前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[线性回归损失函数最小化]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Go Gin
...WebSocket函数中处理了消息的读取与发送。你可以试着在浏览器里输入这个地址:ws://localhost:8080/ws,然后用JavaScript发个消息试试,看能不能马上收到服务器的回应。 深入探讨 说实话,刚开始写这部分代码的时候,我还担心WebSocket的兼容性问题。后来发现,只要正确设置了CheckOrigin方法,大多数现代浏览器都能正常工作。这让我更加坚定了对Gin的信心——它虽然简单,但足够强大! --- 四、进阶技巧 并发与性能优化 在实际项目中,我们可能会遇到高并发的情况。为了保证系统的稳定性,我们需要合理地管理线程池和内存分配。Gin提供了一些工具可以帮助我们做到这一点。 例如,我们可以使用sync.Pool来复用对象,减少垃圾回收的压力。下面是一个示例: go package main import ( "sync" "time" "github.com/gin-gonic/gin" ) var pool sync.Pool func init() { pool = &sync.Pool{ New: func() interface{} { return make([]byte, 1024) }, } } func handler(c gin.Context) { data := pool.Get().([]byte) defer pool.Put(data) copy(data, []byte("Hello World!")) time.Sleep(100 time.Millisecond) // 模拟耗时操作 c.String(http.StatusOK, string(data)) } func main() { r := gin.Default() r.GET("/", handler) r.Run(":8080") } 在这个例子中,我们定义了一个sync.Pool来存储临时数据。每次处理请求时,从池中获取缓冲区,处理完毕后再放回池中。这样可以避免频繁的内存分配和释放,从而提升性能。 反思与总结 其实,刚开始学习这段代码的时候,我对sync.Pool的理解还停留在表面。直到后来真正用它解决了性能瓶颈,我才意识到它的价值所在。这也让我明白,优秀的框架只是起点,关键还是要结合实际需求去探索和实践。 --- 五、未来展望 Gin与实时处理的无限可能 Gin的强大之处不仅仅在于它的易用性和灵活性,更在于它为开发者提供了广阔的想象空间。无论是构建大型分布式系统,还是打造小型实验项目,Gin都能胜任。 如果你也想尝试用Gin构建实时处理系统,不妨从一个小目标开始——比如做一个简单的在线聊天室。相信我,当你第一次看到用户实时交流的画面时,那种成就感绝对会让你欲罢不能! 最后的话 写这篇文章的过程,其实也是我自己重新审视Gin的过程。其实这个东西吧,说白了挺简单的,但让我学到了一个本事——用最利索的办法搞定事情。希望能这篇文章也能点醒你,让你在今后的开发路上,慢慢琢磨出属于自己的那套玩法!加油吧,程序员们!
2025-04-07 16:03:11
65
时光倒流
转载文章
...标架构而定制化代码的函数,因此相同的函数调用可为各种支持的架构提供优化的性能。DPC++基于行业标准和开放规范,旨在鼓励生态系统的协作和创新。 多架构编程面临的挑战 在以数据为中心的环境中,专用工作负载的数量不断增长。专用负载通常因为没有通用的编程语言或API而需要使用不同的语言和库进行编程,这就需要维护各自独立的代码库。 由于跨平台的工具支持不一致,因此开发人员必须学习和使用一整套不同的工具。单独投入精力给每种硬件平台开发软件。 oneAPI则可以利用一种统一的编程模型以及支持并行性的库,支持包括CPU、GPU、FPGA等硬件等同于原生高级语言的开发性能,并且可以与现有的HPC编程模型交互。 SYCL SYCL支持C++数据并行编程,SYCL和OpenCL一样都是由Khronos Group管理的,SYCL是建立在OpenCL之上的跨平台抽象层,支持用C++用单源语言方式编写用于异构处理器的与设备无关的代码。 DPC++ DPC++(Data Parallel C++)是一种单源语言,可以将主机代码和异构加速器内核写在同一个文件当中,在主机中调用DPC++程序,计算由加速器执行。DPC++代码简洁且效率高,并且是开源的。现有的CUDA应用、Fortran应用、OpenCL应用都可以用不同方式很方便地迁移到DPC++当中。 下图显示了原来使用不同架构的HPC开发人员的一些推荐的转换方法。 编译和运行DPC++程序 编译和运行DPC++程序主要包括三步: 初始化环境变量 编译DPC++源代码 运行程序 例如本地运行,在本地系统上安装英特尔基础工具套件,使用以下命令编译和运行DPC++程序。 source /opt/intel/inteloneapi/setvars.shdpcpp simple.cpp -o simple./simple 编程实例 实现矢量加法 以下实例描述了使用DPC++实现矢量加法的过程和源代码。 queue类 queue类用来提交给SYCL执行的命令组,是将作业提交到运算设备的一种机制,多个queue可以映射到同一个设备。 Parallel kernel Parallel kernel允许代码并行执行,对于一个不具有相关性的循环数据操作,可以用Parallel kernel并行实现 在C++代码中的循环实现 for(int i=0; i < 1024; i++){a[i] = b[i] + c[i];}); 在Parallel kernel中的并行实现 h.parallel_for(range<1>(1024), [=](id<1> i){A[i] = B[i] + C[i];}); 通用的并行编程模板 h.parallel_for(range<1>(1024), [=](id<1> i){// CODE THAT RUNS ON DEVICE }); range用来生成一个迭代序列,1为步长,在循环体中,i表示索引。 Host Accessor Host Accessor是使用主机缓冲区访问目标的访问器,它使访问的数据可以在主机上使用。通过构建Host Accessor可以将数据同步回主机,除此之外还可以通过销毁缓冲区将数据同步回主机。 buf是存储数据的缓冲区。 host_accessor b(buf,read_only); 除此之外还可以将buf设置为局部变量,当系统超出buf生存期,buf被销毁,数据也将转移到主机中。 矢量相加源代码 根据上面的知识,这里展示了利用DPC++实现矢量相加的代码。 //第一行在jupyter中指明了该cpp文件的保存位置%%writefile lab/vector_add.cppinclude <CL/sycl.hpp>using namespace sycl;int main() {const int N = 256;// 初始化两个队列并打印std::vector<int> vector1(N, 10);std::cout<<"\nInput Vector1: "; for (int i = 0; i < N; i++) std::cout << vector1[i] << " ";std::vector<int> vector2(N, 20);std::cout<<"\nInput Vector2: "; for (int i = 0; i < N; i++) std::cout << vector2[i] << " ";// 创建缓存区buffer vector1_buffer(vector1);buffer vector2_buffer(vector2);// 提交矢量相加任务queue q;q.submit([&](handler &h) {// 为缓存区创建访问器accessor vector1_accessor (vector1_buffer,h);accessor vector2_accessor (vector2_buffer,h);h.parallel_for(range<1>(N), [=](id<1> index) {vector1_accessor[index] += vector2_accessor[index];});});// 创建主机访问器将设备中数据拷贝到主机当中host_accessor h_a(vector1_buffer,read_only);std::cout<<"\nOutput Values: ";for (int i = 0; i < N; i++) std::cout<< vector1[i] << " ";std::cout<<"\n";return 0;} 运行结果 统一共享内存 (Unified Shared Memory USM) 统一共享内存是一种基于指针的方法,是将CPU内存和GPU内存进行统一的虚拟化方法,对于C++来说,指针操作内存是很常规的方式,USM也可以最大限度的减少C++移植到DPC++的代价。 下图显示了非USM(左)和USM(右)的程序员开发视角。 类型 函数调用 说明 在主机上可访问 在设备上可访问 设备 malloc_device 在设备上分配(显式) 否 是 主机 malloc_host 在主机上分配(隐式) 是 是 共享 malloc_shared 分配可以在主机和设备之间迁移(隐式) 是 是 USM语法 初始化: int data = malloc_shared<int>(N, q); int data = static_cast<int >(malloc_shared(N sizeof(int), q)); 释放 free(data,q); 使用共享内存之后,程序将自动在主机和运算设备之间隐式移动数据。 数据依赖 使用USM时,要注意数据之间的依赖关系以及事件之间的依赖关系,如果两个线程同时修改同一个内存区,将产生不可预测的结果。 我们可以使用不同的选项管理数据依赖关系: 内核任务中的 wait() 使用 depends_on 方法 使用 in_queue 队列属性 wait() q.submit([&](handler &h) {h.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 2; });}).wait(); // <--- wait() will make sure that task is complete before continuingq.submit([&](handler &h) {h.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 3; });}); depends_on auto e = q.submit([&](handler &h) { // <--- e is event for kernel taskh.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 2; });});q.submit([&](handler &h) {h.depends_on(e); // <--- waits until event e is completeh.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 3; });}); in_order queue property queue q(property_list{property::queue::in_order()}); // <--- this will make sure all the task with q are executed sequentially 练习1:事件依赖 以下代码使用 USM,并有三个提交到设备的内核。每个内核修改相同的数据阵列。三个队列之间没有数据依赖关系 为每个队列提交添加 wait() 在第二个和第三个内核任务中实施 depends_on() 方法 使用 in_order 队列属性,而非常规队列: queue q{property::queue::in_order()}; %%writefile lab/usm_data.cppinclude <CL/sycl.hpp>using namespace sycl;static const int N = 256;int main() {queue q{property::queue::in_order()};//用队列限制执行顺序std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n";int data = static_cast<int >(malloc_shared(N sizeof(int), q));for (int i = 0; i < N; i++) data[i] = 10;q.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 2; });q.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 3; });q.parallel_for(range<1>(N), [=](id<1> i) { data[i] += 5; });q.wait();//wait阻塞进程for (int i = 0; i < N; i++) std::cout << data[i] << " ";std::cout << "\n";free(data, q);return 0;} 执行结果 练习2:事件依赖 以下代码使用 USM,并有三个提交到设备的内核。前两个内核修改了两个不同的内存对象,第三个内核对前两个内核具有依赖性。三个队列之间没有数据依赖关系 %%writefile lab/usm_data2.cppinclude <CL/sycl.hpp>using namespace sycl;static const int N = 1024;int main() {queue q;std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n";//设备选择int data1 = malloc_shared<int>(N, q);int data2 = malloc_shared<int>(N, q);for (int i = 0; i < N; i++) {data1[i] = 10;data2[i] = 10;}auto e1 = q.parallel_for(range<1>(N), [=](id<1> i) { data1[i] += 2; });auto e2 = q.parallel_for(range<1>(N), [=](id<1> i) { data2[i] += 3; });//e1,e2指向两个事件内核q.parallel_for(range<1>(N),{e1,e2}, [=](id<1> i) { data1[i] += data2[i]; }).wait();//depend on e1,e2for (int i = 0; i < N; i++) std::cout << data1[i] << " ";std::cout << "\n";free(data1, q);free(data2, q);return 0;} 运行结果 UMS实验 在主机中初始化两个vector,初始数据为25和49,在设备中初始化两个vector,将主机中的数据拷贝到设备当中,在设备当中并行计算原始数据的根号值,然后将data1_device和data2_device的数值相加,最后将数据拷贝回主机当中,检验最后相加的和是否是12,程序结束前将内存释放。 %%writefile lab/usm_lab.cppinclude <CL/sycl.hpp>include <cmath>using namespace sycl;static const int N = 1024;int main() {queue q;std::cout << "Device : " << q.get_device().get_info<info::device::name>() << "\n";//intialize 2 arrays on hostint data1 = static_cast<int >(malloc(N sizeof(int)));int data2 = static_cast<int >(malloc(N sizeof(int)));for (int i = 0; i < N; i++) {data1[i] = 25;data2[i] = 49;}// STEP 1 : Create USM device allocation for data1 and data2int data1_device = static_cast<int >(malloc_device(N sizeof(int),q));int data2_device = static_cast<int >(malloc_device(N sizeof(int),q));// STEP 2 : Copy data1 and data2 to USM device allocationq.memcpy(data1_device, data1, sizeof(int) N).wait();q.memcpy(data2_device, data2, sizeof(int) N).wait();// STEP 3 : Write kernel code to update data1 on device with sqrt of valueauto e1 = q.parallel_for(range<1>(N), [=](id<1> i) { data1_device[i] = std::sqrt(25); });auto e2 = q.parallel_for(range<1>(N), [=](id<1> i) { data2_device[i] = std::sqrt(49); });// STEP 5 : Write kernel code to add data2 on device to data1q.parallel_for(range<1>(N),{e1,e2}, [=](id<1> i) { data1_device[i] += data2_device[i]; }).wait();// STEP 6 : Copy data1 on device to hostq.memcpy(data1, data1_device, sizeof(int) N).wait();q.memcpy(data2, data2_device, sizeof(int) N).wait();// verify resultsint fail = 0;for (int i = 0; i < N; i++) if(data1[i] != 12) {fail = 1; break;}if(fail == 1) std::cout << " FAIL"; else std::cout << " PASS";std::cout << "\n";// STEP 7 : Free USM device allocationsfree(data1_device, q);free(data1);free(data2_device, q);free(data2);// STEP 8 : Add event based kernel dependency for the Steps 2 - 6return 0;} 运行结果 本篇文章为转载内容。原文链接:https://blog.csdn.net/MCKZX/article/details/127630566。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-22 10:28:50
321
转载
转载文章
...eybd_event函数并传入对应虚拟键码来模拟按下或释放该键。 win32api模块 , win32api是Python的一个库,提供了对Windows API(应用程序接口)的访问功能。它允许Python程序员以编程方式执行许多Windows操作系统的底层任务,如模拟用户输入、控制窗口、处理文件和目录等。在本文中,作者利用win32api模块中的mouse_event和keybd_event函数实现了对鼠标点击、移动以及键盘按键的模拟操作,这对于自动化测试、脚本编写以及需要自动交互的应用场景尤为实用。 用户界面自动化(UI Automation) , 用户界面自动化是一种软件测试方法和技术,旨在通过编写脚本或程序代替人工操作,实现对应用程序用户界面的各种元素(如按钮、文本框、菜单等)进行自动化的点击、输入、验证等交互行为。在本文中,作者通过Python win32api模块模拟键盘和鼠标事件,从而实现在Windows环境下对用户界面的自动化控制,这是用户界面自动化的一种具体实践形式,常用于提高测试效率、减少重复工作并确保软件功能稳定可靠。
2023-06-07 19:00:58
54
转载
Apache Solr
..._metadata函数尝试从外部API获取元数据,如果请求失败或API不可用,那么该结果将被标记为未获取到数据。当外部服务出现延迟或中断时,这将直接影响到Solr的查询效率。 三、优化策略 1. 缓存策略 为了避免频繁请求外部服务,可以引入缓存机制。对于频繁访问且数据变化不大的元数据,可以在本地缓存一段时间。当外部服务不可用时,可以回退使用缓存数据,直到服务恢复。 python class ExternalMetadataCache: def __init__(self, ttl=600): self.cache = {} self.ttl = ttl def get(self, doc_id): if doc_id not in self.cache or (self.cache[doc_id]['timestamp'] + self.ttl) < time.time(): self.cache[doc_id] = {'data': fetch_external_metadata(doc_id), 'timestamp': time.time()} return self.cache[doc_id]['data'] metadata_cache = ExternalMetadataCache() def fetch_external_metadata_safe(doc_id): return metadata_cache.get(doc_id) 2. 重试机制 在请求外部服务时添加重试逻辑,当第一次请求失败后,可以设置一定的时间间隔后再次尝试,直到成功或达到最大重试次数。 python def fetch_external_metadata_retriable(doc_id, max_retries=3, retry_delay=5): for i in range(max_retries): try: return fetch_external_metadata(doc_id) except Exception as e: print(f"Attempt {i+1} failed with error: {e}. Retrying in {retry_delay} seconds...") time.sleep(retry_delay) raise Exception("Max retries reached.") 四、结论与展望 通过上述策略,我们可以在一定程度上减轻外部服务依赖对Solr性能的影响。然而,重要的是要持续监控系统的运行状况,并根据实际情况调整优化措施。嘿,你听说了吗?科技这玩意儿啊,那可是越来越牛了!你看,现在就有人在琢磨怎么对付那些让人上瘾的东西。将来啊,说不定能搞出个既高效又结实的办法,帮咱们摆脱这个烦恼。想想都挺激动的,对吧?哎呀,兄弟!构建一个稳定又跑得快的搜索系统,那可得好好琢磨琢磨外部服务这事儿。你知道的,这些服务就像是你家里的电器,得选对了,用好了,整个家才能舒舒服服的。所以啊,咱们得先搞清楚这些服务都是干啥的,它们之间怎么配合,还有万一出了点小状况,咱们能不能快速应对。这样,咱们的搜索系统才能稳如泰山,嗖嗖地飞快,用户一搜就满意,那才叫真本事呢! --- 请注意,以上代码示例是基于Python和相关库编写的,实际应用时需要根据具体环境和技术栈进行相应的调整。
2024-09-21 16:30:17
39
风轻云淡
转载文章
...符串转换为非回文串的最小操作次数,这与我们讨论的文章主题不谋而合,展现了理论与实践相结合的重要性。 同时,回文串在密码学、遗传学以及文学创作等多个领域均有应用。例如,在DNA序列分析中,回文结构往往关联着基因调控的重要区域;在密码学中,特定类型的回文串可用于构建加密算法的关键部分。深入理解并熟练掌握回文串的相关性质及处理方法,无疑有助于我们在这些领域取得更多的技术突破。 总之,从基础的编程题出发,我们可以洞察到字符串处理与算法优化在前沿科研和实际应用中的深远影响。通过持续关注和学习此类问题的最新研究成果与应用案例,我们能够不断提升自身的算法设计和问题解决能力。
2023-10-05 13:54:12
228
转载
ElasticSearch
...on_score回调函数,传入原始得分、行的原始数据,你可以在里面做计算,比如查询其它参考表、或查看是否是广告位,以得到新的score返回给用户。 function_scrore的功能不展开描述,是一个在自定义得分场景下十分有用又简单易用的功能!下面是一个使用示例,不仅如此,它是支持自定义函数的,自由度非常高。 (3)文本高亮:你用mysql或mongo也可以实现,比如用户搜索“冰激凌”,你只需要在逻辑代码中对“冰激凌”替换为“<span class='highlight-term'>冰激凌</span>”,然后前端做样式即可。但如果用户搜索了“好吃的冰激凌”咋办呢?还有就是英文大小写的场景,用户搜索"MAIN",那结果及时匹配到了“main”(小写的),这个单词是否应该高亮呢?也许这时候你会用业务代码实现toLowerCase下基于位置下标的匹配。 挺麻烦的吧,elasticsearch,自动可以返回高亮字段!并且可以自由指定高亮的html前后标签。 (4)实在太多了....这家伙天生为索引而生,而且版本还在不断地迭代。不差机器的话,用用吧! 4. 退而求其次 4.1 普通数据库 尽管elasticsearch在搜索场景下,是非常好用的利器!但是它比较消耗机器资源,如果你的数据规模并不大,而且想快速实现功能。你可以使用mysql或mongo来代替,完全没有问题。 技术是为了解决特定业务场景下的问题,结合当前手头的资源,适合自己的才是最好的。也许你搞了一个单机器的elasticsearch,单机器内存只有2G,它的表现并不会比mysql、mongo来的好。 当然,如果你为了使用上边提到的一些优秀的独有的特性,那elasticsearch一定还是最佳选择! 对于mysql(关系型数据库)和mongo(文档数据库)的区别这里不展开描述了,但对于搜索而言,两种都合适。有时候选型也不用很纠结,其实都是差不太多的东西,适合自己的、自己熟悉的、运维起来顺手的,就是最好的。 4.2 普通数据库实现中文分词搜索的原理 尽管mysql在5.7以后支持外挂第三方分词器,mongo在截止目前的版本中也不支持中文分词(你可能会看到一些文章中说可以指定language为chinese,但其实会报错的)。 其实当你选择普通数据库,你就不得不在逻辑代码中自己实现一套索引分词+搜索分词逻辑。 索引分词+搜索分词?为什么分开写,如果你有用过elasticsearch或solr,你会知道,在指定字段的时候,需要指定index分词器和search分词器。 下面以mongo为例做简要说明。 4.2.1 index分词器 意思是当数据“索引”截断如何分词。首先,这里必须要承认,数据之后存储了,才能被查询。在搜索中,这句话可以换成是“数据只有被索引了,才能被搜索”。 这时候请求打过来了,要索引一条数据,其中某字段是“今天我要吃冰激凌”,分词后得到“今天|我|要|吃|冰激凌”,这个就可以入库了。 如果你使用elasticsearch或solr,这个过程是自动的。如果你使用不支持外观分词器的常规数据库,这个过程你就要手动了,并把分词后的结果用空格分开(最好使用空格,因为西方语言的分词规则就是按空格拆分,以及逗号句号),存入数据库的一个待搜索的字段上。 效果如下图: 本站的其它博文中有介绍IKAnalyzer:https://www.52itw.com/java/6268.html 4.2.2 search分词器 当用户的查询请求打过来,用户输入了“好吃的冰激凌”,分词后得到“好吃|冰激凌”(“的”作为停用词stopwords,被自动忽略了,IKAnalyzer可以指定停用词表)。 于是这时候就回去上图的数据库表里面搜索“好吃 冰激凌”(与index分词器结果统一,还是用空格分隔)。 当然,对于mongo而言,你需要事先开启全文索引db.xxx.ensureIndex({content: "text"}),xxx是集合名,content是字段名,text是全文索引的标识。 mongo搜索的时候用这个语法:db.xxx.find( { $text: { $search: "好吃 冰激凌" } },{ score: { $meta: "textScore" } }).sort( { score: { $meta: "textScore" } } ) 4.2.3 索引库和存储库分开 为了减少单表的大小,为了让普通的列表查询、普通筛选可以跑的更快,你可以对原有的数据原封不动的做一张表。 然后对于搜索场景,再单独对需要被搜索的字段单独拎一张表出来! 然后二者之间做增量信号同步或定时差额同步,可能会有延迟,这个就看你能容忍多长时间(悄悄告诉你,elasticsearch也需要指定这个refresh时间,一般是1s到几秒、甚至分钟级。当然,二者的这个时间对饮的底层目的是不一样的)。 这样,搜索的时候先查询搜索库,拿到一个指针id的列表,然后拿到指针id的列表区存储里把数据一次性捞出来。当然,也是支持分页的,你查询搜索库其实也是普通的数据库查询嘛,支持分页参数的。 4.3 存储库和索引库的延伸阅读 很多有名的开源软件也是使用的存储库与索引库分离的技术方案,如apache atlas: apache atlas对于大数据领域的数据资产元数据管理、数据血缘上可谓是专家,也涉及资产搜索的特性,它的实现思路就是:从搜索库中做搜索、拿到key、再去存储库中做查询。 搜索库:上图右下角,可以看到使用的是elasticsearch、solr或lucene,多个选一个 存储库:上图左下角,可以看到使用的是Cassandra、HBase或BerkeleyDB,多个选一个 虽然apache atlas在只有搜索库或只有存储库的时候也可以很好的工作,但只针对于数据量并不大的场景。 搜索库,擅长搜索!存储库,擅长海量存储!搜索库多样化搜索,然后去存储库做点查。 当你的数据达到海量的时候,es+hbase也是一种很好的解决方案,不在这里展开说明了。
