前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[kernel-firmware依赖关系解...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
MyBatis
...lSession 的关系如下图所示:  当我们在应用程序中创建一个 SqlSessionFactory 对象时,它会自动打开一个数据库连接,并将其保存在内存中。这样,每次我们想要创建一个 SqlSession 对象时,就像去 SqlSessionFactory 那儿说“嗨,给我开个数据库连接”,然后它就会从内存这个大口袋里掏出一个已经为我们预先打开的数据库连接。这种方式能够显著缩短创建和释放数据库连接所需的时间,让咱们的应用程序跑得更溜、更快。 二、MyBatis 如何处理数据库连接的打开与关闭 在 MyBatis 中,我们可以使用两种方式来处理数据库连接的打开与关闭。一种是手动管理,另一种是自动管理。 1. 手动管理 手动管理是指我们在应用程序中直接控制数据库连接的打开与关闭。这是最原始的方式,也是最直观的方式。我们可以通过 JDBC API 来实现数据库连接的打开与关闭。比如,我们可以想象一下这样操作:先用 DriverManager.getConnection() 这个神奇的小功能打开通往数据库的大门,然后呢,当我们不需要再跟数据库“交流”的时候,就用 Statement.close() 或 PreparedStatement.close() 这两个小工具把门关上,这样一来,我们就完成了数据库连接的开启和关闭啦。这种方式的好处就是超级灵活,就像你定制专属T恤一样,我们可以根据应用程序的独特需求,随心所欲地调整数据库连接的表现,让它更听话、更好使。缺点是工作量大,容易出错,而且无法充分利用数据库连接池的优势。 2. 自动管理 自动管理是指 MyBatis 在内部自动管理数据库连接的打开与关闭。这种方式的优点是可以避免手动管理数据库连接的繁琐工作,提高应用程序的性能。不过呢,这种方式有个小缺憾,就是不够灵活,咱们没法随心所欲地掌控数据库连接的具体表现。另外,想象一下这个场景哈,如果我们开发的小程序里,好几个线程兄弟同时挤进去访问数据库的话,就很可能碰上并发问题这个小麻烦。 三、MyBatis 的自动管理机制 为了实现自动管理,MyBatis 提供了一个名为“StatementExecutor”的类,它负责处理 SQL 查询请求。StatementExecutor 使用一个名为“PreparedStatementCache”的缓存来存储预编译的 SQL 查询语句。每当一个新的 SQL 查询请求到来时,StatementExecutor 就会在 PreparedStatementCache 中查找是否有一个匹配的预编译的 SQL 查询语句。如果有,就直接使用这个预编译的 SQL 查询语句来执行查询请求;如果没有,就先使用 JDBC API 来编译 SQL 查询语句,然后再执行查询请求。在这个过程中,StatementExecutor 将会自动打开和关闭数据库连接。当StatementExecutor辛辛苦苦执行完一个SQL查询请求后,它会像个聪明的小助手那样,主动判断一下是否有必要把这个SQL查询语句存放到PreparedStatementCache这个小仓库里。当SQL查询语句被执行的次数蹭蹭蹭地超过了某个限定值时,StatementExecutor这个小机灵鬼就会把SQL查询语句悄悄塞进PreparedStatementCache这个“备忘录”里头,这样一来,下次再遇到同样的查询需求,咱们就可以直接从“备忘录”里拿出来用,省时又省力。 四、总结 总的来说,MyBatis 是一个强大的持久层框架,它可以方便地管理数据库连接,提高应用程序的性能。然而,在使用 MyBatis 时,我们也需要注意一些问题。首先,我们应该合理使用数据库连接,避免长时间占用数据库连接。其次,我强烈建议大家伙尽可能多用 PreparedStatement 类型的 SQL 查询语句,为啥呢?因为它比 Statement 那种类型的 SQL 查询语句可安全多了。就像是给你的查询语句戴上了防护口罩,能有效防止SQL注入这类安全隐患,让数据处理更稳当、更保险。最后,我强烈推荐你们在处理预编译的 SQL 查询语句时,用上 PreparedStatementCache 这种缓存技术。为啥呢?因为它能超级有效地提升咱应用程序的运行速度和性能,让整个系统更加流畅、响应更快,就像给程序装上了涡轮增压器一样。
2023-01-11 12:49:37
99
冬日暖阳_t
SpringBoot
...节点到多节点的挑战与解决方案 当我们需要将此服务扩展到多节点时,面临的主要问题是任务的同步和一致性。为了实现这一点,我们可以考虑以下几种策略: 1. 使用消息队列 使用如RabbitMQ、Kafka等消息队列,将定时任务的执行请求封装成消息发送到队列。在每个节点上,创建一个消费者来订阅并处理这些消息。 java import org.springframework.amqp.core.Queue; import org.springframework.amqp.rabbit.annotation.RabbitListener; @RabbitListener(queues = "task-queue") public void processTask(String taskData) { // 解析任务数据并执行 executeTask(); } 2. 分布式锁 如果任务执行过程中有互斥操作,可以使用分布式锁如Redis的SETNX命令来保证只有一个节点执行任务。任务完成后释放锁,其他节点检查是否获取到锁再决定是否执行。 3. Zookeeper协调 使用Zookeeper或其他协调服务来管理任务执行状态,确保任务只在一个节点上执行,其他节点等待。 4. ConsistentHashing 如果任务负载均衡且没有互斥操作,可以考虑使用一致性哈希算法将任务分配给不同的节点,这样当增加或减少节点时,任务分布会自动调整。 四、代码示例 使用Consul作为服务发现 为了实现多节点的部署,我们还可以利用Consul这样的服务发现工具。首先,配置Spring Boot应用连接Consul,并在启动时注册自身服务。然后,使用Consul的健康检查来确保任务节点是活跃的。 java import com.ecwid.consul.v1.ConsulClient; import com.ecwid.consul.v1.agent.model.ServiceRegisterRequest; @Configuration public class ConsulConfig { private final ConsulClient consulClient; public ConsulConfig(ConsulClient consulClient) { this.consulClient = consulClient; } @PostConstruct public void registerWithConsul() { ServiceRegisterRequest request = new ServiceRegisterRequest() .withId("my-task-service") .withService("task-service") .withAddress("localhost") .withPort(port) .withTags(Collections.singletonList("scheduled-task")); consulClient.agent().service().register(request); } @PreDestroy public void deregisterFromConsul() { consulClient.agent().service().deregister("my-task-service"); } } 五、总结与未来展望 将SpringBoot的定时任务服务从单节点迁移到多节点并非易事,但通过合理选择合适的技术栈(如消息队列、分布式锁或服务发现),我们可以确保任务的可靠执行和扩展性。当然,这需要根据实际业务场景和需求来定制解决方案。干活儿的时候,咱们得眼观六路,耳听八方,随时盯着,不断测验,这样才能保证咱这多站点的大工程既稳如老狗,又跑得飞快,对吧? 记住,无论你选择哪种路径,理解其背后的原理和潜在问题总是有益的。随着科技日新月异,各种酷炫的工具和编程神器层出不穷,身为现代开发者,你得像海绵吸水一样不断学习,随时准备好迎接那些惊喜的变化,这可是咱们吃饭的家伙!
