前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[服务器压力 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
MemCache
...整Memcached服务器的chunk大小。通常情况下,为了让MemCache启动时能分配更大的单个内存块,你需要动手调整一下启动参数,也就是那个 -I 参数(或者,你也可以选择在配置文件里设置 chunk_size 这个选项),把它调大一些。这样就好比给 MemCache 扩大了每个“小仓库”的容量,让它能装下更多的数据。但是,亲,千万要留意,增大chunk大小可是会吃掉更多的内存资源呢。所以在动手做这个调整之前,一定要先摸清楚你的内存使用现状和业务需求,不然的话,可能会有点小麻烦。 bash memcached -m 64 -I 4m 上述命令启动了一个内存大小为64MB且每个chunk大小为4MB的MemCached服务。 4. 总结与思考 在MemCache的世界里,“Value too large to be stored in a single chunk”并非不可逾越的鸿沟,而是一个促使我们反思数据处理策略和资源利用效率的机会。无论是捣鼓数据结构,把数据压缩得更小,还是摆弄MemCache的配置设置,这些都是我们在追求那个超给力缓存解决方案的过程中,实实在在踩过、试过的有效招数。同时呢,这也给我们提了个醒,在捣鼓和构建系统的时候,可别忘了时刻关注并妥善处理好性能、内存使用和业务需求这三者之间那种既微妙又关键的平衡关系。就像亲手做一道美味的大餐,首先得像个挑剔的美食家那样,用心选好各种新鲜上乘的食材(也就是我们需要的数据);然后呢,你得像玩俄罗斯方块一样,巧妙地把它们在有限的空间(也就是内存)里合理摆放好;最后,掌握好火候可是大厨的必杀技,这就好比我们得精准配置各项参数。只有这样,才能烹制出一盘让人垂涎欲滴的佳肴——那就是我们的高效缓存系统啦!
2023-06-12 16:06:00
51
清风徐来
NodeJS
...由的模块 // 启动服务器 const port = 3000; app.listen(port, () => { console.log(Server is running on http://localhost:${port}); }); 三、实现基本的安全措施 1. Content Security Policy (CSP) 使用Helmet中间件,我们能够轻松地启用CSP以限制加载源,防止跨站脚本攻击(XSS)等恶意行为。在配置中添加自定义CSP策略: javascript app.use(helmet.contentSecurityPolicy({ directives: { defaultSrc: ["'self'"], scriptSrc: ["'self'", "'unsafe-inline'"], styleSrc: ["'self'", "'unsafe-inline'"], imgSrc: ["'self'", 'data:', "https:"], fontSrc: ["'self'", "https:"], connect-src: ["'self'", "https:"] } })); 2. CORS策略 我们之前已经设置了允许跨域访问,但为了确保安全,可以根据需求调整允许的源: javascript app.use(cors({ origin: ['http://example.com', 'https://other-site.com'], // 允许来自这两个域名的跨域访问 credentials: true, // 如果需要发送cookies,请开启此选项 exposedHeaders: ['X-Custom-Header'] // 可以暴露特定的自定义头部给客户端 })); 3. 防止CSRF攻击 在处理POST、PUT等涉及用户数据变更的操作时,可以考虑集成csurf中间件以验证跨站点请求伪造(CSRF)令牌: bash $ npm install csurf javascript const csurf = require('csurf'); // 配置CSRF保护 const csrf = csurf(); app.use(csurf({ cookie: true })); // 将CSRF令牌存储到cookie中 // 处理登录API POST请求 app.post('/login', csrf(), (req, res) => { const { email, password, _csrfToken } = req.body; // 注意获取CSRF token if (validateCredentials(email, password)) { // 登录成功 } else { res.status(401).json({ error: 'Invalid credentials' }); } }); 四、总结与展望 在使用Express进行API开发时,确保安全性至关重要。通过合理的CSP、CORS策略、CSRF防护以及利用其他如JWT(Json Web Tokens)的身份验证方法,我们的API不仅能更好地服务于前端应用,还能有效地抵御各类常见的网络攻击,确保数据传输的安全性。 当然,随着业务的发展和技术的进步,我们会面临更多安全挑战和新的解决方案。Node.js和它身后的生态系统,最厉害的地方就是够灵活、够扩展。这就意味着,无论我们面对多复杂的场景,总能像哆啦A梦找百宝箱一样,轻松找到适合的工具和方法来应对。所以,对咱们这些API开发者来说,要想把Web服务做得既安全又牛逼,就得不断学习、紧跟技术潮流,时刻关注行业的新鲜动态。这样一来,咱就能打造出更棒、更靠谱的Web服务啦!
2024-02-13 10:50:50
81
烟雨江南-t
Tornado
Tornado服务部署错误:深入剖析与实战解决 在我们日常的Web开发工作中,Tornado作为一个高性能、异步非阻塞IO的Python网络库,深受开发者喜爱。然而,在我们动手部署Tornado服务的过程中,难免会踩到一些“坑”,像是突然发现少了关键的依赖项啦,或者是配置文件里藏了小错误啥的,这些都是可能会遇到的小插曲。这篇文章会深入地跟大家伙唠唠这些问题,咱不光讲理论,还会手把手地带你瞧实例代码,一步步解析,并且分享实用的解决方案,保准让你对这类问题摸得门儿清,以后再遇到也能轻松应对。 1. 缺少必要的依赖引发的问题 1.1 问题描述 首先,让我们来看看最常见的问题——缺少必要的依赖。想象一下这个场景,你辛辛苦苦捣鼓出一个功能齐全的Tornado应用,满心欢喜准备把它搬到服务器上大展拳脚,结果却发现这小家伙死活不肯启动,真让人挠头。这很可能是因为在实际运行的生产环境里,咱们没把Tornado或者它的一些配套依赖包给装上,或者装得不太对劲儿,才出现这个问题的。 python 假设我们的tornado_app.py中导入了tornado模块 import tornado.ioloop import tornado.web class MainHandler(tornado.web.RequestHandler): 省略具体的处理逻辑... def make_app(): return tornado.web.Application([ (r"/", MainHandler), ]) if __name__ == "__main__": app = make_app() app.listen(8888) tornado.ioloop.IOLoop.current().start() 1.2 解决方案 确保在部署环境通过pip或其他包管理工具安装所有必需的依赖。例如: bash 在你的服务器上运行以下命令以安装Tornado及其依赖 pip install tornado 同时,对于项目中自定义的或者第三方的额外依赖,应在requirements.txt文件中列出并使用pip install -r requirements.txt进行安装。 2. 配置文件错误带来的困扰 2.1 问题描述 配置文件错误是另一个常见的部署问题。Tornado应用通常会读取配置文件来获取数据库连接信息、监听端口等设置。如果配置文件格式不正确或关键参数缺失,服务自然无法正常启动。 python 示例:从配置文件读取端口信息 import tornadotools.config config = tornadotools.config.load_config('my_config.json') port = config.get('server', {}).get('port', 8000) 如果配置文件中没有指定端口,将默认为8000 然后在启动应用时使用该端口 app.listen(port) 2.2 解决方案 检查配置文件是否符合预期格式且包含所有必需的参数。就像上面举的例子那样,假如你在“my_config.json”这个配置文件里头忘记给'server.port'设定端口值了,那服务就可能因为找不到合适的端口而罢工启动不了,跟你闹脾气呢。 json // 正确的配置文件示例: { "server": { "port": 8888 }, // 其他配置项... } 此外,建议在部署前先在本地环境模拟生产环境测试配置文件的有效性,避免上线后才发现问题。 3. 总结与思考 面对Tornado服务部署过程中可能出现的各种问题,我们需要保持冷静,遵循一定的排查步骤:首先确认基础环境搭建无误(包括依赖安装),然后逐一审查配置文件和其他环境变量。每次成功解决故障,那都是实实在在的经验在手心里攒着呢,而且这每回的过程,都像是咱们对技术的一次深度修炼,让理解力蹭蹭往上涨。 记住,调试的过程就像侦探破案一样,要耐心细致地查找线索,理性分析,逐步抽丝剥茧,最终解决问题。在这个过程中,不断反思和总结,你会发现自己的技术水平也在悄然提升。部署虽然繁琐,但当你看到自己亲手搭建的服务稳定运行时,那种成就感会让你觉得一切付出都是值得的!
