self.bn1(x)x = self.relu(x)x = self.layer1(x)x = self.maxpool(x) x: (N,128,64,64)x = self.layer2(x)x = self.layer3(x)for i in range(self.nstacks): 2y_1, y_2, _ = self.hg2b[i](x)y_1 = self.res1[i](y_1)y_1 = self.fc1[i](y_1)est_hm = self.hm[i](y_1)l_hm.append(est_hm)y_2 = self.res2[i](y_2)y_2 = self.fc2[i](y_2)est_mask = self.mask[i](y_2)l_mask.append(est_mask)if i < self.nstacks-1:_fc1 = self._fc1[i](y_1)_hm = self._hm[i](est_hm)_fc2 = self._fc2[i](y_2)_mask = self._mask[i](est_mask)x = x + _fc1 + _fc2 + _hm + _maskl_enc.append(x)else:l_enc.append(x + y_1 + y_2)assert len(l_hm) == self.nstacksreturn l_hm, l_mask, l_encif __name__ == '__main__':a = torch.randn(10, 3, 256, 256) SeedNetmodel = SeedNet() output1,output2,output3 = SeedNetmodel(a) print(output1,output2,output3)total_params = sum(p.numel() for p in SeedNetmodel.parameters())/1000000print("Total parameters: ", total_params)pretrained_weights_path = 'E:/bihand/released_checkpoints/ckp_seednet_all.pth.tar'img_rgb_path=r"E:\FreiHAND\training\rgb\00000153.jpg"img=io.imread(img_rgb_path)resized_img = transform.resize(img, (256, 256), anti_aliasing=True)img256=util.img_as_ubyte(resized_img)plt.imshow(resized_img)plt.axis('off') 关闭坐标轴plt.show()''' implicit HWC -> CHW, 255 -> 1 '''img1 = func.to_tensor(img256).float() 转换为张量并且进行标准化处理''' 0-mean, 1 std, [0,1] -> [-0.5, 0.5] '''img2 = func.normalize(img1, [0.5, 0.5, 0.5], [1, 1, 1])img3 = torch.unsqueeze(img2, 0)ok=img3print(img.shape)SeedNetmodel = SeedNet()misc.load_checkpoint(SeedNetmodel, pretrained_weights_path)加载权重output1, output2, output3 = SeedNetmodel(img3)mask_tensor = torch.rand(1, 64, 64)output=output2[1] 1,1,64,64output_1=output[0] 1,64,64output_ok=torch.sigmoid(output_1[0])output_real=output_1[0].detach().numpy()直接产生的张量图color_mask=color_mask(output_ok) 显示彩色分割图two_color=two_color(output_ok)显示黑白分割图see=output_ok.detach().numpy() 使用Matplotlib库显示分割掩码 plt.imshow(see, cmap='gray') plt.axis('off') plt.show() print(output1, output2, output3)images = [resized_img, color_mask, two_color,output_real,see,see]rows = 1cols = 4 创建子图并展示图像fig, axes = plt.subplots(1, 6, figsize=(30, 5)) 遍历图像列表,并在每个子图中显示图像for i, image in enumerate(images):ax = axes[i] if cols > 1 else axes 如果只有一列,则直接使用axesif i ==5:ax.imshow(image, cmap='gray')else:ax.imshow(image)ax.imshowax.axis('off') 调整子图之间的间距plt.subplots_adjust(wspace=0.1, hspace=0.1) 展示图像plt.show() 上述的代码文件是在bihand/models/net_seed.py中,全部代码链接在https://github.com/lixiny/bihand。 