前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[C语言源码预处理命令行方法 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Logstash
...是开源的服务器端数据处理管道,可以动态地收集、过滤、转换和输出多种类型的数据。在本文的上下文中,用户使用Logstash从不同源获取日志数据,通过预定义的过滤规则进行处理,并将其输出到Elasticsearch存储以供进一步分析和检索。 Elasticsearch , Elasticsearch是一个分布式、RESTful风格的搜索和分析引擎,基于Apache Lucene构建而成,能够实现近乎实时的全文搜索和分析功能。在本文中,Elasticsearch被用作Logstash输出的目标,用于存储和索引经过处理的日志数据,以便于后续进行高效查询、可视化展示及监控。 Uniform Resource Identifier (URI) , URI是一种字符串型标识符,用于唯一地标识互联网上的资源或服务的位置以及访问方法。在文章的具体应用场景中,URI用于配置Logstash与Elasticsearch集群节点的连接地址,通常包含协议(如http或https)、主机名或IP地址以及端口号,例如http://localhost:9200,确保Logstash能准确无误地向指定的Elasticsearch节点发送数据。 SSL/TLS连接 , SSL(Secure Sockets Layer)和其继任者TLS(Transport Layer Security)是网络通信中广泛采用的安全协议,用于加密在网络上传输的数据,防止信息被窃取或篡改。在本文提到的场景下,启用SSL加密连接意味着Logstash与Elasticsearch之间的数据传输将得到安全保障,避免敏感日志信息在传输过程中遭到泄露。 基本认证 , 基本认证是一种HTTP身份验证机制,要求用户提供用户名和密码进行验证。在Logstash与Elasticsearch集成时,可以在URI中嵌入基本认证信息(如user:password@hostname),以此确保只有经过授权的用户才能访问和写入Elasticsearch集群中的数据。
2024-01-27 11:01:43
302
醉卧沙场
Apache Solr
...以更加高效地进行数据处理和分析。这篇文章咱要唠唠如何巧用Solr这个神器,在大数据分析、机器学习还有人工智能领域大显身手,我会拿几个实际的例子,带你见识见识Solr到底有多牛掰! 二、Solr的基础知识 在开始探索Solr的应用之前,我们需要先了解一些基础知识。首先,Solr是一个基于Java的全文搜索引擎,它支持实时索引和查询、分布式部署和扩展、丰富的API接口等特性。其次,Solr的核心部件包括IndexWriter、Analyzer和Searcher,它们分别负责数据的索引、分词和查询。此外,Solr还提供了许多插件,如Tokenizer、Filter和QueryParser等,用户可以根据自己的需求选择合适的插件。 三、Solr在大数据分析中的应用 1. 数据导入和索引构建 Solr提供了一个灵活的数据导入工具——SolrJ,它可以将各种数据源(如CSV、XML、JSON等)转换为Solr所需的格式,并批量导入到Solr中。另外,Solr有个很贴心的功能,那就是支持多种语言的分词器。无论是哪种语言的数据源,你都可以挑选手头最适合的那个分词器去构建索引,就像挑选工具箱中的合适工具来完成一项工作一样方便。例如,如果我们有一个英文文本文件需要导入到Solr中,我们可以使用如下的SolrJ代码: scss SolrInputDocument doc = new SolrInputDocument(); doc.addField("id", "1"); doc.addField("title", "Hello, world!"); doc.addField("content", "This is a test document."); solrClient.add(doc); 2. 数据查询和分析 Solr的查询语句非常强大,支持布尔运算、通配符匹配、范围查询等多种高级查询方式。同时,Solr还支持多种统计和聚合函数,可以帮助我们从大量的数据中提取有用的信息。例如,如果我们想要查询包含关键词“test”的所有文档,我们可以使用如下的Solr查询语句: ruby http://localhost:8983/solr/mycollection/select?q=test 四、Solr在机器学习和人工智能应用中的应用 1. 数据预处理 在机器学习和人工智能应用中,数据预处理是非常重要的一步。Solr为大家准备了一整套超实用的数据处理和清洗法宝,像是过滤器、解析器、处理器这些小能手,它们能够帮咱们把那些原始数据好好地洗洗澡、换换装,变得干净整齐又易于使用。例如,如果我们有一个包含HTML标记的网页文本需要清洗,我们可以使用如下的Solr处理器: javascript 2. 数据挖掘和模型训练 在机器学习和人工智能应用中,数据挖掘和模型训练也是非常关键的步骤。Solr提供了丰富的数据挖掘和机器学习工具,如向量化、聚类、分类和回归等,可以帮助我们从大量的数据中提取有用的特征并建立预测模型。例如,如果我们想要使用SVM算法对数据进行分类,我们可以使用如下的Solr脚本: python 五、结论 Solr作为一款强大的全文搜索引擎,在大数据分析、机器学习和人工智能应用中有着广泛的应用。通过上述的例子,我们可以看到Solr的强大功能和灵活性,无论是数据导入和索引构建,还是数据查询和分析,或者是数据预处理和模型训练,都可以使用Solr轻松实现。所以,在这个大数据横行霸道的时代,不论是公司还是个人,如果你们真心想要在这场竞争中脱颖而出,那么掌握Solr技术绝对是你们必须要跨出的关键一步。就像是拿到通往成功大门的秘密钥匙,可不能小觑!
2023-10-17 18:03:11
536
雪落无痕-t
Ruby
...一种优雅而强大的编程语言,以其简洁明了的语法和丰富的库赢得了众多开发者的喜爱。不过话说回来,当我们真正动手搞实际项目的时候,却会频频遇到各种意料之外的难题。就拿最常见的一个来讲吧,那就是“多人同时往数据库里写入数据”的问题,这可真是个让人头疼的状况。 那么,什么是并发写入数据库呢?简单来说,就是在多个线程同时访问并尝试修改同一份数据时可能会出现的问题。这个问题在单机情况下,你可能察觉不到啥大问题,不过一旦把它搬到分布式系统或者那种人山人海、同时操作的高并发环境里,那就可能惹出一堆麻烦来。比如说,数据一致性可能会乱套,性能瓶颈也可能冒出来,这些都是我们需要关注和解决的问题。 本文将通过一些具体的例子来探讨如何在Ruby中解决并发写入数据库的问题,并且介绍一些相关的技术和工具。 二、问题复现 首先,我们来看一个简单的例子: ruby require 'thread' class TestDatabase def initialize @counter = 0 end def increment @counter += 1 end end db = TestDatabase.new threads = [] 5.times do |i| threads << Thread.new do db.increment end end threads.each(&:join) puts db.counter 输出: 5 这段代码看起来很简单,但是它实际上隐藏了一个问题。在多线程环境下,当increment方法被调用时,它的内部操作是原子性的。换句话说,甭管有多少线程同时跑这个方法,数据一致性的问题压根就不会冒出来。 然而,如果我们想要改变这个行为,让多线程可以同时修改@counter的值,我们可以这样修改increment方法: ruby def increment synchronize do @counter += 1 end end 在这个版本的increment方法中,我们使用了Ruby中的synchronize方法来保护对@counter的修改。这就意味着,每次只能有一个线程“独享”执行这个方法里面的小秘密,这样一来,数据一致性的问题就妥妥地被我们甩掉了。 这就是并发写入数据库的一个典型问题。在同时做很多件事的场景下,为了让数据不乱套,保持准确无误,我们得采取一些特别的办法来保驾护航。 三、解决方案 那么,我们该如何解决这个问题呢? 一种常见的解决方案是使用锁。锁是一种同步机制,它可以防止多个线程同时修改同一个资源。在Ruby中,我们可以使用synchronize方法来创建一个锁,然后在需要保护的代码块前面加上synchronize方法,如下所示: ruby def increment synchronize do @counter += 1 end end 另外,我们还可以使用更高级的锁,比如RabbitMQ的交换机锁、Redis的自旋锁等。 另一种解决方案是使用乐观锁。乐观锁,这个概念嘛,其实是一种应对多线程操作的“小妙招”。它的核心理念就是,当你想要读取某个数据的时候,要先留个心眼儿,确认一下这个数据是不是已经被其他线程的小手手给偷偷改过啦。假如数据没被人动过手脚,那咱们就痛痛快快地执行更新操作;可万一数据有变动,那咱就得“倒车”一下,先把事务回滚,再重新把数据抓取过来。 在Ruby中,我们可以使用ActiveRecord的lock_for_update方法来实现乐观锁,如下所示: ruby User.where(id: user_id).lock_for_update.first.update_columns(name: 'New Name') 四、结论 总的来说,并发写入数据库是一个非常复杂的问题,它涉及到线程安全、数据一致性和性能等多个方面。在Ruby中,我们可以使用各种方法来解决这个问题,包括使用锁、使用乐观锁等。 但是,无论我们选择哪种方法,都需要充分理解并发编程的基本原理和技术,这样才能正确地解决问题。希望这篇文章能对你有所帮助,如果你有任何疑问,欢迎随时联系我。