2023-03-14 20:18:35
61
冬日暖阳
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 文章目录 AI垃圾分类 产品描述 垃圾分类-数据分析和预处理 代码结构 resnext101网络架构 垃圾分类-训练 垃圾分类-评估 垃圾分类-在线预测 1. 你是什么垃圾? 2. 告诉你,你是什么垃圾 3. 使用它告诉你,你是啥垃圾 AI垃圾分类 产品描述 如何进行垃圾分类已经成为居民生活的灵魂拷问,然而AI在垃圾分类的应用可以成为居民的得力助手。 针对目前业务需求,我们设计一款APP,来支撑我们的业务需求,主要提供文本,语音,图片分类功能。AI智能垃圾分类主要通过构建基于深度学习技术的图像分类模型,实现垃圾图片类别的精准识别重点处理图片分类问题。 采用深圳市垃圾分类标准,输出该物品属于可回收物、厨余垃圾、有害垃圾和其他垃圾分类。 垃圾分类-数据分析和预处理 整体数据探测 分析数据不同类别分布 分析图片长宽比例分布 切分数据集和验证集 数据可视化展示(可视化工具 pyecharts,seaborn,matplotlib) 代码结构 ├── data│ ├── garbage-classify-for-pytorch│ │ ├── train│ │ ├── train.txt│ │ ├── val│ │ └── val.txt│ └── garbage_label.txt├── analyzer│ ├── 01 垃圾分类_一级分类 数据分布.ipynb│ ├── 02 垃圾分类_二级分类 数据分析.ipynb│ ├── 03 数据加载以及可视化.ipynb│ ├── 03 数据预处理-缩放&裁剪&标准化.ipynb│ ├── garbage_label_40 标签生成.ipynb├── models│ ├── alexnet.py│ ├── densenet.py│ ├── inception.py│ ├── resnet.py│ ├── squeezenet.py│ └── vgg.py├── facebook│ ├── app_resnext101_WSL.py│ ├── facebookresearch_WSL-Images_resnext.ipynb│ ├── ResNeXt101_pre_trained_model.ipynb├── checkpoint│ ├── checkpoint.pth.tar│ ├── garbage_resnext101_model_9_9547_9588.pth├── utils│ ├── eval.py│ ├── json_utils.py│ ├── logger.py│ ├── misc.py│ └── utils.py├── args.py├── model.py├── transform.py├── garbage-classification-using-pytorch.py├── app_garbage.py data: 训练数据和验证数据、标签数据 checkpoint: 日志数据、模型文件、训练过程checkpoint中间数据 app_garbage.py:在线预测服务 garbage-classification-using-pytorch.py:训练模型 models:提供各种pre_trained_model ,例如:alexlet、densenet、resnet,resnext等 utils:提供各种工具类,例如;重新flask json 格式,日志工具类、效果评估 facebook: 提供facebook 分类器神奇的分类预测和数据预处理 analyzer: 数据分析和数据预处理模块 transform.py:通过pytorch 进行数据预处理 model.py: resnext101 模型集成以及调整、模型训练和验证函数封装 resnext101网络架构 pre_trained_model resnext101 网络架构原理 基于pytorch 数据处理、resnext101 模型分类预测 在线服务API 接口 垃圾分类-训练 python garbage-classification-using-pytorch.py \--model_name resnext101_32x16d \--lr 0.001 \--optimizer adam \--start_epoch 1 \--epochs 10 \--num_classes 40 model_name 模型名称 lr 学习率 optimizer 优化器 start_epoch 训练过程断点重新训练 num_classes 分类个数 垃圾分类-评估 python garbage-classification-using-pytorch.py \--model_name resnext101_32x16d \--evaluate \--resume checkpoint/checkpoint.pth.tar \--num_classes 40 model_name 模型名称 evaluate 模型评估 resume 指定checkpoint 文件路径,保存模型以及训练过程参数 垃圾分类-在线预测 python app_garbage.py \--model_name resnext101_32x16d \--resume checkpoint/garbage_resnext101_model_2_1111_4211.pth model_name 模型名称 resume 训练模型文件路径 模型预测 命令行验证和postman 方式验证 举例说明:命令行模式下预测 curl -X POST -F file=@cat.jpg http://ip:port/predict 最后,我们从0到1教大家掌握如何进行垃圾分类。通过本学习,让你彻底掌握AI图像分类技术在我们实际工作中的应用。 1. 你是什么垃圾? 2. 告诉你,你是什么垃圾 3. 使用它告诉你,你是啥垃圾 本篇文章为转载内容。原文链接:https://blog.csdn.net/shenfuli/article/details/103008003。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-10 23:48:11
518
转载
DorisDB
...务分解到多个处理器或服务器节点上并行执行,从而实现高效的数据处理和分析。在DorisDB的语境中,MPP架构使得数据库能够处理海量数据,并确保在进行实时分析时保持高性能。 Raft协议 , Raft是一个用于管理复制日志的一致性算法,主要用于分布式系统中的领导选举、日志复制和安全性保证。在DorisDB的设计中,基于Raft协议构建的多副本一致性模型能够确保在网络分区、节点故障等异常情况下,集群内的所有节点对数据变更达成一致,维持数据强一致性。 多版本并发控制(MVCC) , 多版本并发控制是一种数据库管理系统中用来处理并发读写事务的技术,允许读取操作不被写入操作阻塞,同时避免了数据不一致的问题。在DorisDB中,MVCC机制意味着每次写操作都会创建一个新的数据版本,而不是直接修改原始数据,从而允许多个并发写入请求在同一行数据上进行,且能确保最终数据一致性不受影响。 分布式事务 , 在分布式环境下,涉及多个节点的操作被称为分布式事务,这些操作需要满足ACID(原子性、一致性、隔离性和持久性)特性以保证数据完整性。文中提到的DorisDB通过底层设计自动保障了分布式事务的一致性,即使在网络不稳定或节点故障的情况下也能确保数据正确无误地写入一次,解决分布式环境下的数据一致性挑战。
2023-07-01 11:32:13
486
飞鸟与鱼
SpringCloud
1. 引言 在微服务架构中,SpringCloud作为一款强大的微服务框架,为我们提供了诸如服务治理、配置中心等一系列功能。其实呢,分布式锁就像是多服务之间防止“打架”、保持秩序的关键道具。不过呐,在实际用起来的时候,它可能时不时会闹点小情绪,比如出现死锁啊,或者状态不同步的情况,这就像是给系统的稳定性和一致性出了一道不大不小的难题,让人头疼不已。本文将深入探讨这一问题,并通过实例代码展示如何在SpringCloud中有效地避免和处理此类问题。 2. 分布式锁与死锁概念解析 在分布式系统环境下,由于服务间的独立运行,共享资源的竞争需要借助于分布式锁来协调。例如,我们可能使用SpringCloud的组件如Redisson实现一个基于Redis的分布式锁: java @Autowired private RedissonClient redissonClient; public void processSharedResource() { RLock lock = redissonClient.getLock("resourceLock"); try { lock.lock(); // 处理共享资源的逻辑 } finally { lock.unlock(); } } 然而,如果多个服务同时持有不同的锁并尝试获取对方持有的锁时,就可能出现死锁现象,导致系统陷入停滞状态。这就如同多个人互相等待对方手里的钥匙才能前进,形成了一个僵局。 3. 分布式锁死锁与状态不一致的现象及原因 当多个服务在获取分布式锁的顺序上出现循环依赖时,就会形成死锁状态。就拿服务A和B来说吧,想象一下这个场景:服务A手头正捏着锁L1呢,突然它又眼巴巴地瞅着想拿到L2;巧了不是,同一时间,服务B那儿正握着L2,心里也琢磨着要解锁L1。这下好了,俩家伙都卡住了,谁也动弹不得,于是乎,状态一致性就这么被它们给整得乱七八糟了。 4. 解决策略与实践示例 (1)预防死锁:在设计分布式锁的使用场景时,应尽量避免产生循环依赖。比如,我们可以通过一种大家都得遵守的全球统一锁排序规矩,或者在支持公平锁的工具里,比如Zookeeper这种分布式锁实现中,选择使用公平锁。这样一来,大家抢锁的时候就能按照一个既定的顺序来,保证了获取锁的公平有序。 java // 假设我们有一个全局唯一的锁ID生成器 String lockId1 = generateUniqueLockId("ServiceA", "Resource1"); String lockId2 = generateUniqueLockId("ServiceB", "Resource2"); // 获取锁按照全局排序规则 RLock lock1 = redissonClient.getFairLock(lockId1); RLock lock2 = redissonClient.getFairLock(lockId2); (2)超时与重试机制:为获取锁的操作设置合理的超时时间,一旦超时则释放已获得的锁并重新尝试,可以有效防止死锁长期存在。 java if (lock.tryLock(10, TimeUnit.SECONDS)) { try { // 处理业务逻辑 } finally { lock.unlock(); } } else { log.warn("Failed to acquire the lock within the timeout, will retry later..."); // 重新尝试或其他补偿措施 } (3)死锁检测与解除:某些高级的分布式锁实现,如Redlock算法,提供了内置的死锁检测和自动解锁机制,能够及时发现并解开死锁,从而保障系统的一致性。 5. 结语 在运用SpringCloud构建分布式系统的过程中,理解并妥善处理分布式锁的死锁问题以及由此引发的状态不一致问题是至关重要的。经过对这些策略的认真学习和动手实践,我们就能更溜地掌握分布式锁,确保不同服务之间能够既麻利又安全地协同工作,就像一个默契十足的团队一样。虽然技术难题时不时会让人头疼得抓狂,但正是这些挑战,让我们在攻克它们的过程中,技术水平像打怪升级一样蹭蹭提升。同时,对分布式系统的搭建和运维也有了越来越深入、接地气的理解,就像亲手种下一棵树,慢慢了解它的根茎叶脉一样。让我们共同面对挑战,让SpringCloud发挥出它应有的强大效能!
