前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[AngularJS 7 分页组件开发]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
SpringBoot
...提供了一个开箱即用的开发环境,能够快速地搭建出基于Spring的应用程序。另外,Spring Boot还自带了一大堆好用的内置组件和自动化工具,这些家伙能帮我们更轻松地搞定应用程序的管理问题。 三、RocketMQ简介 RocketMQ是一款开源的分布式消息中间件,由阿里巴巴公司推出。这个家伙,可厉害了!它能够飞快地传输大量数据,速度嗖嗖的,延迟低得几乎可以忽略不计。而且,它的稳定性和容错能力也是一级棒,就像个永不停歇、从不出错的小超人一样,随时待命,让人安心又放心。RocketMQ支持多种协议,包括Java API、Stomp、RESTful API等,可以方便地与其他系统进行集成。 四、Spring Boot集成RocketMQ 要实现Spring Boot与RocketMQ的集成,我们需要引入相关的依赖。首先,在pom.xml文件中添加如下依赖: xml org.springframework.boot spring-boot-starter-rocketmq 然后,我们需要在配置文件application.properties中添加如下配置: properties spring.rocketmq.namesrv-address=127.0.0.1:9876 这里的namesrv-address属性表示RocketMQ的命名服务器地址,我们可以通过这个地址获取到Broker节点列表。 接下来,我们就可以开始编写生产者的代码了。下面是一个简单的生产者示例: java import org.apache.rocketmq.client.consumer.DefaultMQPushConsumer; import org.apache.rocketmq.common.message.MessageQueue; import java.util.ArrayList; import java.util.List; public class Producer { public static void main(String[] args) { // 创建一个消息消费者,并设置一个消息消费者组 DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("testGroup"); // 指定NameServer地址 consumer.setNamesrvAddr("localhost:9876"); // 初始化消费者,整个应用生命周期内只需要初始化一次 consumer.start(); // 关闭消费者 consumer.shutdown(); } } 在这个示例中,我们创建了一个名为testGroup的消息消费者组,并指定了NameServer地址为localhost:9876。然后,我们就像启动一辆跑车那样,先给消费者来个“start”热身,让它开始运转起来;最后嘛,就像关上家门一样,我们顺手给它来了个“shutdown”,让这个消费者妥妥地休息了。 五、总结 本文介绍了如何通过Spring Boot集成RocketMQ实现异步任务的消息推送。用这种方式,我们就能轻轻松松地管理好消息队列,让系统的稳定性和扩展性噌噌噌地往上涨。同时,Spring Boot和RocketMQ的结合也使得我们的应用程序更加易于开发和维护。以后啊,我们还可以捣鼓捣鼓其他的通讯工具,比如Kafka、RabbitMQ这些家伙,让咱们的系统的运行速度和稳定性更上一层楼。
2023-12-08 13:35:20
83
寂静森林_t
Netty
...的功能,极大地降低了开发者的工作难度。 例如,我们可以使用以下代码来启动一个Netty的服务端: csharp EventLoopGroup bossGroup = new NioEventLoopGroup(); EventLoopGroup workerGroup = new NioEventLoopGroup(); ServerBootstrap b = new ServerBootstrap(); b.group(bossGroup, workerGroup) .channel(NioServerSocketChannel.class) .childHandler(new ChannelInitializer() { @Override protected void initChannel(SocketChannel ch) throws Exception { ch.pipeline().addLast(new EchoServerHandler()); } }) .bind(8080).sync() .channel() .closeFuture() .sync(); 可以看到,这段代码非常简洁,只需要定义了一个EchoServerHandler处理器,然后将这个处理器添加到管道中即可。 2. 强大的可扩展性 在NIO中,如果我们想要增加更多的功能,就需要编写大量的代码,并且可能还需要修改原有的代码。在Netty这个家伙里头,它的设计可是模块化的,这就意味着咱们能够超级轻松地塞进新的功能,而且压根儿不用去碰原先的那些代码,简直太方便啦! 例如,我们可以使用以下代码来实现一个HTTP服务端: less EventLoopGroup bossGroup = new NioEventLoopGroup(); EventLoopGroup workerGroup = new NioEventLoopGroup(); ServerBootstrap b = new ServerBootstrap(); b.group(bossGroup, workerGroup) .channel(NioServerSocketChannel.class) .childHandler(new ChannelInitializer() { @Override protected void initChannel(SocketChannel ch) throws Exception { HttpServerCodec httpServerCodec = new HttpServerCodec(); HttpObjectAggregator aggregator = new HttpObjectAggregator(8192); Channels.pipeline().addLast(httpServerCodec, aggregator, new HttpHandler() { @Override public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception { FullHttpRequest request = (FullHttpRequest) msg; if (!request.decoderResult().isSuccess()) { return; } HttpResponse response = new DefaultHttpResponse(HttpVersion.HTTP_1_1, HttpResponseStatus.OK); ByteBuf content = Unpooled.copiedBuffer("Hello, World!".getBytes()); response.content().writeBytes(content); response.headers().set(HttpHeaders.Names.CONTENT_LENGTH, content.readableBytes()); ctx.writeAndFlush(response).addListener(ChannelFutureListener.CLOSE); } }); } }) .bind(8080).sync() .channel() .closeFuture() .sync(); 可以看到,这段代码只是在原有的管道中添加了一个HTTP处理器,而且没有修改任何原有的代码。这就是Netty的强大之处。 3. 高度优化 Netty不仅支持多种协议,还内置了许多高级特性,如流量控制、拥塞控制、心跳检测等。这些特性的存在可以使我们的应用在高并发的情况下保持良好的稳定性和性能。 例如,我们可以使用以下代码来实现一个心跳检测的功能: kotlin void doHeartbeat(ChannelHandlerContext ctx) { if (System.currentTimeMillis() - lastWriteTime > HEARTBEAT_INTERVAL_MS) { ctx.writeAndFlush(new Heartbeat()).addListener(ChannelFutureListener.CLOSE); lastWriteTime = System.currentTimeMillis(); } else { ctx.close().addListener(ChannelFutureListener.CLOSE); } } 可以看到,这段代码只是一段简单的Java代码,但是在Netty的帮助下,它可以有效地防止长时间无响应而导致的连接断开。 4. 社区活跃,生态丰富 最后,还有一个重要的因素是社区的活跃程度和生态的丰富程度。Netty拥有庞大的用户群体和技术社区,有大量的第三方组件和插件可供选择,大大降低了开发成本和复杂性。 总的来说,虽然NIO是一种强大的I/O模型,但是它并不是万能的,也无法解决所有的问题。你知道吗,跟别的工具一比,Netty可真是个了不得的网络编程神器!它超级简单好上手,扩展性那叫一个强大,优化程度极高,而且周边生态丰富得不要不要的,简直就是我们心中的理想型工具嘛!