2024-06-03 15:47:34
47
梦幻星空_
Go-Spring
...供了一种高效、灵活的解决方案,不仅提升了应用的开发和部署效率,还增强了应用的稳定性和适应性。随着技术的不断发展和应用场景的日益丰富,GoSpring及其配置管理策略将在推动软件开发行业进步的过程中发挥越来越重要的作用。
2024-09-09 15:51:14
76
彩虹之上
Flink
...ionPlan之间的关系。可以说,JobGraph是ExecutionPlan的基础,没有一个清晰的JobGraph,就无法生成有效的ExecutionPlan。ExecutionPlan就是JobGraph的具体操作指南,它告诉你怎么把这些抽象的想法变成实实在在的计算任务。 思考与探讨: - 在设计你的Flink应用程序时,是否考虑过JobGraph的结构对最终性能的影响? - 你有没有尝试过调整ExecutionPlan的某些参数来提升应用程序的效率? 4. 实践中的挑战与解决方案 最后,我想分享一些我在使用Flink过程中遇到的实际问题及解决方案。 问题1:数据倾斜导致性能瓶颈 - 原因分析:数据分布不均匀可能导致某些算子处理的数据量远大于其他算子,从而形成性能瓶颈。 - 解决办法:可以通过重新设计JobGraph,比如引入更多的分区策略或调整算子的并行度来缓解这个问题。 问题2:内存溢出 - 原因分析:长时间运行的任务可能会消耗大量内存,尤其是在处理大数据集时。 - 解决办法:合理设置Flink的内存管理策略,比如增加JVM堆内存或利用Flink的内存管理API来控制内存使用。 --- 好了,朋友们,这就是我对Flink中的JobGraph和ExecutionPlan的理解和分享。希望这篇文章能让你深深体会到它们的价值,然后在你的项目里大展身手,随意挥洒!如果你有任何疑问或者想要进一步讨论的话题,欢迎随时留言交流! 记住,学习技术就像一场旅行,重要的是享受过程,不断探索未知的领域。希望我们在数据流的世界里都能成为勇敢的探险家!
2024-11-05 16:08:03
112
雪落无痕
Javascript
...传输。它的特点是无需依赖任何第三方软件,只需通过浏览器就能完成通信。 三、WebRTC的工作原理 WebRTC的工作原理可以简单地概括为三个步骤: 1. 媒体流获取 浏览器会调用getUserMedia API,请求用户的摄像头和麦克风权限,获取用户的实时音频和视频流。 2. 信道建立 浏览器将媒体流封装成ICE候选信息,并发送给服务器或者其他浏览器。 3. 信令交换 通过WebSocket等网络传输机制,浏览器之间进行信令交换,协商并创建出一个可用于数据传输的安全连接。 四、如何利用WebRTC实现点对点通信 下面,我们通过一个简单的例子来说明如何利用WebRTC实现点对点通信。 首先,在HTML文件中添加以下代码: html 然后,在JavaScript文件中添加以下代码: javascript // 获取本地视频 const localStream = await navigator.mediaDevices.getUserMedia({ audio: true, video: true }); // 创建RTC对讲机 const pc = new RTCPeerConnection(); // 添加媒体流 pc.addTransceiver('audio'); pc.addTransceiver('video'); // 获取远程视频容器 const remoteVideo = document.getElementById('remoteVideo'); // 将本地视频流添加到远程视频容器 pc.getSenders().forEach((sender) => { sender.track.id = 'localVideo'; remoteVideo.srcObject = sender.track; }); // 接收媒体流 pc.ontrack = (event) => { event.streams.forEach((stream) => { stream.getTracks().forEach((track) => { track.id = 'remoteVideo'; const videoElement = document.createElement('video'); videoElement.srcObject = track; document.body.appendChild(videoElement); }); }); }; // 连接到其他客户端 function connect(otherUserURL) { // 创建新的RTCPeerConnection对象 const otherPC = new RTCPeerConnection(); // 设置回调函数,处理ICE候选信息和数据通道 otherPC.onicecandidate = (event) => { if (!event.candidate) return; pc.addIceCandidate(event.candidate); }; otherPC.ondatachannel = (event) => { event.channel.binaryType = 'arraybuffer'; channel.send('hello'); }; // 发送offer const offerOptions = { offerToReceiveAudio: true, offerToReceiveVideo: true }; pc.createOffer(offerOptions).then((offer) => { offer.sdp = SDPUtils.replaceBUNDLE_ID(offer.sdp, otherUserURL); offer.sdp = SDPUtils.replaceICE_UFRAG_AND_FINGERPRINT(offer.sdp, otherUserURL); offer.sdp = SDPUtils.replaceICEServers(offer.sdp, iceServers); return otherPC.setRemoteDescription(new RTCSessionDescription(offer)); }).then(() => { return otherPC.createAnswer(); }).then((answer) => { answer.sdp = SDPUtils.replaceBUNDLE_ID(answer.sdp, otherUserURL); answer.sdp = SDPUtils.replaceICE_UFRAG_AND_FINGERPRINT(answer.sdp, otherUserURL); answer.sdp = SDPUtils.replaceICEServers(answer.sdp, iceServers); return pc.setRemoteDescription(new RTCSessionDescription(answer)); }).catch((err) => { console.error(err.stack || err); }); } 在这个例子中,我们首先通过getUserMedia API获取用户的实时音频和视频流,然后创建一个新的RTCPeerConnection对象,并将媒体流添加到这个对象中。 接着,我们设置了回调函数,处理ICE候选信息和数据通道。当你收到ICE候选信息的时候,我们就把它塞到本地的那个RTCPeerConnection对象里头;而一旦收到数据通道的消息,我们就会把它的binaryType调成'arraybuffer'模式,然后就可以在通道里畅所欲言,发送各种消息啦。 最后,我们调用connect函数,与其他客户端建立连接。在connect函数里头,我们捣鼓出了一个崭新的RTCPeerConnection对象,就像组装一台小机器一样。然后呢,我们还给这个小家伙绑定了几个“小帮手”——回调函数,用来专门处理ICE候选信息和数据通道这些重要的任务,让它们能够实时报告状况,确保连接过程顺畅无阻。然后呢,我们给对方发个offer,就像递出一份邀请函那样。等对方接收到后,他们会回传一个answer,这就好比他们给出了接受邀请的答复。我们就把这个answer,当作是我们本地RTCPeerConnection对象的远程“地图”,这样一来,连接就算顺利完成啦! 五、结论 WebRTC技术为我们提供了一种方便、快捷、安全的点对点通信方式,大大提高了应用的交互性和实时性。当然啦,这只是个入门级的小例子,实际上的运用场景可能会复杂不少。不过别担心,只要咱们把WebRTC的核心原理和使用技巧都整明白了,就能根据自身需求灵活施展拳脚,开发出更多既有趣又有用的应用程序,保证让你玩得飞起! 未来,随着5G、物联网等技术的发展,WebRTC将会发挥更大的作用,成为更多应用场景的首选方案。让我们一起期待这个充满可能的新时代吧!