2023-06-25 17:55:39
51
林中小径-t
HessianRPC
...fers作为接口描述语言(IDL),严格规定了方法签名及参数类型,从而有效地避免了因参数匹配错误导致的问题。 同时,对于API设计与版本管理,业界提出了更严格的规范和实践。例如,Google的API设计指南强调了兼容性和向后兼容性的重要性,并建议在修改服务接口时通过增加新方法而非改变原有方法签名的方式来维护稳定的服务契约。 另外,针对远程调用过程中的异常处理和熔断机制,Spring Cloud Netflix Hystrix等组件提供了强大的支持,允许开发者更好地处理分布式系统中可能出现的各种故障场景,确保系统的健壮性和可用性。 综上所述,在分布式系统开发领域,除了关注如何正确使用HessianRPC之外,了解和掌握其他先进的RPC框架、API设计原则以及故障容错策略,也是提升系统整体性能和稳定性的重要途径。不断跟进最新的技术动态和最佳实践,将有助于我们更好地应对复杂环境下的技术挑战。
2024-01-16 09:18:32
542
风轻云淡
MyBatis
...得天衣无缝,让我们在处理数据库操作时既高效又不失优雅。 二、什么是存储过程? 2.1 存储过程的基本概念 存储过程是一种预编译的SQL语句集合,可以看作是一组被封装起来的数据库操作命令。它的厉害之处在于可以直接在数据库服务器上跑,还能反复使用,这样就能省下不少网络传输的功夫,让程序跑得飞快。此外,存储过程还能增强系统的安全性,因为它可以限制用户直接访问表数据,只能通过特定的存储过程来操作数据。 2.2 存储过程的优势 存储过程在实际应用中具有很多优势,例如: - 性能优化:存储过程在数据库服务器上运行,减少了客户端与服务器之间的数据传输。 - 安全控制:通过存储过程,我们可以为不同的用户设置不同的权限,只允许他们执行特定的操作。 - 代码重用:存储过程可以被多次调用,避免了重复编写相同的SQL语句。 - 事务管理:存储过程支持事务管理,可以确保一系列数据库操作要么全部成功,要么全部失败。 三、MyBatis如何调用存储过程 3.1 配置文件中的设置 在开始编写代码之前,我们首先需要在MyBatis的配置文件(通常是mybatis-config.xml)中进行一些必要的设置。为了能够调用存储过程,我们需要开启动态SQL功能,并指定方言。例如: xml 3.2 实现代码 接下来,我们来看一下具体的代码实现。想象一下,我们有个名叫get_user_info的存储过程,就像一个魔术师,一接到你的用户ID(@user_id)和一个结果占位符(@result),就能变出这个用户的所有详细信息。下面是MyBatis的XML映射文件中对应的配置: 3.2.1 XML映射文件 xml {call get_user_info( {userId, mode=IN, jdbcType=INTEGER}, {result, mode=OUT, jdbcType=VARCHAR, javaType=String} )} 这里需要注意的是,statementType属性必须设置为CALLABLE,表示这是一个存储过程调用。{userId}和{result}分别代表输入参数和输出参数。mode属性用于指定参数的方向,jdbcType和javaType属性则用于定义参数的数据类型。 3.2.2 Java代码实现 下面是一个简单的Java代码示例,展示了如何调用上述存储过程: java public class UserService { private UserMapper userMapper; public String getUserInfo(int userId) { Map params = new HashMap<>(); params.put("userId", userId); params.put("result", null); userMapper.getUserInfo(params); return (String) params.get("result"); } } 在这段代码中,我们首先创建了一个Map对象来保存输入参数和输出结果。然后,我们调用了userMapper.getUserInfo方法,并传入了这个参数映射。最后,我们从映射中获取到输出结果并返回。 四、注意事项 在使用MyBatis调用存储过程时,有一些常见的问题需要注意: 1. 参数顺序 确保存储过程的参数顺序与MyBatis配置文件中的顺序一致。 2. 数据类型匹配 确保输入和输出参数的数据类型与存储过程中的定义相匹配。 3. 异常处理 由于存储过程可能会抛出异常,因此需要在调用时添加适当的异常处理机制。 4. 性能监控 存储过程的执行可能会影响整体系统性能,因此需要定期进行性能监控和优化。 五、总结 通过以上的介绍,我们可以看到,MyBatis调用存储过程其实并不复杂。只要咱们把MyBatis的XML映射文件配好,再按规矩写好Java代码,调用存储过程就是小菜一碟。当然,在实际开发过程中,还需要根据具体需求灵活调整配置和代码,以达到最佳效果。希望这篇文章能够帮助你在项目中更好地利用存储过程,提高开发效率和代码质量。 如果你对存储过程有任何疑问或者想了解更多细节,请随时联系我,我们一起探讨和学习!
2025-01-03 16:15:42
63
风中飘零
Go Gin
...一个热爱并醉心于Go语言生态的开发者,我今天要带大家一起深入探讨一个有趣且实用的话题——如何在Go Gin框架中优雅地设置中间件。如果你对Go Gin这玩意儿有过接触,那铁定知道,它的一大杀手锏就是中间件。这玩意儿就像咱们小时候玩的乐高积木一样,能让我们轻松拼装出既高效灵活、又功能满满的Web应用程序,可厉害了!那么,让我们一起动手实践,拨开迷雾,看看如何在Gin中施展中间件的魅力吧! 一、理解Gin中间件(2) 首先,让我们从概念层面来理解一下什么是Gin中间件。用大白话说,中间件就像是你请求办事过程中的一系列“关卡”,每一个关卡都各司其职,干着不同的活儿。比如有的专门负责验明正身(身份验证),有的像账房先生一样记录每一次行动(日志记录),还有的像是门口保安,控制人流、避免拥堵(限流处理)。当一个HTTP请求飞过来的时候,它会先经历一段奇妙的“中间件之旅”,这些家伙会逐个对请求进行加工处理,最后这个“接力棒”才会稳妥地交到真正的业务逻辑处理器手中,让它来施展实际的魔法。这样的设计使得我们的应用架构更清晰,也便于模块化开发和维护。 二、创建与注册中间件(3) 在Gin中创建和注册中间件非常直观易行。下面以一个简单的日志记录中间件为例: go package main import ( "github.com/gin-gonic/gin" "log" ) // LogMiddleware 是我们自定义的日志记录中间件 func LogMiddleware() gin.HandlerFunc { return func(c gin.Context) { log.Printf("Start handling request: %s", c.Request.URL.String()) // 调用Next函数将请求传递给下一个中间件或最终路由处理器 c.Next() log.Printf("Finished handling request: %s", c.Request.URL.String()) } } func main() { r := gin.Default() // 注册中间件 r.Use(LogMiddleware()) // 添加路由 r.GET("/hello", func(c gin.Context) { c.JSON(200, gin.H{"message": "Hello, World!"}) }) // 启动服务 r.Run(":8080") } 上述代码中,LogMiddleware是一个返回gin.HandlerFunc的函数,这就是Gin框架中的中间件形式。瞧,我们刚刚通过一句神奇的代码“r.Use(LogMiddleware())”,就像在全局路由上挂了个小铃铛一样,把日志中间件给安排得明明白白。现在,所有请求来串门之前,都得先跟这个日志中间件打个照面,让它给记个账嘞! 三、多个中间件的串联与顺序(4) Gin支持同时注册多个中间件,并按照注册顺序依次执行。例如,我们可以添加一个权限验证中间件: go func AuthMiddleware() gin.HandlerFunc { return func(c gin.Context) { // 这里只是一个示例,实际的验证逻辑需要根据项目需求编写 if isValidToken(c) { c.Next() } else { c.AbortWithStatusJSON(http.StatusUnauthorized, gin.H{"error": "Unauthorized"}) } } } //... // 在原有基础上追加新的中间件 r.Use(AuthMiddleware()) //... 在上面的代码中,我们新增了一个权限验证中间件,它会在日志中间件之后执行。要是验证没过关,那就甭管了,直接喊停请求的整个流程。否则的话,就让它继续溜达下去,一路传递到其他的中间件,再跑到最后那个终极路由处理器那里去。 四、结语(5) 至此,我们已经在Go Gin中设置了多个中间件,并理解了它们的工作原理和执行顺序。实际上,中间件的功能远不止于此,你可以根据项目需求定制各种功能强大的中间件,如错误处理、跨域支持、性能监控等。不断尝试和探索,你会发现Gin中间件机制能为你的项目带来极大的便利性和可扩展性。而这一切,只需要我们发挥想象力,结合Go语言的简洁之美,就能在Gin的世界里创造无限可能!
