前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[JSON字符串向JavaScript对象...]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
... 是一个广泛使用的 JavaScript 编译器,主要用于将 ECMAScript 6(ES6)及更高版本的现代JavaScript语法转换为向后兼容的JavaScript语法,以便在不支持新特性的旧版浏览器或环境中运行。 插件 (Plugins) , 在Babel中,插件是一种可扩展机制,用于处理特定的代码转换任务。开发者可以针对不同类型的ES6+新特性或自定义需求编写插件,当Babel执行编译时,这些插件会按照指定顺序应用到源代码上,实现从高级语法到低级语法的转换。 预设 (Presets) , 预设是Babel中一组预先配置好的插件集合,它们通常围绕某个特定的目标或规范进行组织。比如@babel/preset-env预设就包含了对最新稳定版ECMAScript特性的转换插件集合。通过引入预设,开发人员无需逐一安装和配置每个插件,简化了Babel的配置过程,并确保了对目标环境的广泛兼容性。 TC39 , TC39是Ecma International下属的技术委员会,负责制定和维护JavaScript语言的标准,即ECMAScript规范。每年,TC39会对新的JavaScript提案进行讨论、试验和标准化,提案分为不同的成熟度阶段,最终达到stage 4阶段的特性会被纳入下一版本的ECMAScript标准。 Stage-x , 在Babel 6及之前版本中,Stage-x预设对应于TC39提出的不同成熟度阶段的JavaScript提案,例如stage-0表示提案处于试验阶段,stage-3表示提案已接近完成。随着Babel的更新,这种基于提案阶段的预设已被废弃,转而推荐使用@babel/preset-env来按需转换已进入stage 4阶段的特性。
2024-01-16 22:15:54
121
转载
JQuery插件下载
...为Web开发者设计的JavaScript插件,它通过jQuery库提供了简洁而强大的网页URL操作功能。该插件允许开发者轻松实现对当前页面URL参数的读取、设置和修改,极大地简化了在单页应用(SPA)或需要动态更新URL状态的场景下的开发工作。使用url.js,开发者能够以编程方式获取当前URL的所有查询参数,并将其解析为便于处理的JSON对象。同时,支持将新的参数集合或已更新的参数重新编码为URL查询字符串,进而实时更改浏览器地址栏中的URL状态,而无需刷新整个页面。此外,url.js还具备删除指定URL参数的能力,使得维护页面历史记录及实现平滑的状态管理变得更为便捷。总之,这款插件是构建现代Web应用程序时不可或缺的工具之一,它可以有效提升开发效率并增强用户体验,特别是在那些依赖于URL进行路由导航的应用中。 点我下载 文件大小:294.72 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-05-14 13:52:04
50
本站
Python
...何利用正则表达式高效解析JSON和XML数据结构,这对于提升数据分析效率至关重要。此外,作者还分享了在抓取网页内容时,如何精准提取特定标签内的信息,展示了正则表达式在Web scraping任务中的关键作用。同时,文章讨论了正则表达式在文本清洗过程中过滤特殊字符、标准化日期格式以及识别电子邮件、URL等常见字符串模式的实践方法。 对于希望更深入理解并有效应用Python正则表达式的开发者来说,这篇深度解读与实战指导相结合的文章无疑是极具时效性和针对性的延伸阅读材料,它将帮助读者应对更为复杂的文本处理挑战,提高开发效率,并助力实现项目目标。
2023-01-25 14:35:48
282
键盘勇士
JQuery
...个问题,我们可以使用JavaScript的window.location对象。这个对象包含了浏览器当前窗口的位置信息,包括URL地址等。具体的操作步骤如下: 2.1 获取当前URL地址 首先,我们需要创建一个变量来存储当前的URL地址。可以这样做: javascript var currentUrl = window.location.href; 这段代码会获取当前浏览器窗口的完整URL地址,并将其赋值给currentUrl变量。 2.2 使用jQuery获取当前URL地址 在实际的应用中,我们通常更喜欢使用jQuery来处理这些事情。因此,我们可以使用jQuery的$.get方法来获取当前的URL地址。具体的代码如下: javascript $.get(window.location.href, function(data) { // 处理数据 }); 这段代码会向当前的URL地址发起一个GET请求,并传入一个回调函数。当你发起请求一切顺利的时候,这个小家伙(回调函数)就会被激活执行,并且会顺手牵羊地拿到服务器回传的数据。鉴于我们的目标是要拿到那个URL地址,因此在这里,我们可以潇洒地对data参数视而不见。 三、代码示例 为了更好地理解和掌握上述的方法,我为您提供了一些代码示例。