2023-04-12 20:04:43
109
百转千回-t
Hadoop
...adoop项目的核心组件之一,是一个高度容错性的分布式文件系统,设计用于在廉价的硬件上运行,并能提供高吞吐量的数据访问。在Hadoop生态系统中,HDFS为海量数据提供了存储解决方案,将大文件分割成多个块存储在集群中的不同节点上,从而实现数据的分布式存储和管理。 MapReduce , MapReduce是一种编程模型和相关实现,用于大规模数据集(通常大于单个机器内存容量)的并行处理。在Hadoop框架中,MapReduce通过“映射”阶段将输入数据分解成独立的键值对,然后在“归约”阶段对这些中间结果进行合并和进一步处理,最终生成用户所需的输出结果。这种方式极大地简化了并行计算过程的设计与实现,使得开发者无需关心底层的分布式细节。 Apache Spark , Apache Spark是一个开源的大数据处理框架,提供了对大规模数据集的快速、通用且可扩展的计算引擎。相较于Hadoop MapReduce,Spark基于内存计算,可以显著提高迭代工作负载的速度,并支持SQL查询、流处理、图形计算以及机器学习等多种计算范式。在需要实时或近实时处理以及复杂分析任务的场景下,Spark常被作为更高效的选择来替代或补充Hadoop。
2023-04-18 09:23:00
470
秋水共长天一色
转载文章
...化实践:迈向现代前端开发的新高度》 在现代前端开发中,Vue.js以其简洁的API和强大的组件化能力逐渐成为主流。然而,随着用户界面复杂度的提升,滚动性能和用户体验的重要性日益凸显。近期,Google推出了一项名为"Intersection Observer API"的新特性,为Vue开发者提供了更智能的滚动管理方式。这一API允许开发者精确地观察元素何时进入或离开视口,从而实现滚动优化,避免不必要的滚动重绘和计算,提高页面性能。 例如,我们可以结合Vue的watch或者v-once指令,以及Intersection Observer API,创建自适应滚动组件,仅当内容实际可见时才渲染或计算。这不仅能减轻服务器压力,还能提升用户的交互体验,特别是在移动设备上,流畅的滚动对于留住用户至关重要。 此外,像LilGiantBug的Better Scroll这样的第三方库,也提供了丰富的滚动优化选项,如防抖、渐进增强等,进一步简化了Vue滚动组件的开发和维护。开发者可以通过引入这些库,快速实现平滑滚动效果,同时保证代码的可维护性和可扩展性。 总之,Vue.js与滚动优化的结合,不仅提升了前端应用的性能,也为开发者提供了更多可能性。随着技术的不断迭代,我们期待看到更多创新的滚动解决方案,推动前端开发向更加高效、人性化的方向发展。
2024-05-06 12:38:02
624
转载
RocketMQ
...队列是一种不可或缺的组件,它充当了服务之间的通信桥梁。嘿,你听说了吗?阿里巴巴家的那个超能的消息传递神器,RocketMQ,简直就是开发者心中的超级英雄!它的速度飞快,像闪电一样,而且超稳,用起来那叫一个靠谱,圈粉无数!接下来,咱们一起踏上探索之旅,聊聊 RocketMQ 这个神奇的家伙,它可是消息传送的大侠,怎样本事高强地把每个信息精确无误地送到收件人手里,超酷的! 二、概述 RocketMQ 投递机制 (200字左右) RocketMQ 的消息投递保证基于一种发布-订阅模式,它提供了多种级别的保证,包括顺序消息、事务消息和可重复消费。你知道消息的真实可信度其实取决于几个关键点:首先是消息分片的精明安排,接着是消费群体的合作默契,再来就是那个确保信息准确送达的确认机制,还有就是那重试策略,就像个贴心的备胎,总能在关键时刻补上一救。 三、消息分区与消费者组 (300字左右) RocketMQ 使用消息分区(Message Partitioning)来分散消息,每个分区都有一个独立的消费者组。例如,以下是一个简单的配置示例: java // RocketMQ配置 Properties config = new Properties(); config.setProperty("brokerName", "localhost"); config.setProperty("topic", "testTopic"); config.setProperty("group.id", "myGroup"); // 消费者组名 config.setProperty("partition.consumer.list", "0,1,2"); // 指定消费者分组接收哪些分区 在这个例子中,消息会被均匀地分配到0、1和2三个分区,每个分区有一个或多个消费者来处理。 四、顺序消息与事务消息 (300字左右) 顺序消息(顺序消费)确保同一主题下的消息按发送顺序到达消费者,这对于需要严格依赖消息顺序的应用至关重要。例如,创建顺序消费者: java // 创建顺序消费者 OrderlyConsumer orderlyConsumer = new OrderlyConsumer(new DefaultMQPushConsumer("orderly-consumer")); orderlyConsumer.subscribe("testTopic", ""); // 使用通配符接收所有分区 事务消息则提供了原子性,如果消息处理失败,RocketMQ会回滚整个事务,直到成功确认。 五、消息确认与重试策略 (300字左右) 当消费者收到消息后,通过channel.basicAck()方法进行确认。一旦用户那边出点状况,比如突然断网或者啥的,RocketMQ这哥们儿特别能扛,它会自动启动它的"复活机制",比如说默认的三次重试,确保消息不落空,妥妥的。例如,手动确认消息: java try { Message msg = consumer.receive(1000); // 1秒超时 if (msg != null) { channel.basicAck(msg.getDeliveryTag(), false); // 常规确认,不持久化 } } catch (MQClientException e) { // 处理异常并可能重试 } 六、总结与最佳实践 (100字左右) RocketMQ 的消息投递保证使得开发者能够根据需求选择合适的保证级别,同时灵活调整重试策略。在日常操作里头,搞定这些机制的窍门就像搭积木一样关键,它能让咱的系统稳如老狗,数据就像粘得紧紧的,一个字儿:可靠!通过合理使用 RocketMQ,我们可以构建出健壮、可靠的分布式系统架构。 以上内容仅为简要介绍,实际使用 RocketMQ 时,还需深入理解其内部工作机制,结合具体业务场景定制解决方案。希望这个指南能帮助你更好地驾驭 RocketMQ,打造稳健的消息传递平台。