2023-12-18 14:38:05
316
昨夜星辰昨夜风_t
转载文章
...插入,如果各位大佬有解决这个问题的办法希望能指导一下 先将每个国家的平均消费额求出来 spark.sql("select nationkey,nationname,avg(totalconsumption) as nationavgconsumption from nationeverymonths group by nationkey,nationname") 再新增一列所有国家平均消费额 spark.sql("alter table nationeverymonths add columns(avg_allstring)") 再将查询到的所有国家平均消费额导入进去 spark.sql("insert overwrite table nationeverymonths1 select nationkey,nationname,avg_totalconsumpt,1500 from nationeverymonths1") 再次查表 按照题意添加比较结果字段 spark.sql("select ,case when avg_totalconsumpt>avg_all then '高' when avg_totalconsumpt<avg_all then '低' when avg_totalconsumpt=avg_all then '相同' else 'null' end as comparison from nationeverymonths1").show 最后的排序语句和题一一样 本篇文章为转载内容。原文链接:https://blog.csdn.net/guo_0423/article/details/126352162。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-01 10:55:33
320
转载
转载文章
...供了更为强大且灵活的解决方案(参见https://d3js.org)。此外,Vue.js、React等现代前端框架也涌现出许多基于组件化思想设计的树形菜单组件,如Vue Tree Component、React Tree View等,它们在保持功能丰富的同时,极大地简化了集成过程,并优化了性能表现。 同时,在无障碍设计方面,各大公司及开源社区也在积极改进树形菜单的可访问性,确保视障用户能够通过屏幕阅读器等辅助工具顺畅地导航和操作树状结构数据。例如,W3C发布的ARIA规范(Accessible Rich Internet Applications)中,就详细介绍了如何正确使用aria-owns、aria-expanded等属性来增强树形结构的可访问性。 总之,无论是深入研究jstree本身的高级用法,还是关注前沿的数据可视化与交互设计技术,亦或是关注无障碍设计以提升产品普适性,都将有助于我们在实际项目中更好地运用树形菜单插件,打造更具用户体验价值的产品。
2023-09-08 13:23:58
54
转载
转载文章
...理 红黑树 一张导图解决红黑树全部插入和删除问题 包含详细操作原理 情况对比 各种常见排序算法的时间/空间复杂度 是否稳定 算法选取的情况 改进 思维导图整理 人工智能课件 算法分析课件 Python课件 数值分析课件 机器学习课件 图像处理课件 考研相关科目 知识点 思维导图整理 考研经验--东南大学软件学院软件工程 东南大学 软件工程 906 数据结构 C++ 历年真题 思维导图整理 东南大学 软件工程 复试3门科目历年真题 思维导图整理 高等数学 做题技巧 易错点 知识点(张宇,汤家凤)思维导图整理 考研 线性代数 惯用思维 做题技巧 易错点 (张宇,汤家凤)思维导图整理 高等数学 中值定理 一张思维导图解决中值定理所有题型 考研思修 知识点 做题技巧 同类比较 重要会议 1800易错题 思维导图整理 考研近代史 知识点 做题技巧 同类比较 重要会议 1800易错题 思维导图整理 考研马原 知识点 做题技巧 同类比较 重要会议 1800易错题 思维导图整理 考研数学课程笔记 考研英语课程笔记 考研英语单词词根词缀记忆 考研政治课程笔记 Python相关技术 知识点 思维导图整理 Numpy常见用法全部OneNote笔记 全部笔记思维导图整理 Pandas常见用法全部OneNote笔记 全部笔记思维导图整理 Matplotlib常见用法全部OneNote笔记 全部笔记思维导图整理 PyTorch常见用法全部OneNote笔记 全部笔记思维导图整理 Scikit-Learn常见用法全部OneNote笔记 全部笔记思维导图整理 Java相关技术/ssm框架全部笔记 Spring springmvc Mybatis jsp 科技相关 小米手机 小米 红米 历代手机型号大全 发布时间 发布价格 常见手机品牌的各种系列划分及其特点 历代CPU和GPU的性能情况和常见后缀的含义 思维导图整理 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_43959833/article/details/115670535。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-12 18:13:21
742
转载
Hibernate
...数据存储与分发,有效解决了数据量大、分布广的问题。通过负载均衡、数据分区等策略,分布式缓存能够在保证数据一致性的前提下,显著提升数据访问速度与系统扩展性。 三、NoSQL与缓存整合 在大数据处理中,NoSQL数据库因其强大的数据存储与处理能力而受到青睐。与传统的关系型数据库相比,NoSQL数据库在高并发、海量数据存储等方面表现出色。为了充分利用NoSQL数据库的性能优势,缓存与NoSQL数据库的整合成为了一种趋势。通过缓存系统对NoSQL数据库的热点数据进行预加载,可以大幅度减少数据库的访问压力,同时提升整体系统的响应速度与稳定性。 四、智能缓存与预测性维护 随着人工智能与机器学习技术的发展,智能缓存策略开始崭露头角。通过分析历史数据与用户行为模式,智能缓存系统能够预测热点数据的产生时间与访问频率,实现动态调整缓存策略,进一步优化资源分配与数据访问效率。此外,智能缓存还能够支持预测性维护,提前发现潜在的缓存问题,保障系统的稳定运行。 五、结论 在大数据时代,缓存策略不再仅仅是数据访问速度的优化工具,而是成为了一个集性能优化、资源管理、预测分析为一体的复杂系统。面对不断演进的技术环境与市场需求,缓存策略需要不断地创新与完善,以适应大数据、云计算、人工智能等新技术的挑战,为企业提供更加高效、可靠的解决方案。 随着技术的不断进步,大数据时代的缓存策略将持续进化,从单一的数据访问优化转向全面的数据管理和智能决策支持。在这个过程中,缓存技术将成为推动大数据应用发展的关键力量,为企业创造更大的价值。
2024-10-11 16:14:14
107
桃李春风一杯酒
Kylin
...多模型分析发展中亟待解决的问题。 多模型分析不仅是一种技术手段,更是企业战略思维的体现,它推动着企业在面对复杂多变的市场环境时,能够更加灵活、精准地做出决策,从而在竞争中占据有利位置。
2024-10-01 16:11:58
132
星辰大海
Hadoop
...成云存储与本地存储的解决方案,使得企业能够在不改变现有应用的情况下,轻松迁移至云端存储,享受低成本、高可用性和弹性扩展的优势。本文将深入探讨HCSG的使用方法,从安装配置到实际应用场景,帮助读者全面掌握这一技术。 二、HCSG基础概念 HCSG是Hadoop与云存储服务之间的桥梁,它允许用户通过标准的文件系统接口(如NFS、SMB等)访问云存储,从而实现数据的本地缓存和自动迁移。这种架构设计旨在降低迁移数据到云端的复杂性,并提高数据处理效率。 三、HCSG的核心组件与功能 1. 数据缓存层 负责在本地存储数据的副本,以便快速读取和减少网络延迟。 2. 元数据索引 记录所有存储在云中的数据的位置信息,便于数据查找和迁移。 3. 自动迁移策略 根据预设规则(如数据访问频率、存储成本等),决定何时将数据从本地存储迁移到云存储。 四、安装与配置HCSG 步骤1: 确保你的环境具备Hadoop和所需的云存储服务(如Amazon S3、Google Cloud Storage等)的支持。 步骤2: 下载并安装HCSG软件包,通常可以从Hadoop的官方或第三方仓库获取。 步骤3: 配置HCSG参数,包括云存储的访问密钥、端点地址、本地缓存目录等。这一步骤需要根据你选择的云存储服务进行具体设置。 步骤4: 启动HCSG服务,并通过命令行或图形界面验证其是否成功运行且能够正常访问云存储。 五、HCSG的实际应用案例 案例1: 数据备份与恢复 在企业环境中,HCSG可以作为数据备份策略的一部分,将关键业务数据实时同步到云存储,确保数据安全的同时,提供快速的数据恢复选项。 案例2: 大数据分析 对于大数据处理场景,HCSG能够提供本地缓存加速,使得Hadoop集群能够更快地读取和处理数据,同时,云存储则用于长期数据存储和归档,降低运营成本。 案例3: 实时数据流处理 在构建实时数据处理系统时,HCSG可以作为数据缓冲区,接收实时数据流,然后根据需求将其持久化存储到云中,实现高效的数据分析与报告生成。 六、总结与展望 Hadoop Cloud Storage Gateway作为一种灵活且强大的工具,不仅简化了数据迁移和存储管理的过程,还为企业提供了云存储的诸多优势,包括弹性扩展、成本效益和高可用性。嘿,兄弟!你听说没?云计算这玩意儿越来越火了,那HCSG啊,它在咱们数据世界里的角色也越来越重要了。就像咱们生活中离不开水和电一样,HCSG在数据管理和处理这块,简直就是个超级大功臣。它的应用场景多得数不清,无论是大数据分析、云存储还是智能应用,都有它的身影。所以啊,未来咱们在数据的海洋里畅游时,可别忘了感谢HCSG这个幕后英雄! 七、结语 通过本文的介绍,我们深入了解了Hadoop Cloud Storage Gateway的基本概念、核心组件以及实际应用案例。嘿,你知道吗?HCSG在数据备份、大数据分析还有实时数据处理这块可是独树一帜,超能打的!它就像是个超级英雄,无论你需要保存数据的安全网,还是想要挖掘海量信息的金矿,或者是需要快速响应的数据闪电侠,HCSG都能搞定,简直就是你的数据守护神!嘿,兄弟!你准备好了吗?我们即将踏上一段激动人心的数字化转型之旅!在这趟旅程里,学会如何灵活运用HCSG这个工具,绝对能让你的企业在竞争中脱颖而出,赢得更多的掌声和赞誉。想象一下,当你能够熟练操控HCSG,就像一个魔术师挥舞着魔杖,你的企业就能在市场中轻松驾驭各种挑战,成为行业的佼佼者。所以,别犹豫了,抓紧时间学习,让HCSG成为你手中最强大的武器吧!