2024-01-27 17:49:04
537
admin-tim
转载文章
...送到通用的数据库访问函数中: using System;using System.Data;using System.Data.SqlClient;using System.Configuration;using System.Collections.Generic;using WestGarden.Model;namespace WestGarden.Web{public partial class Default3 : System.Web.UI.Page{protected void Page_Load(object sender, EventArgs e){IList<CategoryInfo> catogories = new List<CategoryInfo>();string connectionString = ConfigurationManager.ConnectionStrings["NetShopConnString"].ConnectionString;string cmdText = "SELECT CategoryId, Name, Descn FROM Category";SqlDataReader rdr = ExecuteReader(connectionString, CommandType.Text, cmdText);while (rdr.Read()){CategoryInfo category = new CategoryInfo(rdr.GetString(0), rdr.GetString(1), rdr.GetString(2));catogories.Add(category);}rdr.Close();ddlCategories.DataSource = catogories;ddlCategories.DataTextField = "Name";ddlCategories.DataValueField = "CategoryId";ddlCategories.DataBind();}public static SqlDataReader ExecuteReader(string connectionString, CommandType cmdType, string cmdText){SqlCommand cmd = new SqlCommand();SqlConnection conn = new SqlConnection(connectionString);try{cmd.Connection = conn;cmd.CommandType = cmdType;cmd.CommandText = cmdText;conn.Open();//如果创建了 SqlDataReader 并将 CommandBehavior 设置为 CloseConnection,//则关闭 SqlDataReader 会自动关闭此连接SqlDataReader rdr = cmd.ExecuteReader(CommandBehavior.CloseConnection);return rdr;}catch{conn.Close();throw;}//finally//{// conn.Close();//} }} } 这个通用数据库访问函数可以进一步完善如下: using System;using System.Data;using System.Data.SqlClient;using System.Configuration;using System.Collections.Generic;using WestGarden.Model;namespace WestGarden.Web{public partial class Default4 : System.Web.UI.Page{protected void Page_Load(object sender, EventArgs e){IList<CategoryInfo> catogories = new List<CategoryInfo>();string connectionString = ConfigurationManager.ConnectionStrings["NetShopConnString"].ConnectionString;string cmdText = "SELECT CategoryId, Name, Descn FROM Category";SqlDataReader rdr = ExecuteReader(connectionString, CommandType.Text, cmdText,null);while (rdr.Read()){CategoryInfo category = new CategoryInfo(rdr.GetString(0), rdr.GetString(1), rdr.GetString(2));catogories.Add(category);}rdr.Close();ddlCategories.DataSource = catogories;ddlCategories.DataTextField = "Name";ddlCategories.DataValueField = "CategoryId";ddlCategories.DataBind();}public static SqlDataReader ExecuteReader(string connectionString, CommandType cmdType, string cmdText, params SqlParameter[] commandParameters){SqlCommand cmd = new SqlCommand();SqlConnection conn = new SqlConnection(connectionString);try{//cmd.Connection = conn;//cmd.CommandType = cmdType;//cmd.CommandText = cmdText;//conn.Open();PrepareCommand(cmd, conn, null, cmdType, cmdText, commandParameters);//如果创建了 SqlDataReader 并将 CommandBehavior 设置为 CloseConnection,//则关闭 SqlDataReader 会自动关闭此连接。SqlDataReader rdr = cmd.ExecuteReader(CommandBehavior.CloseConnection);cmd.Parameters.Clear();return rdr;}catch{conn.Close();throw;}//finally//{// conn.Close();//} }private static void PrepareCommand(SqlCommand cmd, SqlConnection conn, SqlTransaction trans, CommandType cmdType, string cmdText, SqlParameter[] cmdParms){if (conn.State != ConnectionState.Open)conn.Open();cmd.Connection = conn;cmd.CommandText = cmdText;if (trans != null)cmd.Transaction = trans;cmd.CommandType = cmdType;if (cmdParms != null){foreach (SqlParameter parm in cmdParms)cmd.Parameters.Add(parm);} }} } 因为重点在过程,在结构,代码都比较简单,唯一值得一提的是SqlConnection的关闭问题,在最后比较完善的数据库访问函数中(这是SQLHelper中的源代码),没有使用using()结构,也没有显示关闭,主要原因是调用ExecuteReader方法时,使用了参数 CommandBehavior 并将其设置为 CloseConnection: SqlDataReader rdr = cmd.ExecuteReader(CommandBehavior.CloseConnection); 根据MSDN的说法:如果创建了 SqlDataReader 并将 CommandBehavior 设置为 CloseConnection,则关闭 SqlDataReader 会自动关闭此连接。 参考网址:http://msdn.microsoft.com/zh-cn/library/y6wy5a0f(v=vs.80).aspx 版权所有©2012,WestGarden.欢迎转载,转载请注明出处.更多文章请参阅博客http://www.cnblogs.com/WestGarden/ 转载于:https://www.cnblogs.com/WestGarden/archive/2012/06/04/2533560.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_33697898/article/details/94471782。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-18 20:09:36
89
转载
Mongo
...reduce()函数实现数据的分组、转换和聚合。基本流程如下: - Map阶段:数据被分割成多个分片,每个分片经过map()函数处理,产生键值对形式的数据流。 - Shuffle阶段:键相同的数据会被合并在一起,为reduce()阶段做准备。 - Reduce阶段:针对每个键,执行reduce()函数,合并所有相关值,产生最终的结果集。 2. MongoDB中的MapReduce实践 为了让你更好地理解MapReduce在MongoDB中的应用,下面我将通过一个具体的例子来展示如何使用MapReduce处理数据。 示例代码: 假设我们有一个名为sales的集合,其中包含销售记录,每条记录包含product_id和amount两个字段。我们的目标是计算每个产品的总销售额。 javascript // 首先,我们定义Map函数 db.sales.mapReduce( function() { // 输出键为产品ID,值为销售金额 emit(this.product_id, this.amount); }, function(key, values) { // 将所有销售金额相加得到总销售额 var total = 0; for (var i = 0; i < values.length; i++) { total += values[i]; } return total; }, { "out": { "inline": 1, "pipeline": [ {"$group": {"_id": "$_id", "total_sales": {$sum: "$value"} }} ] } } ); 这段代码首先通过map()函数将每个销售记录映射到键为product_id和值为amount的键值对。哎呀,这事儿啊,就像是这样:首先,你得有个列表,这个列表里头放着一堆商品,每一项商品下面还有一堆数字,那是各个商品的销售价格。然后,咱们用一个叫 reduce() 的魔法棒来处理这些数据。这个魔法棒能帮咱们把每一样商品的销售价格加起来,就像数钱一样,算出每个商品总共卖了多少钱。这样一来,我们就能知道每种商品的总收入啦!哎呀,你懂的,我们用out这个参数把结果塞进了一个临时小盒子里面。然后,我们用$group这个魔法棒,把数据一通分类整理,看看哪些地方数据多,哪些地方数据少,这样就给咱们的数据做了一次大扫除,整整齐齐的。 3. 性能优化与注意事项 在使用MapReduce时,有几个关键点需要注意,以确保最佳性能: - 数据分区:合理的数据分区可以显著提高MapReduce的效率。通常,我们会根据数据的分布情况选择合适的分区策略。 - 内存管理:MapReduce操作可能会消耗大量内存,特别是在处理大型数据集时。合理设置maxTimeMS选项,限制任务运行时间,避免内存溢出。 - 错误处理:在实际应用中,处理潜在的错误和异常情况非常重要。例如,使用try-catch块捕获并处理可能出现的异常。 4. 进阶技巧与高级应用 对于那些追求更高效率和更复杂数据处理场景的开发者来说,以下是一些进阶技巧: - 使用索引:在Map阶段,如果数据集中有大量的重复键值对,使用索引可以在键的查找过程中节省大量时间。 - 异步执行:对于高并发的应用场景,可以考虑将MapReduce操作异步化,利用MongoDB的复制集和分片集群特性,实现真正的分布式处理。 结语 MapReduce在MongoDB中的应用,为我们提供了一种高效处理大数据集的强大工具。哎呀,看完这篇文章后,你可不光是知道了啥是MapReduce,啥时候用,还能动手在自己的项目里把MapReduce用得溜溜的!就像是掌握了新魔法一样,你学会了怎么给这玩意儿加点料,让它在你的项目里发挥出最大效用,让工作效率蹭蹭往上涨!是不是感觉整个人都精神多了?这不就是咱们追求的效果嘛!嘿,兄弟!听好了,掌握新技能最有效的办法就是动手去做,尤其是像MapReduce这种技术。别光看书上理论,找一个你正在做的项目,大胆地将MapReduce实践起来。你会发现,通过实战,你的经验会大大增加,对这个技术的理解也会更加深入透彻。所以,行动起来吧,让自己的项目成为你学习路上的伙伴,你肯定能从中学到不少东西!让我们继续在数据处理的旅程中探索更多可能性!