把bihand/models/net_seed.p中的代码修改为我提供的代码即可使用作者训练好的模型和进行各种可视化。(预训练模型根据作者代码提示下载) 3.调用阿里云API进行证件照生成实例 3.1 准备工作 1.找到接口 进入下面链接即可快速访问 link 2.购买试用包 3.查看APPcode 4.下载代码 5.参数说明 3.2 实验代码 !/usr/bin/python encoding: utf-8"""===========================证件照制作接口==========================="""import requestsimport jsonimport base64import hashlibclass Idphoto:def __init__(self, appcode, timeout=7):self.appcode = appcodeself.timeout = timeoutself.make_idphoto_url = 'https://idp2.market.alicloudapi.com/idphoto/make'self.headers = {'Authorization': 'APPCODE ' + appcode,}def get_md5_data(self, body):"""md5加密:param body_json::return:"""md5lib = hashlib.md5()md5lib.update(body.encode("utf-8"))body_md5 = md5lib.digest()body_md5 = base64.b64encode(body_md5)return body_md5def get_photo_base64(self, file_path):with open(file_path, 'rb') as fp:photo_base64 = base64.b64encode(fp.read())photo_base64 = photo_base64.decode('utf8')return photo_base64def aiseg_request(self, url, data, headers):resp = requests.post(url=url, data=data, headers=headers, timeout=self.timeout)res = {"status_code": resp.status_code}try:res["data"] = json.loads(resp.text)return resexcept Exception as e:print(e)def make_idphoto(self, file_path, bk, spec="2"):"""证件照制作接口:param file_path::param bk::param spec::return:"""photo_base64 = self.get_photo_base64(file_path)body_json = {"photo": photo_base64,"bk": bk,"with_photo_key": 1,"spec": spec,"type": "jpg"}body = json.dumps(body_json)body_md5 = self.get_md5_data(body=body)self.headers.update({'Content-MD5': body_md5})data = self.aiseg_request(url=self.make_idphoto_url, data=body, headers=self.headers)return dataif __name__ == "__main__":file_path = "图片地址"idphoto = Idphoto(appcode="你的appcode")d = idphoto.make_idphoto(file_path, "red", "2")print(d) 3.3 实验结果与分析 原图片 背景为红色生成的证件照 背景为蓝色生成的证件照 另外尝试了使用柴犬照片做实验,也生成了证件照 原图 背景为红色生成的证件照 参考(可供参考的链接和引用文献) 1.参考:BiHand: Recovering Hand Mesh with Multi-stage Bisected Hourglass Networks(BMVC2020) 论文链接:https://arxiv.org/pdf/2008.05079.pdf 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_37758063/article/details/131128967。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-11 23:36:51
131
转载
转载文章