2024-09-11 16:26:34
110
青春印记
转载文章
...述刻画的是两者之间的关系,单独的事物不构成共轭,举个通俗的例子,兄弟这一概念,只能是两者才能构成兄弟。所以,我们讲这两个人是兄弟关系,A是B的兄弟,这两个分布成共轭分布关系,A是B的共轭分布。 p(θ|X)=p(θ)p(X|θ)p(x) p(X|θ) :似然(likelihood) p(θ) :先验(prior) p(X) :归一化常数(normalizing constant) 我们定义:如果先验分布(p(θ) )和似然函数(p(X|θ) )可以使得先验分布(p(θ) )和后验分布(p(θ|X) )有相同的形式(如,Beta(a+k, b+n-k)=Beta(a, b)binom(n, k)),那么就称先验分布与似然函数是共轭的(成Beta分布与二项分布是共轭的)。 几个常见的先验分布与其共轭分布 先验分布 共轭分布 伯努利分布 beta distribution Multinomial Dirichlet Distribution Gaussian, Given variance, mean unknown Gaussian Distribution Gaussian, Given mean, variance unknown Gamma Distribution Gaussian, both mean and variance unknown Gaussian-Gamma Distribution 最大似然估计(MLE) 首先来看,大名鼎鼎的贝叶斯公式: p(θ|X)=p(θ)p(X|θ)p(X) 可将θ 看成欲估计的分布的参数,X 表示样本,p(X|θ) 则表示似然。 现给定样本集\mathcal{D}=\{x_1,x_2,\ldots,x_N\}D={x1,x2,…,xN} ,似然函数为: p(\mathcal{D}|\theta)=\prod_{n=1}^Np(x_n|\theta) p(D|θ)=∏n=1Np(xn|θ) 为便于计算,再将其转换为对数似然函数形式: \ln p(\mathcal{D}|\theta)=\sum_{n=1}^N\ln p(x_n|\theta) lnp(D|θ)=∑n=1Nlnp(xn|θ) 我们不妨以伯努利分布为例,利用最大似然估计的方式计算其分布的参数(pp ),伯努利分布其概率密度函数(pdf)为: f_X(x)=p^x(1-p)^{1-x}=\left \{ \begin{array}{ll} p,&\mathrm{x=1},\\ q\equiv1-p ,&\mathrm{x=0},\\ 0,&\mathrm{otherwise} \end{array} \right. fX(x)=px(1−p)1−x=⎧⎩⎨⎪⎪p,q≡1−p,0,x=1,x=0,otherwise 整个样本集的对数似然函数为: \ln p(\mathcal{D}|\theta)=\sum_{n=1}^N\ln p(x_n|\theta)=\sum_{n=1}^N\ln (\theta^{x_n}(1-\theta)^{1-x_n})=\sum_{n=1}^Nx_n\ln\theta+(1-x_n)\ln(1-\theta) lnp(D|θ)=∑n=1Nlnp(xn|θ)=∑n=1Nln(θxn(1−θ)1−xn)=∑n=1Nxnlnθ+(1−xn)ln(1−θ) 等式两边对\thetaθ 求导: \frac{\partial \ln(\mathcal{D}|\theta)}{\partial \theta}=\frac{\sum_{n=1}^Nx_n}{\theta}-\frac{N}{1-\theta}+\frac{\sum_{n=1}^Nx_n}{1-\theta} ∂ln(D|θ)∂θ=∑Nn=1xnθ−N1−θ+∑Nn=1xn1−θ 令其为0,得: θml=∑Nn=1xnN Beta分布 f(μ|a,b)=Γ(a+b)Γ(a)Γ(b)μa−1(1−μ)b−1=1B(a,b)μa−1(1−μ)b−1 Beta 分布的峰值在a−1b+a−2 处取得。其中Γ(x)≡∫∞0ux−1e−udu 有如下性质: Γ(x+1)=xΓ(x)Γ(1)=1andΓ(n+1)=n! 我们来看当先验分布为 Beta 分布时的后验分布: p(θ)=1B(a,b)θa−1(1−θ)b−1p(X|θ)=(nk)θk(1−θ)n−kp(θ|X)=1B(a+k,b+n−k)θa+k−1(1−θ)b+n−k−1 对应于python中的math.gamma()及matlab中的gamma()函数(matlab中beta(a, b)=gamma(a)gamma(b)/gamma(a+b))。 条件概率(conditional probability) P(X|Y) 读作: P of X given Y ,下划线读作given X :所关心事件 Y :条件(观察到的,已发生的事件),conditional 条件概率的计算 仍然从样本空间(sample space)的角度出发。此时我们需要定义新的样本空间(给定条件之下的样本空间)。所以,所谓条件(conditional),本质是对样本空间的进一步收缩,或者叫求其子空间。 比如一个人答题,有A,B,C,D 四个选项,在答题者对题目一无所知的情况下,他答对的概率自然就是 14 ,而是如果具备一定的知识,排除了 A,C 两个错误选项,此时他答对的概率简单计算就增加到了 12 。 本质是样本空间从S={A,B,C,D} ,变为了S′={B,D} 。 新样本空间下P(A|排除A/C)=0,P(C|排除A/C)=0 ,归纳出来,也即某实验结果(outcome,oi )与某条件Y 不相交,则: P(oi|Y)=0 最后我们得到条件概率的计算公式: P(oi|Y)=P(oi)P(o1)+P(o2)+⋯+P(on)=P(oi)P(Y)Y={o1,o2,…,on} 考虑某事件X={o1,o2,q1,q2} ,已知条件Y={o1,o2,o3} 发生了,则: P(X|Y)=P(o1|Y)+P(o2|Y)+0+0=P(o1)P(Y)+P(o2)P(Y)=P(X∩Y)P(Y) 条件概率与贝叶斯公式 条件概率: P(X|Y)=P(X∩Y)P(Y) 贝叶斯公式: P(X|Y)=P(X)P(Y|X)P(Y) 其实是可从条件概率推导贝叶斯公式的: P(A|B)=P(B|A)=P(A|B)P(B)===P(B|A)=P(A∩B)P(B)P(A∩B)P(A)P(A∩B)P(B)P(B)P(A∩B)P(A)P(B|A)P(A|B)P(B)P(A) 证明:P(B,p|D)=P(B|p,D)P(p|D) P(B,p|D)====P(B,p,D)P(D)P(B|p,D)P(p,D)P(D)P(B|p,D)P(p,D)P(D)P(B|p,D)P(p|D) References [1] 概率质量函数 本篇文章为转载内容。原文链接:https://blog.csdn.net/lanchunhui/article/details/49799405。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-02-26 12:45:04
518
转载
MySQL
...用于在Hadoop和关系型数据库之间进行数据迁移的工具。 - MySQL:这是一个流行的开源关系型数据库管理系统。 - Java Development Kit (JDK):这是开发Java应用程序所必需的一组工具。 在Windows上,你可以在这里找到Java JDK的下载链接:https://www.oracle.com/java/technologies/javase-downloads.html 。在MacOS上,你可以在这里找到Java JDK的下载链接:https://jdk.java.net/15/ 步骤二:配置Hadoop和MySQL 在开始之前,请确保您的Hadoop和MySQL已经正确配置并运行。 对于Hadoop,您可以查看以下教程:https://hadoop.apache.org/docs/r2.7.3/hadoop-project-dist/hadoop-common/SingleCluster.html 对于MySQL,您可以参考官方文档:https://dev.mysql.com/doc/refman/8.0/en/installing-binary-packages.html 步骤三:创建MySQL表 在开始导出数据之前,我们需要在MySQL中创建一个表来存储数据。以下是一个简单的例子: CREATE TABLE students ( id int(11) NOT NULL AUTO_INCREMENT, name varchar(45) DEFAULT NULL, age int(11) DEFAULT NULL, PRIMARY KEY (id) ) ENGINE=InnoDB DEFAULT CHARSET=utf8; 这个表将包含学生的ID、姓名和年龄字段。 步骤四:编写Sqoop脚本 现在我们可以使用Sqoop将HDFS中的数据导入到MySQL表中。