2023-07-09 15:48:53
507
岁月如歌
Beego
...户的请求导向到相应的处理程序。Beego,这个超强悍的Go语言开发框架,手握一套既丰富又灵活的路由系统,让开发者能够随心所欲地按照实际需求定制自己的路由规则,就像在自家厨房里调配秘制调料一样自由自在。这篇内容,咱会手把手带你,用超详细的代码实例和深入浅出的探讨,一步步掌握在Beego框架中如何随心所欲定制你独一无二的路由规则,包你学完就能玩转个性定制。 2. Beego路由基础理解 首先,我们先来快速了解一下Beego的默认路由规则。Beego默认使用RESTful风格的路由,例如,对于一个User资源,其增删改查操作对应的路由可能是这样的: go beego.Router("/users", &controllers.UserController{}) 这个简单的语句告诉Beego,所有以"/users"开头的HTTP请求都将被转发给UserController进行处理。不过,在面对那些乱七八糟的业务场景时,我们或许更需要能够“绣花”般精细化、像橡皮筋一样灵活的路由控制方式。 3. 自定义路由规则实践 (3.1) 定义静态路由 假设我们需要为用户个人主页创建一个特定的路由规则,如 /user/:username,其中:username是一个变量参数,代表具体的用户名。我们可以这样实现: go beego.Router("/user/:username", &controllers.UserProfileController{}, "get:GetUserProfile") 上述代码中,:username就是一个动态参数,Beego会自动将其捕获并注入到UserProfileController的GetUserProfile方法的输入参数中。 (3.2) 定义多格式路由 如果我们希望同时支持JSON和XML两种格式的数据请求,可以通过添加正则匹配来进行区分: go beego.Router("/api/v1/data.:format", &controllers.DataController{}, "get:GetData") 在这里,:format可以是json或xml,然后在GetData方法内部可以根据这个参数返回不同格式的数据。 (3.3) 自定义路由处理器 对于更为复杂的需求,比如基于URL的不同部分执行不同的逻辑,可以通过自定义路由处理器实现: go beego.InsertFilter("/", beego.BeforeRouter, func(ctx context.Context) { // 解析URL,进行自定义路由处理 urlParts := strings.Split(ctx.Request.URL.Path, "/") if len(urlParts) > 2 && urlParts[1] == "custom" { switch urlParts[2] { case "action1": ctx.Output.Body([]byte("Executing Action 1")) return case "action2": ctx.Output.Body([]byte("Executing Action 2")) return } } // 若未命中自定义路由,则继续向下执行默认路由逻辑 }) 在这个例子中,我们在进入默认路由之前插入了一个过滤器,对请求路径进行解析,并针对特定路径执行相应动作。 4. 总结与思考 自定义路由规则为我们的应用带来了无比的灵活性,让我们能够更好地适配各种复杂的业务场景。在我们真正动手开发的时候,得把Beego的路由功能玩得溜起来,不断捣鼓和微调路由设置,让它们既能搞定各种功能需求,又能保持干净利落、易于维护和扩展性棒棒哒。记住,路由设计并非一蹴而就,而是伴随着项目迭代演进而逐步完善的。所以,别怕尝试,大胆创新,让每个API都找到它的“归宿”,这就是我们在Beego中实现自定义路由的乐趣所在!
2023-07-13 09:35:46
621
青山绿水
转载文章
...是用第三方工具,还是命令,都无法删除成功。因为时间有点长了,所以报的啥错我也记不清了… 无法删除、无法访问、select 什么的都不成功。其他同事对这张表的操作一样。 百度之后,显示最多的结果是,有依赖,解决办法也很简单: DROP TABLE [table] CASCADE; 但是执行后,仍然解决不了问题。 问题分析 既然和依赖没关系,那就想其他办法。 经过百度和分析,大概率是有一个查询的sql,因为某些原因卡住了,然后一直占住这张表了,其他的操作都无法使用这张表。 问题解决 百度之后有如下办法: select from pg_class where relname='t_test' select oid from pg_class where relname='t_test' -- 将查出来的oid 填入下面select from pg_locks where relation='33635' -- 再将查出来的pid,调用下面的方法select pg_terminate_backend (17789) 因为时间过长,所以我也不确定下面的sql是干嘛的了… select ,pid,backend_start,application_name,query_start,waiting,state ,query from pg_stat_activitywhere pid = 17789order by query_start asc;SELECT FROM pg_stat_activity WHERE datname='t_test' 两个函数的区别 除了pg_terminate_backend()外,还有pg_cancel_backend()。 这里和oracle类似kill session的操作是 pg_terminate_backend() pg_cancel_backend() 只能关闭当前用户下的后台进程 向后台发送SIGINT信号,用于关闭事务,此时session还在,并且事务回滚 取消后台操作,回滚未提交事物 pg_terminate_backend() 需要superuser权限,可以关闭所有的后台进程 向后台发送SIGTERM信号,用于关闭事务、关闭Process,此时session也会被关闭,并且事务回滚 中断session,回滚未提交事物 后记 后来查了以下,出现那种删不掉,DROP TABLE [table] CASCADE也没用的情况,是因为表被锁住了。 查询被锁住的表和进程 select from pg_locks ajoin pg_class b on a.relation = b.oidjoin pg_stat_activity c on a.pid = c.pidwhere a.mode like '%ExclusiveLock%'; 这里查的是排它锁,也可以精确到行排它锁或者共享锁之类的。这里有几个重要的column:a.pid是进程id,b.relname是表名、约束名或者索引名,a.mode是锁类型。 杀掉指定表指定锁的进程 select pg_cancel_backend(a.pid) from pg_locks ajoin pg_class b on a.relation = b.oidjoin pg_stat_activity c on a.pid = c.pidwhere b.relname ilike '表名' and a.mode like '%ExclusiveLock%';--或者使用更加霸道的pg_terminate_backend():select pg_terminate_backend(a.pid) from pg_locks ajoin pg_class b on a.relation = b.oidjoin pg_stat_activity c on a.pid = c.pidwhere b.relname ilike '表名' and a.mode like '%ExclusiveLock%'; 另外需要注意的是,pg_terminate_backend()会把session也关闭,此时sessionId会失效,可能会导致系统账号退出登录,需要清除掉浏览器的缓存cookie(至少我们系统遇到的情况是这样的)。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_42845682/article/details/116980793。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-22 09:08:45
126
转载
Golang
... 在Golang编程语言中,goroutine是一种轻量级线程实现,它由运行时系统管理,并允许在同一进程中并发执行多个函数。相比于传统的操作系统线程,goroutine的创建和销毁开销更小,数量更多,并且能通过Golang运行时的调度器高效地在可用的CPU核心间切换,从而极大地提升程序处理并发任务的能力。 Channel(通道) , 在Golang并发模型中,通道是一个类型化的通信机制,用于在不同的goroutine之间发送数据或信号。通道是同步原语,确保了发送和接收操作的有序性与安全性,遵循“通过通信共享内存”的并发编程原则。在实际使用中,一个goroutine可以通过通道将数据发送给另一个goroutine,接收方会在数据准备好后从通道中取出数据,从而有效地解决了多线程间的同步问题,实现了并发任务间的协同工作。 云原生技术 , 云原生技术是一种构建和运行应用程序的方法,其理念是充分利用云计算的优势,如弹性伸缩、分布式计算等特性。在文章的语境中,Golang因其卓越的并发性能和简洁的并发模型,在云原生环境下的服务端开发领域得到了广泛应用。例如在Kubernetes这样的容器编排系统中,Golang被用来编写高并发、高性能的服务和控制器,以适应云环境下的资源调度需求和服务扩展能力。
2023-02-26 18:14:07
405
林中小径
Kafka