...删除相应内容。 随着容器技术越来越火热,各种大会上标杆企业分享容器化收益,带动其他还未实施容器的企业也在考虑实施容器化。不过真要在自己企业实践容器的时候,会认识到容器化不是一个简单工程,甚至会有一种茫然不知从何入手的感觉。 本文总结了通用的企业容器化实施线路图,主要针对企业有存量系统改造为容器,或者部分新开发的系统使用容器技术的场景。不包含企业系统从0开始全新构建的场景,这种场景相对简单。 容器实践路线图 企业着手实践容器的路线,建议从3个维度评估,然后根据评估结果落地实施。3个评估维度为:商业目标,技术选型,团队配合。 商业目标是重中之重,需要回答为何要容器化,这个也是牵引团队在容器实践路上不断前行的动力,是遇到问题是解决问题的方向指引,最重要的是让决策者认同商业目标,并能了解到支持商业目标的技术原理,上下目标对齐才好办事。 商业目标确定之后,需要确定容器相关的技术选型,容器是一种轻量化的虚拟化技术,与传统虚拟机比较有优点也有缺点,要找出这些差异点识别出对基础设施与应用的影响,提前识别风险并采取应对措施。 技术选型明确之后,在公司或部门内部推广与评审,让开发人员、架构师、测试人员、运维人员相关人员与团队理解与认同方案,听取他们意见,他们是直接使用容器的客户,不要让他们有抱怨。 最后是落地策略,一般是选取一些辅助业务先试点,在实践过程中不断总结经验。 商业目标 容器技术是以应用为中心的轻量级虚拟化技术,而传统的Xen与KVM是以资源为中心的虚拟化技术,这是两者的本质差异。以应用为中心是容器技术演进的指导原则,正是在这个原则指导下,容器技术相对于传统虚拟化有几个特点:打包既部署、镜像分层、应用资源调度。 打包即部署:打包即部署是指在容器镜像制作过程包含了传统软件包部署的过程(安装依赖的操作系统库或工具、创建用户、创建运行目录、解压、设置文件权限等等),这么做的好处是把应用及其依赖封装到了一个相对封闭的环境,减少了应用对外部环境的依赖,增强了应用在各种不同环境下的行为一致性,同时也减少了应用部署时间。 镜像分层:容器镜像包是分层结构,同一个主机上的镜像层是可以在多个容器之间共享的,这个机制可以极大减少镜像更新时候拉取镜像包的时间,通常应用程序更新升级都只是更新业务层(如Java程序的jar包),而镜像中的操作系统Lib层、运行时(如Jre)层等文件不会频繁更新。因此新版本镜像实质有变化的只有很小的一部分,在更新升级时候也只会从镜像仓库拉取很小的文件,所以速度很快。 应用资源调度:资源(计算/存储/网络)都是以应用为中心的,中心体现在资源分配是按照应用粒度分配资源、资源随应用迁移。 基于上述容器技术特点,可以推导出容器技术的3大使用场景:CI/CD、提升资源利用率、弹性伸缩。这3个使用场景自然推导出通用的商业层面收益:CI/CD提升研发效率、提升资源利用率降低成本、按需弹性伸缩在体验与成本之间达成平衡。 当然,除了商业目标之外,可能还有其他一些考虑因素,如基于容器技术实现计算任务调度平台、保持团队技术先进性等。 CI/CD提升研发效率 为什么容器技术适合CI/CD CI/CD是DevOps的关键组成部分,DevOps是一套软件工程的流程,用于持续提升软件开发效率与软件交付质量。DevOps流程来源于制造业的精益生产理念,在这个领域的领头羊是丰田公司,《丰田套路》这本书总结丰田公司如何通过PDCA(Plan-Do-Check-Act)方法实施持续改进。PDCA通常也称为PDCA循环,PDCA实施过程简要描述为:确定目标状态、分析当前状态、找出与目标状态的差距、制定实施计划、实施并总结、开始下一个PDCA过程。 DevOps基本也是这么一个PDCA流程循环,很容易认知到PDCA过程中效率是关键,同一时间段内,实施更多数量的PDCA过程,收益越高。在软件开发领域的DevOps流程中,各种等待(等待编译、等待打包、等待部署等)、各种中断(部署失败、机器故障)是影响DevOps流程效率的重要因素。 容器技术出来之后,将容器技术应用到DevOps场景下,可以从技术手段消除DevOps流程中的部分等待与中断,从而大幅度提升DevOps流程中CI/CD的效率。 容器的OCI标准定义了容器镜像规范,容器镜像包与传统的压缩包(zip/tgz等)相比有两个关键区别点:1)分层存储;2)打包即部署。 分层存储可以极大减少镜像更新时候拉取镜像包的时间,通常应用程序更新升级都只是更新业务层(如Java程序的jar包),而镜像中的操作系统Lib层、运行时(如Jre)层等文件不会频繁更新。因此新版本镜像实质有变化的只有很小的一部分,在更新升级时候也只会从镜像仓库拉取很小的文件,所以速度很快。 打包即部署是指在容器镜像制作过程包含了传统软件包部署的过程(安装依赖的操作系统库或工具、创建用户、创建运行目录、解压、设置文件权限等等),这么做的好处是把应用及其依赖封装到了一个相对封闭的环境,减少了应用对外部环境的依赖,增强了应用在各种不同环境下的行为一致性,同时也减少了应用部署时间。 基于容器镜像的这些优势,容器镜像用到CI/CD场景下,可以减少CI/CD过程中的等待时间,减少因环境差异而导致的部署中断,从而提升CI/CD的效率,提升整体研发效率。 CI/CD的关键诉求与挑战 快 开发人员本地开发调试完成后,提交代码,执行构建与部署,等待部署完成后验证功能。这个等待的过程尽可能短,否则开发人员工作容易被打断,造成后果就是效率降低。如果提交代码后几秒钟就能够完成部署,那么开发人员几乎不用等待,工作也不会被打断;如果需要好几分钟或十几分钟,那么可以想象,这十几分钟就是浪费了,这时候很容易做点别的事情,那么思路又被打断了。 所以构建CI/CD环境时候,快是第一个需要考虑的因素。要达到快,除了有足够的机器资源免除排队等待,引入并行编译技术也是常用做法,如Maven3支持多核并行构建。 自定义流程 不同行业存在不同的行业规范、监管要求,各个企业有一套内部质量规范,这些要求都对软件交付流程有定制需求,如要求使用商用的代码扫描工具做安全扫描,如构建结果与企业内部通信系统对接发送消息。 在团队协同方面,不同的公司,对DevOps流程在不同团队之间分工有差异,典型的有开发者负责代码编写构建出构建物(如jar包),而部署模板、配置由运维人员负责;有的企业开发人员负责构建并部署到测试环境;有的企业开发人员直接可以部署到生产环境。这些不同的场景,对CI/CD的流程、权限管控都有定制需求。 