以下是一个基本的Sqoop脚本示例: bash -sqoop --connect jdbc:mysql://localhost:3306/test \ -m 1 \ --num-mappers 1 \ --target-dir /user/hadoop/students \ --delete-target-dir \ --split-by id \ --as-textfile \ --fields-terminated-by '|' \ --null-string 'NULL' \ --null-non-string '\\N' \ --check-column id \ --check-nulls \ --query "SELECT id, name, age FROM students WHERE age > 18" 这个脚本做了以下几件事: - 使用--connect选项连接到MySQL服务器和测试数据库。 - 使用-m和--num-mappers选项设置映射器的数量。在这个例子中,我们只有一个映射器。 - 使用--target-dir选项指定输出目录。在这个例子中,我们将数据导出到/user/hadoop/students目录下。 - 使用--delete-target-dir选项删除目标目录中的所有内容,以防数据冲突。 - 使用--split-by选项指定根据哪个字段进行拆分。在这个例子中,我们将数据按学生ID进行拆分。 - 使用--as-textfile选项指定数据格式为文本文件。 - 使用--fields-terminated-by选项指定字段分隔符。在这个例子中,我们将字段分隔符设置为竖线(|)。 - 使用--null-string和--null-non-string选项指定空值的表示方式。在这个例子中,我们将NULL字符串设置为空格,将非字符串空值设置为\\N。 - 使用--check-column和--check-nulls选项指定检查哪个字段和是否有空值。在这个例子中,我们将检查学生ID是否为空,并且如果有,将记录为NULL。 - 使用--query选项指定要从中读取数据的SQL查询语句。在这个例子中,我们只选择年龄大于18的学生。 请注意,这只是一个基本的示例。实际的脚本可能会有所不同,具体取决于您的数据和需求。 步骤五:运行Sqoop脚本 最后,我们可以使用以下命令运行Sqoop脚本: bash -sqoop \ -Dmapreduce.job.user.classpath.first=true \ --libjars $SQOOP_HOME/lib/mysql-connector-java-8.0.24.jar \ --connect jdbc:mysql://localhost:3306/test \ -m 1 \ --num-mappers 1 \ --target-dir /user/hadoop/students \ --delete-target-dir \ --split-by id \ --as-textfile \ --fields-terminated-by '|' \ --null-string 'NULL' \ --null-non-string '\\N' \ --check-column id \ --check-nulls \ --query "SELECT id, name, age FROM students WHERE age > 18" 注意,我们添加了一个-Dmapreduce.job.user.classpath.first=true参数,这样就可以保证我们的自定义JAR包在任务的classpath列表中处于最前面的位置。 如果一切正常,我们应该可以看到一条成功的消息,并且可以在MySQL中看到导出的数据。 总结 本文介绍了如何使用Apache Sqoop将HDFS中的数据导出到MySQL数据库。咱们先给环境捯饬得妥妥当当,然后捣鼓出一个MySQL表,再接再厉,编了个Sqoop脚本。最后,咱就让这个脚本大展身手,把数据导出溜溜的。希望这篇文章能帮助你解决这个问题!
2023-04-12 16:50:07
248
素颜如水_t
转载文章
...对象有些陌生,不过没关系,了解以后发现其实并不难,和javascript验证表单之类的并没有太多的不同。 下面就结合程序给大家一步一步讲解(程序难免有不合理之处,希望大家多多指正,共同进步): 第一部分:javascript纪录浏览动作 复制内容到剪贴板 代码: function glog(evt) //定义纪录鼠标点击动作的函数 { evt=evt?evt:window.event;var srcElem=(evt.target)?evt.target:evt.srcElement; try { while(srcElem.parentNode&&srcElem!=srcElem.parentNode) //以上这个语句判断鼠标动作是否发生在有效区域,防止用户的无效点击也被纪录下来 { if(srcElem.tagName&&srcElem.tagName.toUpperCase()=="A")//判断用户点击的对象是否属于链接 { linkname=srcElem.innerHTML; //取出事件发生源的名称,也就是和之间的文字,也就是链接名称哈 address=srcElem.href+"_www.achome.cn_"; //取出事件发生源的href值,也就是该链接的地址 wlink=linkname+"+"+address; //将链接名称和链接地址整合到一个变量当中 old_info=getCookie("history_info"); //从Cookies中取出以前纪录的浏览历史,该函数后面有声明 //以下程序开始判断新的浏览动作是否和已有的前6个历史重复,如果不重复则写入cookies var insert=true; if(old_info==null) //判断cookie是否为空 { insert=true; } else { var old_link=old_info.split("_www.achome.cn_"); for(var j=0;j<=5;j++) { if(old_link[j].indexOf(linkname)!=-1) insert=false; if(old_link[j]=="null") break; } } if(insert) { wlink+=getCookie("history_info"); setCookie("history_info",wlink); //写入cookie,该函数后面有声明 history_show().reload(); break; } } srcElem = srcElem.parentNode; } } catch(e){} return true; } document.οnclick=glog;//使每一次页面的点击动作都执行glog函数 第2部分:Cookies的相关函数 复制内容到剪贴板 代码: //cookie的相关函数 //读取cookie中指定的内容 function getCookieVal (offset) { var endstr = document.cookie.indexOf (";", offset); if (endstr == -1) endstr = document.cookie.length; return unescape(document.cookie.substring(offset, endstr)); } function getCookie (name) { var arg = name + "="; var alen = arg.length; var clen = document.cookie.length; var i = 0; while (i < clen) { var j = i + alen; if (document.cookie.substring(i, j) == arg) return getCookieVal (j); i = document.cookie.indexOf(" ", i) + 1; if (i == 0) break; } return null; } //将浏览动作写入cookie function setCookie (name, value) { var exp = new Date(); exp.setTime (exp.getTime()+3600000000); document.cookie = name + "=" + value + "; expires=" + exp.toGMTString(); } 第3部分:页面显示函数 复制内容到剪贴板 代码: function history_show() { var history_info=getCookie("history_info"); //取出cookie中的历史记录 var content=""; //定义一个显示变量 if(history_info!=null) { history_arg=history_info.split("_www.achome.cn_"); var i; for(i=0;i<=5;i++) { if(history_arg[i]!