2024-08-13 15:48:45
149
柳暗花明又一村
转载文章
...新建MFC项目并添加函数库 (1)在VS2015菜单“文件”→“新建”→ “项目”,启动创建项目向导。 (2)选择开发语言为“Visual C++”和程序类型“MFC应用程序”。 (3)点击下一步即可。 (4)选择类型为“基于对话框”,下一步或者完成。 (5)找到厂家提供的光盘资料,路径如下(64位库为例)。 A.进入厂商提供的光盘资料找到“8.PC函数”文件夹,并点击进入。 B.选择“函数库2.1”文件夹。 C.选择“Windows平台”文件夹。 D.根据需要选择对应的函数库这里选择64位库。 E.解压C++的压缩包,里面有C++对应的函数库。 F.函数库具体路径如下。 (6)将厂商提供的C++的库文件和相关头文件复制到新建的项目里面。 (7)在项目中添加静态库和相关头文件。 A.先右击项目文件,接着依次选择:“添加”→“现有项”。 B.在弹出的窗口中依次添加静态库和相关头文件。 (8)声明用到的头文件和定义控制器连接句柄。 至此项目新建完成,可进行MFC项目开发。 2.查看PC函数手册,熟悉相关函数接口 (1)PC函数手册也在光盘资料里面,具体路径如下:“光盘资料\8.PC函数\函数库2.1\ZMotion函数库编程手册 V2.1.pdf” (2)链接控制器,获取链接句柄。 ZAux_OpenEth()接口说明: (3)振镜运动接口。 为振镜运动单独封装了一个运动接口,使用movescanabs指令进行运动,采用FORCE_SPEED参数设置运动过程中的速度,运动过程中基本不存在加减速过程,支持us级别的时间控制。 3. MFC开发控制器双振镜运动例程 (1)例程界面如下。 (2) 链接按钮的事件处理函数中调用链接控制器的接口函数ZAux_OpenEth(),与控制器进行链接,链接成功后启动定时器1监控控制器状态。 //网口链接控制器void CSingle_move_Dlg::OnOpen(){char buffer[256]; int32 iresult;//如果已经链接,则先断开链接if(NULL != g_handle){ZAux_Close(g_handle);g_handle = NULL;}//从IP下拉框中选择获取IP地址GetDlgItemText(IDC_IPLIST,buffer,255);buffer[255] = '\0';//开始链接控制器iresult = ZAux_OpenEth(buffer, &g_handle);if(ERR_SUCCESS != iresult){g_handle = NULL;MessageBox(_T("链接失败"));SetWindowText("未链接");return;}//链接成功开启定时器1SetWindowText("已链接");SetTimer( 1, 100, NULL ); } (3)通过定时器监控控制器状态 。 void CSingle_move_Dlg::OnTimer(UINT_PTR nIDEvent) {// TODO: Add your message handler code here and/or call defaultif(NULL == g_handle){MessageBox(_T("链接断开"));return ;}if(1 == nIDEvent){CString string;float position = 0;ZAux_Direct_GetDpos( g_handle,m_nAxis,&position); //获取当前轴位置string.Format("振镜X1轴位置:%.2f", position );GetDlgItem( IDC_CURPOS )->SetWindowText( string );float NowSp = 0;ZAux_Direct_GetVpSpeed( g_handle,m_nAxis,&NowSp); //获取当前轴速度string.Format("振镜X1轴速度:%.2f", NowSp );GetDlgItem( IDC_CURSPEED)->SetWindowText( string );ZAux_Direct_GetDpos(g_handle, m_nAxis+1, &position); //获取当前轴位置string.Format("振镜Y1轴位置:%.2f", position);GetDlgItem(IDC_CURPOS2)->SetWindowText(string);ZAux_Direct_GetVpSpeed(g_handle, m_nAxis+1, &NowSp); //获取当前轴速度string.Format("振镜Y1轴速度:%.2f", NowSp);GetDlgItem(IDC_CURSPEED2)->SetWindowText(string);ZAux_Direct_GetDpos(g_handle, m_nAxis + 2, &position); //获取当前轴位置string.Format("振镜X2轴位置:%.2f", position);GetDlgItem(IDC_CURPOS3)->SetWindowText(string);NowSp = 0;ZAux_Direct_GetVpSpeed(g_handle, m_nAxis + 2, &NowSp); //获取当前轴速度string.Format("振镜X2轴速度:%.2f", NowSp);GetDlgItem(IDC_CURSPEED3)->SetWindowText(string);ZAux_Direct_GetDpos(g_handle, m_nAxis + 3, &position); //获取当前轴位置string.Format("振镜Y2轴位置:%.2f", position);GetDlgItem(IDC_CURPOS4)->SetWindowText(string);ZAux_Direct_GetVpSpeed(g_handle, m_nAxis + 3, &NowSp); //获取当前轴速度string.Format("振镜Y2轴速度:%.2f", NowSp);GetDlgItem(IDC_CURSPEED4)->SetWindowText(string);int status = 0; ZAux_Direct_GetIfIdle(g_handle, m_nAxis,&status); //判断当前轴状态if (status == -1){GetDlgItem( IDC_CURSTATE )->SetWindowText( "当前状态:停 止" );}else{GetDlgItem( IDC_CURSTATE )->SetWindowText( "当前状态:运动中" );} }CDialog::OnTimer(nIDEvent);} (4)通过启动按钮的事件处理函数获取编辑框的移动轨迹,并设置振镜轴参数操作振镜轴运动。 void CSingle_move_Dlg::OnStart() //启动运动{if(NULL == g_handle){MessageBox(_T("链接断开状态"));return ;}UpdateData(true);//刷新参数int status = 0; ZAux_Direct_GetIfIdle(g_handle, m_nAxis,&status); //判断当前轴状态 if (status == 0) //已经在运动中{ return;} //设定轴类型 1-脉冲轴类型 for (int i = 4; i < 8; i++){ZAux_Direct_SetAtype(g_handle, i, m_Atype);ZAux_Direct_SetMerge(g_handle,i,1);//设置脉冲当量ZAux_Direct_SetUnits(g_handle, i, m_units);//设定速度,加减速ZAux_Direct_SetLspeed(g_handle, i, m_lspeed);ZAux_Direct_SetSpeed(g_handle, i, m_speed);ZAux_Direct_SetForceSpeed(g_handle, i, m_speed);ZAux_Direct_SetAccel(g_handle, i, m_acc);ZAux_Direct_SetDecel(g_handle, i, m_dec);//设定S曲线时间 设置为0表示梯形加减速 ZAux_Direct_SetSramp(g_handle, i, m_sramp);}//使用MOVESCANABS运动int axislist[2] = { 4,5 };float dposlist[2] = { 0,0 };ZAux_MoveScanAbs(2, axislist, dposlist);CString str;GetDlgItem(IDC_EDIT_POSX1)->GetWindowText(str);float dbx = atof(str);GetDlgItem(IDC_EDIT_POSY1)->GetWindowText(str);float dby = atof(str);dposlist[0] = dbx;dposlist[1] = dby;ZAux_MoveScanAbs(2, axislist, dposlist);GetDlgItem(IDC_EDIT_POSX2)->GetWindowText(str);dbx = atof(str);GetDlgItem(IDC_EDIT_POSY2)->GetWindowText(str);dby = atof(str);dposlist[0] = dbx;dposlist[1] = dby;ZAux_MoveScanAbs(2, axislist, dposlist);GetDlgItem(IDC_EDIT_POSX3)->GetWindowText(str);dbx = atof(str);GetDlgItem(IDC_EDIT_POSY3)->GetWindowText(str);dby = atof(str);dposlist[0] = dbx;dposlist[1] = dby;ZAux_MoveScanAbs(2, axislist, dposlist);GetDlgItem(IDC_EDIT_POSX4)->GetWindowText(str);dbx = atof(str);GetDlgItem(IDC_EDIT_POSY4)->GetWindowText(str);dby = atof(str);dposlist[0] = dbx;dposlist[1] = dby;ZAux_MoveScanAbs(2, axislist, dposlist);//第二个振镜运动//使用MOVESCANABS运动axislist[0] = 6;axislist[1] = 7;dposlist[0] = 0;dposlist[1] = 0;ZAux_MoveScanAbs(2, axislist, dposlist);GetDlgItem(IDC_EDIT_POSX5)->GetWindowText(str);dbx = atof(str);GetDlgItem(IDC_EDIT_POSY5)->GetWindowText(str);dby = atof(str);dposlist[0] = dbx;dposlist[1] = dby;ZAux_MoveScanAbs(2, axislist, dposlist);GetDlgItem(IDC_EDIT_POSX6)->GetWindowText(str);dbx = atof(str);GetDlgItem(IDC_EDIT_POSY6)->GetWindowText(str);dby = atof(str);dposlist[0] = dbx;dposlist[1] = dby;ZAux_MoveScanAbs(2, axislist, dposlist);GetDlgItem(IDC_EDIT_POSX7)->GetWindowText(str);dbx = atof(str);GetDlgItem(IDC_EDIT_POSY7)->GetWindowText(str);dby = atof(str);dposlist[0] = dbx;dposlist[1] = dby;ZAux_MoveScanAbs(2, axislist, dposlist);GetDlgItem(IDC_EDIT_POSX8)->GetWindowText(str);dbx = atof(str);GetDlgItem(IDC_EDIT_POSY8)->GetWindowText(str);dby = atof(str);dposlist[0] = dbx;dposlist[1] = dby;ZAux_MoveScanAbs(2, axislist, dposlist);UpdateData(false); } (5) 通过断开按钮的事件处理函数来断开与控制卡的连接。 void CSingle_move_Dlg::OnClose() //断开链接{// TODO: Add your control notification handler code hereif(NULL != g_handle){KillTimer(1); //关定时器KillTimer(2);ZAux_Close(g_handle);g_handle = NULL;SetWindowText("未链接");} } (6)通过坐标清零按钮的事件处理函数移动振镜轴回零到中心零点位置,不直接使用dpos=0,修改振镜轴坐标。 void CSingle_move_Dlg::OnZero() //清零坐标{if(NULL == g_handle){MessageBox(_T("链接断开状态"));return ;}// TODO: Add your control notification handler code hereint axislist[2] = { 4,5 };float dposlist[2] = { 0 };ZAux_Direct_MoveAbs(g_handle,2,axislist,dposlist); //设置运动回零点} 三调试与监控 编译运行例程,同时通过ZDevelop软件连接控制器对控制器状态进行监控 。 ZDevelop软件连接控制器监控控制器的状态,查看振镜轴对应参数,并可搭配示波器检测双振镜轨迹。 设置振镜轴运动,首先需要将轴类型配置成21振镜轴类型,并对应配置振镜轴的速度加减速等参数才可操作振镜进行运动。 通过ZDevelop软件的示波器监控双振镜运动运行轨迹。 视频演示。 开放式激光振镜+运动控制器(六)-双振镜运动 本次,正运动技术开放式激光振镜+运动控制器(六):双振镜运动,就分享到这里。 更多精彩内容请关注“正运动小助手”公众号,需要相关开发环境与例程代码,请咨询正运动技术销售工程师:400-089-8936。 本文由正运动技术原创,欢迎大家转载,共同学习,一起提高中国智能制造水平。文章版权归正运动技术所有,如有转载请注明文章来源。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_57350300/article/details/123402200。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-04 17:33:09
338
转载
转载文章