提升资源利用率 OCI标准包含容器镜像标准与容器运行时标准两部分,容器运行时标准聚焦在定义如何将镜像包从镜像仓库拉取到本地并更新、如何隔离运行时资源这些方面。得益于分层存储与打包即部署的特性,容器镜像从到镜像仓库拉取到本地运行速度非常快(通常小于30秒,依赖镜像本身大小等因素),基于此可以实现按需分配容器运行时资源(cpu与内存),并限定单个容器资源用量;然后根据容器进程资源使用率设定弹性伸缩规则,实现自动的弹性伸缩。 这种方式相对于传统的按峰值配置资源方式,可以提升资源利用率。 按需弹性伸缩在体验与成本之间达成平衡 联动弹性伸缩 应用运行到容器,按需分配资源之后,理想情况下,Kubernetes的池子里没有空闲的资源。这时候扩容应用实例数,新扩容的实例会因资源不足调度失败。这时候需要资源池能自动扩容,加入新的虚拟机,调度新扩容的应用。 由于应用对资源的配比与Flavor有要求,因此新加入的虚拟机,应当是与应用所需要的资源配比与Flavor一致的。缩容也是类似。 弹性伸缩还有一个诉求点是“平滑”,对业务做到不感知,也称为“优雅”扩容/缩容。 请求风暴 上面提到的弹性伸缩一般是有计划或缓慢增压的场景,存在另外一种无法预期的请求风暴场景,这种场景的特征是无法预测、突然请求量增大数倍或数十倍、持续时间短。典型的例子如行情交易系统,当行情突变的时候,用户访问量徒增,持续几十分钟或一个小时。 这种场景的弹性诉求,要求短时间内能将资源池扩大数倍,关键是速度要快(秒级),否则会来不及扩容,系统已经被冲垮(如果无限流的话)。 目前基于 Virtual Kubelet 与云厂家的 Serverless 容器,理论上可以提供应对请求风暴的方案。不过在具体实施时候,需要考虑传统托管式Kubernetes容器管理平台与Serverless容器之间互通的问题,需要基于具体厂家提供的能力来评估。 基于容器技术实现计算调度平台 计算(大数据/AI训练等)场景的特征是短时间内需要大量算力,算完即释放。容器的环境一致性以及调度便利性适合这种场景。 技术选型 容器技术是属于基础设施范围,但是与传统虚拟化技术(Xen/KVM)比较,容器技术是应用虚拟化,不是纯粹的资源虚拟化,与传统虚拟化存在差异。在容器技术选型时候,需要结合当前团队在应用管理与资源管理的现状,对照容器技术与虚拟化技术的差异,选择最合适的容器技术栈。 什么是容器技术 (1)容器是一种轻量化的应用虚拟化技术。 在讨论具体的容器技术栈的时候,先介绍目前几种常用的应用虚拟化技术,当前有3种主流的应用虚拟化技术: LXC,MicroVM,UniKernel(LibOS)。 LXC: Linux Container,通过 Linux的 namespace/cgroups/chroot 等技术隔离进程资源,目前应用最广的docker就是基于LXC实现应用虚拟化的。 MicroVM: MicroVM 介于 传统的VM 与 LXC之间,隔离性比LXC好,但是比传统的VM要轻量,轻量体现在体积小(几M到几十M)、启动快(小于1s)。 AWS Firecracker 就是一种MicroVM的实现,用于AWS的Serverless计算领域,Serverless要求启动快,租户之间隔离性好。 UniKernel: 是一种专用的(特定编程语言技术栈专用)、单地址空间、使用 library OS 构建出来的镜像。UniKernel要解决的问题是减少应用软件的技术栈层次,现代软件层次太多导致越来越臃肿:硬件+HostOS+虚拟化模拟+GuestOS+APP。UniKernel目标是:硬件+HostOS+虚拟化模拟+APP-with-libos。 三种技术对比表: 开销 体积 启动速度 隔离/安全 生态 LXC 低(几乎为0) 小 快(等同进程启动) 差(内核共享) 好 MicroVM 高 大 慢(小于1s) 好 中(Kata项目) UniKernel 中 中 中 好 差 根据上述对比来看,LXC是应用虚拟化首选的技术,如果LXC无法满足隔离性要,则可以考虑MicroVM这种技术。当前社区已经在着手融合LXC与MicroVM这两种技术,从应用打包/发布调度/运行层面统一规范,Kubernetes集成Kata支持混合应用调度特性可以了解一下。 UniKernel 在应用生态方面相对比较落后,目前在追赶中,目前通过 linuxkit 工具可以在UniKernel应用镜像中使用docker镜像。这种方式笔者还未验证过,另外docker镜像运行起来之后,如何监控目前还未知。 从上述三种应用虚拟化技术对比,可以得出结论: (2)容器技术与传统虚拟化技术不断融合中。 再从规范视角来看容器技术,可以将容器技术定义为: (3)容器=OCI+CRI+辅助工具。 OCI规范包含两部分,镜像规范与运行时规范。简要的说,要实现一个OCI的规范,需要能够下载镜像并解压镜像到文件系统上组成成一个文件目录结构,运行时工具能够理解这个目录结构并基于此目录结构管理(创建/启动/停止/删除)进程。 容器(container)的技术构成就是实现OCI规范的技术集合。 对于不同的操作系统(Linux/Windows),OCI规范的实现技术不同,当前docker的实现,支持Windows与Linux与MacOS操作系统。当前使用最广的是Linux系统,OCI的实现,在Linux上组成容器的主要技术: chroot: 通过分层文件系统堆叠出容器进程的rootfs,然后通过chroot设置容器进程的根文件系统为堆叠出的rootfs。 cgroups: 通过cgroups技术隔离容器进程的cpu/内存资源。 namesapce: 通过pid, uts, mount, network, user namesapce 分别隔离容器进程的进程ID,时间,文件系统挂载,网络,用户资源。 