="null") { var wlink=history_arg[i].split("+"); content+=("↑"+""+wlink[0]+" "); } document.getElementById("history").innerHTML=content; } } else {document.getElementById("history").innerHTML="对不起,您没有任何浏览纪录";} } 代码差不多就是这些了 就为大家分析到这里 还有不足之处还请大家多多指教 下面可以运行代码查看效果 查看效果 //cookie的相关函数 function getCookieVal (offset) { var endstr = document.cookie.indexOf (";", offset); if (endstr == -1) endstr = document.cookie.length; return unescape(document.cookie.substring(offset, endstr)); } function getCookie (name) { var arg = name + "="; var alen = arg.length; var clen = document.cookie.length; var i = 0; while (i < clen) { var j = i + alen; if (document.cookie.substring(i, j) == arg) return getCookieVal (j); i = document.cookie.indexOf(" ", i) + 1; if (i == 0) break; } return null; } function setCookie (name, value) { var exp = new Date(); exp.setTime (exp.getTime()+3600000000); document.cookie = name + "=" + value + "; expires=" + exp.toGMTString(); } function glog(evt) { evt=evt?evt:window.event;var srcElem=(evt.target)?evt.target:evt.srcElement; try { while(srcElem.parentNode&&srcElem!=srcElem.parentNode) { if(srcElem.tagName&&srcElem.tagName.toUpperCase()=="A") { linkname=srcElem.innerHTML; address=srcElem.href+"_www.achome.cn_"; wlink=linkname+"+"+address; old_info=getCookie("history_info"); var insert=true; if(old_info==null) //判断cookie是否为空 { insert=true; } else { var old_link=old_info.split("_www.achome.cn_"); for(var j=0;j<=5;j++) { if(old_link[j].indexOf(linkname)!=-1) insert=false; if(old_link[j]=="null") break; } } / if(insert) //如果符合条件则重新写入数据 { wlink+=getCookie("history_info"); setCookie("history_info",wlink); history_show().reload(); break; } } srcElem = srcElem.parentNode; } } catch(e){} return true; } document.οnclick=glog; function history_show() { var history_info=getCookie("history_info"); var content=""; if(history_info!=null) { history_arg=history_info.split("_www.achome.cn_"); var i; for(i=0;i<=5;i++) { if(history_arg[i]!="null") { var wlink=history_arg[i].split("+"); content+=("↑"+""+wlink[0]+" "); } document.getElementById("history").innerHTML=content; } } else {document.getElementById("history").innerHTML="对不起,您没有任何浏览纪录";} } // JavaScript Document 浏览历史排行(只显示6个最近访问站点并且没有重复的站点出现) history_show(); 点击链接: 网站1 网站2 网站3 网站4 网站5 网站6 网站7 网站8 网站9 如果有其他疑问请登陆www.achome.cn与我联系 提示:您可以先修改部分代码再运行 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_30611227/article/details/117818020。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-30 21:14:40
49
转载
MySQL
...展示出各种级别的层次关系。比如说在商品分类里,就有爷爷辈的大类别、爸爸辈的中类别、儿子辈的小类别,甚至还有孙子辈的更细分的类别呢! 其次,无限极分类的优点在于它可以方便地进行扩展。假如我们想要新增一个类别,就像在家族树上添个新枝丫一样简单,你只需要在它的“老爸”类别下加一个新的“小子类别”,这样一来,数据的一致性和完整性就能轻轻松松地保持住啦! 三、什么是递归? 那么,如何使用递归来处理无限极分类呢?这就需要用到递归的概念。递归啊,就是那种函数自己调用自己的神奇操作。你想象一下,这个函数有点像一个超级有耐心的小助手,一遍又一遍地做着同一件事情,但每次做的时候都比上次更进一步。通过这种自我迭代的过程,我们竟然能解开很多看起来超级复杂、让人挠头的问题呢! 在处理无限极分类时,我们可以使用递归的方式,从根节点开始,一层一层地遍历下去,直到找到所有的叶子节点。然后,我们可以根据每层的节点,构建出相应的层级结构。 四、如何使用递归来处理无限极分类? 接下来,我们来看一下如何使用递归来处理无限极分类。假设我们有一个无限极分类的数据库表,其中包含id、parent_id和name三个字段。喏,你听我说哈,id呢,就相当于每个小节点的身份证号,是独一无二的。而parent_id呢,顾名思义,就是每个小节点它爹——父节点的身份证号啦。至于name嘛,简单易懂,那就是给每个小节点起的专属昵称哈! 我们可以定义一个函数,输入参数是一个父节点的id,输出是一个层级结构的数组。具体操作如下: php function getTree($id){ $sql = "SELECT FROM node WHERE parent_id = '$id'"; $result = mysqli_query($conn, $sql); $arr = array(); while($row = mysqli_fetch_assoc($result)){ $arr[] = $row; } foreach($arr as $value){ if($value['child'] > 0){ $arr = array_merge($arr, getTree($value['id'])); } } return $arr; } 以上就是使用递归来处理无限极分类的一个简单示例。这个例子嘛,我们先从某个特定的老爸节点下手,把它的所有小崽子(子节点)都给挖出来。接着呢,对每一个小崽子,如果它们自己还有更下一代的小崽子,那我们就得像孙悟空钻进葫芦娃的肚子里那样,一层层地往里递归调用这个过程,把那些隐藏更深的孙子辈节点也给找全了。最后呢,咱们把这一大家子所有的节点都聚到一块儿,拼成一个完整的、层层分明的家族结构。 然而,递归虽然强大,但也有它的局限性。当数据量大时,递归可能会导致栈溢出,影响程序的执行效率。因此,我们需要寻找其他的解决方案。 五、不使用递归,如何处理无限极分类? 那么,如果不使用递归,我们该如何处理无限极分类呢?答案就是使用非递归的方式,也就是我们常说的迭代法。 迭代法的基本思想是从根节点开始,每次只处理一层数据,直到处理完所有的数据。这种方法压根儿不需要递归调用,所以你完全不用担心什么栈溢出的问题。而且实话跟你说,通常情况下,它的工作效率要比递归高不少! 接下来,我们来看一下如何使用迭代法处理无限极分类。假设我们已经有了一个无限极分类的数据库表,其中包含id、parent_id和name三个字段。我们可以按照以下步骤进行处理: 1. 创建一个空的层级结构数组,用于存储所有的节点; 2. 获取根节点,将其添加到层级结构数组中; 3. 遍历所有的节点,对于每一个节点,如果它还没有被处理过,则对其进行处理,将其添加到层级结构数组中,然后处理它的所有子节点。 