这些例子都是基于jQuery打造的,你完全可以把它们直接拽过来,复制粘贴到自己的项目里头,亲自试试跑起来的效果。 3.1 直接获取当前URL地址 javascript // 获取当前URL地址 var currentUrl = window.location.href; // 输出结果 console.log(currentUrl); 这段代码会输出当前浏览器窗口的完整URL地址。 3.2 使用jQuery获取当前URL地址 javascript // 发起GET请求并获取URL地址 $.get(window.location.href, function(data) { console.log(window.location.href); }); // 或者 $.get(window.location.href).done(function(response) { console.log(response.url); }); 这两段代码都会向当前的URL地址发起一个GET请求,并输出URL地址。嗨,你知道吗?实际上我们并没有去动那个"data"参数,为啥呢?因为我们并不太关心服务器返回的那些具体细节内容啦~ 四、结论 总的来说,获取当前的URL地址是一件非常简单的事情。我们只需要使用JavaScript的window.location对象或者jQuery的$.get方法即可。希望本文能够帮助您更好地理解和使用这些方法。如果您还有其他问题,欢迎随时向我提问。
2023-01-20 12:04:33
353
海阔天空_t
JSON
一、引言 JSON,全称JavaScript Object Notation,是一种轻量级的数据交换格式,易于人阅读和编写,同时也易于机器解析和生成。在许多Web应用程序中,JSON被广泛用于数据交换。这篇文章将深入浅出地探讨如何查找JSON数组中的元素。 二、JSON数组的基本概念 首先,我们需要了解JSON数组的基本概念。JSON数组呀,你可别小瞧它,它其实就是一个有规矩的队列。在这个队列里,成员们可是五花八门,什么样的类型都有可能冒出来。比如常见的字符串、数字啦,还有那个爱走极端的布尔值(true/false),连“无中生有”的null也在其中凑热闹。更有意思的是,这个列表里的元素还可以嵌套其他的JSON数组或者JSON对象,是不是很神奇呢?下面是一个简单的JSON数组的例子: css var arr = [1, "hello", true, null]; 在这个例子中,arr是一个包含四个元素的JSON数组,分别是一个数字、一个字符串、一个布尔值和一个null值。 三、JSON数组的查找方法 有了基本的概念之后,我们就可以开始讨论如何查找JSON数组中的元素了。下面介绍几种常见的查找方法: 1. 使用for循环遍历数组 这是一种最基本的查找方法,通过for循环遍历数组,逐个比较元素,直到找到目标元素为止。 javascript function findElement(arr, target) { for (var i = 0; i < arr.length; i++) { if (arr[i] === target) { return i; } } return -1; } console.log(findElement([1, "hello", true, null], "hello")); // 输出:1 在这个例子中,findElement函数接受一个JSON数组和一个目标元素作为参数,返回目标元素在数组中的索引。如果找不到目标元素,则返回-1。 2. 使用Array.prototype.find()方法 ES6引入了一个新的全局方法——Array.prototype.find(),它可以用来查找满足指定条件的数组元素,并返回第一个匹配的元素。 javascript var arr = [1, "hello", true, null]; console.log(arr.find(function(item) { return item === "hello"; })); // 输出:"hello" 在这个例子中,arr.find()方法接受一个回调函数作为参数,该函数会被应用到数组的每个元素上,如果某个元素使回调函数返回true,则该元素会被返回。 3. 使用Array.prototype.includes()方法 ES6还引入了一个全局方法——Array.prototype.includes(),它可以用来判断数组是否包含指定的元素。 javascript var arr = [1, "hello", true, null]; console.log(arr.includes("hello")); // 输出:true 在这个例子中,arr.includes()方法接受一个参数作为参数,如果数组包含该参数,则返回true,否则返回false。 四、总结 JSON数组的查找方法有很多,具体使用哪种方法取决于实际情况。一般来说,如果只需要查找数组中的一个元素,那么使用for循环或者Array.prototype.find()方法都是不错的选择。如果需要判断数组是否包含某个元素,那么可以使用Array.prototype.includes()方法。希望这篇文章能对你有所帮助!