网络虚拟化: 容器进程被放置到独立的网络命名空间,通过Linux网络虚拟化veth, macvlan, bridge等技术连接主机网络与容器虚拟网络。 存储驱动: 本地文件系统,使用容器镜像分层文件堆叠的各种实现驱动,当前推荐的是overlay2。 广义的容器还包含容器编排,即当下很火热的Kubernetes。Kubernetes为了把控容器调度的生态,发布了CRI规范,通过CRI规范解耦Kubelet与容器,只要实现了CRI接口,都可以与Kubelet交互,从而被Kubernetes调度。OCI规范的容器实现与CRI标准接口对接的实现是CRI-O。 辅助工具用户构建镜像,验证镜像签名,管理存储卷等。 容器定义 容器是一种轻量化的应用虚拟化技术。 容器=OCI+CRI+辅助工具。 容器技术与传统虚拟化技术不断融合中。 什么是容器编排与调度 选择了应用虚拟化技术之后,还需要应用调度编排,当前Kubernetes是容器领域内编排的事实标准,不管使用何种应用虚拟化技术,都已经纳入到了Kubernetes治理框架中。 Kubernetes 通过 CRI 接口规范,将应用编排与应用虚拟化实现解耦:不管使用何种应用虚拟化技术(LXC, MicroVM, LibOS),都能够通过Kubernetes统一编排。 当前使用最多的是docker,其次是cri-o。docker与crio结合kata-runtime都能够支持多种应用虚拟化技术混合编排的场景,如LXC与MicroVM混合编排。 docker(now): Moby 公司贡献的 docker 相关部件,当前主流使用的模式。 docker(daemon) 提供对外访问的API与CLI(docker client) containerd 提供与 kubelet 对接的 CRI 接口实现 shim负责将Pod桥接到Host namespace。 cri-o: 由 RedHat/Intel/SUSE/IBM/Hyper 公司贡献的实现了CRI接口的符合OCI规范的运行时,当前包括 runc 与 kata-runtime ,也就是说使用 cir-o 可以同时运行LXC容器与MicroVM容器,具体在Kata介绍中有详细说明。 CRI-O: 实现了CRI接口的进程,与 kubelet 交互 crictl: 类似 docker 的命令行工具 conmon: Pod监控进程 other cri runtimes: 其他的一些cri实现,目前没有大规模应用到生产环境。 容器与传统虚拟化差异 容器(container)的技术构成 前面主要讲到的是容器与编排,包括CRI接口的各种实现,我们把容器领域的规范归纳为南向与北向两部分,CRI属于北向接口规范,对接编排系统,OCI就属于南向接口规范,实现应用虚拟化。 简单来讲,可以这么定义容器: 容器(container) ~= 应用打包(build) + 应用分发(ship) + 应用运行/资源隔离(run)。 build-ship-run 的内容都被定义到了OCI规范中,因此也可以这么定义容器: 容器(container) == OCI规范 OCI规范包含两部分,镜像规范与运行时规范。简要的说,要实现一个OCI的规范,需要能够下载镜像并解压镜像到文件系统上组成成一个文件目录结构,运行时工具能够理解这个目录结构并基于此目录结构管理(创建/启动/停止/删除)进程。 容器(container)的技术构成就是实现OCI规范的技术集合。 对于不同的操作系统(Linux/Windows),OCI规范的实现技术不同,当前docker的实现,支持Windows与Linux与MacOS操作系统。当前使用最广的是Linux系统,OCI的实现,在Linux上组成容器的主要技术: chroot: 通过分层文件系统堆叠出容器进程的rootfs,然后通过chroot设置容器进程的根文件系统为堆叠出的rootfs。 cgroups: 通过cgroups技术隔离容器进程的cpu/内存资源。 namesapce: 通过pid, uts, mount, network, user namesapce 分别隔离容器进程的进程ID,时间,文件系统挂载,网络,用户资源。 网络虚拟化: 容器进程被放置到独立的网络命名空间,通过Linux网络虚拟化veth, macvlan, bridge等技术连接主机网络与容器虚拟网络。 存储驱动: 本地文件系统,使用容器镜像分层文件堆叠的各种实现驱动,当前推荐的是overlay2。 广义的容器还包含容器编排,即当下很火热的Kubernetes。Kubernetes为了把控容器调度的生态,发布了CRI规范,通过CRI规范解耦Kubelet与容器,只要实现了CRI接口,都可以与Kubelet交互,从而被Kubernetes调度。OCI规范的容器实现与CRI标准接口对接的实现是CRI-O。 容器与虚拟机差异对比 容器与虚拟机的差异可以总结为2点:应用打包与分发的差异,应用资源隔离的差异。当然,导致这两点差异的根基是容器是以应用为中心来设计的,而虚拟化是以资源为中心来设计的,本文对比容器与虚拟机的差异,更多的是站在应用视角来对比。 从3个方面对比差异:资源隔离,应用打包与分发,延伸的日志/监控/DFX差异。 1.资源隔离 隔离机制差异 容器 虚拟化 mem/cpu cgroup, 使用时候设定 require 与 limit 值 QEMU, KVM network Linux网络虚拟化技术(veth,tap,bridge,macvlan,ipvlan), 跨虚拟机或出公网访问:SNAT/DNAT, service转发:iptables/ipvs, SR-IOV Linux网络虚拟化技术(veth,tap,bridge,macvlan,ipvlan), QEMU, SR-IOV storage 本地存储: 容器存储驱动 本地存储:virtio-blk 差异引入问题与实践建议 应用程序未适配 cgroup 的内存隔离导致问题: 典型的是 JVM 虚拟机,在 JVM 启动时候会根据系统内存自动设置 MaxHeapSize 值,通常是系统内存的1/4,但是 JVM 并未考虑 cgroup 场景,读系统内存时候任然读取主机的内存来设置 MaxHeapSize,这样会导致内存超过 cgroup 限制从而导致进程被 kill 。