...ception的解决方法详析 在Apache Kafka这个分布式流处理平台中,我们偶尔会遇到一个令人困扰的问题——UnknownReplicaAssignmentException。这种情况通常会在你尝试捣鼓创建或修改主题的时候冒出来,说白了就是Kafka认不出或者没法给各个broker准确分配副本啦。这篇东西,咱们要来点硬货,深度挖掘这个异常背后的故事,再配上些实实在在的代码实例,手把手带你一层层剥开它的神秘外壳,找到真正能解决问题的好法子。 1. 理解UnknownReplicaAssignmentException 1.1 异常原因浅析 UnknownReplicaAssignmentException本质上是由于在对主题进行副本分配时,Kafka集群中存在未知的Broker ID或者分区副本数量设置不正确导致的。比如,假如你在设置文件里给副本节点指定的Broker ID,在当前集群里根本找不到的话,那么在新建或者更新主题的时候,系统就会抛出这个错误提示给你。 1.2 生动案例说明 假设你正在尝试创建一个名为my-topic的主题,并指定其副本列表为[0, 1, 2],但你的Kafka集群实际上只有两个broker(ID分别为0和1)。这时,当你执行以下命令: bash kafka-topics.sh --create --topic my-topic --partitions 1 --replication-factor 3 --bootstrap-server localhost:9092 --config replica_assignment=0:1:2 上述命令将会抛出UnknownReplicaAssignmentException,因为broker ID为2的节点在集群中并不存在。 2. 解决UnknownReplicaAssignmentException的方法 2.1 检查集群Broker状态 首先,你需要确认提供的所有副本broker是否都存在于当前Kafka集群中。可以通过运行如下命令查看集群中所有的broker信息: bash kafka-broker-api-versions.sh --bootstrap-server localhost:9092 确保你在分配副本时引用的broker ID都在输出结果中。 2.2 调整副本分配策略 如果发现确实有错误引用的broker ID,你需要重新调整副本分配策略。例如,修正上面的例子,将 replication-factor 改为与集群规模相匹配的值: bash kafka-topics.sh --create --topic my-topic --partitions 1 --replication-factor 2 --bootstrap-server localhost:9092 2.3 验证并修复配置文件 此外,还需检查Kafka配置文件(server.properties)中关于broker ID的设置是否正确。每个broker都应该有一个唯一的、在集群范围内有效的ID。 2.4 手动修正已存在的问题主题 若已存在因副本分配问题而引发异常的主题,可以尝试手动删除并重新创建。但务必谨慎操作,以免影响业务数据。 bash kafka-topics.sh --delete --topic my-topic --bootstrap-server localhost:9092 再次按照正确的配置创建主题 kafka-topics.sh --create ... 使用合适的参数创建主题 3. 思考与探讨 面对这类问题,除了具体的技术解决方案外,我们更应该思考如何预防此类异常的发生。比如在搭建和扩容Kafka集群这事儿上,咱们得把副本分配策略和集群大小的关系琢磨透彻;而在日常的运维过程中,别忘了定期给集群做个全面体检,查看下主题的那些副本分布是否均匀健康。同时呢,我们也在用自动化的小工具和监控系统,就像有一双随时在线的火眼金睛,能实时发现并预警那些可能会冒出来的UnknownReplicaAssignmentException等小捣蛋鬼,这样一来,咱们的Kafka服务就能更稳、更快地运转起来,像上了发条的瑞士钟表一样精准高效。 总之,虽然UnknownReplicaAssignmentException可能带来一时的困扰,但只要深入了解其背后原理,采取正确的应对措施,就能迅速将其化解,让我们的Kafka服务始终保持良好的运行状态。在这个过程中,不断学习、实践和反思,是我们提升技术能力,驾驭复杂系统的必经之路。
2023-02-04 14:29:39
435
寂静森林
Hadoop
...p是一个开源的大数据处理框架,由Apache基金会维护。它能够处理大规模的数据,并且可以运行在廉价的硬件上。Hadoop的核心是由两个主要组件组成的:HDFS(Hadoop Distributed File System)和MapReduce。 三、如何使用Hadoop进行数据分析和挖掘? 1. 使用Hadoop进行数据清洗 数据清洗是指去除数据中的错误、重复或者不必要的信息,使数据变得更加规范化。Hadoop这哥们儿,可是帮了我们大忙了,它手头上有一些贼好用的工具,像是Hive、Pig这些家伙,专门用来对付那些乱七八糟的数据清洗工作,让我们省了不少力气。 以下是一段使用Hive进行数据清洗的示例代码: sql CREATE TABLE cleaned_data AS SELECT FROM raw_data WHERE column_name = 'value'; 2. 使用Hadoop进行数据预处理 数据预处理是指将原始数据转换成适合机器学习模型训练的数据。你知道吗?Hadoop这个家伙可贴心了,它给我们准备了一整套实用工具,专门用来帮咱们把数据“打扮”得漂漂亮亮的。就比如Spark MLlib和Mahout这些小助手,它们可是预处理数据的一把好手! 以下是一段使用Spark MLlib进行数据预处理的示例代码: python from pyspark.ml.feature import VectorAssembler 创建向量器 vectorizer = VectorAssembler(inputCols=["col1", "col2"], outputCol="features") 对数据进行向量化 dataset = vectorizer.transform(data) 3. 使用Hadoop进行数据分析 数据分析是指通过统计学的方法对数据进行分析,从而得到有用的信息。Hadoop这个家伙可厉害了,它配备了一套数据分析的好帮手,比如说Hive和Pig这两个小工具。有了它们,咱们就能更轻松地对数据进行挖掘和分析啦! 以下是一段使用Hive进行数据分析的示例代码: sql SELECT COUNT() FROM data WHERE column_name = 'value'; 4. 使用Hadoop进行数据挖掘 数据挖掘是指从大量数据中发现未知的模式和关系。Hadoop这个家伙,可帮了我们大忙啦,它带来了一些超实用的工具,比如Mahout和Weka这些小能手,专门帮助咱们进行数据挖掘的工作。就像是在海量数据里淘金的神器,让复杂的数据挖掘任务变得轻松又简单! 以下是一段使用Mahout进行数据挖掘的示例代码: java from org.apache.mahout.cf.taste.impl.model.file.FileDataModel import FileDataModel from org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood import NearestNUserNeighborhood from org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender import GenericUserBasedRecommender from org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity import PearsonCorrelationSimilarity from org.apache.mahout.cf.taste.impl.util.FastIDSet import FastIDSet 加载数据 model = FileDataModel.load(new File("data.dat")) 设置邻居数量 neighborhoodSize = 10 创建相似度测量 similarity = new PearsonCorrelationSimilarity(model) 创建邻居模型 neighborhood = new NearestNUserNeighborhood(neighborhoodSize, similarity, model.getUserIDs()) 创建推荐器 recommender = new GenericUserBasedRecommender(model, neighborhood, similarity) 获取推荐列表 long time = System.currentTimeMillis() for (String userID : model.getUserIDs()) { List recommendations = recommender.recommend(userID, 10); for (RecommendedItem recommendation : recommendations) { System.out.println(recommendation); } } System.out.println(System.currentTimeMillis() - time); 四、结论 综上所述,Hadoop是一个强大的大
2023-03-31 21:13:12
469
海阔天空-t
Apache Solr
...,甚至直接失败。解决方法如下: 1. 检查网络连接 确保主节点和从节点之间网络稳定,可以通过ping命令来测试。 2. 增加重试机制 可以在Solr配置文件中设置重试次数,比如: xml 00:00:30 true 5 60 4.2 配置错误 配置错误也很常见,尤其是对于新手来说。有个小窍门,在配置文件里多加点注释,这样就能大大降低出错的几率啦!比如: xml commit schema.xml,stopwords.txt http://localhost:8983/solr/collection1/replication http://localhost:8983/solr/collection1/replication 00:00:30 4.3 磁盘空间问题 磁盘空间不足也是常见的问题,尤其是在大规模数据量的情况下。解决方法是定期清理旧的索引文件,或者增加磁盘容量。Solr提供了清理旧索引的API,可以定时调用: bash curl http://localhost:8983/solr/collection1/admin/cores?action=UNLOAD&core=collection1&deleteIndex=true&deleteDataDir=true 4.4 权限问题 权限问题通常是因为用户没有足够的权限访问Solr API。解决方法是给相关用户分配正确的角色和权限。例如,在Solr的配置文件中设置用户权限: xml etc/security.json true 然后在security.json文件中添加用户的权限信息: json { "authentication": { "class": "solr.BasicAuthPlugin", "credentials": { "admin": "hashed_password" } }, "authorization": { "class": "solr.RuleBasedAuthorizationPlugin", "permissions": [ { "name": "access-replication-handler", "role": "admin" } ], "user-role": { "admin": ["admin"] } } } 5. 总结 通过上面的分享,希望大家都能够更好地理解和处理Apache Solr中的复制问题。复制虽然重要,但也确实容易出错。但只要我们细心排查,合理配置,还是可以解决这些问题的。如果你也有类似的经历或者更好的解决方案,欢迎在评论区留言交流! 最后,我想说的是,技术这条路真的是越走越远,每一个问题都是一次成长的机会。希望大家都能在技术之路上越走越远,越走越稳!