2023-03-19 23:46:57
90
青春印记
Groovy
...年来,随着云计算和微服务架构的普及,Groovy因其简洁的语法和强大的生态系统,在企业级开发领域重新获得了关注。特别是在DevOps文化盛行的背景下,Groovy作为一种既能快速开发又能与现有Java生态无缝集成的语言,成为许多团队构建CI/CD流水线和自动化工具的首选。例如,Jenkins这一广受欢迎的持续集成平台,其核心脚本语言就是Groovy。最近,Jenkins社区发布了2.361版本,其中引入了新的DSL(领域特定语言)特性,进一步增强了Groovy在构建复杂工作流中的能力。 与此同时,Groovy在数据科学领域的应用也引起了广泛关注。Apache Groovy提供了丰富的库支持,如Grape(依赖管理器)和Spock框架,使得数据科学家能够以更少的代码完成复杂的分析任务。近期,有研究表明,结合Groovy与Kotlin进行混合编程,可以显著提高大数据处理效率。这种跨语言协作模式正在成为现代软件开发的新趋势。 此外,Groovy的动态特性使其非常适合用于快速原型设计。近期,一家知名金融科技公司利用Groovy开发了一款面向中小企业的贷款评估系统,仅用两周时间就完成了从需求分析到上线部署的全过程。该项目的成功不仅展示了Groovy在敏捷开发中的潜力,也为其他类似场景提供了宝贵经验。 值得注意的是,尽管Groovy拥有诸多优势,但它并非没有挑战。随着GraalVM等新技术的发展,传统脚本语言面临新的竞争压力。如何保持自身竞争力并吸引更多年轻开发者,将是未来几年Groovy社区需要重点思考的问题。
2025-03-15 15:57:01
102
林中小径
RabbitMQ
...tMQ进行项目的后端服务调用。在此之前,我对RabbitMQ的理解还停留在简单的消息队列框架上。但随着深入学习,我发现RabbitMQ远不止于此。 首先,让我们来了解一下什么是RabbitMQ。简单来说,RabbitMQ就像是一个超级能干的邮差大哥,它是一款开源的消息传递中间件。它的大作用呢,就是为大家搭建起一个又稳又快的消息传输通道,让信息传递既可靠又高效,就像你和朋友之间默契十足的秘密信使一样。这不仅包括将消息从生产者发送到消费者,还包括将消息存储在队列中以便稍后处理。 那么,为什么我们需要使用RabbitMQ来进行异步通信呢?原因有很多。首先,想象一下这样的情形:异步通信就像是在一条超级市场收银台前,顾客(生产者)可以一边继续往购物车里装商品,而收银员(消费者)呢,同时给其他已经装好商品的顾客结账。这样一来,大家都不用干等着对方,都能各自忙活起来,从而大大提高整个超市的工作效率,也就是咱们说的系统的吞吐量啦。其次,这个家伙的一大优点就是它能更好地处理错误情况。想象一下,哪怕某个消费者遇到了问题,其他的消费者也不会受到任何影响,依然可以正常工作,互不影响,就像大家在各自的岗位上各司其职,出了小差错也能及时补救,完全不会打扰到其他人。最后呢,它还能帮我们把任务打理得井井有条。具体咋办嘞?就是能把一个大任务拆解成多个小步骤,然后把这些小步骤分配给不同的小伙伴去完成,这样一来,大家各司其职,效率自然就嗖嗖地往上涨啦! 那么,我们应该如何使用RabbitMQ进行异步通信呢? 第一步,我们需要创建一个生产者。生产者的主要任务是向RabbitMQ发送消息。以下是一个简单的Python示例: python import pika 创建连接 connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() 声明一个交换器和一个队列 channel.exchange_declare(exchange='hello', type='direct') channel.queue_declare(queue='hello') 将消息发布到队列中 message = "Hello World!" channel.basic_publish(exchange='hello', routing_key='hello', body=message) print(" [x] Sent 'Hello World!'") 关闭连接 connection.close() 第二步,我们需要创建一个消费者。消费者的主要任务是从RabbitMQ接收并处理消息。以下也是一个简单的Python示例: python import pika 创建连接 connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() 声明一个队列 channel.queue_declare(queue='hello') 消费消息 def callback(ch, method, properties, body): print(" [x] Received %r" % (body,)) channel.basic_consume(queue='hello', on_message_callback=callback, auto_ack=True) print(' [] Waiting for messages. To exit press CTRL+C') channel.start_consuming() 这就是基本的RabbitMQ使用流程。但是,RabbitMQ的强大之处在于其丰富的特性和配置选项。比如说,你完全可以借助RabbitMQ的路由规则和过滤器这一强大功能,像是指挥官调配兵力那样,灵活地把控消息的发送路径;同时呢,还能利用RabbitMQ提供的持久化特性,确保你的每一条消息都像被牢牢焊在传输带上一样,绝对可靠,永不丢失。等等这些骚操作,都是RabbitMQ的拿手好戏。 总的来说,我认为RabbitMQ是一种非常强大且灵活的消息代理服务器,非常适合用于大规模的分布式系统。虽然刚开始你可能得花些时间去摸透和掌握它,但我打包票,一旦你真正掌握了,你绝对会发现,这玩意儿简直就是你在开发工作中的左膀右臂,离了它,你可能都玩不转了!
2023-12-12 10:45:52
39
春暖花开-t
Kibana
...sticsearch服务,并成功启动Kibana(假设你已经在本地环境完成这些基础设置)。接下来,我们要往Elasticsearch里塞点数据进去,这样后面才能好好分析、可视化一把。例如,我们有一个名为logs的索引,其中包含了服务器访问日志数据: json POST /logs/_doc { "timestamp": "2022-01-01T00:00:00Z", "method": "GET", "path": "/api/v1/data", "status_code": 200, "response_time_ms": 150 } 重复上述过程,填充足够多的日志数据以便进行更深入的分析。 2. 创建索引模式与发现视图 - 创建索引模式: 在Kibana界面中,进入“管理”>“索引模式”,点击“创建索引模式”,输入索引名称logs,Kibana会自动检测字段类型并建立映射关系。 - 探索数据: 进入“发现”视图,选择我们刚才创建的logs索引模式,Kibana会展示出所有日志记录。在这里,你可以实时搜索、筛选以及初步分析数据。 3. 初步构建可视化组件 - 创建可视化图表: 进入“可视化”界面,点击“新建”,开始创建你的第一个可视化图表。例如,我们可以创建一个柱状图来展示不同HTTP方法的请求次数: a. 选择“柱状图”可视化类型。 b. 在“buckets”区域添加一个“terms”分桶,字段选择method。 c. 在“metrics”区域添加一个“计数”指标,计算每个方法的请求总数。 保存这个可视化图表,命名为“HTTP方法请求统计”。 4. 构建仪表板 - 创建仪表板: 进入“仪表板”界面,点击“新建”,创建一个新的空白仪表板。 - 添加可视化组件: 点击右上角的“添加可视化”按钮,选择我们在第3步创建的“HTTP方法请求统计”图表,将其添加至仪表板中。 - 扩展仪表板: 不止于此,我们可以继续创建其他可视化组件,比如折线图显示随着时间推移的响应时间变化,热力图展示不同路径和状态码的分布情况等,并逐一将它们添加到此仪表板上。 5. 自定义与交互性调整 Kibana的真正魅力在于其丰富的自定义能力和交互性设计。比如,你完全可以给每张图表单独设定过滤器规则,这样一来,整个仪表板上的数据就能像变魔术一样联动更新,超级炫酷。另外,你还能借助那个时间筛选器,轻轻松松地洞察到特定时间段内数据走势的变化,就像看一部数据演变的电影一样直观易懂。 在整个创建过程中,你可能会遇到疑惑、困惑,甚至挫折,但请记住,这就是探索和学习的魅力所在。随着对Kibana的理解逐渐加深,你会发现它不仅是一个工具,更是你洞察数据、讲述数据故事的强大伙伴。尽情发挥你的创造力,让数据活起来,赋予其生动的故事性和价值性。 总结来说,创建Kibana可视化仪表板的过程就像绘制一幅数据画卷,从准备画布(导入数据)开始,逐步添置元素(创建可视化组件),最后精心布局(构建仪表板),期间不断尝试、调整和完善,最终成就一份令人满意的可视化作品。在这个探索的过程中,你要像个充满好奇的小探险家一样,时刻保持对未知的热情,脑袋瓜子灵活运转,积极思考各种可能性。同时,也要有敢于动手实践的勇气,大胆尝试,别怕失败。这样下去,你肯定能在浩瀚的数据海洋中挖到那些藏得深深的宝藏,收获满满的惊喜。
2023-08-20 14:56:06
337
岁月静好
Kubernetes