...unlock,这两个函数用来标记一个RCU读过程的开始和结束。其实作用就是帮助检测宽限期是否结束。 foo_update增加了一个函数synchronize_rcu(),调用该函数意味着一个宽限期的开始,而直到宽限期结束,该函数才会返回。我们再对比着图看一看,线程1和2,在synchronize_rcu之前可能得到了旧的gbl_foo,也就是foo_update中的old_fp,如果不等它们运行结束,就调用kfee(old_fp),极有可能造成系统崩溃。而3,4,6在synchronize_rcu之后运行,此时它们已经不可能得到old_fp,此次的kfee将不对它们产生影响。 宽限期是RCU实现中最复杂的部分,原因是在提高读数据性能的同时,删除数据的性能也不能太差。 订阅——发布机制 当前使用的编译器大多会对代码做一定程度的优化,CPU也会对执行指令做一些优化调整,目的是提高代码的执行效率,但这样的优化,有时候会带来不期望的结果。如例: void foo_update( foo new_fp ){spin_lock(&foo_mutex);foo old_fp = gbl_foo;new_fp-》a = 1;new_fp-》b = ‘b’;new_fp-》c = 100;gbl_foo = new_fp;spin_unlock(&foo_mutex);synchronize_rcu();kfee(old_fp);} 这段代码中,我们期望的是6,7,8行的代码在第10行代码之前执行。但优化后的代码并不会对执行顺序做出保证。在这种情形下,一个读线程很可能读到 new_fp,但new_fp的成员赋值还没执行完成。单独线程执行dosomething(fp-》a, fp-》b , fp-》c ) 的 这个时候,就有不确定的参数传入到dosomething,极有可能造成不期望的结果,甚至程序崩溃。可以通过优化屏障来解决该问题,RCU机制对优化屏障做了包装,提供了专用的API来解决该问题。这时候,第十行不再是直接的指针赋值,而应该改为 : rcu_assign_pointer(gbl_foo,new_fp);rcu_assign_pointer的实现比较简单,如下:define rcu_assign_pointer(p, v) \__rcu_assign_pointer((p), (v), __rcu)define __rcu_assign_pointer(p, v, space) \do { \smp_wmb(); \(p) = (typeof(v) __force space )(v); \} while (0) 我们可以看到它的实现只是在赋值之前加了优化屏障 smp_wmb来确保代码的执行顺序。另外就是宏中用到的__rcu,只是作为编译过程的检测条件来使用的。 在DEC Alpha CPU机器上还有一种更强悍的优化,如下所示: void foo_read(void){rcu_read_lock();foo fp = gbl_foo;if ( fp != NULL )dosomething(fp-》a, fp-》b ,fp-》c);rcu_read_unlock();} 第六行的 fp-》a,fp-》b,fp-》c会在第3行还没执行的时候就预先判断运行,当他和foo_update同时运行的时候,可能导致传入dosomething的一部分属于旧的gbl_foo,而另外的属于新的。这样会导致运行结果的错误。为了避免该类问题,RCU还是提供了宏来解决该问题: define rcu_dereference(p) rcu_dereference_check(p, 0)define rcu_dereference_check(p, c) \__rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)define __rcu_dereference_check(p, c, space) \({ \typeof(p) _________p1 = (typeof(p)__force )ACCESS_ONCE(p); \rcu_lockdep_assert(c, “suspicious rcu_dereference_check()” \usage”); \rcu_dereference_sparse(p, space); \smp_read_barrier_depends(); \(typeof(p) __force __kernel )(_________p1)); \})staTIc inline int rcu_read_lock_held(void){if (!debug_lockdep_rcu_enabled())return 1;if (rcu_is_cpu_idle())return 0;if (!rcu_lockdep_current_cpu_online())return 0;return lock_is_held(&rcu_lock_map);} 这段代码中加入了调试信息,去除调试信息,可以是以下的形式(其实这也是旧版本中的代码): define rcu_dereference(p) ({ \typeof(p) _________p1 = p; \smp_read_barrier_depends(); \(_________p1); \}) 在赋值后加入优化屏障smp_read_barrier_depends()。我们之前的第四行代码改为 foo fp = rcu_dereference(gbl_foo);,就可以防止上述问题。 数据读取的完整性 还是通过例子来说明这个问题: 如图我们在原list中加入一个节点new到A之前,所要做的第一步是将new的指针指向A节点,第二步才是将Head的指针指向new。这样做的目的是当插入操作完成第一步的时候,对于链表的读取并不产生影响,而执行完第二步的时候,读线程如果读到new节点,也可以继续遍历链表。如果把这个过程反过来,第一步head指向new,而这时一个线程读到new,由于new的指针指向的是Null,这样将导致读线程无法读取到A,B等后续节点。从以上过程中,可以看出RCU并不保证读线程读取到new节点。如果该节点对程序产生影响,那么就需要外部调用来做相应的调整。如在文件系统中,通过RCU定位后,如果查找不到相应节点,就会进行其它形式的查找,相关内容等分析到文件系统的时候再进行叙述。 我们再看一下删除一个节点的例子: 如图我们希望删除B,这时候要做的就是将A的指针指向C,保持B的指针,然后删除程序将进入宽限期检测。由于B的内容并没有变更,读到B的线程仍然可以继续读取B的后续节点。B不能立即销毁,它必须等待宽限期结束后,才能进行相应销毁操作。由于A的节点已经指向了C,当宽限期开始之后所有的后续读操作通过A找到的是C,而B已经隐藏了,后续的读线程都不会读到它。这样就确保宽限期过后,删除B并不对系统造成影响。 小结 RCU的原理并不复杂,应用也很简单。但代码的实现确并不是那么容易,难点都集中在了宽限期的检测上,后续分析源代码的时候,我们可以看到一些极富技巧的实现方式。 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_50662680/article/details/128449401。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-25 09:31:10
105
转载
转载文章
...使用app_exit函数处理退出过程 signal(SIGINT,app_exit); while(1){ conn_socket=accept(res_socket,(structsockaddr)&client_addr,&len); printf("reage\n"); line=0; //从客户端获取请求信息 while(0==(tmp=read(conn_socket,buf,MAX-1))||tmp!=EOF){ buf[MAX-1]=0; break;//我只使用了第一行的请求信息,所以丢弃其他的信息 } //send_http_head(conn_socket,200,"text/html"); sscanf(buf,"%s%s%s",method,uri,version); //目前只处理get请求 if(!strcasecmp(method,"get")) //send_html(conn_socket,"h.html"); do_uri(conn_socket,uri+1); close(conn_socket); } } voidapp_exit(){ //回复ctrl+c组合键的默认行为 signal(SIGINT,SIG_DFL); //关闭服务端链接、释放服务端ip和端口 close(res_socket); printf("\n"); exit(0); } ====================================================================== 本篇文章为转载内容。原文链接:https://blog.csdn.net/iteye_9368/article/details/82520401。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-30 18:31:58
90
转载
Tornado
...ke_app 这个函数把路由和这个处理器绑在一起,最后再启动服务器,让它开始监听 8888 端口。 运行后打开浏览器输入 http://localhost:8888,就能看到页面显示 "Hello, Tornado!" 了。是不是特别爽?不过别急着高兴,这只是万里长征的第一步呢! --- 3. 引入Google Cloud Secret Manager:让秘密不再裸奔 现在我们知道如何用 Tornado 做点事情了,但问题是,如果我们的应用程序需要用到一些敏感信息(例如数据库连接字符串),该怎么办呢?直接写在代码里吗?当然不行!这就是为什么我们要引入 Google Cloud Secret Manager。 3.1 安装依赖库 首先需要安装 Google Cloud 的官方 Python SDK: bash pip install google-cloud-secret-manager 3.2 获取Secret Manager中的值 假设我们在 Google Cloud Console 上已经创建了一个名为 my-secret 的密钥,并且它里面保存了我们的数据库密码。我们可以这样从 Secret Manager 中读取这个值: python from google.cloud import secretmanager def access_secret_version(project_id, secret_id, version_id): client = secretmanager.SecretManagerServiceClient() name = f"projects/{project_id}/secrets/{secret_id}/versions/{version_id}" response = client.access_secret_version(name=name) payload = response.payload.data.decode('UTF-8') return payload 使用示例 db_password = access_secret_version("your-project-id", "my-secret", "latest") print(f"Database Password: {db_password}") 这段代码做了什么呢?很简单,它实例化了一个 SecretManagerServiceClient 对象,然后根据提供的项目 ID、密钥名称以及版本号去访问对应的密钥内容。注意这里的 version_id 参数可以设置为 "latest" 来获取最新的版本。 --- 4. 将两者结合起来 构建更安全的应用 那么问题来了,怎么才能让 Tornado 和 Google Cloud Secret Manager 协同工作呢?其实答案很简单——我们可以将从 Secret Manager 获取到的敏感数据注入到 Tornado 的配置对象中,从而在整个应用范围内使用这些信息。 4.1 修改Tornado应用以支持从Secret Manager加载配置 让我们修改之前的 MainHandler 类,让它从 Secret Manager 中加载数据库密码并用于某种操作(比如查询数据库)。为了简化演示,这里我们假设有一个 get_db_password 函数负责完成这项任务: python from google.cloud import secretmanager def get_db_password(): client = secretmanager.SecretManagerServiceClient() name = f"projects/{YOUR_PROJECT_ID}/secrets/my-secret/versions/latest" response = client.access_secret_version(name=name) return response.payload.data.decode('UTF-8') class MainHandler(tornado.web.RequestHandler): def initialize(self, db_password): self.db_password = db_password def get(self): self.write(f"Connected to database with password: {self.db_password}") def make_app(): db_password = get_db_password() return tornado.web.Application([ (r"/", MainHandler, {"db_password": db_password}), ]) 在这个例子中,我们在 make_app 函数中调用了 get_db_password() 来获取数据库密码,并将其传递给 MainHandler 的构造函数作为参数。这样一来,每个 MainHandler 实例都会拥有自己的数据库密码属性。 --- 5. 总结与展望 好了朋友们,今天的分享就到这里啦!通过这篇文章,我们了解了如何利用 Tornado 和 Google Cloud Secret Manager 来构建更加安全可靠的 Web 应用。虽然过程中遇到了不少挑战,但最终的效果还是让我感到非常满意。 未来的话,我还想尝试更多有趣的功能组合,比如结合 Redis 缓存提高性能,或者利用 Pub/Sub 实现消息队列机制。如果你也有类似的想法或者遇到什么问题,欢迎随时跟我交流呀! 最后祝大家 coding愉快,记得保护好自己的秘密哦~ 😊
2025-04-09 15:38:23
43
追梦人
Javascript
...),这时fetch函数会抛出一个AbortError。嘿嘿,简单来说呢,就是咱们逮住这个错误,看看它是不是个“AbortError”,如果是的话,就用一种超优雅的方式把它处理了,不搞什么大惊小怪的。 --- 三、AbortError与其他错误的区别 说到错误,难免要和其他错误比较一番。比如说嘛,就有人会好奇地问:“AbortError跟一般的错误到底有啥不一样呀?”说实话呢,这个问题我也琢磨了好久好久,头都快想大了! 首先,AbortError是一种特殊的错误类型,专门用于表示操作被人为中断的情况。其实很多小错误啊,就是程序员自己不小心搞出来的,像打字打错了变量名,或者一激动让数组越界了之类的,都是挺常见的乌龙事件。简单来说呢,这俩的区别就是——AbortError就像是个“计划内”的小插曲,咱们事先知道它可能会发生,也能提前做好准备去应对;但普通的错误嘛,就好比是突然从天而降的小麻烦,压根儿没得防备,让人措手不及! 举个例子: javascript function divide(a, b) { if (b === 0) { throw new Error('除数不能为零'); } return a / b; } try { console.log(divide(10, 0)); // 抛出普通错误 } catch (error) { console.error(error.message); // 输出 "除数不能为零" } 在这个例子中,divide函数因为传入了非法参数(即分母为0)而抛出了一个普通错误。而如果我们换成AbortError呢? javascript const controller = new AbortController(); function process() { setTimeout(() => { console.log('处理完成'); }, 5000); } process(); controller.abort(); // 中断处理 这里虽然也有中断操作的意思,但并没有抛出任何错误。这就像是说,AbortError不会自己偷偷跑出来捣乱,得咱们主动去点那个abort()按钮才行。就好比你得自己动手去按开关,灯才不会自己亮起来一样。 --- 四、深入探讨AbortError的优缺点 说到优点嘛,我觉得AbortError最大的好处就是它让我们的代码更加健壮和可控。比如说啊,在面对一堆同时涌来的请求时, AbortError 就像一个神奇的开关,能帮我们把那些没用的请求一键关掉,这样就不会白白浪费资源啦!对了,它还能帮咱们更贴心地照顾用户体验呢!比如说,当用户等得花儿都快谢了,就给个机会让他们干脆放弃这事儿,省得干着急。 但是呢,凡事都有两面性。AbortError也有它的局限性。首先,它只适用于那些支持AbortSignal接口的操作,比如fetch、XMLHttpRequest之类。如果你尝试在一个不支持AbortSignal的操作上使用它,那就会直接报错。另外啊,要是随便乱用 AbortError 可不好,比如说老是取消请求的话,系统可能就会被折腾得够呛,负担越来越重,你说是不是? 说到这里,我想起了之前开发的一个项目,当时为了优化性能,我给每个API请求都加了AbortController,结果发现有时候会导致页面加载速度反而变慢了。后来经过反复调试,我才意识到,频繁地取消请求其实是得不偿失的。所以啊,大家在使用AbortError的时候一定要权衡利弊,不能盲目追求“安全”。 --- 五、总结与展望 总的来说,AbortError是一个非常实用且有趣的错误类型。它不仅能让我们更轻松地搞定那些乱七八糟的异步任务,还能让代码变得更好懂、更靠谱!不过,就像任何工具一样,它也需要我们在实践中不断摸索和完善。 未来,随着前端开发越来越复杂,我相信AbortError会有更多的应用场景。不管是应对一大堆同时进行的任务,还是让咱们跟软件互动的时候更顺畅、更开心,它都绝对是我们离不开的得力助手!所以,各位小伙伴,不妨多尝试用它来解决实际问题,说不定哪天你会发现一个全新的解决方案呢! 好了,今天的分享就到这里啦。希望能给大家打开一点思路,也期待大家在评论区畅所欲言,分享你的想法!最后,祝大家coding愉快,早日成为编程界的高手!