2024-06-08 10:36:42
92
寂静森林
Gradle
...radle构建系统的组件,允许开发者为Gradle添加新的功能和自定义行为。这些插件通常使用Groovy或Kotlin编写,并通过实现org.gradle.api.Plugin接口来定义其逻辑。在本文中,Gradle插件被用于定制错误处理流程,以应对构建过程中的各种异常情况。 GradleException , GradleException是Gradle系统内建的一种异常类型,当在Gradle构建过程中遇到无法继续执行的错误时抛出。在自定义错误处理逻辑中,如果决定由于特定异常导致构建应停止执行,可以抛出GradleException并附带相应的错误消息,以便向用户清晰展示问题原因及上下文信息。 TaskExecutionGraph , 在Gradle中,TaskExecutionGraph是一个数据结构,它代表了项目中所有任务及其相互依赖关系的整体视图。这个图形结构使得Gradle能够确定任务执行的顺序,并支持全局监听任务执行状态(包括异常)。虽然文章没有直接提到TaskExecutionGraph,但在实际开发Gradle插件时,它可以作为强大的工具用于更复杂的错误处理场景,比如根据任务执行的状态和依赖关系动态调整错误处理策略。
2023-05-21 19:08:26
427
半夏微凉
Etcd
...式键值存储系统的核心组件,在Kubernetes、Docker Swarm等容器编排系统中发挥着至关重要的作用。然而,在实际操作的时候,我们可能会遇到一个叫做“数据压缩错误”的小插曲。这篇东西,咱就以这个主题为核心,从原理的揭秘、原因的深度剖析,一路谈到解决方案,还会配上实例代码,来个彻彻底底的大讨论,保证接地气儿,让你看明白了。 1. Etcd的数据压缩机制简介 首先,让我们简单了解一下Etcd的数据压缩机制。Etcd这小家伙为了能更节省存储空间,同时还想跑得更快、更强悍,就选择了Snappy这个压缩算法来帮它一把,把数据压缩得更紧实。每当Etcd这个小家伙收到新的键值对更新时,它就像个认真的小会计,会把这些变动一笔一划地记在“事务操作”的账本上。然后呢,再把这一连串的账目整理打包,变成一个raft log entry的包裹。最后,为了省点空间和让传输更轻松流畅,Etcd还会把这个包裹精心压缩一下,这样一来,存储成本和网络传输的压力就减轻不少啦! go // 这是一个简化的示例,展示Etcd内部如何使用Snappy压缩数据 import ( "github.com/golang/snappy" ) func compress(data []byte) ([]byte, error) { compressed, err := snappy.Encode(nil, data) if err != nil { return nil, err } return compressed, nil } 2. 数据压缩错误Datacompressionerror的发生原因 然而,数据压缩并非总是顺利进行。在某些情况下,Etcd在尝试压缩raft日志条目时可能会遇到"Datacompressionerror"。这通常由以下原因引起: - 输入数据不合规:当待压缩的数据包含无法被Snappy识别或处理的内容时,就会抛出此错误。 - 内存限制:如果系统的可用内存不足,可能导致Snappy在压缩过程中失败。 - Snappy库内部错误:极少数情况下,可能是Snappy库本身存在bug或者与当前系统环境不兼容导致的。 3. 遇到Datacompressionerror的排查方法 假设我们在使用Etcd的过程中遭遇了此类错误,可以按照以下步骤进行排查: 步骤一:检查日志 查看Etcd的日志输出,定位错误发生的具体事务以及可能触发异常的数据内容。 步骤二:模拟压缩 通过编写类似上面的代码片段,尝试用Snappy压缩可能出现问题的数据部分,看是否能重现错误。 步骤三:资源监控 确保服务器有足够的内存资源用于Snappy压缩操作。可以通过系统监控工具(如top、htop等)实时查看内存使用情况。 步骤四:版本验证与升级 确认使用的Etcd及Snappy库版本,并查阅相关文档,看看是否有已知的关于数据压缩问题的修复版本,如有必要,请及时升级。 4. 解决Datacompressionerror的方法与实践 针对上述原因,我们可以采取如下措施来解决Datacompressionerror: - 清理无效数据:若发现特定的键值对导致压缩失败,应立即移除或修正这些数据。 - 增加系统资源:确保Etcd运行环境拥有足够的内存资源以支持正常的压缩操作。 - 升级依赖库:如确定是由于Snappy库的问题引起的,应尽快升级至最新稳定版或已知修复该问题的版本。 go // 假设我们需要删除触发压缩错误的某个键值对 import ( "go.etcd.io/etcd/clientv3" ) func deleteKey(client clientv3.Client, key string) error { _, err := client.Delete(context.Background(), key) return err } // 调用示例 err := deleteKey(etcdClient, "problematic-key") if err != nil { log.Fatal(err) } 总之,面对Etcd中的"data compression error",我们需要深入了解其背后的压缩机制,理性分析可能的原因,并通过实例代码演示如何排查和解决问题。在这个过程中,我们不光磨炼了搞定技术难题的硬实力,更是亲身感受到了软件开发实战中那份必不可少的探索热情和动手实践的乐趣。就像是亲手烹饪一道复杂的菜肴,既要懂得菜谱上的技术窍门,也要敢于尝试、不断创新,才能最终端出美味佳肴,这感觉倍儿爽!希望这篇文章能帮助你在遇到此类问题时,能够快速找到合适的解决方案。
2023-03-31 21:10:37
441
半夏微凉
ActiveMQ