...的基石。哎呀,随着微服务的复杂度越来越高,咱们在使用Kubernetes集群时,就像在大海里捞针一样,想要有效地监控和管理它,简直就成了一个大难题。就像是在森林里找宝藏,你得有眼力劲儿,还得有点儿冒险精神,才能找到那把开启成功之门的钥匙。这事儿,可真不是闹着玩的!这里,我们将深入探讨Kubernetes与Kiali的结合,如何通过可视化手段提升系统的可管理性与洞察力。 二、Kubernetes基础概览 Kubernetes(简称K8s)是一个开源的容器编排系统,它允许开发者和系统管理员自动部署、扩展和管理应用程序容器。Kubernetes的核心组件包括: - Pod:一组运行相同或不同应用容器的集合。 - Namespace:用于隔离资源并提供命名空间内的逻辑分组。 - Service:为Pod提供网络访问服务。 - Deployment:用于创建和更新Pod的副本集。 - StatefulSet:用于创建具有唯一身份标识的Pod集合。 - Ingress:提供外部对应用的访问入口。 三、Kiali的引入 Kiali是Kubernetes可视化监控和管理的一个重要工具,它通过图形界面提供了丰富的功能,包括服务发现、流量管理、健康检查、故障恢复策略等。哎呀,Kiali这个家伙可真能帮大忙了!它就像个超级厉害的侦探,能一眼看出你应用和服务到底是活蹦乱跳还是生病了。而且,它还有一套神奇的魔法,能把那些复杂的运维工作变得简单又快捷,就像是给你的工作流程装上了加速器,让你的效率噌噌噌往上涨。简直不能更贴心了! 四、Kubernetes与Kiali的集成 要将Kubernetes与Kiali整合,首先需要确保你的环境中已经部署了Kubernetes集群,并且安装了Kiali。接下来,通过以下步骤实现集成: 1. 配置Kiali bash kubectl apply -f https://kiali.io/install/kiali-operator.yaml 2. 验证Kiali安装 bash kubectl get pods -n kiali-system 应该能看到Kiali相关的Pod正在运行。 3. 访问Kiali UI bash kubectl port-forward svc/kiali 8080:8080 & 然后在浏览器中访问http://localhost:8080,即可进入Kiali控制台。 五、利用Kiali进行可视化监控 在Kiali中,你可以轻松地完成以下操作: - 服务发现:通过服务名或标签快速定位服务实例。 - 流量分析:查看服务之间的调用关系和流量流向。 - 健康检查:监控服务的健康状态,包括响应时间、错误率等指标。 - 故障恢复:配置故障转移策略,确保服务的高可用性。 六、案例分析 构建一个简单的微服务应用 假设我们有一个简单的微服务应用,包含一个后端服务和一个前端服务。我们将使用Kubernetes和Kiali来部署和监控这个应用。 yaml apiVersion: apps/v1 kind: Deployment metadata: name: backend-service spec: replicas: 3 selector: matchLabels: app: backend template: metadata: labels: app: backend spec: containers: - name: backend-container image: myregistry/mybackend:v1 ports: - containerPort: 8080 --- apiVersion: v1 kind: Service metadata: name: backend-service spec: selector: app: backend ports: - protocol: TCP port: 80 targetPort: 8080 在Kiali中,我们可以直观地看到这些服务是如何相互依赖的,以及它们的健康状况如何。 七、结论 Kubernetes与Kiali的结合,不仅极大地简化了Kubernetes集群的管理,还提供了丰富的可视化工具,使运维人员能够更加直观、高效地监控和操作集群。通过本文的介绍,我们了解到如何通过Kubernetes的基础配置、Kiali的安装与集成,以及实际应用的案例,实现对复杂微服务环境的有效管理和监控。随着云原生技术的不断发展,Kubernetes与Kiali的组合将继续发挥其在现代应用开发和运维中的核心作用,助力企业构建更可靠、更高效的云原生应用。
2024-09-05 16:21:55
61
昨夜星辰昨夜风
Tornado
...高并发、高性能Web服务开发领域,Tornado以其异步非阻塞I/O模型赢得了广泛的认可。然而,你知道吗,现在Python世界里的那个AsyncIO模块可是越来越牛了,大家都在热议怎么把它和Tornado更好地搭配起来,榨干它们的性能潜力,这已经变成了开发者们茶余饭后、热烈讨论的重点话题。这篇文儿啊,咱们打算用些实实在在的代码实例,再加上抽丝剥茧般的深度解读,手把手教你如何借力AsyncIO这把利器,让你的Tornado应用跑得飞起,优化效果看得见摸得着。 1. Tornado与AsyncIO 相识相知 Tornado作为一款Python Web框架,其核心特性是基于事件驱动的异步编程模型,能够高效处理大量并发连接,特别适合构建实时Web服务。AsyncIO这个家伙,其实是Python标准库里藏着的一个超级实用的异步I/O工具箱。它就像是个厉害的角色,拥有着强大的异步任务协调本领,让咱们平时用的Python能够轻松玩转异步编程,不再受限于同步模式,变得更加灵活高效。 两者虽各有特色,但并非竞争关系,而是可以紧密结合,取长补短,共同服务于对性能有极高要求的应用场景。 2. AsyncIO在Tornado中的运用 示例1:在Tornado中直接使用AsyncIO的async/await语法编写异步处理逻辑: python import asyncio import tornado.ioloop import tornado.web class AsyncHandler(tornado.web.RequestHandler): async def get(self): 使用AsyncIO执行耗时操作 await asyncio.sleep(1) self.write("Hello, Async Tornado!") def make_app(): return tornado.web.Application([ (r"/", AsyncHandler), ]) if __name__ == "__main__": app = make_app() app.listen(8888) tornado.ioloop.IOLoop.current().start() 在这段代码中,我们创建了一个异步处理器AsyncHandler,其中的get方法使用了AsyncIO的asyncio.sleep函数模拟耗时操作。虽然Tornado自身本来就有异步功能,但是在最新版的Tornado 6.0及以上版本里,咱们能够超级顺滑地把AsyncIO的异步编程语法融入进去,这样一来,不仅让代码读起来更加通俗易懂,而且极大地简化了程序结构,变得更加清爽利落。 3. 利用AsyncIO优化Tornado网络I/O 虽然Tornado内置了异步HTTP客户端,但在某些复杂场景下,利用AsyncIO的aiohttp库或其他第三方异步库可能会带来额外的性能提升。 示例2:使用aiohttp替代Tornado HTTPClient实现异步HTTP请求: python import aiohttp import tornado.web import asyncio class AsyncHttpHandler(tornado.web.RequestHandler): async def get(self): async with aiohttp.ClientSession() as session: async with session.get('https://api.example.com/data') as response: data = await response.json() self.write(data) def make_app(): return tornado.web.Application([ (r"/fetch_data", AsyncHttpHandler), ]) if __name__ == "__main__": app = make_app() app.listen(8888) loop = asyncio.get_event_loop() tornado.platform.asyncio.AsyncIOMainLoop().install() tornado.ioloop.IOLoop.current().start() 这里我们在Tornado中引入了aiohttp库来发起异步HTTP请求。注意,为了整合AsyncIO到Tornado事件循环,我们需要安装并启动tornado.platform.asyncio.AsyncIOMainLoop。 4. 思考与讨论 结合AsyncIO优化Tornado性能的过程中,我们不仅获得了更丰富、更灵活的异步编程工具箱,而且能更好地利用操作系统级别的异步I/O机制,从而提高资源利用率和系统吞吐量。当然,具体采用何种方式优化取决于实际应用场景和需求。 总的来说,Tornado与AsyncIO的联姻,无疑为Python高性能Web服务的开发注入了新的活力。在未来的发展旅程上,我们热切期盼能看到更多新鲜、酷炫的创新和突破,让Python异步编程变得更加给力,用起来更顺手,实力也更强大。就像是给它插上翅膀,飞得更高更快,让编程小伙伴们都能轻松愉快地驾驭这门技术,享受前所未有的高效与便捷。
2023-10-30 22:07:28
140
烟雨江南
ElasticSearch
...我们更好地升级产品和服务。 当然,实际操作中可能会遇到各种问题和挑战,但只要保持耐心,不断实践和探索,相信你一定能够掌握这项技能。希望这篇教程能对你有所帮助,如果你有任何疑问或者建议,欢迎随时留言交流! --- 好了,朋友们,今天的分享就到这里。希望你能从中获得灵感,开始你的Elasticsearch之旅。记住,技术的力量在于应用,让我们一起用它来创造更美好的世界吧!