2024-01-31 11:10:52
558
梦幻星空-t
Struts2
...递员”,其主要职责是解析用户的HTTP请求,并依据配置信息找到能够处理该请求的Action对象。若未能正确找到匹配的Action资源,DispatcherServlet将会抛出异常,例如提示“Requested resource /resourcePath is not available”。 结果类型(Result Type) , 在Struts2框架中,结果类型是指Action执行方法返回的结果字符串所关联的一种处理方式。当Action执行完毕后,会根据返回的结果字符串查找配置中的结果类型,从而决定如何渲染响应内容,如重定向至某个页面、返回JSON数据或转发至某个JSP视图等。如果返回的结果名称在struts.xml配置文件中没有对应的有效结果路径,也会导致“Requested resource /resourcePath is not available”错误的发生。
2024-01-24 17:26:04
169
清风徐来
JSON
JSON查询第二条记录:深入探索与实践 1. 引言 --- 在日常的Web开发和数据交互中,JSON(JavaScript Object Notation)扮演着至关重要的角色。这玩意儿就是个轻巧便捷的数据交换格式,瞅着贼容易让人理解,写起来也倍儿顺手;对机器来说,解析和生成它更是小菜一碟,轻松加愉快。本文将围绕“如何在JSON数据中查询第二条记录”这一主题进行探讨,通过实例代码演示,带您逐步揭开这个看似简单实则富含技巧的问题。 2. JSON基础认知 --- 首先,让我们温习一下JSON的基础知识。JSON数据呢,平常就像个小管家,喜欢把信息一对对地配好放在一起,这一对就叫键值对。这些“小对对”聚在一起,就成了一个“大对象”。而当很多个这样的“大对象”手牵手串成一串的时候,我们就称它为数组啦。例如: json { "employees": [ { "id": 1, "name": "John Doe", "position": "Manager" }, { "id": 2, "name": "Jane Smith", "position": "Developer" }, // 更多员工记录... ] } 在这个例子中,employees 是一个包含多个员工对象的数组,我们想要的目标是获取并查询数组中的第二条员工记录。 3. 查询JSON中的第二条记录 --- 那么,如何从上述JSON数据中提取出第二条记录呢?这就需要借助编程语言提供的JSON解析功能,这里我们以JavaScript为例,因为JSON的设计灵感就来源于JavaScript的对象表示法。 javascript let jsonData = { "employees": [ // 员工记录... ] }; // 获取第二条记录 let secondEmployee = jsonData.employees[1]; console.log(secondEmployee); 在这段代码中,jsonData.employees[1]就是我们获取到的第二条员工记录。注意,数组索引是从0开始的,所以索引1对应的是数组中的第二个元素。 4. 深入理解与思考 --- 细心的你可能已经注意到,这里的“第二条记录”实际上是基于数组索引的概念。要是有一天,JSON结构突然变了样儿,比如员工们不再像以前那样排着整齐的数组队列,而是藏在了其他对象的小屋里,那咱们查询的方法肯定也得跟着变一变啦。 json { "employeeRecords": { "record1": { "id": 1, "name": "John Doe", "position": "Manager" }, "record2": { "id": 2, "name": "Jane Smith", "position": "Developer" }, // 更多记录... } } 对于这种情况,由于不再是有序数组,查找“第二条记录”的概念变得模糊。我们无法直接通过索引定位,除非我们知道特定键名,如"record2"。不过,在现实操作里,咱们经常会根据业务的具体需求和数据的组织架构,设计出更接地气、更符合场景的查询方法。比如,先按照ID从小到大排个序,再捞出第二个记录;或者给每一条记录都标上一个独一无二的顺序标签,让它们在队列里乖乖站好。 5. 结论与探讨 --- 总的来说,查询JSON中的第二条记录主要取决于数据的具体结构。在处理JSON数据时,理解其内在结构和关系至关重要。不同的数据组织方式会带来不同的查询策略。在实际动手操作的时候,我们得把编程语言处理JSON的那些技巧玩得溜溜的,同时还要瞅准实际情况,琢磨出最接地气、最优解决方案。 最后,我鼓励大家在面对类似问题时,不妨像侦探破案一样去剖析JSON数据的构造,揣摩其中的规律和逻辑,这不仅能帮助我们更好地解决问题,更能锻炼我们在复杂数据环境中抽丝剥茧、寻找关键信息的能力。
2023-04-13 20:41:35
459
烟雨江南
SpringBoot