具体的代码实现如下: php function getTree($root){ $tree = array(); $queue = array($root); while(count($queue) > 0){ $node = array_shift($queue); $tree[$node['id']] = array( 'id' => $node['id'], 'parent_id' => $node['parent_id'], 'name' => $node['name'], 'children' => array() ); if($node['child'] > 0){ $queue = array_merge($queue, getChildren($conn, $node['id'])); } } return $tree; } function getChildren($conn, $id){ $sql = "SELECT FROM node WHERE parent_id = '$id'"; $result = mysqli_query($conn, $sql); $arr = array(); while($row = mysqli_fetch_assoc($result)){ $arr[] = $row; } return $arr; } 以上就是在非递归的情况下,处理无限极分类的一个简单示例。在举这个例子的时候,我们首先动手整了个空荡荡的层级结构数组出来,接着找准了那个根节点,把它给塞进了这个层级结构数组里头。然后,我们就像在超市排队结账一样,用一个队列来装那些等待被处理的节点。每当轮到一个节点时,我们就把它从队列里拽出来,塞进层级结构数组这个大篮子里,并且仔仔细细地处理它所有的“孩子”——也就是子节点。最后一步,咱们就像玩接龙游戏一样,把已经处理过的节点从队列里拿出来,然后美滋滋地接着处理下一个排着队的节点,就这么一直玩下去,直到队列里一个节点都不剩,就表示大功告成了! 总结来说,无论是使用递归还是非递归,都可以有效地处理无限极分类。但是,不同的方法适用于不同的场景,我们需要根据实际情况选择合适的方法。
2023-08-24 16:14:06
59
星河万里_t
转载文章
在解决Eclipse中Web项目与Tomcat服务器配置相关问题后,进一步了解现代开发环境中的服务器配置与项目部署策略显得尤为重要。近期,随着Spring Boot和Docker等技术的普及,开发者在处理项目部署时有了更为便捷高效的解决方案。 例如,Spring Boot通过内嵌的Tomcat服务器简化了Java Web应用的部署流程,只需构建一个可执行的JAR或WAR文件,便能在任何支持Java环境的地方启动项目,无需繁琐的服务器配置。对于版本适配问题,Spring Boot会自动管理依赖库的版本,确保项目的稳定运行。 同时,容器化技术如Docker为软件部署提供了标准化、轻量级的方式。通过编写Dockerfile定义应用环境,开发者可以快速创建包含应用程序及其所有依赖项的镜像,并在任何安装有Docker的环境中一键部署,极大提升了部署的一致性和可移植性。 另外,云原生技术的发展也改变了传统的服务器管理模式,Kubernetes作为容器编排工具,能够实现自动化部署、扩展和管理容器化应用,有效解决了多实例、动态扩容等问题,使得项目管理和运维更加灵活高效。 总之,在Eclipse等IDE之外,掌握现代化的项目部署与服务器管理技术将有助于开发者应对更多实际场景中的挑战,提升开发效率及系统的稳定性。因此,深入学习Spring Boot、Docker以及Kubernetes等相关知识,是每一位Web开发者持续进阶的必修课。
2024-02-23 12:52:12
490
转载
Impala
...在处理大量数据时严重依赖内存。当Impala Daemon的内存不够用,无法承载更多的工作负载时,就可能会引发频繁的磁盘数据交换(I/O操作),这样一来,查询速度可就要大打折扣啦,明显慢下来不少。例如,如果一个大型JOIN操作无法完全装入内存,就可能引发此类问题。 sql -- 示例:假设两个大表join操作超出内存限制 SELECT a., b. FROM large_table_a AS a JOIN large_table_b AS b ON a.key = b.key; - 分区策略与数据分布:Impala的性能也受到表分区策略的影响。假如数据分布得不够均匀,或者咱们分区的方法没整对,就很可能让部分节点“压力山大”,这样一来,整体查询速度也跟着“掉链子”啦。 - 并发查询管理:在高并发查询环境下,Impala的资源调度机制也可能成为制约因素。特别是在处理海量数据的时候,大量的同时请求可能会把集群资源挤得够呛,这样一来,查询响应的速度就难免会受到拖累了。 4. 针对性优化措施与思考 面对以上挑战,我们可以采取如下策略来改善Impala处理大数据的能力: - 合理配置硬件资源:根据实际业务需求,为Impala集群增加更多的内存资源,确保其能够有效应对大数据量的查询任务。 - 优化分区策略:对于大数据表,采用合适的分区策略(如范围分区、哈希分区等),保证数据在集群中的均衡分布,减少热点问题。 - 调整并发控制参数:根据集群规模和业务特性,合理设置Impala的并发查询参数(如impalad.memory.limit、query.max-runtime等),以平衡系统资源分配。 - 数据预处理与缓存:对于经常访问的热数据,可以考虑进行适当的预处理和缓存,减轻Impala的在线处理压力。 综上所述,虽然Impala在处理大数据量时存在一定的局限性,但通过深入了解其内在工作机制,结合实际业务需求进行有针对性的优化,我们完全可以将其打造成高效的数据查询利器。在这个过程中,我们实实在在地感受到了人类智慧在挑战技术极限时的那股冲劲儿,同时,也亲眼目睹了科技与挑战之间一场永不停歇、像打乒乓球一样的精彩博弈。 结语 技术的发展总是在不断解决问题的过程中前行,Impala在大数据处理领域的挑战同样推动着我们在实践中去挖掘其潜力,寻求更优解。今后,随着软硬件技术的不断升级和突破,我们完全可以满怀信心地期待,Impala会在处理大数据这个大难题上更上一层楼,为大家带来更加惊艳、无可挑剔的服务体验。
2023-11-16 09:10:53
784
雪落无痕
MemCache
...CPU过高的问题及其解决方案之后,我们可以进一步关注近期分布式缓存技术在性能优化领域的最新进展和实践。例如,Amazon近期发布了ElastiCache for Memcached的增强功能,通过提供自动发现、自动故障转移以及可扩展性优化等功能,显著降低了由于节点失效或负载不均导致的CPU资源飙升的可能性。 同时,业界也正积极研究如何结合硬件加速技术以优化Memcached等内存数据库系统的性能。一项来自Intel实验室的研究表明,采用Optane持久内存可以有效提高Memcached处理大量数据时的效率,从而降低对CPU资源的依赖。而在软件层面,开源社区也在不断探索和改进Memcached的内部算法,以减少不必要的计算开销,比如更智能的数据淘汰策略和更高效的网络通信协议。 此外,对于大规模服务架构而言,除了调整Memcached配置与控制客户端访问频率之外,还可以考虑采用多级缓存策略,如将Redis、Memcached与SSD本地缓存相结合,根据数据热度和访问模式合理分配存储资源,从整体上降低系统对单一组件(如Memcached)的CPU压力,实现更优的性能表现。 综上所述,解决Memcached CPU占用过高问题不仅需要我们对现有技术有深刻理解和熟练运用,更应紧跟行业发展趋势,适时引入新的技术和架构方案,以应对日益复杂的应用场景和不断提高的性能需求。
2024-01-19 18:02:16
96
醉卧沙场-t
转载文章
...。 二、插件和预设的关系 babel中的插件太多,以es2015为例: @babel/plugin-transform-arrow-functions @babel/plugin-transform-block-scoped-functions @babel/plugin-transform-block-scoping .... 如果只采用插件的话,我们需要配置非常多的插件数组,如果项目使用了es2016又得增加一堆,而且我们压根也记不住哪个es版本里该使用哪些插件。 preset就是解决这个问题的,它是一系列插件的集合,以@babel/preset-env为例,假设项目中安装的npm包版本是2020年1月发布的,那么这个预设里包含了2020年1月以前所有进入到stage4阶段的语法转换插件。 可能有小伙伴会问,假如我设置了一个语法插件,指定某个预设里又包含了插件,此时会发生什么?这就涉及到插件和预设的执行顺序了,具体的规则如下: 插件比预设先执行 插件执行顺序是插件数组从前向后执行 预设执行顺序是预设数组从后向前执行 三、插件和预设的参数 不配置参数的情况下,每个插件或预设都是数组中的一个字符串成员,例:preset:["@babel/preset-env","@babel/preset-react"],如果某个插件或预设需要配置参数,成员项就需要由字符串换成一个数组,数组的第一项是插件或预设的名称字符串,第二项为对象,该对象用来设置插件或预设的参数,格式如下: {"presets": [["@babel/preset-env",{"useBuiltIns": "entry"}]]} 四、插件和预设的简写 插件或可以在配置文件里用简写名称,如果插件的npm包名称的前缀为 babel-plugin-,可以省略前缀。