2024-12-29 16:00:49
76
飞鸟与鱼_
转载文章
...,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 文章目录 1 用户和用户标识号 1.1 用户 1.2 用户标识号 1.3 /etc/passwd文件 1.4 /etc/shadow文件 2 用户组和组标识号 2.1 用户组 2.2 用户组编号 2.3 /etc/group文件 3 用户管理 3.1 添加用户 3.1.1 useradd命令 3.1.2 adduser命令 3.2 修改用户信息:usermod 3.3 删除用户:userdel 3.4 修改用户密码:passwd 3.5 显示用户信息 3.6 用户间切换:su命令 3.7 受限的特权:sudo命令 4 用户组管理 4.1 添加用户组 4.1.1 addgroup命令 4.1.2 groupadd 4.2 修改用户组 4.3 删除用户组 5 权限管理 5.1 概述 5.1.1 权限组 5.1.2 基本权限类型 5.1.3 特殊权限 5.1.4 访问控制列表 5.2 改变文件所有者chown命令 5.3 改变文件所属组chgrp命令 5.4 设置权限掩码umask命令 5.5 修改文件访问权限 5.6 修改文件ACL:setfacl命令 5.7 查询文件的ACL 1 用户和用户标识号 1.1 用户 我们登录到Linux系统,使用的登录名和密码实际上就是用户的信息标识。 用户拥有账号、登录名、真实姓名、密码、主目录、默认shell等属性。 每个用户实际上代表了一组权限,而这些权限分别表示可以执行不同的操作,是能够获取系统资源的权限的集合。 1.2 用户标识号 Linux实际上并不直接认识用户的账号,而是查看用户标识号。 用户标识号(整数): 0: root,超级用户。 1-499:系统用户,保证系统服务正常运行,一般不使用。 500-60000:普通用户,可登录系统,拥有一定的权限。管理员添加的用户在此范围内。 用户名和标识号不一定一一对应,Linux允许几个登录名对应同一个用户标识号。 系统内部管理进程和文件访问权限时使用用户标识号。 账号和标识号的对应关系在/etc/passwd文件中。 1.3 /etc/passwd文件 该文件所有者和所属组为root,除了root用户外只有读取的权限。 格式: 登录名:口令:用户标识号:组标识号:注释:用户主目录:Shell程序 登录名:同意系统中唯一,大小敏感。 口令:密码,root和用户可使用passwd命令修改。 用户标识号:唯一。 组标识号:每个用户可以同时属于多个组。 注释:相关信息,真实姓名、联系电话等。mail和finger等会使用这些信息。 用户主目录:用户登录后的默认工作目录。root为/root,一般用户在/home下。 Shell程序:登录后默认启动的Shell程序。 1.4 /etc/shadow文件 包含用户的密码和过期时间,只有root组可读写。 格式: 登录名:加密口令:最后一次修改时间:最小时间间隔:最大时间间隔:警告时间:密码禁用期:账户失效时间:保留字段 登录名:略。 加密口令:表示账户被锁定,!表示密码被锁定。其他的前三位表示加密方式。 最后一次修改时间:最近修改密码的时间,天为单位,1970年1月1日算起。 最小时间间隔:最小修改密码的时间间隔。 最大时间间隔:最长密码有效期,到期要求修改密码。 警告时间:密码过期后多久发出警告。 密码禁用期:密码过期后仍然接受的最长期限。 账号失效时间:账户的有效期,1970年1月1日算起,空串表示永不过期。 保留字段:保留将来使用。 2 用户组和组标识号 2.1 用户组 用户组指,一组权限和功能相类似的用户的集合。 Linux本身预定义了许多用户组,包括root、daemon、bin、sys等,用户可根据需要自行添加用户组。 用户组拥有组名、组标识号、组成员等属性。 2.2 用户组编号 Linux内部通过组标识号来标识用户组。 用户组信息保存在 /etc/group 中。 2.3 /etc/group文件 格式:组名:口令:组标识符:成员列表 /etc/passwd文件指定的用户组在/etc/group中不存在则无法登录。 3 用户管理 3.1 添加用户 3.1.1 useradd命令 命令: useradd [option] 登录名 option参数自行查阅。 一般加-m创建目录。 3.1.2 adduser命令 adduser [option] user 如果没有指定–system和–group选项,则创建普通用户。 否则创建系统用户或用户组。 3.2 修改用户信息:usermod 命令: usermod [option] 用户名 具体选项信息自行查阅。 3.3 删除用户:userdel 命令: userdel [option] 用户名 -f:强制删除(谨慎使用) -r:主目录中的文件一并删除。 3.4 修改用户密码:passwd 命令: passwd [option] 登录名 3.5 显示用户信息 命令: id [option] [用户] 3.6 用户间切换:su命令 命令: su [option] [用户名] 用户名为 - ,则切换到root用户。 3.7 受限的特权:sudo命令 sudo使得用户可以在自己的环境下,执行需要root权限的命令。 该信息保存在/etc/sudoers中。 4 用户组管理 4.1 添加用户组 4.1.1 addgroup命令 类似adduser 4.1.2 groupadd 类似useradd 4.2 修改用户组 类似usermod,使用groupmod。 4.3 删除用户组 类似userdel,使用groupdel。 5 权限管理 5.1 概述 5.1.1 权限组 一般创建文件的人为所有者,其所属的主组为所属组,其他用户为其他组。 5.1.2 基本权限类型 三种:读、写、执行。 权限及其表示值: 读:r或4 写:w或2 执行:x或1 5.1.3 特殊权限 setuid、setgid和黏滞位。 setuid和setgid能以文件所有者或所属组的身份运行。 黏滞位使得只有文件的所有者才可以重命名和删除文件。 5.1.4 访问控制列表 访问控制表ACL可以针对某个用户或者用户组单独设置访问权限。 5.2 改变文件所有者chown命令 命令: chown [option]...[owner][:[group]] file... 5.3 改变文件所属组chgrp命令 用户不受文件的文件主或超级用户不能修改组。 5.4 设置权限掩码umask命令 文件的权限为666-掩码 目录的权限为777-掩码 5.5 修改文件访问权限 命令: chmod [option]...mode[,mode]...file... “+”:增加权限 “-”:减少权限 “=”:设置权限 5.6 修改文件ACL:setfacl命令 命令: setfacl [option] file... 5.7 查询文件的ACL 命令: getfacl [文件名] 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_38262728/article/details/88686180。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-10 22:43:08
548
转载
Tomcat
...是晚上加班加到一半,服务器突然给你来个大错误,你却毫无头绪,干着急。 首先,咱们得搞清楚什么是JMX。JMX(Java Management Extensions)是一种标准的架构,用于管理和监控Java应用程序。这个功能让你可以通过MBeans(管理豆子)查看应用在运行时的各种情况,比如内存用得怎么样、线程都在干啥等等。对于像Tomcat这样的Web服务器,JMX简直就是个救星。它能让我们更清楚地知道服务器的状况,帮我们及时揪出并解决那些麻烦的问题。 但是,有时候这个“神”也会掉链子,尤其是在配置不当的情况下。今天咱们聊聊怎么搞定Tomcat里JMX监控连不上的烦人事儿。 2. 检查配置文件 先从最基础的地方入手吧——检查Tomcat的配置文件。在Tomcat的安装目录下,找到conf文件夹,打开catalina.sh(Linux/Mac)或catalina.bat(Windows)。我们需要确保其中包含了JMX相关的配置参数。通常,这些参数应该出现在文件的开头部分: bash JAVA_OPTS="$JAVA_OPTS -Dcom.sun.management.jmxremote -Dcom.sun.management.jmxremote.port=9010 -Dcom.sun.management.jmxremote.ssl=false -Dcom.sun.management.jmxremote.authenticate=false" 这段代码告诉JVM启动时加载一些系统属性,使得JMX服务能够正常运行。注意这里的端口号9010,这是JMX远程访问的端口。要是别的程序占用了这个端口,或者是防火墙不让访问,那JMX监控可就要闹脾气啦。 当然,这里只是个例子。实际配置可能会根据你的具体需求有所不同。比如,如果你需要启用SSL加密传输,就需要添加更多的配置项。另外,为了安全着想,还是开启身份验证功能吧,别直接设成false了。这样可以防止未授权访问。 3. 配置防火墙和端口 假设你已经正确设置了JMX相关参数,但还是无法连接到JMX服务,这时候就需要考虑网络层面的问题了。别忘了检查一下你的服务器防火墙设置,确保端口9010是开放的。 