2025-03-11 15:48:41
91
星辰大海
DorisDB
...PLICA RULE命令添加规则 -- 示例:REPLICA RULE 'slave_to_master' FROM TABLE 'master_table' TO TABLE 'slave_table'; 3. 触发数据同步 DorisDB会在数据变更时自动触发数据同步。为了确认数据小抄有没有搞定,咱们可以动手查查看,比对一下主文件和从文件里的信息是不是一模一样。就像侦探破案一样,咱们得找找看有没有啥遗漏或者错误的地方。这样咱就能确保数据复制的过程没出啥岔子,一切都顺利进行。 sql -- 查询主表数据 SELECT FROM master_table; -- 查询从表数据 SELECT FROM slave_table; 4. 检查数据一致性 为了确保数据的一致性,可以在主表进行数据修改后,立即检查从表是否更新了相应数据。如果从表的数据与主表保持一致,则表示数据复制和同步功能正常工作。 sql -- 在主表插入新数据 INSERT INTO master_table VALUES (5, 'John Doe', 30); -- 等待一段时间,让数据同步完成 SLEEP(5); -- 检查从表是否已同步新数据 SELECT FROM slave_table; 四、结论 通过上述步骤,我们不仅实现了在DorisDB中的基本数据复制功能,还通过实际操作验证了数据的一致性。DorisDB的强大之处在于其简洁的配置和自动化的数据同步机制,使得数据管理变得高效且可靠。嘿,兄弟!你得知道 DorisDB 这个家伙可厉害了,不管是用来备份数据,还是帮咱们平衡服务器的负载,或者是分发数据,它都能搞定,而且效率杠杠的,稳定性也是一流的。有了 DorisDB 的保驾护航,咱们企业的数据驱动战略就稳如泰山,打心底里感到放心和踏实! --- 在编写本文的过程中,我尝试将技术内容融入到更贴近人类交流的语言中,不仅介绍了DorisDB数据复制与同步的技术细节,还通过具体的SQL语句和代码示例,展示了实现这一功能的实际操作流程。这样的写作方式旨在帮助读者更好地理解和实践相关技术,同时也增加了文章的可读性和实用性。
2024-08-25 16:21:04
108
落叶归根
Lua
...编程的世界里,Lua语言以其轻量级、易嵌入的特点而闻名。不过嘛,就算是看起来挺简单的语言,在实际开发的时候也会碰到不少让人头疼的问题。嘿,今天咱们来聊聊在用Lua C API的时候经常会碰到的一个坑——就是用lua_pushvalue和lua_gettable这两个操作时容易出错的地方。这不仅是一个技术挑战,更是一次深入理解Lua机制的机会。 一、初次遭遇 神秘的错误提示 故事开始于一个普通的下午,我正着手为一个新的游戏项目编写脚本引擎。为了提升性能和方便以后的维护,我们打算把核心功能用C++来写,而游戏的具体玩法就交给Lua脚本来搞定。这样既高效又灵活!事情本来进展得挺顺利的,结果当我试着调用一个自定义函数时,程序突然就崩溃了。屏幕上跳出了一行让人完全摸不着头脑的错误信息:“试图调用全局‘func_name’(一个空值)”。这下我就懵圈了,心想这到底是什么鬼? 这显然不是我想要的结果。一开始,我还以为是Lua脚本加载出问题了,结果仔细一看,发现文件路径和内容都挺正常的,就不是这个原因。难道是我的C++代码出了问题?带着疑问,我开始深入研究。 二、深入探究 揭开谜底 经过一番查阅资料和调试,我发现问题出在lua_pushvalue和lua_gettable这两个API的使用上。简单地说,lua_pushvalue就像是把栈上的某个东西复制一份放到另一个地方,而lua_gettable则是从一个表格里找到特定的键,然后取出它对应的值。虽然这些功能都挺明确的,但如果在特定情况下用错了,还是会闹出运行时的笑话。 为了更好地理解这个问题,让我们来看几个具体的例子。 示例1:基本概念 c // 假设我们有一个名为myTable的表,其中包含键为"key",值为"value"的项。 lua_newtable(L); // 创建一个空表 lua_pushstring(L, "key"); // 将字符串"key"压入栈顶 lua_pushstring(L, "value"); // 将字符串"value"压入栈顶 lua_settable(L, -3); // 使用栈顶元素作为键,-2位置的元素作为值,设置到-3位置(即刚刚创建的表) 上述代码创建了一个名为myTable的表,并向其中添加了一个键值对。接下来,我们尝试通过lua_gettable访问这个值: c lua_getglobal(L, "myTable"); // 获取全局变量myTable lua_getfield(L, -1, "key"); // 从myTable中获取键为"key"的值 printf("%s\n", lua_tostring(L, -1)); // 输出结果应为"value" 这段代码应该能正确地输出value。但如果我们在lua_getfield之前没有正确地管理栈,就很有可能会触发错误。 示例2:常见的错误场景 假设我们误用了lua_pushvalue: c lua_newtable(L); lua_pushstring(L, "key"); lua_pushstring(L, "value"); lua_settable(L, -3); // 正确 lua_pushvalue(L, -1); // 这里实际上是在复制栈顶元素,而不是预期的行为 lua_gettable(L, -2); // 错误使用,因为此时栈顶元素已经不再是"key"了 这里的关键在于,lua_pushvalue只是复制了栈顶的元素,并没有改变栈的结构。当我们紧接着调用 lua_gettable 时,其实就像是在找一个根本不存在的地方的宝贝,结果当然是找不到啦,所以就出错了。 三、解决之道 掌握正确的使用方法 明白了问题所在后,解决方案就相对简单了。我们需要确保在调用lua_gettable之前,栈顶元素是我们期望的那个值。这就像是说,我们得先把栈里的东西清理干净,或者至少得确定在动手之前,栈里头的东西是我们想要的样子。 c lua_newtable(L); lua_pushstring(L, "key"); lua_pushstring(L, "value"); lua_settable(L, -3); // 清理栈,确保栈顶元素是table lua_pop(L, 1); lua_pushvalue(L, -1); // 正确使用,复制table本身 lua_gettable(L, -2); // 现在可以安全地从table中获取数据了 通过这种方式,我们可以避免因栈状态混乱而导致的错误。 四、总结与反思 通过这次经历,我深刻体会到了理解和掌握底层API的重要性。尽管Lua C API提供了强大的功能,但也需要开发者具备一定的技巧和经验才能正确使用。错误的信息常常会绕弯弯,不会直接带你找到问题的关键。所以,遇到难题时,咱们得有耐心,一步步地去分析和查找,这样才能找到解决的办法。 同时,这也提醒我们在编写任何复杂系统时,都应该重视基础理论的学习和实践。只有真正理解了背后的工作原理,才能写出更加健壮、高效的代码。 希望这篇文章对你有所帮助,如果你也有类似的经历,欢迎分享你的故事!