问题详细阐述与解决建议参考Java inside docker: What you must know to not FAIL。 多次网络虚拟化问题: 如果在虚拟机内使用容器,会多一层网络虚拟化,并加入了SNAT/DNAT技术, iptables/ipvs技术,对网络吞吐量与时延都有影响(具体依赖容器网络方案),对问题定位复杂度变高,同时还需要注意网络内核参数调优。 典型的网络调优参数有:转发表大小 /proc/sys/net/netfilter/nf_conntrack_max 使用iptables 作为service转发实现的时候,在转发规则较多的时候,iptables更新由于需要全量更新导致非常耗时,建议使用ipvs。详细参考[华为云在 K8S 大规模场景下的 Service 性能优化实践](https://zhuanlan.zhihu.com/p/37230013)。 容器IP地址频繁变化不固定,周边系统需要协调适配,包括基于IP地址的白名单或防火墙控制策略需要调整,CMDB记录的应用IP地址需要适配动态IP或者使用服务名替代IP地址。 存储驱动带来的性能损耗: 容器本地文件系统是通过联合文件系统方式堆叠出来的,当前主推与默认提供的是overlay2驱动,这种模式应用写本地文件系统文件或修改已有文件,使用Copy-On-Write方式,也就是会先拷贝源文件到可写层然后修改,如果这种操作非常频繁,建议使用 volume 方式。 2.应用打包与分发 应用打包/分发/调度差异 容器 虚拟化 打包 打包既部署 一般不会把应用程序与虚拟机打包在一起,通过部署系统部署应用 分发 使用镜像仓库存储与分发 使用文件存储 调度运行 使用K8S亲和/反亲和调度策略 使用部署系统的调度能力 差异引入问题与实践建议 部署提前到构建阶段,应用需要支持动态配置与静态程序分离;如果在传统部署脚本中依赖外部动态配置,这部分需要做一些调整。 打包格式发生变化,制作容器镜像需要注意安全/效率因素,可参考Dockerfile最佳实践 容器镜像存储与分发是按layer来组织的,镜像在传输过程中放篡改的方式是传统软件包有差异。 3.监控/日志/DFX 差异 容器 虚拟化 监控 cpu/mem的资源上限是cgroup定义的;containerd/shim/docker-daemon等进程的监控 传统进程监控 日志采集 stdout/stderr日志采集方式变化;日志持久化需要挂载到volume;进程会被随机调度到其他节点导致日志需要实时采集否则分散很难定位 传统日志采集 问题定位 进程down之后自动拉起会导致问题定位现场丢失;无法停止进程来定位问题因为停止即删除实例 传统问题定位手段 差异引入问题实践与建议 使用成熟的监控工具,运行在docker中的应用使用cadvisor+prometheus实现采集与警报,cadvisor中预置了常用的监控指标项 对于docker管理进程(containerd/shim/docker-daemon)也需要一并监控 使用成熟的日志采集工具,如果已有日志采集Agent,则可以考虑将日志文件挂载到volume后由Agent采集;需要注意的是stderr/stdout输出也要一并采集 如果希望容器内应用进程退出后保留现场定位问题,则可以将Pod的restartPolicy设置为never,进程退出后进程文件都还保留着(/var/lib/docker/containers)。但是这么做的话需要进程没有及时恢复,会影响业务,需要自己实现进程重拉起。 团队配合 与周边的开发团队、架构团队、测试团队、运维团队评审并交流方案,与周边团队达成一致。 落地策略与注意事项 逐步演进过程中网络互通 根据当前已经存在的基础实施情况,选择容器化落地策略。通常使用逐步演进的方式,由于容器化引入了独立的网络namespace导致容器与传统虚拟机进程网络隔离,逐步演进过程中如何打通隔离的网络是最大的挑战。 分两种场景讨论: 不同服务集群之间使用VIP模式互通: 这种模式相对简单,基于VIP做灰度发布。 不同服务集群之间使用微服务点对点模式互通(SpringCloud/ServiceComb/Dubbo都是这一类): 这种模式相对复杂,在逐步容器化过程中,要求容器网络与传统虚拟机网络能够互通(难点是在虚拟机进程内能够直接访问到容器网络的IP地址),当前解决这个问题有几种方法。 自建Kubernetes场景,可使用开源的kube-router,kube-router 使用BGP协议实现容器网络与传统虚拟机网络之间互通,要求网络交换机支持BGP协议。 使用云厂商托管Kubernetes场景,选择云厂商提供的VPC-Router互通的网络插件,如阿里云的Terway网络插件, 华为云的Underlay网络模式。 选择物理机还是虚拟机 选择物理机运行容器还是虚拟机运行容器,需要结合基础设施与业务隔离性要求综合考虑。分两种场景:自建IDC、租用公有云。 自建IDC: 理想情况是使用物理机组成一个大集群,根据业务诉求,对资源保障与安全性要求高的应用,使用MicorVM方式隔离;普通应用使用LXC方式隔离。所有物理机在一个大集群内,方便削峰填谷提升资源利用率。 