...延迟效果。同时,也有开发团队分享了他们如何通过调整ActiveMQ内部参数,结合消费者并行处理机制,有效提升了系统整体的消息处理速度。 此外,对于特定业务场景下的延迟优化案例分析同样值得关注。例如,在金融交易、物联网(IoT)设备数据同步等领域,有专家详细解读了如何借助ActiveMQ实现低延迟、高可靠的消息传输,并对比了不同消息队列产品在类似场景下的表现,这些深入解读有助于开发者更好地应对实际问题,将理论知识转化为实实在在的性能提升。 综上所述,无论是从技术演进的宏观视角,还是具体到ActiveMQ产品的微观调优,我们都有充足的理由相信,通过紧跟技术潮流与实践经验,可以持续改善ActiveMQ在P2P模式下的消息传递延迟问题,从而满足现代分布式系统对高性能、低延迟的需求。
2023-11-19 09:23:19
435
追梦人
SpringBoot
...探索 在现代Java开发领域,SpringBoot已经成为构建高效、简洁应用程序的事实标准。JUnit,这可是Java世界里无人不知、无人不晓的最火爆的单元测试工具,它跟SpringBoot之间那叫一个亲密无间、浑然一体。这俩搭档起来,简直就是我们开发过程中的超级守护神和贴心小助手,让我们干活儿既放心又有速度。本文将通过丰富的代码示例,带你一起探索如何在SpringBoot项目中充分利用JUnit进行单元测试。 1. 引言 首先,让我们理解一下为何单元测试如此重要。在我们实际搞开发的时候,单元测试就相当于程序员的好哥们儿“安全网”。每当咱们对代码动手脚时,它能及时帮咱确认之前的那些功能是不是还在正常运转,这样一来啊,就能有效避免老功能突然撂挑子的情况,大大提升咱们软件的品质和稳定性。结合SpringBoot与JUnit,我们可以在模拟环境中对服务层、数据访问层等组件进行独立且精准的测试。 2. SpringBoot项目中的JUnit配置 在SpringBoot项目中使用JUnit非常简单,只需要在pom.xml文件中添加相应的依赖即可: xml org.springframework.boot spring-boot-starter-test test 这段配置引入了Spring Boot Test Starter,其中包括了JUnit以及Mockito等一系列测试相关的库。 3. 编写SpringBoot应用的单元测试 假设我们有一个简单的SpringBoot服务类UserService,下面是如何为其编写单元测试的实例: java import org.junit.jupiter.api.Test; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.boot.test.context.SpringBootTest; @SpringBootTest public class UserServiceTest { @Autowired private UserService userService; // 我们要测试的服务类 @Test public void testGetUserById() { // 假设我们有一个获取用户信息的方法 User user = userService.getUserById(1); // 断言结果符合预期 assertNotNull(user); assertEquals("预期的用户名", user.getUsername()); } // 更多测试方法... } 在这个例子中,@SpringBootTest注解使得Spring Boot应用上下文被加载,从而我们可以注入需要测试的服务对象。@Test注解则标记了这是一个单元测试方法。 4. 使用MockMvc进行Web接口测试 当我们要测试Controller层的时候,可以借助SpringBootTest提供的MockMvc工具进行模拟请求测试: java import org.junit.jupiter.api.Test; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.boot.test.autoconfigure.web.servlet.AutoConfigureMockMvc; import org.springframework.boot.test.context.SpringBootTest; import org.springframework.test.web.servlet.MockMvc; import static org.springframework.test.web.servlet.request.MockMvcRequestBuilders.get; import static org.springframework.test.web.servlet.result.MockMvcResultMatchers.status; @SpringBootTest @AutoConfigureMockMvc public class UserControllerTest { @Autowired private MockMvc mockMvc; @Test public void testGetUser() throws Exception { mockMvc.perform(get("/users/1")) .andExpect(status().isOk()); // 可以进一步解析响应内容并进行断言 } } 在这段代码中,@AutoConfigureMockMvc注解会自动配置一个MockMvc对象,我们可以用它来模拟HTTP请求,并检查返回的状态码或响应体。 5. 结语 通过以上示例,我们可以看到SpringBoot与JUnit的集成使单元测试变得更加直观和便捷。这东西可不简单,它不仅能帮我们把每一行代码都捯饬得准确无误,更是在持续集成和持续部署(CI/CD)这一套流程里,扮演着不可或缺的关键角色。所以,亲,听我说,把单元测试搂得紧紧的,特别是在像SpringBoot这样新潮的开发框架下,绝对是每个程序员提升代码质量和效率的必修课。没有它,你就像是在编程大道上少了一双好跑鞋,知道不?在实际动手操作中不断摸索和探究,你会发现单元测试就像一颗隐藏的宝石,充满了让人着迷的魅力。而且,你会更深刻地感受到,它在提升开发过程中的快乐指数、让你编程生活更加美滋滋这方面,可是起着大作用呢!