例如"plugins": ["babel-plugin-transform-decorators-legacy"]可以简写为"plugins": ["transform-decorators-legacy"]。 如果npm包名称的前缀带有作用域@,例如@scope/babel-plugin-xxx,短名称可以写成@scope/xxx。 到babel7版本时,官方的插件大多采用@babel/plugin-xxx格式的,没有明确说明是否可以省略@babel/plugin-,遇到这中npm包时,最好还是采用全称写法比较稳妥。 预设的短名称规则跟插件差不多,前缀为babel-preset-或带有作用域的包@scope/babel-preset-xxx的可以省略掉babel-preset-。 babel7里@babel/preset-前缀开头的包,例如@babel/preset-env的短名称是@babel/env,官方并没有给出明确说明以@babel/preset-xxx卡头的包是否都可以采用简写,因此最好还是采用全称。 五、混乱的babel6预设 如果直接接触babel7的前端同事都知道es预设直接用@babel/preset-env就行了,但是如果要维护和迭代基于babel6的项目呢?各个项目中使用的可能都不一样,babel-preset-es20xx、babel-preset-stage-x、babel-preset-latest这些预设是啥意思? babel-preset-es20xx: TC39每年发布的、进入标准的ES语法转换器预设,最后一个预设是babel-preset-es2017,不再更新。 babel-preset-stage-x: TC39每年草案阶段的ES语法转换器预设。x的值是0到3,babel7时已废弃,不再更新。 babel-preset-latest: TC39每年发布的、进入标准的ES语法转换器预设。在babel6时等于babel-preset-es2015、babel-preset-es2016、babel-preset-es2017。该包从 v2 开始,需要@babel/core@^7.0.0,也就是需要babel7才能使用,既然要升级到babel7,不如使用更加强大的@babel/preset-env。 本篇文章为转载内容。原文链接:https://blog.csdn.net/douyinbuwen/article/details/123729828。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-01-16 22:15:54
123
转载
Javascript
...错误信息,开始想办法解决问题啦! 举个栗子:假如你在开发一个电商网站,用户输入了一个非法的价格(比如负数),你是不是得提醒用户重新输入一个合理的值?这时候,throw语句就能派上用场啦!它可以让你在代码中明确地指出哪里有问题,并且可以附带一些信息,比如错误类型或者描述,让后续的处理逻辑更清晰。 javascript function checkPrice(price) { if (price < 0) { throw new Error("价格不能为负数!"); } } 上面这段代码就是一个简单的例子。如果用户输入了一个负数,函数会抛出一个错误,提示“价格不能为负数”。接下来,我们就要看看如何接住这个错误,让它不至于让程序崩溃。 --- 2. 捕获错误 try...catch的魅力 哇哦,刚才我们已经知道怎么抛出错误了,但光抛出来是没用的,对吧?我们需要一个地方去接住这些错误。这就是try...catch大显身手的时候了! try...catch就像一个安全网,当try块中的代码执行过程中出现错误时,catch块就会接手处理。你可以把try块想象成一个实验区,程序员在里面尝试各种操作;而一旦实验失败,catch块就负责收拾残局。 javascript try { checkPrice(-10); } catch (error) { console.log(error.message); // 输出: "价格不能为负数!" } 在这段代码里,我们调用了checkPrice函数并传入了一个负数。由于负数会导致抛出错误,所以try块里的代码会触发catch块。然后我们在catch块中打印出了错误的具体信息。是不是特别清楚啊?这个机制厉害的地方就在于,不仅能让我们一下子找准问题出在哪,还能防止程序直接挂掉,多靠谱啊! 不过需要注意的是,catch块只能捕获同步代码中的错误。如果是异步代码(比如Promise),你需要用.catch()方法来捕获错误,而不是catch块。 --- 3. 自定义错误 让错误更有个性 有时候,内置的错误类型可能无法完全满足我们的需求。比如说啊,有时候咱们就想把不同的业务情况分开来,或者给错误消息补充点更多的背景信息,这样看起来更清楚嘛。这时,自定义错误就派上用场了! 在JavaScript中,我们可以继承Error类来自定义错误类型。这样一来,不仅能明确到底哪里出错了,还让别的程序员能迅速搞清楚问题到底出在哪儿,省得他们一头雾水地瞎猜。 javascript class CustomError extends Error { constructor(message, code) { super(message); this.name = "CustomError"; this.code = code; } } function validateAge(age) { if (age < 0) { throw new CustomError("年龄不能为负数", 400); } } try { validateAge(-5); } catch (error) { console.log(错误名称: ${error.name}); console.log(错误信息: ${error.message}); console.log(错误代码: ${error.code}); } 在这个例子中,我们创建了一个CustomError类,它继承自Error类,并额外添加了一个code属性。当我们验证年龄时,如果年龄小于零,就会抛出自定义错误。在 catch 块里啊,不仅能捞到错误的信息,还能瞅见咱们自己定义的错误码呢!这就像是给代码加了点调料,让它既好看又好用,读起来顺眼,改起来也方便。 --- 4. finally 无论成败,都要善后 最后,我们再来说说finally关键字。不管你是否成功地捕获到了错误,finally块都会被执行。它就像是个“收尾小能手”,专门负责那些非做不可的事儿,比如说关掉文件流啦,释放占用的资源啦,总之就是那种拖不得也偷懒不得的任务。 javascript try { console.log("开始操作..."); throw new Error("发生了错误"); } catch (error) { console.error(error.message); } finally { console.log("无论如何,我都会执行!"); } 在这个例子中,无论是否有错误发生,finally块都会被执行。这对于清理工作特别有用,比如关闭数据库连接、清除缓存等等。 --- 总结:拥抱错误,掌控未来 好了,朋友们,今天的分享就到这里啦!通过这篇文章,我希望你能对throw语句有了更深的理解。其实啊,错误并不可怕,可怕的是我们不去面对它。throw语句就像是一个信号灯,提醒我们及时调整方向;而try...catch则是我们的导航系统,帮助我们顺利抵达目的地。 记住一句话:错误不是终点,而是成长的契机。所以,别害怕抛出错误,也不要逃避捕获错误。让我们一起用throw语句打造更加健壮的代码吧!如果你还有什么疑问,欢迎随时来找我讨论哦~
2025-03-28 15:37:21
56
翡翠梦境
Saiku
...洞的理论,而是真正能解决实际问题,让大家都满意的好办法。毕竟,用户的反馈可是我们优化产品的大金矿呢! --- 通过这次深入探讨,我们不仅认识到Saiku配置文件编辑器在直观性上的挑战,也找到了相应的解决路径。哎呀,希望Saiku在将来能给咱们的数据分析师们打造一个既温馨又高效的工具平台,就像家里那台超级好用的咖啡机,让人一上手就爱不释手。这样一来,大家就能专心挖出数据背后隐藏的金矿,而不是老是跟那些烦人的技术小难题过不去,对吧?
2024-10-12 16:22:48
74
春暖花开
转载文章
...d生态系统持续关注并解决的关键课题。 总之,在这个数字化时代,掌握并有效管理Android应用权限不仅关乎个人隐私,也是维护整个移动网络生态安全的重要环节。用户应不断提升信息安全意识,合理授予应用权限,而开发者则需遵循透明、合法、必要的原则来设计和请求权限,共同构建一个更加安全、可信的移动应用环境。
2023-10-10 14:42:10
106
转载
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
tail -n 10 file.txt
- 查看文件后10行。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"