在Linux上,你可以使用以下命令查看当前的防火墙规则: bash sudo ufw status 如果端口没有开放,你需要添加一条新的规则: bash sudo ufw allow 9010 同样的,在Windows系统上,你也可以通过控制面板中的“Windows Defender 防火墙”来管理端口。 另外,如果你是在云平台上运行Tomcat,记得在云提供商的控制台里也开放相应的端口。比如,AWS的EC2实例需要在安全组中添加入站规则。 4. 使用JConsole进行测试 经过上面的步骤后,我们可以尝试用JConsole来连接看看。JConsole是一个图形化的JMX客户端工具,非常适合用来诊断和监控Java应用程序。 首先,确保你已经在本地安装了Java Development Kit (JDK)。然后,打开命令行窗口,输入以下命令启动JConsole: bash jconsole 启动后,你会看到一个界面,选择你的Tomcat进程ID(可以在任务管理器或ps -ef | grep tomcat命令中找到),点击“连接”按钮。要是没啥问题,你应该就能顺利打开JConsole的主界面,各种性能指标也都会一目了然地出现在你眼前。 如果连接失败,请检查控制台是否有错误提示。常见的问题包括端口被占用、防火墙阻塞、配置文件错误等。根据错误信息逐条排查,相信最终会找到问题所在。 5. 总结与反思 折腾了半天,终于解决了Tomcat JMX监控无法连接的问题。这个过程虽然有些曲折,但也让我学到了不少知识。比如说,我搞懂了JMX到底是怎么运作的,还学会了怎么设置防火墙和端口,甚至用JConsole来排查问题也变得小菜一碟了。 当然,每个人遇到的具体情况可能都不一样,所以在解决问题的过程中,多查阅官方文档、搜索社区问答是非常必要的。希望这篇文章能帮助大家少走弯路,更快地解决类似问题。
2025-02-15 16:21:00
103
月下独酌
SpringBoot
...按钮,结果呢,后头的服务器接收的数据里,邮箱那一栏就莫名其妙地变成了0,就像被人动了手脚似的。 javascript // Vue.js 部分 - 送出数据的部分 methods: { registerUser() { const formData = { username: this.username, password: this.password, email: this.email, // 这里原本应该是用户的邮箱地址 }; axios.post('/api/register', formData) .then(response => { console.log(response.data); }) .catch(error => { console.error(error); }); } } 三、问题分析 1. 类型转换 首先,检查一下是不是类型转换的问题。SpringBoot在接收数据时,如果类型不匹配,可能会尝试将其转换为可接受的数据类型。比如说,假如你邮箱地址栏不小心输入了个纯数字“0”,当你想把它当成字符串来处理的时候,这家伙可能会调皮地变成一个空荡荡的啥都没有。 java // SpringBoot 部分 - 接收数据的Controller @PostMapping("/register") public ResponseEntity registerUser(@RequestBody Map formData) { String email = formData.get("email").toString(); // 如果email是数字0,这里会变成"" // ... } 2. 默认值 另一个可能的原因是,前端在发送数据前没有正确处理可能的空值或默认值。你知道吗,有时候在发邮件前,email这哥们儿可能还没人填,这时它就暂且是JavaScript里的那个神秘存在“undefined”。一到要变成JSON格式,它就自动变身为“null”,然后后端大哥看见了,贴心地给它换个零蛋。 3. 数据验证 SpringBoot的@RequestBody注解默认会对JSON数据进行有效性校验,如果数据不符合约定的格式,它可能被视作无效,从而转化为默认值。检查Model层是否定义了默认值规则。 java // Model层 public class User { private String email; // ...其他字段 @NotBlank(message = "Email cannot be blank") public String getEmail() { return email; } public void setEmail(String email) { this.email = email; } } 四、解决策略 1. 前端校验 确保在发送数据之前对前端数据进行清理和验证,避免空值或非预期值被发送。 2. 明确数据类型 在Vue.js中,可以使用v-model.number或者v-bind:value配合计算属性,确保数据在发送前已转换为正确的类型。 3. 后端配置 SpringBoot可以配置Jackson或Gson等JSON库,设置@JsonInclude(JsonInclude.Include.NON_NULL)来忽略所有空值。 4. 异常处理 添加适当的异常处理,捕获可能的转换异常并提供有用的错误消息。 五、结论 解决这个问题的关键在于理解数据流的每个环节,从前端到后端,每一个可能的类型转换和验证步骤都需要仔细审查。你知道吗,有时候生活就像个惊喜包,比如说JavaScript那些隐藏的小秘密,但别急,咱们一步步找,那问题的源头准能被咱们揪出来!希望这篇文章能帮助你在遇到类似困境时,更好地定位和解决“0”问题,提升开发效率和用户体验。 --- 当然,实际的代码示例可能需要根据你的项目结构和配置进行调整,以上只是一个通用的指导框架。记住,遇到问题时,耐心地查阅文档,结合调试工具,往往能更快地找到答案。祝你在前端与后端的交互之旅中一帆风顺!
2024-04-13 10:41:58
83
柳暗花明又一村_
Hive
...步得确认那个Hive服务器已经在那儿转悠了,而且JDBC的桥梁和必要的jar文件都得像好朋友一样好好准备齐全。 2. JDBC驱动的重要性 JDBC(Java Database Connectivity)是Java语言与数据库交互的接口,驱动程序则是这个接口的具体实现。就像试图跟空房子聊天一样,没对的“钥匙”(驱动),就感觉像是在大海捞针,怎么也找不到那个能接通的“门铃号码”(正确驱动)。 三、常见问题及解决方案 1. 缺失的JDBC驱动 - 检查环境变量:确保JAVA_HOME和HIVE_HOME环境变量设置正确,因为Hive JDBC驱动通常位于$HIVE_HOME/lib目录下的hive-jdbc-.jar文件。 - 手动添加驱动:如果你在IDE中运行,可能需要在项目构建路径中手动添加驱动jar。例如,在Maven项目中,可以在pom.xml文件中添加如下依赖: xml org.apache.hive hive-jdbc 版本号 - 下载并放置:如果在服务器上运行,可能需要从Apache Hive的官方网站下载对应版本的驱动并放入服务器的类路径中。 2. Hive Client jar包 - 确认包含Hive Server的jar:Hive Server通常包含了Hive Client的jar,如果单独部署,确保$HIVE_SERVER2_HOME/lib目录下存在hive-exec-.jar等Hive相关jar。 3. Hive Server配置 - Hive-site.xml:检查Hive的配置文件,确保标签内的javax.jdo.option.ConnectionURL和标签内的javax.jdo.option.ConnectionDriverName指向正确的JDBC URL和驱动。 四、代码示例与实战演练 1. 连接Hive示例(Java) java try { Class.forName("org.apache.hive.jdbc.HiveDriver"); Connection conn = DriverManager.getConnection( "jdbc:hive2://localhost:10000/default", "username", "password"); Statement stmt = conn.createStatement(); String sql = "SELECT FROM my_table"; ResultSet rs = stmt.executeQuery(sql); // 处理查询结果... } catch (Exception e) { e.printStackTrace(); } 2. 错误处理与诊断 如果上述代码执行时出现异常,可能是驱动加载失败或者URL格式错误。查看ClassNotFoundException或SQLException堆栈信息,有助于定位问题。 五、总结与经验分享 面对这类问题,耐心和细致的排查至关重要。记住,Hive的世界并非总是那么直观,尤其是当涉及到多个组件的集成时。逐步检查环境配置、依赖关系以及日志信息,往往能帮助你找到问题的根源。嘿,你知道吗,学习Hive JDBC就像解锁新玩具,开始可能有点懵,但只要你保持那股子好奇劲儿,多动手试一试,翻翻说明书,一点一点地,你就会上手得越来越溜了。关键就是那份坚持和探索的乐趣,时间会带你熟悉这个小家伙的每一个秘密。 希望这篇文章能帮你解决在使用Hive JDBC时遇到的困扰,如果你在实际操作中还有其他疑问,别忘了社区和网络资源是解决问题的好帮手。祝你在Hadoop和Hive的探索之旅中一帆风顺!