2023-11-11 08:06:51
78
冬日暖阳
转载文章
...t-learn库进行开发,支持多种机器学习任务,包括分类、回归、时间序列等。 核心技术点 Auto-Sklearn使用了贝叶斯优化的方法进行超参数优化,可以在较短的时间内找到最优的超参数组合,从而得到更好的模型性能。 功能 Auto-Sklearn是一款基于Python的自动机器学习工具,可以自动进行机器学习的各个步骤,包括特征选择、特征预处理、算法选择和超参数优化等。 自动特征选择与工程:可以自动选择最优特征子集,并进行归一化、缺失值处理等特征工程。 自动模型选择:可以自动选择最优的机器学习算法来解决问题,支持的算法包括SVM、KNN、随机森林等。 自动超参数优化:可以自动搜索机器学习模型的最优超参数,获得最高性能的模型配置。 特点 auto-sklearn的优势在于它的易用性和灵活性。用户只需要提供数据集和一些基本的配置,就可以自动进行模型构建和优化。 auto-sklearn可以自动选择和配置算法和超参数,从而让用户省去了手动调参的过程。 auto-sklearn还支持并行化处理,可以在多个CPU或GPU上运行,进一步加速模型训练和优化。 优缺点 自动化:auto-sklearn能够自动化地完成机器学习的各个环节,从而让用户省去手动调参和特征工程等繁琐的工作。 灵活性:auto-sklearn提供了多种配置选项,用户可以根据自己的需求进行自定义配置。 性能好:auto-sklearn使用贝叶斯优化技术进行超参数优化,能够在短时间内找到最优的超参数组合,从而得到更好的模型性能。 处理大数据集时较慢:auto-sklearn的处理速度受限于计算资源,处理大数据集时需要较长时间。 可解释性较差:由于auto-sklearn是自动化的,生成的模型可解释性较差。 应用案例 Kaggle竞赛:auto-sklearn在多个Kaggle竞赛中表现出色,包括房价预测、分类、回归等多个任务。 自动化机器学习平台:auto-sklearn可以作为自动化机器学习平台的核心组件,帮助用户快速构建和部署机器学习模型。 数据科学教育:auto-sklearn可以作为教学工具,帮助学生快速入门机器学习,并加深对机器学习原理的理解。 autosklearn/Auto-Sklearn的安装 pip install auto-sklearnpip install -i https://pypi.tuna.tsinghua.edu.cn/simple auto-sklearnconda install -c conda-forge auto-sklearn 系统安装要求¶ auto-sklearn 具有以下系统要求: Linux 操作系统(例如 Ubuntu)(在此处获取 Linux) Python (>=3.7)(在此处获取 Python), C++ 编译器(支持 C++11)(在此处获取 GCC)。 如果您尝试在没有提供 pyrfr 包的 wheel 文件的系统上安装 Auto-sklearn(请参阅此处了解可用的 wheels),您还需要: SWIG(在此处获取 SWIG)。 有关缺少 Microsoft Windows 和 macOS 支持的说明,请查看Windows/macOS 兼容性部分。 注意:auto-sklearn 当前不支持 Windows系统,因为auto-sklearn严重依赖 Python 模块resource。是 Python 的Unix 特定服务resource 的一部分 ,在 Windows 机器上不可用。因此,无法 在 Windows 机器上运行auto-sklearn 。 autosklearn/Auto-Sklearn的使用方法 1、基础案例 import sklearn.datasetsimport autosklearn.classification 加载Titanic数据集X, y = sklearn.datasets.load_breast_cancer(return_X_y=True) 使用Auto-Sklearn训练模型model = autosklearn.classification.AutoSklearnClassifier()model.fit(X, y) 输出模型评估结果print(model.sprint_statistics()) 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_41185868/article/details/83758383。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-13 13:27:17
114
转载
Maven
...Maven功能的核心组件,它们为Maven的生命周期阶段提供了具体实现。每个插件都有一系列可执行的目标,通过在pom.xml配置文件中声明和配置插件,开发者可以调用相应的插件目标来完成诸如编译代码、运行测试、打包工件等任务。如文章中提到的maven-clean-plugin用于执行clean阶段的任务,maven-compiler-plugin则对应于编译阶段的工作。 本地仓库与远程仓库 , 在Maven项目管理中,本地仓库和远程仓库是两种重要的依赖存储位置。本地仓库是开发人员个人计算机上的一个目录,用于缓存项目所需的依赖库,以便快速访问和重复使用。远程仓库则是中央或者私有服务器上托管的所有Maven项目依赖的公共存储库,当本地仓库缺少某个依赖时,Maven会自动从远程仓库下载该依赖并存入本地仓库。例如,在Maven的生命周期阶段中,“install”阶段会将项目安装到本地仓库,而“deploy”阶段则会将项目部署到远程仓库以供其他项目依赖。
2023-05-18 13:56:53
155
凌波微步_t
HBase