租用公有云:当前公有云厂家提供的裸金属服务价格较贵且只能包周期,使用裸金属性价比并不高,使用虚拟机更合适。 集群规模与划分 选择集群时候,是多个应用共用一个大集群,还是按应用分组分成多个小集群呢?我们把节点规模数量>=1000的定义为大集群,节点数<1000的定义为小集群。 大集群的优点是资源池共享容器,方便资源调度(削峰填谷);缺点是随着节点数量与负载数量的增多,会引入管理性能问题(需要量化): DNS 解析表变大,增加/删除 Service 或 增加/删除 Endpoint 导致DNS表刷新慢 K8S Service 转发表变大,导致工作负载增加/删除刷新iptables/ipvs记录变慢 etcd 存储空间变大,如果加上ConfigMap,可能导致 etcd 访问时延增加 小集群的优点是不会有管理性能问题,缺点是会导致资源碎片化,不容易共享。共享分两种情况: 应用之间削峰填谷:目前无法实现 计算任务与应用之间削峰填谷:由于计算任务是短时任务,可以通过上层的任务调度软件,在多个集群之间分发计算任务,从而达到集群之间资源共享的目的。 选择集群规模的时候,可以参考上述分析,结合实际情况选择适合的集群划分。 Helm? Helm是为了解决K8S管理对象散碎的问题,在K8S中并没有"应用"的概念,只有一个个散的对象(Deployment, ConfigMap, Service, etc),而一个"应用"是多个对象组合起来的,且这些对象之间还可能存在一定的版本配套关系。 Helm 通过将K8S多个对象打包为一个包并标注版本号形成一个"应用",通过 Helm 管理进程部署/升级这个"应用"。这种方式解决了一些问题(应用分发更方便)同时也引入了一些问题(引入Helm增加应用发布/管理复杂度、在K8S修改了对象后如何同步到Helm)。对于是否需要使用Helm,建议如下: 在自运维模式下不使用Helm: 自运维模式下,很多场景是开发团队交付一个运行包,运维团队负责部署与配置下发,内部通过兼容性或软件包与配置版本配套清单、管理软件包与配置的配套关系。 在交付软件包模式下使用Helm: 交付软件包模式下,Helm 这种把散碎组件组装为一个应用的模式比较适合,使用Helm实现软件包分发/部署/升级场比较简单。 Reference DOCKER vs LXC vs VIRTUAL MACHINES Cgroup与LXC简介 Introducing Container Runtime Interface (CRI) in Kubernetes frakti rkt appc-spec OCI 和 runc:容器标准化和 docker Linux 容器技术史话:从 chroot 到未来 Linux Namespace和Cgroup Java inside docker: What you must know to not FAIL QEMU,KVM及QEMU-KVM介绍 kvm libvirt qemu实践系列(一)-kvm介绍 KVM 介绍(4):I/O 设备直接分配和 SR-IOV [KVM PCI/PCIe Pass-Through SR-IOV] prometheus-book 到底什么是Unikernel? The Rise and Fall of the Operating System The Design and Implementation of the Anykernel and Rump Kernels UniKernel Unikernel:从不入门到入门 OSv 京东如何打造K8s全球最大集群支撑万亿电商交易 Cloud Native App Hub 更多云最佳实践 https://best.practices.cloud 本篇文章为转载内容。原文链接:https://blog.csdn.net/sinat_33155975/article/details/118013855。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-17 15:03:28
225
转载
JQuery插件下载
...用户体验和视觉表现上实现了突破。它巧妙地利用了CSSGrid布局的强大功能,使得轮播图在容器内能够灵活适应各种屏幕尺寸,并保持良好的响应式设计。不同于传统的布局方法,该插件通过网格系统实现图片之间的无缝切换和平滑过渡。当用户鼠标移动时,该轮播图会运用TweenMax动画库创造出惊艳的视觉差效果。这意味着两个相邻图层之间会产生深度感和动态交互,形成一种3D立体且富有动感的展示效果。这种设计不仅提升了网站整体的视觉吸引力,也为用户带来了更为沉浸式的浏览体验。总的来说,这款基于CSSGrid的js轮播图特效插件凭借其先进的技术和卓越的设计理念,为网页设计师和开发者提供了一种新颖、高效的图像展示解决方案,让内容以更加生动有趣的方式呈现给访问者。 点我下载 文件大小:962.48 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-04-19 10:25:41
241
本站
JQuery插件下载
...操作和事件处理能力,实现了一种界面友好且高度灵活的选项卡功能。该插件尤其适用于需要在不同屏幕尺寸下保持良好展示效果的响应式布局设计,能够根据容器宽度自动调整其尺寸及布局,确保在桌面、平板和手机等各类设备上均能提供流畅且一致的用户体验。开发者可以轻松地将此插件应用于网站内容区域以组织并切换不同的内容面板,如产品详情、文章概览或用户反馈等。只需通过简单的HTML结构标记各个选项卡标题和对应的内容面板,再调用相应的jQuery方法即可初始化选项卡功能。此外,该插件还特别强调样式定制的便捷性,设计师可以根据项目需求完全自定义选项卡的视觉样式,只需要编写CSS代码来覆盖默认样式,从而与整体网站主题风格保持统一。总之,“简单响应式jQueryTabs选项卡插件”以其易用性、响应式特性和高度可定制化的特点,成为网页开发者构建动态交互界面的理想工具之一。 点我下载 文件大小:48.30 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-04-02 12:08:29