2025-03-27 16:22:54
106
月影清风
转载文章
...细解析了MPI的各种函数用法,并提供了大量实例代码,是MPI编程入门到精通的绝佳教程资源。 综上所述,无论是从MPI技术的最新进展、云计算环境下的并行计算解决方案,还是深入学习MPI编程的专业书籍推荐,都为那些想要在并行计算领域持续探索和实践的读者提供了丰富的延伸阅读内容。
2023-04-09 11:52:38
113
转载
Go-Spring
...ssRequest函数会返回一个error对象。哎呀,兄弟!这事儿得这么干:首先,咱们得动用 writeError 这个功能,把出错的提示给记到日记本里头去。要是服务器启动的时候遇到啥问题,那咱们就别藏着掖着,直接把错误的信息给大伙儿瞧一瞧,这样大家也好知道哪儿出了岔子,好及时修修补补。 2. 日志记录的最佳实践 日志记录是监控系统健康状况、追踪错误来源以及优化应用性能的关键手段。哎呀,你懂的,GoSpring这个家伙可厉害了!它能跟好多不同的日志工具玩得转,比如那个基础的log,还有那个火辣辣的zap。想象一下,就像是你有好多不同口味的冰淇淋可以选择,无论是奶油味、巧克力味还是草莓味,GoSpring都能给你完美的体验。而且,它还能让你自己来调调口味,比如你想让日志多一些颜色、或者想让它在特定的时候特别响亮,GoSpring都能满足你,真的超贴心的! 示例代码: go package main import ( "log" "os" "go.uber.org/zap" ) func main() { // 初始化日志器 sugarLogger := zap.NewExample().Sugar() defer sugarLogger.Sync() http.HandleFunc("/", func(w http.ResponseWriter, r http.Request) { sugarLogger.Info("Processing request", zap.String("method", r.Method), zap.String("path", r.URL.Path)) }) err := http.ListenAndServe(":8080", nil) if err != nil { sugarLogger.Fatal("Server start error", zap.Error(err)) } } 在这个例子中,我们使用了go.uber.org/zap库来初始化日志器。咱们用个俏皮点的糖糖(Sugar())功能做了一个小版的日志记录工具,这样就能更轻松地往里面塞进各种日志信息了。就像是给日记本添上了便利贴,想记录啥就直接贴上去,简单又快捷!当服务器启动失败时,日志器会自动记录错误信息并结束程序执行。 3. 结合错误处理与日志记录的最佳实践 在实际应用中,错误处理和日志记录通常是紧密相连的。正确的错误处理策略应该包括: - 异常捕获:确保捕获所有潜在的错误,并适当处理或记录它们。 - 上下文信息:在日志中包含足够的上下文信息,帮助快速定位问题根源。 - 日志级别:根据错误的严重程度选择合适的日志级别(如INFO、ERROR)。 - 错误重试:对于可以重试的操作,实现重试机制,并在日志中记录重试尝试。 示例代码: go package main import ( "context" "math/rand" "time" "go.uber.org/zap" ) func main() { rand.Seed(time.Now().UnixNano()) ctx, cancel := context.WithTimeout(context.Background(), 5time.Second) defer cancel() for i := 0; i < 10; i++ { err := makeNetworkCall(ctx) if err != nil { zap.Sugar().Errorf("Network call %d failed: %s", i, err) } else { zap.Sugar().Infof("Network call %d succeeded", i) } time.Sleep(1 time.Second) } } func makeNetworkCall(ctx context.Context) error { time.Sleep(time.Duration(rand.Intn(10)) time.Millisecond) return fmt.Errorf("network call failed after %d ms", rand.Intn(10)) } 在这个例子中,我们展示了如何在一个循环中处理网络调用,同时利用context来控制调用的超时时间。在每次调用失败时,我们记录详细的错误信息和调用次数。这种做法有助于在出现问题时快速响应和诊断。 结论 通过上述实践,我们可以看到GoSpring如何通过结构化错误处理和日志记录来提升应用的健壮性和维护性。哎呀,兄弟!如果咱们能好好执行这些招数,那可真是大有裨益啊!不仅能大大缩短遇到问题时,咱们得花多少时间去修复,还能省下一大笔银子呢!更棒的是,还能让咱们团队里的小伙伴们,心往一处想,劲往一处使,互相理解,配合得天衣无缝。这感觉,就像是大家在一块儿打游戏,每个人都有自己的角色,但又都为了一个共同的目标而努力,多带劲啊!哎呀,你知道吗?当咱们的应用越做越大,用GoSpring的那些工具和好方法,简直就是如虎添翼啊!这样咱就能打造出一个既稳如泰山又快如闪电,还特别容易打理的系统。想象一下,就像给你的小花园施肥浇水,让每一朵花都长得茁壮又美丽,是不是感觉棒极了?所以啊,别小看了这些工具和最佳实践,它们可是你建大事业的得力助手!
2024-07-31 16:06:44
277
月下独酌
转载文章
...8.0带来了诸如窗口函数、Caching_sha2_password等安全性和功能性的重大改进,对于提升项目的数据处理效率和安全性具有重要意义(参考来源:MySQL官网博客)。 在云服务和镜像源方面,阿里云、腾讯云等国内服务商也推出了针对deepin系统的加速镜像源服务,用户可根据自身网络状况选择合适的镜像源以提高软件安装和更新的速度(参考来源:阿里云、腾讯云官方文档)。此外,随着Web开发技术的发展,Vue.js、React等前端框架持续火爆,配合Webpack、Vite等现代构建工具,可以更高效地搭建和维护前端项目结构(参考来源:Vue.js、React官网及技术社区文章)。 在办公领域,WPS Office不仅实现了对Linux系统的全面支持,还不断优化跨平台兼容性,并且积极跟进Microsoft Office的新功能,使得国产办公软件在用户体验上逐渐与国际接轨(参考来源:WPS官方公告及媒体报道)。而在浏览器市场,除了Edge浏览器之外,Firefox、Chromium-based浏览器如Chrome和Opera同样提供Linux版,它们之间的性能对比、隐私保护策略以及对Web新技术的支持情况值得深入研究(参考来源:各大浏览器官网及第三方评测报告)。 总之,随着开源生态的繁荣和Linux发行版的普及,关注和掌握deepin系统及其周边软件的最新发展动态,将有助于我们更好地利用这一平台进行高效开发和舒适办公。
2023-11-15 19:14:44
54
转载
NodeJS
...个生成随机监控数据的函数: javascript function generateRandomMetrics() { return { cpuUsage: Math.random() 100, memoryUsage: Math.random() 100, diskUsage: Math.random() 100 }; } 然后,在 WebSocket 连接中定时向客户端推送这些数据: javascript wss.on('connection', (ws) => { console.log('A client connected!'); setInterval(() => { const metrics = generateRandomMetrics(); ws.send(JSON.stringify(metrics)); }, 1000); // 每秒发送一次 ws.on('close', () => { console.log('Client disconnected.'); }); }); 客户端需要解析接收到的数据,并动态更新页面上的信息。我们可以稍微改造一下 HTML 和 JavaScript: html CPU Usage: Memory Usage: Disk Usage: javascript socket.onmessage = (event) => { const metrics = JSON.parse(event.data); document.getElementById('cpuProgress').value = metrics.cpuUsage; document.getElementById('memoryProgress').value = metrics.memoryUsage; document.getElementById('diskProgress').value = metrics.diskUsage; const messagesDiv = document.getElementById('messages'); messagesDiv.innerHTML += Metrics updated. ; }; 这样,每秒钟都会从服务器获取一次监控数据,并在页面上以进度条的形式展示出来。是不是很酷? --- 5. 结尾 总结与展望 通过这篇文章,我们从零开始搭建了一个基于 Node.js 和 WebSocket 的实时监控面板。别看它现在功能挺朴素的,但这东西一出手就让人觉得,WebSocket 在实时互动这块儿真的大有可为啊!嘿,听我说!以后啊,你完全可以接着把这个项目捯饬得更酷一些。比如说,弄点新鲜玩意儿当监控指标,让用户用起来更爽,或者直接把它整到真正的生产环境里去,让它发挥大作用! 其实开发的过程就像拼图一样,有时候你会遇到困难,但只要一点点尝试和调整,总会找到答案。希望这篇文章能给你带来灵感,也欢迎你在评论区分享你的想法和经验! 最后,如果你觉得这篇文章对你有帮助,记得点个赞哦!😄 --- 完
2025-05-06 16:24:48
72
清风徐来
转载文章
...ewPort窗口设置函数实现分屏 之前实现过全景图片查看(OpenGL的几何变换3之内观察全景图),那么我们需要进行分屏该如何实现呢?如下图: 没错就是以前提过的glViewPort函数,废话不多说了,我直接上代码: //从这里开始进 ... hdu 4764 Stone (巴什博弈,披着狼皮的羊,小样,以为换了身皮就不认识啦) 今天(2013/9/28)长春站,最后一场网络赛! 3~5分钟后有队伍率先发现伪装了的签到题(博弈) 思路: 与取石头的巴什博弈对比 题目要求第一个人取数字在[1,k]间的某数x,后手取x加[1,k] ... android报表图形引擎(AChartEngine)demo解析与源码 AchartEngine支持多种图表样式,本文介绍两种:线状表和柱状表. AchartEngine有两种启动的方式:一种是通过ChartFactory.getView()方式来直接获取到view ... CSS长度单位及区别 em ex px pt in 1. css相对长度单位 Ø em 元素的字体高度 Ø ex 字体x的高度 Ø px ... es6的箭头函数 1.使用语法 : 参数 => 函数语句; 分为以下几种形式 : (1) ()=>语句 ( )=> statement 这是一种简写方法省略了花括号和return 相当于 ()=&g ... pdfplumber库解析pdf格式 参考地址:https://github.com/jsvine/pdfplumber 简单的pdf转换文本: import pdfplumber with pdfplumber.open(path) a ... KMP替代算法——字符串Hash 很久以前写的... 今天来谈谈一种用来替代KMP算法的奇葩算法--字符串Hash 例题:给你两个字符串p和s,求出p在s中出现的次数.(字符串长度小于等于1000000) 字符串的Hash 根据字面意 ... SSM_CRUD新手练习(5)测试mapper 上一篇我们使用逆向工程生成了所需要的bean.dao和对应的mapper.xml文件,并且修改好了我们需要的数据库查询方法. 现在我们来测试一下DAO层,在test包下新建一个MapperTest.j ... 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_35666639/article/details/118169985。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-16 11:42:34
252
转载
转载文章