2024-04-04 10:40:57
769
百转千回
Go Iris
...T,这样就不用老依赖服务器来存东西,也能确认用户的身份了。 代码示例:生成JWT go package main import ( "github.com/kataras/iris/v12" jwt "github.com/appleboy/gin-jwt/v2" ) func main() { app := iris.New() // 创建JWT中间件 jwtMiddleware, _ := jwt.New(&jwt.GinJWTMiddleware{ Realm: "test zone", Key: []byte("secret key"), Timeout: time.Hour, MaxRefresh: time.Hour, IdentityKey: "id", }) // 定义登录路由 app.Post("/login", jwtMiddleware.LoginHandler) // 使用JWT中间件保护路由 app.Use(jwtMiddleware.MiddlewareFunc()) // 启动服务 app.Listen(":8080") } 2.2 OAuth2:授权的守护者 OAuth2是一个授权框架,允许第三方应用获得有限的访问权限,而不需要提供用户名和密码。通过OAuth2,用户可以授予应用程序访问他们资源的权限,而无需共享他们的凭据。 代码示例:OAuth2客户端授权 go package main import ( "github.com/kataras/iris/v12" oauth2 "golang.org/x/oauth2" ) func main() { app := iris.New() // 配置OAuth2客户端 config := oauth2.Config{ ClientID: "your_client_id", ClientSecret: "your_client_secret", RedirectURL: "http://localhost:8080/callback", Endpoint: oauth2.Endpoint{ AuthURL: "https://accounts.google.com/o/oauth2/auth", TokenURL: "https://accounts.google.com/o/oauth2/token", }, Scopes: []string{"profile", "email"}, } // 登录路由 app.Get("/login", func(ctx iris.Context) { url := config.AuthCodeURL("state") ctx.Redirect(url) }) // 回调路由处理 app.Get("/callback", func(ctx iris.Context) { code := ctx.URLParam("code") token, err := config.Exchange(context.Background(), code) if err != nil { ctx.WriteString("Failed to exchange token: " + err.Error()) return } // 在这里处理token,例如保存到数据库或直接使用 }) app.Listen(":8080") } 3. 构建策略决策树 智能授权 现在,我们已经了解了JWT和OAuth2的基本概念及其在Iris框架中的应用。接下来,我们要聊聊怎么把这两样东西结合起来,搞出一棵基于策略的决策树,这样就能更聪明地做授权决定了。 3.1 策略决策树的概念 策略决策树是一种基于规则的系统,用于根据预定义的条件做出决策。在这个情况下,我们主要根据用户的JWT信息(比如他们的角色和权限)和OAuth2的授权状态来判断他们是否有权限访问某些特定的资源。换句话说,就是看看用户是不是有“资格”去看那些东西。 代码示例:基于JWT的角色授权 go package main import ( "github.com/kataras/iris/v12" jwt "github.com/appleboy/gin-jwt/v2" ) type MyCustomClaims struct { Role string json:"role" jwt.StandardClaims } func main() { app := iris.New() jwtMiddleware, _ := jwt.New(&jwt.GinJWTMiddleware{ Realm: "test zone", Key: []byte("secret key"), Timeout: time.Hour, MaxRefresh: time.Hour, IdentityKey: "id", IdentityHandler: func(c jwt.Manager, ctx iris.Context) (interface{}, error) { claims := jwt.ExtractClaims(ctx) role := claims["role"].(string) return &MyCustomClaims{Role: role}, nil }, }) // 保护需要特定角色才能访问的路由 app.Use(jwtMiddleware.MiddlewareFunc()) // 定义受保护的路由 app.Get("/admin", jwtMiddleware.AuthorizeRole("admin"), func(ctx iris.Context) { ctx.Writef("Welcome admin!") }) app.Listen(":8080") } 3.2 结合OAuth2与JWT的策略决策树 为了进一步增强安全性,我们可以将OAuth2的授权状态纳入策略决策树中。这意味着,不仅需要验证用户的JWT,还需要检查OAuth2授权的状态,以确保用户具有访问特定资源的权限。 代码示例:结合OAuth2与JWT的策略决策 go package main import ( "github.com/kataras/iris/v12" jwt "github.com/appleboy/gin-jwt/v2" "golang.org/x/oauth2" ) // 自定义的OAuth2授权检查函数 func checkOAuth2Authorization(token oauth2.Token) bool { // 这里可以根据实际情况添加更多的检查逻辑 return token.Valid() } func main() { app := iris.New() jwtMiddleware, _ := jwt.New(&jwt.GinJWTMiddleware{ Realm: "test zone", Key: []byte("secret key"), Timeout: time.Hour, MaxRefresh: time.Hour, IdentityKey: "id", IdentityHandler: func(c jwt.Manager, ctx iris.Context) (interface{}, error) { claims := jwt.ExtractClaims(ctx) role := claims["role"].(string) return &MyCustomClaims{Role: role}, nil }, }) app.Use(jwtMiddleware.MiddlewareFunc()) app.Get("/secure-resource", jwtMiddleware.AuthorizeRole("user"), func(ctx iris.Context) { // 获取当前请求的JWT令牌 token := jwtMiddleware.TokenFromRequest(ctx.Request()) // 检查OAuth2授权状态 if !checkOAuth2Authorization(token) { ctx.StatusCode(iris.StatusUnauthorized) ctx.Writef("Unauthorized access") return } ctx.Writef("Access granted to secure resource") }) app.Listen(":8080") } 4. 总结与展望 通过以上讨论和代码示例,我们看到了如何在Iris框架中有效地使用JWT和OAuth2来构建一个智能的授权决策系统。这不仅提高了应用的安全性,还增强了用户体验。以后啊,随着技术不断进步,咱们可以期待更多酷炫的新方法来简化这些流程,让认证和授权变得超级高效又方便。 希望这篇探索之旅对你有所帮助,也欢迎你加入讨论,分享你的见解和实践经验!
2024-11-07 15:57:06
57
夜色朦胧
Sqoop
...骤3:重启Sqoop服务 最后,我们需要重启Sqoop服务以使新的配置生效。以下是一些常见的操作系统上启动和停止Sqoop服务的方法: Ubuntu/Linux: sudo service sqoop start sudo service sqoop stop CentOS/RHEL: sudo systemctl start sqoop.service sudo systemctl stop sqoop.service 四、总结 在本文中,我们介绍了如何配置Sqoop以使用SSL/TLS加密。你知道吗,就像给自家的保险箱装上密码锁一样,我们可以通过动手制作一个自签名的SSL证书,然后把它塞进Sqoop的配置文件里头。这样一来,就能像防护盾一样,把咱们的数据安全牢牢地守在中间人攻击的外面,让数据的安全性和隐私性蹭蹭地往上涨!虽然一开始可能会觉得有点烧脑,但仔细想想数据的价值,我们确实应该下点功夫,花些时间把这个事情搞定。毕竟,为了保护那些重要的数据,这点小麻烦又算得了什么呢? 当然,这只是基础的配置,如果我们需要更高级的保护,例如双重认证,我们还需要进行更多的设置。不管怎样,咱可得把数据安全当回事儿,要知道,数据可是咱们的宝贝疙瘩,价值连城的东西之一啊!
2023-10-06 10:27:40
185
追梦人-t
Nacos
...vice)以其强大的服务发现、配置管理功能备受开发者青睐。然而,在享受其便捷的同时,我们也必须关注到安全性问题。这篇内容会手把手带你走通如何给Nacos配置安全访问,确保你的服务配置信息妥妥地锁住,不让那些恶意的小贼有机可乘,篡改你的宝贵数据。 1. 认识Nacos安全风险 首先,让我们明确为何要关注Nacos的安全访问配置。在默认安装的情况下,Nacos控制台是不设防的,也就是说,只要有人晓得Nacos服务器的具体位置,就能畅通无阻地访问和随意操作里边的数据,完全不需要经过身份验证这一关。在2021年,有个安全漏洞可把这个问题给捅出来了。这个情况就是,有些外部的家伙能假扮成Nacos-server,趁机捞取一些不该他们知道的重要信息。因此,加强Nacos的安全访问控制至关重要。 2. 基本安全配置 开启内置认证 步骤一:修改配置文件 找到Nacos的配置文件 conf/application.properties 或者 conf/nacos.properties,根据环境选择相应的文件进行编辑。添加或修改以下内容: properties nacos.core.auth.enabled=true nacos.core.auth.system.admin.password=your_strong_password_here 这里开启了Nacos的核心认证机制,并设置了管理员账户的密码。请确保使用一个足够复杂且安全的密码。 步骤二:重启Nacos服务 更改配置后,需要重启Nacos服务以使新配置生效。通过命令行执行: bash sh ./startup.sh -m standalone 或者如果是Windows环境: cmd cmd startup.cmd -m standalone 现在,当您访问Nacos控制台时,系统将会要求输入用户名和密码,也就是刚才配置的“nacos”账号及其对应密码。 3. 高级安全配置 集成第三方认证 为了进一步提升安全性,可以考虑集成如LDAP、AD或其他OAuth2.0等第三方认证服务。 示例代码:集成LDAP认证 在配置文件中增加如下内容: properties nacos.security.auth.system.type=ldap nacos.security.auth.ldap.url=ldap://your_ldap_server:port nacos.security.auth.ldap.base_dn=dc=example,dc=com nacos.security.auth.ldap.user.search.base=ou=people nacos.security.auth.ldap.group.search.base=ou=groups nacos.security.auth.ldap.username=cn=admin,dc=example,dc=com nacos.security.auth.ldap.password=your_ldap_admin_password 这里的示例展示了如何将Nacos与LDAP服务器进行集成,具体的URL、基础DN以及搜索路径需要根据实际的LDAP环境配置。 4. 探讨与思考 配置安全是个持续的过程,不只是启动初始的安全措施,还包括定期审计和更新策略。在企业级部署这块儿,我们真心实意地建议你们采取更为严苛的身份验证和授权规则。就像这样,比如限制IP访问权限,只让白名单上的IP能进来;再比如,全面启用HTTPS加密通信,确保传输过程的安全性;更进一步,对于那些至关重要的操作,完全可以考虑启动二次验证机制,多上一道保险,让安全性妥妥的。 此外,时刻保持Nacos版本的更新也相当重要,及时修复官方发布的安全漏洞,避免因旧版软件导致的风险。 总之,理解并实践Nacos的安全访问配置,不仅是保护我们自身服务配置信息安全的有力屏障,更是构建健壮、可靠云原生架构不可或缺的一环。希望这篇文能实实在在帮到大家,在实际操作中更加游刃有余地对付这些挑战,让Nacos变成你手中一把趁手的利器,而不是藏在暗处的安全隐患。