2024-11-24 16:19:43
131
诗和远方
Element-UI
...dleChange方法中直接改变了currentStep的值并手动触发视图刷新,样式仍然会在一段时间后才被正确地应用到相应的步骤条上。 三、问题原因分析 深入探究ElSteps组件内部源码发现,当current属性发生变化时,组件并没有立即执行样式重置操作,而是依赖于浏览器的CSS渲染机制。你知道吗,浏览器在显示网页内容时,其实有点小“拖延症”,就像个排队等候的“画师”。我们把这称作“渲染队列”。也就是说,有时候你对网页做的改动,并不会马!上!就!呈现在页面上,就像是样式更新还在慢悠悠地等队伍排到自己呢,这就可能会造成样式更新的滞后现象。 此外,ElSteps组件在每次current属性变化时都会主动重新计算并设置CSS类名,但是在过渡动画还未结束之前,新旧类名之间的切换操作并未完全完成,因此样式未能及时生效。 四、解决方案 为了解决上述问题,我们可以采取以下两种策略: 1. 启用平滑过渡动画 ElSteps组件支持transition和animation属性来配置步进条的过渡效果,这可以在一定程度上改善样式更新的感知。将这两项属性设置为相同名称(如el-transfer)即可启用默认的平滑过渡动画,如下所示: html ... 此时,当current属性发生改变时,组件将会在现有状态和目标状态之间添加平滑过渡效果,减少了样式更新的滞后感。 2. 利用$forceUpdate()强制更新视图 尽管利用$nextTick()可以一定程度上优化视图渲染的顺序,但在某些情况下,我们还可以采用更激进的方式——强制更新视图。Vue有个很酷的功能,它有一个叫做$forceUpdate()的“刷新神器”,一旦你调用这个方法,就相当于给整个Vue实例来了个大扫除,所有响应式属性都会被更新到最新状态,同时,视图部分也会立马刷新重绘,就像变魔术一样。在handleChange方法中调用此方法可以帮助解决样式更新滞后问题: javascript handleChange(index) { this.currentStep = index; this.$forceUpdate(); } 这样虽然无法彻底避免浏览器渲染延迟带来的样式更新滞后,但在大多数场景下能显著提升视觉反馈的即时性。 总结来说,通过合理地结合平滑过渡动画和强制更新视图策略,我们可以有效地解决ElSteps步骤条在动态改变当前步骤时样式更新滞后的困扰。当然啦,在特定场景下让效果更上一层楼,就得根据实际情况和所在的具体环境对优化方案进行接地气的微调和完善,让它更适合咱们的需求。
2024-02-22 10:43:30
425
岁月如歌-t
Bootstrap
...aScript等脚本语言动态访问和操作网页内容与结构。在本文的语境中,DOM加载完成是指浏览器已经解析了HTML文档并构建出完整的DOM树结构,此时可以安全地绑定事件处理函数,确保事件能够正确响应用户交互。 事件委托(Event Delegation) , 在JavaScript中,事件委托是一种优化事件处理的技术,通过将事件处理器绑定到父元素而非每个子元素上,从而实现对多个子元素事件的统一管理。在Bootstrap组件的上下文中,当需要处理大量动态生成的子元素事件时,直接绑定可能会导致性能问题或事件丢失。事件委托则能解决这个问题,例如使用jQuery的on()方法在一个静态存在的祖先元素上设置事件处理器,该处理器能捕获在其后代元素上触发的事件,无论这些后代元素是何时生成的。 jQuery , jQuery是一个流行的JavaScript库,它简化了HTML文档遍历、事件处理、动画以及Ajax交互等功能,使得Web开发更加便捷高效。在本文中,Bootstrap框架基于jQuery,因此开发者可以利用jQuery提供的API(如on()、click()等方法)来为Bootstrap组件进行事件绑定,确保组件行为能够准确响应用户的交互动作。
2023-01-21 12:58:12
545
月影清风
转载文章
...,..,an)的传统方法是多次求两个数的最大公约数,即 (1) 用辗转相除法[2]计算a1和a2的最大公约数(a1,a2) (2) 用辗转相除法计算(a1,a2)和a3的最大公约数,求得(a1,a2,a3) (3) 用辗转相除法计算(a1,a2,a3)和a4的最大公约数,求得(a1,a2,a3,a4) (4) 依此重复,直到求得(a1,a2,..,an) 上述方法需要n-1次辗转相除运算。 本文将两个数的辗转相除法扩展为n个数的辗转相除法,即用一次n个数的辗转相除法计算n个数的最大公约数,基本方法是采用反复用最小数模其它数的方法进行计算,依据是下面的定理2。 定理2:多个非负整数a1,a2,..,an,若aj>ai,i不等于j,则在a1,a2,..,an中用aj-ai替换aj,其最大公约数不变,即 (a1,a2,..,aj-1,aj,aj+1,..an)=(a1,a2,..,aj-1,aj-ai,aj+1,..an)。 例如:(34,24,56,68)=(34,24,56-34,68)=(34,24,22,68)。 证明: 根据最大公约数的交换律和结合率,有 (a1,a2,..,aj-1,aj,aj+1,..an)= ((ai,aj),(a1,a2,..,ai-1,ai+1,..aj-1,aj+1,..an))(i>j情况),或者 (a1,a2,..,aj-1,aj,aj+1,..an)= ((ai,aj),(a1,a2,..,aj-1,aj+1,..ai-1,ai+1,..an))(i<j情况)。 而对(a1,a2,..,aj-1,aj-ai,aj+1,..an),有 (a1,a2,..,aj-1,aj-ai,aj+1,..an)= ((ai, aj-ai),( a1,a2,..,ai-1,ai+1,.. aj-1,aj+1,..an))(i>j情况),或者 (a1,a2,..,aj-1,aj-ai,aj+1,..an)= ((ai, aj-ai),( a1,a2,..,aj-1,aj+1,.. ai-1,ai+1,..an))(i<j情况)。 因此只需证明(ai,aj)=( ai, aj-ai)即可。 由于(aj-ai)= aj-ai,因此ai,aj的任意公因子必然也是(aj-ai)的因子,即也是ai,( aj-ai)的公因子。由于aj = (aj-ai)+ai,因此ai,( aj-ai)的任意公因子必然也是aj的因子,即也是ai,aj的公因子。所以,ai,aj的最大公约数和ai,(aj-ai) 的最大公约数必须相等,即(ai,aj)=(ai,aj-ai)成立。 得证。 定理2类似于矩阵的初等变换,即 令一个向量的最大公约数为该向量各个分量的最大公约数。对于向量<a1,a2,..,an>进行变换:在一个分量中减去另一个分量,新向量和原向量的最大公约数相等。 求多个数的最大公约数采用反复用最小数模其它数的方法,即对其他数用最小数多次去减,直到剩下比最小数更小的余数。令n个正整数为a1,a2,..,an,求多个数最大共约数的算法描述为: (1) 找到a1,a2,..,an中的最小非零项aj,若有多个最小非零项则任取一个 (2) aj以外的所有其他非0项ak用ak mod aj代替;若没有除aj以外的其他非0项,则转到(4) (3) 转到(3) (4) a1,a2,..,an的最大公约数为aj 例如:对于5个数34, 56, 78, 24, 85,有 (34, 56, 78, 24, 85)=(10,8,6,24,13)=(4,2,6,0,1)=(0,0,0,0,1)=1, 对于6个数12, 24, 30, 32, 36, 42,有 (12, 24, 30, 32, 36, 42)=(12,0,6,8,0,6)=(0,0,0,2,0,6)=(0,0,0,2,0,0)=2。 3. 