...不能放在等号的右边(函数的参数和返回值例外),这一定程度避免了一些误操作导致指针所有权转移,然而,unique_str依然有提供所有权转移的方法move,调用move后,原unique_ptr就会失效,再用其访问裸指针也会发生和auto_ptr相似的crash,如下面示例代码,所以,即使使用了unique_ptr,也要慎重使用move方法,防止指针所有权被转移。 unique_ptr<int> up(new int(5));//auto up2 = up; // 编译错误auto up2 = move(up);cout << up << endl; //crash,up已经失效,无法访问其裸指针 除了上述用法,unique_ptr还支持创建动态数组。在C++中,创建数组有很多方法,如下所示: // 静态数组,在编译时决定了数组大小int arr[10];// 通过指针创建在堆上的数组,可在运行时动态指定数组大小,但需要手动释放内存int arr = new int[10];// 通过std::vector容器创建动态数组,无需手动释放数组内存vector<int> arr(10);// 通过unique_ptr创建动态数组,也无需手动释放数组内存,比vector更轻量化unique_ptr<int[]> arr(new int[10]); 这里需要注意的是,不管vector还是unique_ptr,虽然可以帮我们自动释放数组内存,但如果数组的元素是复杂数据类型时,我们还需要在其析构函数中正确释放内存。 真正的智能指针:shared_ptr auto_ptr和unique_ptr都有或多或少的缺陷,因此C++11还推出了shared_ptr,这也是目前工程内使用最多最广泛的智能指针,他使用引用计数(感觉有参考Objective-C的嫌疑),实现对同一块内存可以有多个引用,在最后一个引用被释放时,指向的内存才释放,这也是和unique_ptr最大的区别。 另外,使用shared_ptr过程中有几点需要注意: 构造shared_ptr的方法,如下示例代码所示,我们尽量使用shared_ptr构造函数或者make_shared的方式创建shared_ptr,禁止使用裸指针赋值的方式,这样会shared_ptr难于管理指针的生命周期。 // 使用裸指针赋值构造,不推荐,裸指针被释放后,shared_ptr就野了,不能完全控制裸指针的生命周期,失去了智能指针价值int p = new int(10);shared_ptr<int>sp = p;delete p; // sp将成为野指针,使用sp将crash// 将裸指针作为匿名指针传入构造函数,一般做法,让shared_ptr接管裸指针的生命周期,更安全shared_ptr<int>sp1(new int(10));// 使用make_shared,推荐做法,更符合工厂模式,可以连代码中的所有new,更高效;方法的参数是用来初始化模板类shared_ptr<int>sp2 = make_shared<int>(10); 禁止使用指向shared_ptr的裸指针,也就是智能指针的指针,这听起来就很奇怪,但开发中我们还需要注意,使用shared_ptr的指针指向一个shared_ptr时,引用计数并不会加一,操作shared_ptr的指针很容易就发生野指针异常。 shared_ptr<int>sp = make_shared<int>(10);cout << sp.use_count() << endl; //输出1shared_ptr<int> sp1 = &sp;cout << (sp1).use_count() << endl; //输出依然是1(sp1).reset(); //sp成为野指针cout << sp << endl; //crash 使用shared_ptr创建动态数组,在介绍unique_ptr时我们就讲过创建动态数组,而shared_ptr同样可以做到,不过稍微复杂一点,如下代码所示,除了要显示指定析构方法外(因为默认是T的析构函数,不是T[]),另外对外的数据类型依然是shared_ptr<T>,非常有迷惑性,看不出来是数组,最后不能直接使用下标读写数组,要先get()获取裸指针才可以使用下标。所以,不推荐使用shared_ptr来创建动态数组,尽量使用unique_ptr,这可是unique_ptr为数不多的优势了。 template <typename T>shared_ptr<T> make_shared_array(size_t size) {return shared_ptr<T>(new T[size], default_delete<T[]>());}shared_ptr<int>sp = make_shared_array(10); //看上去是shared<int>类型,实际上是数组sp.get()[0] = 100; //不能直接使用下标读写数组元素,需要通过get()方法获取裸指针后再操作 用shared_ptr实现多态,在我们使用裸指针时,实现多态就免不了定义虚函数,那么用shared_ptr时也不例外,不过有一处是可以省下的,就是析构函数我们不需要定义为虚函数了,如下面代码所示: class A {public:~A() {cout << "dealloc A" << endl;} };class B : public A {public:~B() {cout << "dealloc B" << endl;} };int main(int argc, const char argv[]) {A a = new B();delete a; //只打印dealloc Ashared_ptr<A>spa = make_shared<B>(); //析构spa是会先打印dealloc B,再打印dealloc Areturn 0;} 循环引用,笔者最先接触引用计数的语言就是Objective-C,而OC中最常出现的内存问题就是循环引用,如下面代码所示,A中引用B,B中引用A,spa和spb的强引用计数永远大于等于1,所以直到程序退出前都不会被退出,这种情况有时候在正常的业务逻辑中是不可避免的,而解决循环引用的方法最有效就是改用weak_ptr,具体可见下一章。 class A {public:shared_ptr<B> b;};class B {public:shared_ptr<A> a;};int main(int argc, const char argv[]) {shared_ptr<A> spa = make_shared<A>();shared_ptr<B> spb = make_shared<B>();spa->b = spb;spb->a = spa;return 0;} //main函数退出后,spa和spb强引用计数依然为1,无法释放 刚柔并济:weak_ptr 正如上一章提到,使用shared_ptr过程中有可能会出现循环引用,关键原因是使用shared_ptr引用一个指针时会导致强引用计数+1,从此该指针的生命周期就会取决于该shared_ptr的生命周期,然而,有些情况我们一个类A里面只是想引用一下另外一个类B的对象,类B对象的创建不在类A,因此类A也无需管理类B对象的释放,这个时候weak_ptr就应运而生了,使用shared_ptr赋值给一个weak_ptr不会增加强引用计数(strong_count),取而代之的是增加一个弱引用计数(weak_count),而弱引用计数不会影响到指针的生命周期,这就解开了循环引用,上一章最后的代码使用weak_ptr可改造为如下代码。 class A {public:shared_ptr<B> b;};class B {public:weak_ptr<A> a;};int main(int argc, const char argv[]) {shared_ptr<A> spa = make_shared<A>();shared_ptr<B> spb = make_shared<B>();spa->b = spb; //spb强引用计数为2,弱引用计数为1spb->a = spa; //spa强引用计数为1,弱引用计数为2return 0;} //main函数退出后,spa先释放,spb再释放,循环解开了使用weak_ptr也有需要注意的点,因为既然weak_ptr不负责裸指针的生命周期,那么weak_ptr也无法直接操作裸指针,我们需要先转化为shared_ptr,这就和OC的Strong-Weak Dance有点像了,具体操作如下:shared_ptr<int> spa = make_shared<int>(10);weak_ptr<int> spb = spa; //weak_ptr无法直接使用裸指针创建if (!spb.expired()) { //weak_ptr最好判断是否过期,使用expired或use_count方法,前者更快spb.lock() += 10; //调用weak_ptr转化为shared_ptr后再操作裸指针}cout << spa << endl; //20 智能指针原理 看到这里,智能指针的用法基本介绍完了,后面笔者来粗浅地分析一下为什么智能指针可以有效帮我们管理裸指针的生命周期。 使用栈对象管理堆对象 在C++中,内存会分为三部分,堆、栈和静态存储区,静态存储区会存放全局变量和静态变量,在程序加载时就初始化,而堆是由程序员自行分配,自行释放的,例如我们使用裸指针分配的内存;而最后栈是系统帮我们分配的,所以也会帮我们自动回收。因此,智能指针就是利用这一性质,通过一个栈上的对象(shared_ptr或unique_ptr)来管理一个堆上的对象(裸指针),在shared_ptr或unique_ptr的析构函数中判断当前裸指针的引用计数情况来决定是否释放裸指针。 shared_ptr引用计数的原理 一开始笔者以为引用计数是放在shared_ptr这个模板类中,但是细想了一下,如果这样将shared_ptr赋值给另一个shared_ptr时,是怎么做到两个shared_ptr的引用计数同时加1呢,让等号两边的shared_ptr中的引用计数同时加1?不对,如果还有第二个shared_ptr再赋值给第三个shared_ptr那怎么办呢?或许通过下面的类图便清楚个中奥秘。 [ boost中shared_ptr与weak_ptr类图 ] 我们重点关注shared_ptr<T>的类图,它就是我们可以直接操作的类,这里面包含裸指针T,还有一个shared_count的对象,而shared_count对象还不是最终的引用计数,它只是包含了一个指向sp_counted_base的指针,这应该就是真正存放引用计数的地方,包括强应用计数和弱引用计数,而且shared_count中包含的是sp_counted_base的指针,不是对象,这也就意味着假如shared_ptr<T> a = b,那么a和b底层pi_指针指向的是同一个sp_counted_base对象,这就很容易做到多个shared_ptr的引用计数永远保持一致了。 多线程安全 本章所说的线程安全有两种情况: 多个线程操作多个不同的shared_ptr对象 C++11中声明了shared_ptr的计数操作具有原子性,不管是赋值导致计数增加还是释放导致计数减少,都是原子性的,这个可以参考sp_counted_base的源码,因此,基于这个特性,假如有多个shared_ptr共同管理一个裸指针,那么多个线程分别通过不同的shared_ptr进行操作是线程安全的。 多个线程操作同一个shared_ptr对象 同样的道理,既然C++11只负责sp_counted_base的原子性,那么shared_ptr本身就没有保证线程安全了,加入两个线程同时访问同一个shared_ptr对象,一个进行释放(reset),另一个读取裸指针的值,那么最后的结果就不确定了,很有可能发生野指针访问crash。 作者:腾讯技术工程 https://mp.weixin.qq.com/s?__biz=MjM5ODYwMjI2MA==&mid=2649743462&idx=1&sn=c9d94ddc25449c6a0052dc48392a33c2&utm_source=tuicool&utm_medium=referralmp.weixin.qq.com 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_31467557/article/details/113049179。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-24 18:25:46
141
转载
Netty
...出问题了,也能尽量把损失降到最低,然后赶紧恢复到正常状态,一点儿都不耽误事儿。接下来,咱们就一步步拆解这些机制。 --- 三、Netty的故障恢复机制 3.1 异常处理与重试机制 首先,咱们来看看Netty最基础的故障恢复手段:异常处理与重试机制。 Netty提供了一种优雅的方式来处理异常。好比说呗,当客户端和服务器之间的连接突然“闹别扭”了,Netty就会立刻反应过来,自动给我们发个提醒,就像是“叮咚!出问题啦!”这样,咱们就能赶紧去处理这个小麻烦了。具体代码如下: java // 定义一个ChannelFutureListener,用于监听连接状态 ChannelFuture future = channel.connect(remoteAddress); future.addListener((ChannelFutureListener) futureListen -> { if (!futureListen.isSuccess()) { System.out.println("连接失败,尝试重新连接..."); // 这里可以加入重试逻辑 scheduleRetry(); } }); 在这段代码中,我们通过addListener为连接操作添加了一个监听器。如果连接失败,我们会打印一条日志并调用scheduleRetry()方法。这个办法啊,特别适合用来搞那种简单的重试操作,比如说隔一会儿就再试试重新连上啥的,挺实用的! 当然啦,实际项目中可能需要更复杂的重试策略,比如指数退避算法。不过Netty已经为我们提供了足够的灵活性,剩下的就是根据需求去实现啦! --- 3.2 零拷贝技术与内存管理 接下来,咱们聊聊另一个关键点:零拷贝技术与内存管理。 在高并发场景下,频繁的数据传输会导致内存占用飙升,进而引发GC(垃圾回收)风暴。Netty通过零拷贝技术很好地解决了这个问题。简单说呢,零拷贝技术就像是给数据开了一条“直达通道”,不用再把数据倒来倒去地复制一遍,就能让它直接从这儿跑到那儿。 举个例子,假设我们要将文件内容发送给远程客户端,传统的做法是先将文件读取到内存中,然后再逐字节写入Socket输出流。这样不仅效率低下,还会浪费大量内存资源。Netty 这家伙可聪明了,它能用 FileRegion 类直接把文件塞进 Socket 通道里,这样就省得在内存里来回倒腾数据啦,效率蹭蹭往上涨! java // 使用FileRegion发送文件 FileInputStream fileInputStream = new FileInputStream(new File("data.txt")); FileRegion region = new DefaultFileRegion(fileInputStream.getChannel(), 0, fileSize); channel.writeAndFlush(region); 在这段代码中,我们利用DefaultFileRegion将文件内容直接传递给了Netty的通道,大大提升了传输效率。 --- 3.3 长连接复用与心跳检测 第三个重要的机制是长连接复用与心跳检测。 在高并发环境下,频繁创建和销毁TCP连接的成本是非常高的。所以啊,Netty这个家伙超级聪明,它能让一个TCP连接反复用,不用每次都重新建立新的连接。这就像是你跟朋友煲电话粥,不用每次说完一句话就挂断重拨,直接接着聊就行啦,省心又省资源! 与此同时,为了防止连接因为长时间闲置而失效,Netty还引入了心跳检测机制。简单说吧,就像你隔一会儿给对方发个“我还在线”的消息,就为了确认你们的联系没断就行啦! java // 设置心跳检测参数 Bootstrap bootstrap = new Bootstrap(); bootstrap.option(ChannelOption.SO_KEEPALIVE, true); // 开启TCP保活功能 bootstrap.option(ChannelOption.CONNECT_TIMEOUT_MILLIS, 5000); // 设置连接超时时间 在这里,我们通过设置SO_KEEPALIVE选项开启了TCP保活功能,并设置了最长的连接等待时间为5秒。这样一来,即使网络出现短暂中断,Netty也会自动尝试恢复连接。 --- 3.4 数据缓冲与批量处理 最后一个要点是数据缓冲与批量处理。 在网络通信过程中,数据的大小和频率往往不可控。要是每次传来的数据都一点点的,那老是去处理这些小碎数据,就会多花不少功夫啦。Netty通过内置的缓冲区(Buffer)解决了这个问题。 例如,我们可以使用ByteBuf来存储和处理接收到的数据。ByteBuf就像是内存管理界的“万金油”,不仅能够灵活地伸缩大小,还能轻松应对各种编码需求,简直是程序员手里的瑞士军刀! java // 创建一个ByteBuf实例 ByteBuf buffer = Unpooled.buffer(1024); buffer.writeBytes(data); // 处理数据 while (buffer.readableBytes() > 0) { byte b = buffer.readByte(); process(b); } 在这段代码中,我们首先创建了一个容量为1024字节的缓冲区,然后将接收到的数据写入其中。接着,我们通过循环逐个读取并处理缓冲区中的数据。这种方式不仅可以提高处理效率,还能更好地应对突发流量。 --- 四、总结与展望 好了,朋友们,今天的分享就到这里啦!通过上面的内容,相信大家对Netty的故障恢复机制有了更深的理解。不管是应对各种意外情况的异常处理,还是能让数据传输更高效的零拷贝技术,又或者是能重复利用长连接和设置数据缓冲这些招数,Netty可真是个实力派选手啊! 不过,技术的世界永远没有尽头。Netty虽然已经足够优秀,但在某些特殊场景下仍可能存在局限性。未来的日子啊,我超级期待能看到更多的小伙伴,在Netty的基础上大展身手,把自己的系统捯饬得既聪明又靠谱,简直就像给它装了个“智慧大脑”一样! 最后,我想说的是,技术的学习是一个不断探索的过程。希望大家能在实践中积累经验,在挑战中成长进步。如果你有任何疑问或者想法,欢迎随时留言交流哦! 祝大家都能写出又快又稳的代码,一起迈向技术巅峰吧!😎