...pache软件基金会开发的开源、分布式、面向列的NoSQL数据库,设计用于处理海量数据,尤其适用于实时读写操作。它构建在Hadoop文件系统(HDFS)之上,提供高可靠性、高性能的大数据随机读写能力,并通过其灵活的表结构设计和RegionServer架构支持大规模并行处理。 Bloom Filter , Bloom Filter是一种空间效率极高的概率型数据结构,用于快速判断一个元素是否可能存在于一个集合中。在HBase中,启用Bloom Filter可以减少无效的磁盘I/O。当用户查询数据时,先通过Bloom Filter进行过滤,如果确定目标数据一定不存在,则无需进一步读取硬盘上的实际数据,从而大大降低了查询开销。 Region , 在HBase中,Region是数据分区的基本单位,每个Region存储表中的连续部分数据,并由一个RegionServer负责管理。随着数据量的增长,Region可以自动分裂成更小的Region,以保证数据分布的均衡性以及系统的可扩展性。Region内部的数据以HFile的形式存储,每个Region都包含一个或多个HFile。 MemStore , MemStore是HBase中内存存储组件,主要用于暂存未持久化到磁盘的新写入数据。当MemStore达到一定大小后会被Flush成一个新的HFile存储到HDFS上。合理配置MemStore的大小有助于优化写入性能和降低内存溢出的风险。 BlockCache , BlockCache是HBase为提升读取性能而引入的一种缓存机制,它将最近访问过的数据块存储在内存中,以便后续查询时能够快速获取,减少了对磁盘I/O的依赖。根据业务场景合理分配BlockCache与MemStore的内存比例,对于提高HBase的整体性能至关重要。
2023-08-05 10:12:37
508
月下独酌
Etcd
...netes中作为核心组件的角色及其常见问题解决方案。 此外,随着云原生架构的普及,etcd在微服务配置管理、服务发现等方面的应用愈发广泛。例如,阿里巴巴集团在其大规模分布式系统中就充分利用了etcd的强一致性保证和高可用特性,构建了一套完善的配置管理中心,并在公开的技术博客中分享了相关的设计思路和实战经验,为业界提供了极具参考价值的实践案例。 因此,持续关注etcd的最新技术进展,学习借鉴行业内的实践经验,能够帮助我们在遇到类似节点启动失败等问题时,以更全局的视角和更专业的手段进行问题定位与解决。同时,也能启发我们如何基于etcd这类强大工具进行创新性应用,提升整个系统的可靠性和可维护性。
2023-10-11 17:16:49
573
冬日暖阳-t
Dubbo
...、代码示例 在实际的开发中,我们可以使用Dubbo来解决上述的问题。下面是一些具体的代码示例: java // 注册服务 Registry registry = new ZookeeperRegistry("localhost:2181"); ServiceConfig serviceConfig = new ServiceConfig<>(); serviceConfig.setInterface(HelloService.class); serviceConfig.setRef(new HelloServiceImpl()); registry.register(serviceConfig); // 发现服务 ReferenceConfig referenceConfig = new ReferenceConfig<>(); referenceConfig.setInterface(HelloService.class); referenceConfig.setUrl("zookeeper://localhost:2181/com/example/HelloService"); HelloService helloService = referenceConfig.get(); 以上代码展示了如何使用Dubbo来注册和服务发现。在干这个活儿的时候,我们使上了Zookeeper这位大管家,把它当注册中心来用。这样一来,通过注册和发现服务这两招,我们就能轻轻松松地对那些分散各处的分布式服务进行管理和访问,就跟翻电话本找联系人一样方便。 五、结论 总的来说,服务注册与发现是分布式系统中的重要环节,但在实际应用中可能会遇到各种问题。用更通俗的话来说,我们就像有一套自己的小妙招来保证服务稳定运行。首先,我们会借助一个分布式的多节点注册中心,相当于建立起多个联络站,让各个服务都能找到彼此;再者,配上负载均衡器这个神器,它能聪明地分配工作量,确保每个服务节点都不会过劳;还有,我们采用异步的方式来注册和发现服务,这样一来,服务上线或者下线的时候,就像玩接力赛一样,不会影响整体的运行流畅度。通过这些方法,我们就能顺顺利利地解决可能出现的问题,让服务始终保持稳稳当当的运行状态啦!同时呢,咱们也得明白一个道理,光靠技术手段还不够,运维管理和监控这两样东西也是不可或缺的。想象一下,它们就像是我们系统的“保健医生”和“值班保安”,能够随时发现并处理各种小毛病、小问题,确保我们的系统始终健健康康地运行着。
2023-05-13 08:00:03
492
翡翠梦境-t
Apache Pig
...声明式编程接口,使得开发者在面对多样的执行环境时能够保持代码的一致性与移植性。值得注意的是,Beam也支持将Pig Latin脚本转换为其SDK表示,从而在更广泛的执行环境中利用到Pig的优点。 同时,Apache Hadoop生态系统的持续演进也不容忽视,如Hadoop 3.x版本对YARN资源管理和存储层性能的改进,将进一步优化Pig在大规模集群上的并行处理效率。而诸如Apache Arrow这类内存中列式数据格式的普及,也将提升Pig与其他大数据组件间的数据交换速度,为复杂的数据分析任务带来新的可能。 总之,在当前的大数据时代背景下,Apache Pig的应用不仅限于传统的Hadoop MapReduce环境,它正在与更多新兴技术和平台整合,共同推动大数据并行处理技术的发展与创新。对于相关从业人员而言,紧跟这些趋势和技术进步,无疑能更好地发挥Pig在实际业务场景中的潜力。
2023-02-28 08:00:46
498
晚秋落叶
Apache Pig
...Foundation开发和维护。它提供了一种高级数据流语言Pig Latin,使得用户能够更方便、高效地在Hadoop平台上进行大规模数据处理任务,如数据清洗、转换、加载等操作。相较于直接编写MapReduce Java程序,Pig Latin大大简化了开发流程,提升了开发效率。 Hadoop生态系统 , Hadoop是用于大数据分布式存储和处理的开源软件框架。其生态系统包括一系列与Hadoop核心组件(如HDFS和MapReduce)紧密集成或基于其构建的工具、项目和技术。这些工具涵盖了从数据存储、计算、资源管理、数据分析到数据可视化等多个层面,Apache Pig便是其中用于简化复杂数据处理的重要组成部分。 MapReduce , MapReduce是一种编程模型,用于大规模数据集(通常运行在分布式系统上)并行处理的编程模型。它将复杂的计算任务分解为两个主要阶段。
2023-04-30 08:43:38
383
星河万里
转载文章