多个数最小共倍数的算法实现 求多个数最小共倍数的算法为: (1) 计算m=a1a2..an (2) 把a1,a2,..,an中的所有项ai用m/ai代换 (3) 找到a1,a2,..,an中的最小非零项aj,若有多个最小非零项则任取一个 (4) aj以外的所有其他非0项ak用ak mod aj代替;若没有除aj以外的其他非0项,则转到(6) (5) 转到(3) (6) 最小公倍数为m/aj 上述算法在VC环境下用高级语言进行了编程实现,通过多组求5个随机数最小公倍数的实例,与标准方法进行了比较,验证了其正确性。标准计算方法为:求5个随机数最小公倍数通过求4次两个数的最小公倍数获得,而两个数的最小公倍数通过求两个数的最大公约数获得。 5.结论 计算多个数的最小公倍数是常见的基本运算。n个数的最小公倍数可以表示成另外n个数的最大公约数,因而可以通过求多个数的最大公约数计算。求多个数最大公约数可采用向量转换算法一次性求得。 本篇文章为转载内容。原文链接:https://blog.csdn.net/u012349696/article/details/21233457。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-04 16:29:43
39
转载
PostgreSQL
... 使用explain命令分析SQL语句 为了更好地了解索引对于查询的影响,我们可以使用explain命令来分析SQL语句。这个命令能让我们像看漫画书一样,瞧瞧查询执行的“剧本”,一目了然地看到哪些字段正在被索引这位幕后英雄助力,又有哪些字段还在等待被发掘利用。这样我们就可以根据实际情况来决定是否需要创建索引。 sql EXPLAIN SELECT FROM users WHERE age > 20; 上面的SQL语句将会返回一个表格,其中包含了查询的执行计划。我们可以看到,age字段被使用到了索引,而name字段没有被使用到索引。 2. 观察SQL语句的执行情况 除了使用explain命令外,我们还可以直接观察SQL语句的执行情况,来判断是否需要创建索引。咱们可以翻翻数据库的日志文件,或者使使劲儿数据库监控工具这把“神器”,瞧瞧SQL语句执行花了多久、CPU被占用了多少、磁盘I/O的情况怎么样,这些信息都能一目了然。要是你发现某个SQL语句运行老半天还在转悠,或者CPU占用噌噌往上涨得离谱,那很可能就是因为你还没给它创建索引。 三、解决方法 知道了上述的原因后,我们就可以采取一些措施来解决这个问题了。首先,我们可以尽量减少索引的数量。这意味着我们需要更加精确地选择要创建索引的字段,避免无谓的开销。其次,咱们还可以时不时地给索引做个“大扫除”,重新构建一下,或者考虑用上一些特殊的索引技巧。比如,就像覆盖索引啦,唯一索引这些小玩意儿,都能让数据库更好地运转起来。最后,我们还可以琢磨一下采用数据库分区或者分片这招,让查询的压力能够分散开来,这样一来就不会把所有的“重活”都压在一块儿了。 四、总结 总的来说,索引是一个非常重要的概念,它能够极大地提高数据库的查询效率。然而,如果索引创建得过多,就会导致查询性能下降。因此,我们在创建索引时,一定要考虑到实际情况,避免盲目创建。同时呢,咱们也得不断给自己充电,学点新鲜的知识,掌握更多的技能才行。这样一来,面对各种难缠的问题,咱们就能更加游刃有余地解决它们了。只有这样,我们才能够成为一名真正的数据库专家。
2023-06-12 18:34:17
502
青山绿水-t
Beego
...go可是个超牛的Go语言Web框架,自带了不少神器,帮咱们把代码质量提升好几个档次。那么,接下来就让我们一起看看具体该怎么做吧! 2. 理解代码质量的重要性 首先,我们要明白为什么代码质量这么重要。想想看,要是你接了个代码乱七八糟的项目,那得多抓狂啊!不仅开发效率会大幅降低,而且出现bug的概率也会增加。反过来讲,如果代码写得条理清晰、逻辑严密,那你开发时就会觉得特别顺手,以后要维护起来也轻松很多。 举个简单的例子,假设你正在开发一个用户登录功能,如果代码组织得好,添加新的验证逻辑或者修改现有的逻辑就会变得异常简单。但是,如果你的代码乱七八糟,每次想改点东西都得花大把时间去捋清楚,那感觉就像是在做噩梦一样。 3. 使用Beego进行代码质量控制 Beego框架本身提供了一些内置的功能来帮助我们提高代码质量。下面我们就来看看几个具体的例子。 3.1 静态代码分析工具 首先,我们得借助一些静态代码分析工具来检查我们的代码。Beego支持多种这样的工具,比如golangci-lint。我们可以把它集成到我们的CI/CD流程中,确保每次提交的代码都经过了严格的检查。 示例代码: bash 在项目根目录下安装golangci-lint curl -sSfL https://raw.githubusercontent.com/golangci/golangci-lint/master/install.sh | sh -s -- -b $(go env GOPATH)/bin v1.45.2 运行lint检查 golangci-lint run 3.2 单元测试 其次,单元测试是保证代码质量的重要手段。Beego框架非常适合编写单元测试,因为它提供了很多方便的工具。比如我们可以使用beego/testing包来编写和运行测试。 示例代码: go package user import ( "testing" . "github.com/smartystreets/goconvey/convey" ) func TestUser(t testing.T) { Convey("Given a valid user", t, func() { user := User{Name: "John Doe"} Convey("When calling GetFullName()", func() { fullName := user.GetFullName() Convey("Then the full name should be correct", func() { So(fullName, ShouldEqual, "John Doe") }) }) }) } 3.3 代码审查 代码审查也是不可或缺的一环。通过团队成员之间的相互检查,可以发现并修复很多潜在的问题。Beego项目本身就是一个很好的例子,它的贡献者们经常进行代码审查,从而保持了代码库的高质量。 示例代码: bash 提交代码前先进行一次本地的代码审查 git diff HEAD~1 | gofmt -d 4. 持续改进 最后,我们需要不断地回顾和改进我们的代码质量标准。随着时间慢慢过去,咱们的需求和用的技术可能会有变化,所以定期看看咱们的代码质量指标,并根据需要调整一下,这事儿挺重要的。 示例代码: go // 假设我们决定对所有的HTTP处理函数添加日志记录 func (c UserController) GetUser(c gin.Context) { // 添加日志记录 log.Println("Handling GET request for user") // 原来的代码 id := c.Param("id") user, err := userService.GetUser(id) if err != nil { c.JSON(http.StatusNotFound, gin.H{"error": "User not found"}) return } c.JSON(http.StatusOK, user) } 5. 结语 总之,代码质量的管理是一个持续的过程,需要我们不断地学习和实践。用Beego框架能让我们更快搞定这个活儿,不过到最后还得靠我们自己动手干才行。希望大家都能写出既优雅又高效的代码! 好了,今天的分享就到这里,如果你有任何问题或建议,欢迎随时交流。希望这篇文章对你有所帮助,也期待我们在未来的项目中一起努力,共同提高代码质量!