2025-03-19 16:22:40
79
红尘漫步
转载文章
...(); / 是一个函数指针 , 默认值为nids_syslog() 函数 . 在 syslog函数中可以检测入侵攻击 , 如网络扫描攻击 , 也可以检测一些异常情况, 如无效 TCP 标记 / int syslog_level; / 表示日志等级 , 默认值是LOG_ALERT/ int scan_num_hosts; / 表示一个哈西表的大小 ,( 此哈西表用来存储端口扫描信息) 表示 Libnids 将要检测的同时扫描的端口数据 . 如果其值为 0,Libnids将不提供端口扫描功能 . 默认值 256/ int scan_delay; / 表示在扫描检测中 , 俩端口扫描的间隔时间, 以毫秒来计算 , 缺省值为 3000/ int scan_num_ports; / 表示相同源地址必须扫描的 TCP 端口数目 , 默认值为10/ void (no_mem) (char ); / 是一个函数指针 , 当Libnids 发生内存溢出时被调用/ int (ip_filter) (); / 是一个函数指针 , 此函数可以用来分析IP 数据包 , 当有 IP 数据包到达时 , 此函数就被调用. 如果此函数返回非零值 , 此数据包就被处理 ;如果返回零 , 此 IP 数据包就被丢弃. 默认值为 nids_ip_filter 函数 , 总是返回 1./ char pcap_filter; / 表示过滤规则 , 即Libpcap 的过滤规则 , 默认值为 NULL,表示捕获所有数据包 . 可以在此设置过滤规则 , 只捕获感兴趣的开发包/ int promisc; / 表示网卡模式 , 如果是非零, 就把此网卡设置为混杂模式 ; 否则 , 设为非混杂模式 . 默认值为1/ int one_loop_less; / 初始值为 0/ int pcap_timeout; / 表示捕获数据返回的时间 , 以毫秒计算. 实际上它表示的就是 Libpcap 函数中的 pcap_open_live函数的 timeout 参数 , 默认值 1024/ }; / 返回值 : 调用成功返回 1,失败返回 0 参 数 : 无 功 能 : 对 Libnids 初始化, 这是所有设计基于 Libnids 的程序最开始调用的函数 . 它的主要内容包括打开网络接口 , 打开文件 , 编译过滤规则 , 判断网络链路层类型, 进行必要的初始化工作 / int nids_init (void); / 返回值 : 无 参 数 : 回调函数名字 功 能 : 注册一个能够检测所有 IP 数据包的回调函数, 包括 IP 碎片 .e.g nids_register_ip_frag(ip_frag_function); void ip_frag_function(struct ip a_packet,int len) a_packet 表示接收的IP 数据包 len 表示接收的数据包长度 此回调函数可以检测所有的IP 数据包 , 包括 IP 碎片 / void nids_register_ip_frag (void ()); // / 返回值 : 无 参 数 : 回调函数名字 功 能 : 注册一个回调函数 , 此回调函数可以接收正常的IP 数据包 .e.g nids_register_ip_frag(ip_frag_function); void ip_frag_function(struct ip a_packet) a_packet 表示接收的IP 数据包 此回调函数可以接收正常的IP 数据包 , 并在此函数中对捕获数到的 IP数据包进行分析 . / void nids_register_ip (void ()); // / 返回值 : 无 参 数 : 回调函数 功 能 : 注册一个 TCP 连接的回调函数. 回调函数的类型定义如下 : void tcp_callback(struct tcp_stream ns,void param) ns 表示一个TCP 连接的所有信息 , param 表示要传递的参数信息 , 可以指向一个 TCP连接的私有数据 此回调函数接收的TCP 数据存放在 half_stream 的缓存中 , 应该马上取出来 ,一旦此回调函数返回 , 此数据缓存中存储的数据就不存在 了 .half_stream 成员 offset描述了被丢弃的数据字节数 . 如果不想马上取出来 , 而是等到存储一定数量的数据之后再取出来, 那么可 以使用函数nids_discard(struct tcp_stream ns, int num_bytes)来处理 . 这样回调函数返回时 ,Libnids 将丢弃缓存数据之前 的 num_bytes 字节的数据 .如果不调用 nids_discard()函数 , 那么缓存数据的字节应该为 count_new 字节 . 一般情况下, 缓存中的数据 应该是count-offset 字节 / void nids_register_tcp (void ()); / 返回值 : 无 参 数 : 回调函数 功 能 : 注册一个分析 UDP 协议的回调函数, 回调函数的类型定义如下 : void udp_callback(struct tuple4 addr,char buf,int len,struct ip iph) addr 表示地址端口信息buf 表示 UDP 协议负载的数据内容 len表是 UDP 负载数据的长度 iph 表示一个IP 数据包 , 包括 IP 首部 ,UDP 首部以及UDP 负载内容 / void nids_register_udp (void ()); / 返回值 : 无 参 数 : 表示一个 TCP 连接 功 能 : 终止 TCP 连接 . 它实际上是调用 Libnet的函数进行构造数据包 , 然后发送出去 / void nids_killtcp (struct tcp_stream ); / 返回值 : 无 参 数 : 参数 1 一个 TCP 连接 参数 2 个数 功 能 : 丢弃参数 2 字节 TCP 数据 , 用于存储更多的数据 / void nids_discard (struct tcp_stream , int); / 返回值 : 无 参 数 : 无 功 能 : 运行 Libnids, 进入循环捕获数据包状态. 它实际上是调用 Libpcap 函数 pcap_loop()来循环捕获数据包 / void nids_run (void); / 返回值 : 调用成功返回文件描述符 ,失败返回 -1 参 数 : 无 功 能 : 获得文件描述符号 / int nids_getfd (void); / 返回值 : 调用成功返回个数 ,失败返回负数 参 数 : 表示捕获数据包的个数 功 能 : 调用 Libpcap 中的捕获数据包函数pcap_dispatch() / int nids_dispatch (int); / 返回值 : 调用成功返回 1,失败返回 0 参 数 : 无 功 能 : 调用 Libpcap 中的捕获数据包函数pcap_next() / int nids_next (void); extern struct nids_prm nids_params; /libnids.c定以了一个全部变量 , 其定义和初始值在 nids_params/ extern char nids_warnings[]; extern char nids_errbuf[]; extern struct pcap_pkthdr nids_last_pcap_header; struct nids_chksum_ctl { / 描述的是计算校验和 , 用于决定是否计算校验和/ u_int netaddr; / 表示地址 / u_int mask; / 表示掩码 / u_int action; / 表示动作 , 如果是NIDS_DO_CHKSUM, 表示计算校验和; 如果是 NIDS_DONT_CHKSUM, 表示不计算校验和 / u_int reserved; / 保留未用 / }; / 返回值 : 无 参 数 : 参数 1 表示 nids_chksum_ctl 列表 参数 2 表示列表中的个数 功 能 : 决定是否计算校验和 . 它是根据数据结构nids_chksum_ctl 中的action 进行决定的 , 如果所要计算的对象不在列表中 , 则必须都要计算校验和 / extern void nids_register_chksum_ctl(struct nids_chksum_ctl , int); endif / _NIDS_NIDS_H / 本篇文章为转载内容。原文链接:https://blog.csdn.net/xieqb/article/details/7681968。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-08 17:36:31
306
转载
Hadoop
...里只是一个简单的打印函数,但实际上你可以根据实际需求编写复杂的转换算法。 (3)应用到目标系统 最后一步是将转换后的权限应用到目标系统上。这一步同样可以通过Hadoop提供的API来完成。 java // 示例代码:应用NTFS权限 public class NtfsPermissionApplier { public static void applyPermissions(Path targetPath, String ntfsPermissions) { try { // 模拟应用权限的过程 System.out.println("Applying NTFS permissions to " + targetPath.toString() + ": " + ntfsPermissions); } catch (Exception e) { e.printStackTrace(); } } } 通过这三个步骤,我们就完成了从源系统到目标系统的访问控制协议迁移。 --- 四、实战演练 一个完整的案例 为了让大家更直观地理解,我准备了一个完整的案例。好啦,想象一下,我们现在要干的事儿就是把一个文件从一台Linux服务器搬去Windows服务器,而且还得保证这个文件在新家里的“门禁权限”跟原来一模一样,不能搞错! 4.1 准备工作 首先,确保你的开发环境中已经安装了Hadoop,并且配置好相关的依赖库。此外,还需要准备两台机器,一台装有Linux系统,另一台装有Windows系统。 4.2 编写代码 接下来,我们编写代码来实现迁移过程。首先是读取Linux系统的ACL信息。 java // 读取Linux ACL Path sourcePath = new Path("/source/file.txt"); FileSystem linuxFs = FileSystem.get(new Configuration()); String linuxAcl = linuxFs.getAclStatus(sourcePath).toString(); System.out.println("Linux ACL: " + linuxAcl); 然后,我们将这些ACL信息转换为NTFS格式。 java // 模拟ACL到NTFS的转换 AclToNtfsConverter.convert(linuxAcl); 最后,将转换后的权限应用到Windows系统上。 java // 应用NTFS权限 Path targetPath = new Path("\\\\windows-server\\file.txt"); NtfsPermissionApplier.applyPermissions(targetPath, "Full Control"); 4.3 执行结果 执行完上述代码后,你会发现文件已经被成功迁移到了Windows系统,并且保留了原有的访问控制设置。是不是很神奇? --- 五、总结与展望 通过这篇文章,我相信你对Hadoop支持文件的跨访问控制协议迁移有了更深的理解。Hadoop不仅是一个强大的工具,更是一种思维方式的转变。它就像个聪明的老师,不仅教我们怎么用分布式的思路去搞定问题,还时不时敲打我们:嘿,别忘了数据的安全和规矩可不能丢啊! 未来,随着技术的发展,Hadoop的功能会越来越强大。我希望你能继续探索更多有趣的话题,一起在这个充满挑战的世界里不断前行! 加油吧,程序员们!
2025-04-29 15:54:59
79
风轻云淡
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
watch -n 5 command
- 每隔5秒执行一次指定命令并更新输出。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"