...和无序扩张的问题,有开发者提出了一种新型的动态资源配额管理方案,通过自定义准入控制器来实时监控并调整Namespace级别的资源限额,确保了集群资源的高效利用和公平分配。这种精细化管理方式不仅提升了集群的整体性能表现,还降低了由于资源争抢引发的故障风险。 此外,Kubernetes生态中一些第三方项目也围绕准入控制器展开了深入探索,如Open Policy Agent(OPA)集成到Webhook中,提供了强大的、声明式的策略引擎,让集群管理者能更加灵活地定义和执行复杂的准入规则,从而进一步提升集群安全性及合规性。 总之,准入控制器作为Kubernetes平台的核心组件,其发展动态与创新实践值得持续关注。未来,随着云原生技术的快速发展,准入控制器将承载更多的功能与责任,成为驱动Kubernetes集群迈向更高稳定性和安全性的基石。
2023-12-25 10:44:03
336
转载
SpringCloud
...微服务架构是一种软件开发方法,它将单一应用程序划分成一组小的、相互独立的服务。每个服务运行在其自己的进程中,服务之间通过API进行通信,每个服务都围绕着系统中的特定业务能力进行构建,并能够独立部署和扩展。在本文中,SpringCloud框架被用于实现微服务架构,帮助开发者处理服务注册发现、负载均衡、熔断限流等一系列分布式系统问题。 服务中心(如Eureka或Nacos) , 服务中心是微服务体系结构中的核心组件之一,负责管理所有服务实例的注册与发现。在文中提到的Eureka和Nacos就是两个流行的服务注册与发现组件。Eureka由Netflix开源,提供服务注册和服务发现的功能;Nacos则是阿里巴巴开源的一款更全面的动态服务发现、配置管理和服务管理平台。服务提供者启动后会将自己的信息注册到服务中心,而消费者则通过查询服务中心来获取并调用所需的服务。 服务网格(如Istio、Linkerd) , 服务网格是一种专门针对服务间通信的基础设施层,它抽象出一个控制平面用于集中化管理和监控服务间的流量,以及数据平面负责实际的服务间数据传输。在面对服务提供者与消费者匹配异常等问题时,服务网格技术提供了更为精细化的服务治理方案。例如,Istio是一个完全开源的服务网格,可透明地分层部署到现有的分布式应用中,对网络流量进行控制、遥测和安全性策略实施;而Linkerd也是一种轻量级的服务网格,旨在简化和保护云原生应用的服务间通信。 负载均衡(@LoadBalanced注解) , 负载均衡是一种计算机网络技术,用于在多个计算资源之间分配工作负载,以优化资源使用、最大化吞吐量、最小化响应时间并避免过载。在SpringCloud中,@LoadBalanced注解用于启用HTTP客户端(如RestTemplate)的负载均衡功能,使得服务消费者可以根据服务中心提供的服务实例列表进行智能选择,从而实现请求的均衡分布和故障转移。如果忘记添加该注解,可能会导致服务提供者无法正常注册到服务中心,或者消费者无法正确地从多个服务实例中选取目标进行调用。
2023-02-03 17:24:44
129
春暖花开
RabbitMQ
...消息传递是一种关键的组件,帮助各个服务之间保持松耦合。RabbitMQ,这款开源的消息中间件,就因为它的超级能扩容、超灵活的特性,让众多开发者一见倾心,纷纷把它当作解决问题的首选手册。这篇文咱会好好唠唠,RabbitMQ是怎么巧妙支持HTTP、gRPC这些协议,实现消息的发布和订阅的。咱们还会揭开这背后的神秘面纱,看看这些集成方式都有哪些独特之处,以及在实际生活中怎么用得上。 2. RabbitMQ基础 首先,让我们回顾一下RabbitMQ的基本概念。RabbitMQ通过消息队列、交换机和路由键实现了发布/订阅模式。生产者(Producer)将消息发送到交换机,而交换机根据规则(如路由键)决定将消息路由到哪个或哪些队列,消费者(Consumer)则从队列中获取消息进行处理。这种架构使得消息的传输不受发送者和接收者之间网络连接的影响。 3. HTTP集成 HTTP API Gateway 为了支持HTTP请求,RabbitMQ可以与HTTP API Gateway集成。例如,我们可以使用amqplib库来编写Node.js代码,如下所示: javascript const amqp = require('amqplib'); async function publishHttpMessage(url) { const connection = await amqp.connect('amqp://localhost'); const channel = await connection.createChannel(); // 创建一个HTTP Exchange await channel.exchangeDeclare( 'http_requests', // Exchange name 'topic', // Exchange type (HTTP requests use topic) { durable: false } // Durable exchanges are not needed for HTTP ); // 发送HTTP请求消息 const message = { routingKey: 'http.request.', // Match all HTTP requests body: JSON.stringify({ url }), }; await channel.publish('http_requests', message.routingKey, Buffer.from(JSON.stringify(message))); console.log(Published HTTP request to ${url}); await channel.close(); await connection.close(); } // 调用函数并发送请求 publishHttpMessage('https://example.com/api/v1'); 这种方式允许API Gateway接收来自客户端的HTTP请求,然后将这些请求转化为RabbitMQ的消息,进一步转发给后端处理服务。 4. gRPC集成 gRPC-RabbitMQ Bridge 对于gRPC,我们可能需要一个中间件桥接器,如grpc-gateway和protobuf-rpc。例如,gRPC客户端可以通过gRPC Gateway将请求转换为HTTP请求,然后由RabbitMQ处理。