2023-10-20 16:46:34
335
夜色朦胧_
MemCache
MemCache服务器的数据持久化问题探讨:数据丢失的挑战与解决方案 1. 引言 Memcached,这个我们熟悉的高性能、分布式内存对象缓存系统,在Web应用程序中扮演着关键角色,它能极大地提升动态Web应用的性能和可扩展性。不过,你知道吗?Memcached这家伙可纯粹是个临时记忆库,它并不支持数据长期存储这功能。也就是说,一旦服务器打了个盹(重启)或者撂挑子不干了(崩溃),那存放在它脑瓜子里的所有数据,就会瞬间蒸发得无影无踪。这就是咱们今天要重点唠一唠的话题——聊聊Memcached的数据丢失那些事儿。 2. Memcached的数据特性与潜在风险 (1)内存缓存与数据丢失 Memcached的设计初衷是提供临时性的高速数据访问服务,所有的数据都存储在内存中,而非硬盘上。这就意味着,如果突然出现个意外状况,比如系统崩溃啦,或者我们有意为之的重启操作,那内存里暂存的数据就无法原地待命了,会直接消失不见,这样一来,就难免会遇到数据丢失的麻烦喽。 python import memcache mc = memcache.Client(['localhost:11211'], debug=0) mc.set('key', 'value') 将数据存入Memcached 假设此时服务器突然宕机,'key'对应的'value'在重启后将不复存在 (2)业务场景下的影响 对于一些对数据实时性要求较高但又允许一定时间内数据短暂缺失的场景,如用户会话信息、热点新闻等,Memcached的数据丢失可能带来的影响相对有限。不过,在有些场景下,我们需要长期确保数据的一致性,比如你网购时的购物车信息、积分累计记录这些情况。万一这种数据丢失了,那可能就会影响你的使用体验,严重的话,甚至会引发一些让人头疼的业务逻辑问题。 3. 面对数据丢失的应对策略 (1)备份与恢复方案 虽然Memcached本身不具备数据持久化的功能,但我们可以通过其他方式间接实现数据的持久化。例如,可以定期将Memcached中的数据备份到数据库或其他持久化存储中: python 假设有一个从Memcached获取并持久化数据到MySQL的过程 def backup_to_mysql(): all_items = mc.get_multi(mc.keys()) for key, value in all_items.items(): save_to_mysql(key, value) 自定义保存到MySQL的函数 (2)组合使用Redis等具备持久化的缓存系统 另一个可行的方案是结合使用Redis等既具有高速缓存特性和又能持久化数据的系统。Redis不仅可以提供类似Memcached的内存缓存服务,还支持RDB和AOF两种持久化机制,能在一定程度上解决数据丢失的问题。 python import redis r = redis.Redis(host='localhost', port=6379, db=0) r.set('key', 'value') 在Redis中设置键值对,即使服务器重启,数据也能通过持久化机制得以恢复 (3)架构层面优化 在大型分布式系统中,可以通过设计冗余和分布式存储策略来降低单点故障带来的影响。比如,我们可以像搭积木那样部署多个Memcached实例,然后用一致性哈希这类聪明的算法给它们分配工作量和切分数据块。这样不仅能确保整体负载均衡,还能保证每一份数据都有好几个备份,分别存放在不同的节点上,就像把鸡蛋放在不同的篮子里一样,安全又可靠。 4. 结语 人类视角的理解与思考 面对Memcached数据丢失的问题,开发者们不能止步于理解其原理,更应积极寻求有效的应对策略。这就像生活中我们对待易逝的事物,尽管明白“天下无不散之筵席”,但我们依然会拍照留念、撰写日记,以期留住美好瞬间。同样,在我们使用Memcached这玩意儿的时候,也得充分了解它的脾性,借助一些巧妙的技术手段和设计架构,让数据既能痛快地享受高速缓存带来的速度福利,又能机智地避开数据丢失的坑。只有这样,我们的系统才能在效率与可靠性之间取得最佳平衡,更好地服务于业务需求。
2023-05-22 18:41:39
84
月影清风
SpringBoot
...我们的MongoDB服务器位于本地主机的27017端口上,且数据库名为mydb。 5. 使用MongoTemplate操作MongoDB 在配置完成后,我们就可以开始使用MongoTemplate来操作MongoDB了。MongoTemplate是SpringDataMongoDB提供的一个类,它可以帮助我们执行各种数据库操作。下面是一些基本的操作示例: java @Autowired private MongoTemplate mongoTemplate; public void insert(String collectionName, String id, Object entity) { mongoTemplate.insert(entity, collectionName); } public List find(String collectionName, Query query) { return mongoTemplate.find(query, Object.class, collectionName); } 6. 使用Repository操作MongoDB 除了MongoTemplate之外,SpringDataMongoDB还提供了Repository接口,它可以帮助我们更加方便地进行数据库操作。我们完全可以把这个接口“继承”下来,然后自己动手编写几个核心的方法,就像是插入数据、查找信息、更新记录、删除项目这些基本操作,让它们各司其职,活跃在我们的程序里。下面是一个简单的示例: java @Repository public interface UserRepository extends MongoRepository { User findByUsername(String username); void deleteByUsername(String username); default void save(User user) { if (user.getId() == null) { user.setId(UUID.randomUUID().toString()); } super.save(user); } @Query(value = "{'username':?0}") List findByUsername(String username); } 7. 总结 总的来说,SpringBoot与MongoDB的集成是非常简单和便捷的。只需要几步简单的配置,我们就可以使用SpringBoot的强大功能来操作MongoDB。而且你知道吗,SpringDataMongoDB这家伙还藏着不少好东西嘞,像数据映射、查询、聚合这些高级功能,全都是它的拿手好戏。这样一来,我们开发应用程序就能又快又高效,简直像是插上了小翅膀一样飞速前进!所以,如果你正在琢磨着用NoSQL数据库来搭建你的数据存储方案,那我真心实意地拍胸脯推荐你试试SpringBoot配上MongoDB这个黄金组合,准保不会让你失望!
2023-04-09 13:34:32
78
岁月如歌-t
Redis
...锁机制,用于协调多台服务器之间的数据一致性。它的核心作用就像是个超级公正的小裁判,在一个大家伙们(节点)都分散开来干活的环境里,保证在任何同一时间,只有一个家伙能拿到那个关键的“通行证”(锁),然后去执行一些特别的任务。这样一来,就能有效避免大伙儿在干活时数据打架、出现乱七八糟不一致的情况啦。 三、Redis分布式锁的实现原理 在Redis中实现分布式锁主要有两种方式:一种是基于SETNX命令实现,另一种是基于RedLock算法实现。 1. 基于SETNX命令实现 SETNX命令是Redis的一个原子操作,它可以尝试将一个键设置为指定的值,只有当该键不存在时才能设置成功。我们可以利用这个特性来实现分布式锁。 java String lockKey = "lock_key"; String value = String.valueOf(System.currentTimeMillis()); boolean setted = redisClient.setNx(lockKey, value).get(); if(setted){ // 获取锁成功,执行业务逻辑 } 在这个例子中,我们首先创建了一个名为lock_key的键,然后将其值设为当前时间戳。如果这个键之前不存在,那么setNx方法会返回true,表示获取到了锁。 2. 基于RedLock算法实现 RedLock算法是一种基于Redis的分布式锁解决方案,由阿里巴巴开发。它就像个聪明的小管家,为了保证锁的安全性,会在不同的数据库实例上反复尝试去拿到锁,这样一来,就巧妙地躲过了死锁这类让人头疼的问题。 java List servers = Arrays.asList("localhost:6379", "localhost:6380", "localhost:6381"); int successCount = 0; for(String server : servers){ Jedis jedis = new Jedis(server); String result = jedis.setnx(key, value); if(result == 1){ successCount++; if(successCount >= servers.size()){ // 获取锁成功,执行业务逻辑 break; } }else{ // 锁已被获取,重试 } jedis.close(); } 在这个例子中,我们首先创建了一个包含三个服务器地址的列表,然后遍历这个列表,尝试在每个服务器上获取锁。如果获取锁成功,则增加计数器successCount的值。如果successCount大于等于列表长度,则表示获取到了锁。 四、如何优化Redis分布式锁的性能 在实际应用中,为了提高Redis分布式锁的性能,我们可以采取以下几种策略: 1. 采用多线程来抢占锁,避免在单一线程中长时间阻塞。 java ExecutorService executorService = Executors.newFixedThreadPool(10); Future future = executorService.submit(() -> { return tryAcquireLock(); }); Boolean result = future.get(); if(result){ // 获取锁成功,执行业务逻辑 } 在这个例子中,我们创建了一个固定大小的线程池,然后提交一个新的任务来尝试获取锁。这样,我们可以在多个线程中同时竞争锁,提高了获取锁的速度。 2. 设置合理的超时时间,避免长时间占用锁资源。 java int timeout = 5000; // 超时时间为5秒 String result = jedis.setnx(key, value, timeout); if(result == 1){ // 获取锁成功,执行业务逻辑 } 在这个例子中,我们在调用setNx方法时指定了超时时间为5秒。如果在5秒内无法获取到锁,则方法会立即返回失败。这样,我们就可以避免因为锁的竞争而导致的无谓等待。 五、总结 通过上述的内容,我们可以了解到,在Redis中实现分布式锁可以采用多种方式,包括基于SETNX命令和RedLock算法等。在实际操作里,咱们还要瞅准自家的需求,灵活选用最合适的招数来搞分布式锁这回事儿。同时,别忘了给它“健个身”,优化一下性能,这样一来才能更溜地满足业务上的各种要求。
2023-10-15 17:22:05
316
百转千回_t
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
tail -n 10 file.txt
- 显示文件末尾10行。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"