359
本站
JQuery插件下载
...ery库的强大功能来实现动态的九宫格图片展示效果。该插件能够将一张完整的图片分割成九个独立的部分,并以九宫格的形式进行布局,每个格子均包含原图片的一部分,从而形成独特的视觉体验。通过image-jigsaw插件,网页设计师和开发者可以轻松地为网站或应用添加互动式的图片展示功能。用户不仅可以看到被分割后的图片格子各具特色,还可以在交互过程中,让每个格子的图片内容进行动态切换或动画变化,大大增强了网页的趣味性和用户的参与感。在实际应用中,只需简单几步即可集成此插件:首先,在HTML文件中引入jQuery核心库以及image-jigsaw.js插件文件;其次,创建一个带有特定class(如"classpanel")的div容器,并在其中放置用于显示九宫格图片的img标签;最后,在页面加载完成后,调用相应的jQuery方法初始化该插件,进而实现出彩的九宫格拼图特效。总之,image-jigsaw是网页设计和前端开发人员手中一款强大的工具,能够帮助他们快速构建具有高度个性化和创意十足的图片展示模块,提升用户体验的同时也为网页增色不少。 点我下载 文件大小:304.61 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-09-29 21:12:44
109
本站
JQuery插件下载
...置拖动到另一个位置,实现元素的动态移动。-智能容器识别:在多层嵌套的容器布局中,jquery.top-droppable能够准确判断拖动的目标容器,确保元素精确地放置在预期的位置。-集成提示功能:通过结合SweetAlert或其他提示插件,提供实时反馈,增强用户体验,例如在元素成功放置后显示确认信息。-高度定制性:开发者可以根据需要调整插件的行为,包括自定义拖动效果、放置规则、容器样式等,以适应各种应用场景。该插件的使用步骤通常包括:1.引入依赖:确保页面中包含了jQuery、jQueryUI库以及jquery.top-droppable.js文件。2.HTML布局:为需要支持拖拽与放置的元素添加特定类名(如top-droppable),并为容器分配z-index值以实现堆叠效果。3.初始化插件:通过jQuery调用$.fn.topDroppable()方法,配置所需的选项,如拖放行为、提示消息等。总体而言,jquery.top-droppable为Web开发人员提供了高效、灵活的工具,用于创建具备高级交互特性的动态Web应用,显著提升了用户体验和界面的互动性。 点我下载 文件大小:303.93 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-08-05 10:30:08
68
本站
CSS
在深入理解CSS实现元素水平和垂直居中对齐的三种方法后,我们发现随着CSS技术的不断发展,Web开发人员拥有了更多、更灵活的方式来处理布局问题。实际上,CSS Grid布局已成为现代网页设计中的另一大利器,它为复杂布局提供了强大的原生支持,尤其是在实现元素的居中对齐上。 例如,借助CSS Grid布局的place-items属性,只需一行代码即可轻松实现元素的水平和垂直居中对齐。.container { display: grid; place-items: center; },这种简洁而直观的方式极大地提高了开发效率,并且具有良好的浏览器兼容性。 同时,对于响应式设计而言,CSS的aspect-ratio属性(目前部分浏览器已支持)使得元素可以根据容器大小保持固定比例的同时,还能方便地结合其他布局方式实现居中显示,进一步丰富了我们的对齐策略。 值得注意的是,在实际项目中,选择哪种居中方法还需考虑项目的具体需求、浏览器兼容性和维护性等因素。持续关注W3C标准的发展以及各大浏览器对新特性的支持情况,可以帮助开发者与时俱进,掌握最新、最高效的布局技术,从而构建出体验更佳的Web界面。此外,深入研究诸如“Flexbox与Grid布局实战”、“响应式设计进阶指南”等专业资料,也能帮助我们深化理解并合理运用这些布局技术。
2023-11-16 08:03:48
439
电脑达人
CSS
...宽度、对齐方式等,以实现美观且具有功能性的页面布局设计。 父元素 , 在HTML和CSS中,父元素是指包含其他元素的容器元素,它直接决定了子元素在页面结构中的位置以及一些样式表现。在文章中,父元素宽度是决定水平线(hr)长度设置参照的重要基准,根据不同的设置方法,水平线可以与父元素宽度相等、占据部分宽度或者自适应内容宽度。 响应式设计 , 响应式网页设计是一种能够让网页布局和内容随用户设备环境(系统平台、屏幕尺寸、屏幕方向等)的变化而进行相应调整的设计方法。在本文上下文中,提到CSS水平线长度的动态调整方案时,就涉及到响应式设计原则,即根据屏幕大小和设备特性灵活地改变水平线的长度和显示方式,从而优化不同设备用户的阅读体验。
2023-02-11 22:13:41
497
码农
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
export VAR=value
- 设置环境变量。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"