这里有一个简化版的伪代码示例: python from google.api import service_pb2_grpc from grpc_gateway import services_pb2, gateway class RabbitMQGrpcHandler(service_pb2_grpc.MyServiceServicer): def UnaryCall(self, request, context): Convert gRPC request to RabbitMQ message rabbit_message = services_pb2.MyRequestToProcess(request.to_dict()) Publish the message to RabbitMQ with channel: channel.basic_publish( exchange='gRPC_Requests', routing_key=rabbit_message.routing_key, body=json.dumps(rabbit_message), properties=pika.BasicProperties(content_type='application/json') ) Return a response or acknowledge the call return services_pb2.MyResponse(status="Accepted") Start the gRPC server with the RabbitMQ handler server = grpc.server(futures.ThreadPoolExecutor(max_workers=10)) service_pb2_grpc.add_MyServiceServicer_to_server(RabbitMQGrpcHandler(), server) server.add_insecure_port('[::]:50051') server.start() 这样,gRPC客户端发出的请求经过gRPC Gateway的适配,最终被RabbitMQ处理,实现异步解耦。 5. 特点和应用场景 - 灵活性:HTTP和gRPC集成使得RabbitMQ能够适应各种服务间的通信需求,无论是API网关、微服务架构还是跨语言通信。 - 解耦:生产者和消费者不需要知道对方的存在,提高了系统的可维护性和扩展性。 - 扩展性:RabbitMQ的集群模式允许在高并发场景下轻松扩展。 - 错误处理:消息持久化和重试机制有助于处理暂时性的网络问题。 - 安全性:通过SSL/TLS可以确保消息传输的安全性。 6. 结论 RabbitMQ的强大之处在于它能跨越多种协议,提供了一种通用的消息传递平台。你知道吗,咱们可以像变魔术那样,把HTTP和gRPC这两个家伙灵活搭配起来,这样就能构建出一个超级灵动、随时能扩展的分布式系统,就跟你搭积木一样,想怎么拼就怎么拼,特别给力!当然啦,实际情况是会根据咱们项目的需求和手头现有的技术工具箱灵活调整具体实现方式,不过无论咋整,RabbitMQ都像是个超级靠谱的邮差,让各个服务之间的交流变得贼顺畅。
2024-02-23 11:44:00
93
笑傲江湖-t
Apache Atlas
...a、Hive等大数据组件的支持,并增强了API的安全性和易用性,使得开发者能够更加便捷地处理实体创建过程中的各类问题,有力推动了企业在数字化转型过程中的元数据治理实践。 因此,对于正在使用或计划采用Apache Atlas的企业和开发者而言,紧跟官方更新动态,深入研究和掌握其REST API的使用技巧及错误排查方法,无疑将为企业的数据资产管理带来更大的价值。同时,结合业界最佳实践和实时案例分析,有助于不断提升自身的数据治理能力,确保在瞬息万变的技术浪潮中保持竞争力。
2023-06-25 23:23:07
562
彩虹之上
RabbitMQ
...bbitMQ实例,有开发者提出了一种基于Kubernetes本地持久卷(Local Persistent Volumes)自动扩展磁盘空间的创新实践。 具体来说,通过结合Prometheus监控系统和Kubernetes资源控制器,当检测到RabbitMQ所在Pod的磁盘使用率接近预设阈值时,会触发自动扩容机制,动态分配新的存储资源给RabbitMQ Pod。这一方案不仅有效解决了因磁盘空间不足引发的服务中断问题,还提升了运维效率,确保了分布式系统的高可用性。 另外,考虑到数据安全与合规要求,一些企业也开始重视对RabbitMQ消息队列中的敏感信息进行定期清理与备份。例如,结合开源工具如rabbitmq-consistent-hash-exchange和rabbitmq-message-deduplication,可以实现数据的有效去重和过期清理;同时,采用阿里云等提供的云存储服务进行定时增量备份,既保证了数据的安全存档,也减轻了本地磁盘的压力。 此外,随着微服务架构的普及,RabbitMQ作为核心的消息中间件组件,其性能优化与运维管理越来越受到业界关注。近期一篇发表在InfoQ的技术文章《深入剖析RabbitMQ性能调优策略》中,作者详细解读了如何从内存、网络、磁盘I/O等多个维度优化RabbitMQ,从而提升整体系统性能,降低故障发生概率。 综上所述,面对RabbitMQ服务器磁盘空间不足等现实问题,无论是采取自动化运维手段进行资源扩展,还是引入更先进的数据管理和备份策略,都是我们在构建和维护高可靠、高性能分布式系统过程中不可或缺的一环。持续跟进最新的技术发展与最佳实践,将有助于我们在实际工作中更好地应对挑战,保障业务的平稳运行。
2024-03-17 10:39:10
171
繁华落尽-t
DorisDB
...,并通过与大数据生态组件如Spark、Flink等深度集成,进一步拓宽了实时推荐系统的构建途径。 值得注意的是,随着《个人信息保护法》等相关法规的出台,实时推荐系统在追求高效精准的同时,也需要严格遵守数据合规要求。这不仅关乎企业的社会责任,也是未来技术创新的重要考量因素。因此,在选用DorisDB或其他实时分析工具构建推荐系统时,确保数据安全与隐私保护同样至关重要,值得开发者与企业深入研究与实践。 综上所述,实时推荐系统的构建不仅是技术挑战,更是法律规范、商业策略和用户体验相互交织的复杂课题。通过对实时分析技术如DorisDB的持续关注与应用探索,将有助于企业在瞬息万变的市场环境中保持竞争优势,实现可持续发展。
2023-05-06 20:26:51
446
人生如戏
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
fg [job_number]
- 将后台任务切换至前台运行。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"