2024-12-21 15:47:33
65
凌波微步
HessianRPC
...用协议,广泛应用于跨语言的服务通信。在实际做项目,特别是迭代的时候,服务端接口更新优化什么的,简直就是家常便饭。这样一来,就牵扯出一个大问题:当咱们把Hessian服务端改头换面升级之后,怎么才能确保客户端能跟这个新版本的服务端无缝衔接、配合得溜溜的呢?这篇文咱就打算把这个事儿掰开了揉碎了讲讲,并且还会附上一些实实在在的实例代码,让大家一看就懂,一用就会。 1. 版本控制策略 首先,为了保证服务端更新时对客户端的影响降到最低,我们需要建立一套严格的版本控制策略。在设计Hessian服务接口的时候,我们可以像给小宝贝添加成长标签一样,为每个接口或者整个服务设置一个版本号。这样,当服务端内部有了什么新变化、更新迭代时,就像孩子长大了一岁,我们就通过升级这个版本号来区分新旧接口。而客户端呢,就像个聪明的玩家,会根据自己手里的“说明书”(支持的版本)去选择调用哪个合适的接口。 java // 定义带有版本号的Hessian服务接口 public interface MyService { // v1版本的接口 String oldMethod(int arg) throws RemoteException; // v2版本的接口,增加了新的参数 String newMethod(int arg, String newParam) throws RemoteException; } 2. 向后兼容性设计 当服务端新增接口或修改已有接口时,应尽可能保持向后兼容性,避免破坏现有客户端调用。比如,当你添加新的参数时,可以给它预先设定一个默认值。而如果你想删掉或者修改某个参数,只要不影响业务正常运作的那个“筋骨”,就可以保留原来的接口,让老版本的客户端继续舒舒服服地用着,不用着急升级换代。 java // 新版本接口考虑向后兼容 public String newMethod(int arg, String newParam = "default_value") { //... } 3. 双重部署和灰度发布 在实际更新过程中,我们可以通过双重部署及灰度发布的方式来平滑过渡。先部署新版本服务,并让部分用户或流量切换至新版本进行验证测试,确认无误后再逐步扩大范围直至全量替换。 4. 客户端适配升级 对于客户端来说,应对服务端接口变化的主要方式是对自身进行相应的更新和适配: - 动态加载服务接口:客户端可以通过动态加载机制,根据服务端返回的版本信息加载对应的接口实现类,从而实现自动适配新版本服务。 java // 动态加载示例(伪代码) String serviceUrl = "http://server:port/myService"; HessianProxyFactory factory = new HessianProxyFactory(); MyService myService; try { // 获取服务端版本信息 VersionInfo versionInfo = getVersionFromServer(serviceUrl); // 根据版本创建代理对象 if (versionInfo.isV1()) { myService = (MyService) factory.create(MyService.class, serviceUrl + "?version=v1"); } else if (versionInfo.isV2()) { myService = (MyService) factory.create(MyService.class, serviceUrl + "?version=v2"); } } catch (Exception e) { // 错误处理 } // 调用对应版本的方法 String result = myService.newMethod(1, "newParam"); - 客户端版本迭代:对于无法通过兼容性设计解决的重大变更,客户端也需要同步更新以适应新接口。这时候,咱们得好好策划一个详尽的升级计划和方案出来,并且要赶紧给所有客户端开发的大哥们发个消息,让他们麻溜地进行更新工作。 总结起来,要保证Hessian服务端更新后与客户端的无缝对接,关键在于合理的设计和服务管理策略,包括但不限于版本控制、接口向后兼容性设计、双重部署及灰度发布以及客户端的灵活适配升级。在整个过程中,不断沟通、思考和实践,才能确保每一次迭代都平稳顺利地完成。
2023-10-30 17:17:18
495
翡翠梦境
MySQL
...尤其是在应对海量数据处理的挑战时,它的表现始终让我拍手叫好,满心欢喜。然而最近,我遇到了一个问题,让我不禁想要探讨一下MySQL的性能瓶颈。 问题描述: 我正在处理一份包含十万条数据的数据集,想要通过MySQL的COUNT函数统计其中不为NULL的数据数量。哎呀,当我捣鼓这个查询的时候,发现这整个过程竟然磨叽了将近九十分钟,真是让我大吃一惊,满脑袋都是问号啊! 经过一段时间的调试和分析,我发现这个问题主要是由于MySQL的内部实现导致的。讲得更直白一点,COUNT函数这家伙要是碰上一大堆数据,它就会老老实实地一行接一行、仔仔细细地扫过去。每扫到一行,都得停下来瞅一眼看看是不是有NULL值存在。这种做法在应对小规模数据的时候,也许还能勉强过关,但一旦遇到百万乃至千万量级的大数据,那就真的有点力不从心,效率低到让人头疼了。 解决思路: 那么,面对这种情况,我们又该如何优化呢?实际上,有很多方法可以提高MySQL的COUNT性能,下面我就列举几种比较常见的优化策略。 方法一:减少NULL值的数量 MySQL在处理COUNT函数时,会对每行进行一次NULL检查。要是数据集里头有许多NULL值,这个检测就得超级频繁地进行,这样一来,整个查询过程就会像蜗牛爬行一样慢吞吞的。所以,咱们可以试着尽可能地把NULL值的数量降到最低。具体怎么做呢?比如在设计数据库的时候,就预先考虑到避免出现NULL的情况;或者在数据清洗的过程中,遇到NULL值就给它填充上合适的数值。让这些讨厌的NULL值少冒出来,让我们的数据更加干净、完整。 代码示例: sql -- 使用COALESCE函数填充NULL值 UPDATE table_name SET column_name = COALESCE(column_name, 'default_value'); 方法二:使用覆盖索引 当我们经常使用COUNT函数并附加了特定的筛选条件时,我们可以考虑为该字段创建一个覆盖索引。这样,MySQL可以直接从索引中获取我们需要的信息,而无需扫描整个数据集。 代码示例: sql CREATE INDEX idx_column ON table_name (column_name); 方法三:使用子查询代替COUNT函数 有时候,我们可以通过使用子查询来代替COUNT函数,从而提高查询的性能。这是因为MySQL在处理子查询时,通常会使用更高效的算法来查找匹配的结果。 代码示例: sql SELECT COUNT() FROM ( SELECT column_name FROM table_name WHERE condition ) subquery; 总结: 以上就是我对MySQL COUNT函数的一些理解和实践经验。总的来说,MySQL的性能优化这活儿,既复杂又挺有挑战性,就像是个无底洞的知识宝库,让人忍不住想要一直探索和实践。说白了,就是咱得不断学习、不断动手尝试,才能真正玩转起来,相当有趣儿!当然啦,刚才提到的那些方法只不过是冰山小小一角而已,实际情况嘛,咱们得根据自身的具体需求来灵活挑选和调整,这才是硬道理!我坚信,在不久以后的日子里,咱们一定能探索发掘出更多更棒的优化窍门,让MySQL这个家伙爆发出更大的能量,发挥出无与伦比的价值。
2023-12-14 12:55:14
46
星河万里_t
Linux
...是网络配置的基础。在命令行环境下,可以使用ifconfig或ip命令来查看和修改接口状态及IP地址。例如,为eth0接口分配静态IP地址: bash 使用 ifconfig sudo ifconfig eth0 192.168.1.10 netmask 255.255.255.0 up 或者使用 ip 命令 sudo ip addr add 192.168.1.10/24 dev eth0 sudo ip link set dev eth0 up 2. 路由设置 路由表用于指导数据包的转发。可以使用route命令查看和修改路由表: bash 查看当前路由表 sudo route -n 添加静态路由,例如指向默认网关的路由 sudo route add default gw 192.168.1.1 3. 防火墙规则 Linux的iptables或firewalld服务提供了强大的防火墙功能,允许用户根据需要配置进出网络的数据流规则。以下是一个简单的iptables规则示例: bash 打开所有端口(不推荐生产环境使用) sudo iptables -P INPUT ACCEPT sudo iptables -P FORWARD ACCEPT sudo iptables -P OUTPUT ACCEPT 允许特定端口访问 sudo iptables -A INPUT -p tcp --dport 80 -j ACCEPT sudo iptables -A INPUT -p tcp --dport 443 -j ACCEPT 保存规则 sudo iptables-save > /etc/iptables/rules.v4 实战演练:构建简单局域网 假设我们有两台Linux机器,一台作为服务器(Server),另一台作为客户端(Client)。我们将在它们之间建立一个简单的局域网,并配置IP地址、路由以及防火墙规则。 步骤一:配置IP地址 在Server上: bash sudo ip addr add 192.168.1.1/24 dev eth0 sudo ip link set dev eth0 up 在Client上: bash sudo ip addr add 192.168.1.2/24 dev eth0 sudo ip link set dev eth0 up 步骤二:添加路由 在Server上添加到Client的路由: bash sudo ip route add 192.168.1.2/32 dev eth0 在Client上添加到Server的路由: bash sudo ip route add 192.168.1.1/32 dev eth0 步骤三:测试网络连接 使用ping命令验证两台机器之间的连通性: bash ping 192.168.1.2 步骤四:配置防火墙 为了简化,我们只允许TCP端口80(HTTP)和443(HTTPS)的流量: bash sudo iptables -A INPUT -p tcp --dport 80 -j ACCEPT sudo iptables -A INPUT -p tcp --dport 443 -j ACCEPT 以上步骤仅为示例,实际部署时应考虑安全性和更详细的策略设置。 结语 通过本文的介绍,我们不仅了解了Linux系统中的网络拓扑结构和网络设备配置的基本概念,还通过具体操作和代码示例实践了这些配置。Linux的强大之处在于它的可定制性和灵活性,使得网络管理员可以根据具体需求进行高度定制化的网络设置。希望本文能激发你对Linux网络技术的兴趣,并在实践中不断探索和深化理解。网络世界广阔无垠,每一步探索都是对未知的好奇和挑战的回应。让我们一起在Linux的海洋中航行,发现更多可能吧!
2024-09-17 16:01:33
25
山涧溪流
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
pgrep pattern
- 根据名称模式查找进程ID。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"