...tBody:轻松装配JSON数据 SpringBoot作为Java生态中的一款强大且高效的开发框架,以其简洁的配置和强大的功能深受开发者喜爱。在平常处理HTTP请求这事儿上,我们常常遇到这么个情况:得把请求内容里的JSON数据给捯饬成Java对象,这样一来,接下来的操作才能更顺手、更方便。本文将以“@RequestBody 装配json数据”为主题,通过生动详尽的代码示例和探讨性话术,带你深入了解SpringBoot如何优雅地实现这一过程。 1. @RequestBody 简介 在SpringMVC(SpringBoot基于此构建)中,@RequestBody注解扮演了至关重要的角色。这个东西呢,主要就是在方法的参数那儿发挥作用,告诉Spring框架,你得把HTTP请求里边那个大段的内容,对号入座地塞进我指定的对象参数里头去。这就意味着,当我们平常发送一个POST或者PUT请求,并且这个请求里面包含了JSON格式的数据时,“@RequestBody”这个小家伙就像个超级翻译员,它可以自动把我们提交的JSON数据给神奇地变成相应的Java对象。这样一来,我们的工作流程就轻松简单多了,省去了不少麻烦步骤。 例如,假设我们有一个名为User的Java类: java public class User { private String username; private String email; // getters and setters... } 2. 如何使用@RequestBody装配JSON数据 现在,让我们在Controller层创建一个处理POST请求的方法,利用@RequestBody接收并解析JSON数据: java import org.springframework.web.bind.annotation.PostMapping; import org.springframework.web.bind.annotation.RequestBody; import org.springframework.web.bind.annotation.RestController; @RestController public class UserController { @PostMapping("/users") public String createUser(@RequestBody User user) { System.out.println("Creating user with username: " + user.getUsername() + ", email: " + user.getEmail()); // 这里实际上会调用持久层逻辑进行用户创建,这里为了简单演示只打印信息 return "User created successfully!"; } } 在这个例子中,当客户端向"/users"端点发送一个带有JSON格式数据的POST请求时,如 {"username": "testUser", "email": "test@example.com"},SpringBoot会自动将JSON数据转换成User对象,并将其传递给createUser方法的参数user。 3. 深入理解@RequestBody的工作原理 那么,你可能会好奇,@RequestBody是如何做到如此神奇的事情呢?其实背后离不开Spring的HttpMessageConverter机制。HttpMessageConverter是一个接口,Spring为其提供了多种实现,如MappingJackson2HttpMessageConverter用于处理JSON格式的数据。当你在方法参数上用上@RequestBody这个小家伙的时候,Spring这家伙就会超级智能地根据请求里边的Content-Type,挑一个最合适的HttpMessageConverter来帮忙。它会把那些请求体里的内容,咔嚓一下,变成我们Java对象需要的那种类型,是不是很神奇? 这个过程就像是一个聪明的翻译官,它能识别不同的“语言”(即各种数据格式),并将其转换为我们熟悉的Java对象,这样我们就能够直接操作这些对象,而无需手动解析JSON字符串,极大地提高了开发效率和代码可读性。 4. 总结与探讨 在实际开发过程中,@RequestBody无疑是我们处理HTTP请求体中JSON数据的强大工具。然而,值得注意的是,对于复杂的JSON结构,确保你的Java模型类与其匹配至关重要。另外,你知道吗?SpringBoot在处理那些出错的或者格式不合规矩的JSON数据时,也相当有一套。比如,我们可以自己动手定制异常处理器,这样一来,当出现错误的时候,就能返回一些让人一看就明白的友好提示信息,是不是很贴心呢? 总而言之,在SpringBoot的世界里,借助@RequestBody,我们得以轻松应对JSON数据的装配问题,让API的设计与实现更为流畅、高效。这不仅体现了SpringBoot对开发者体验的重视,也展示了其设计理念——简化开发,提升生产力。希望这次深入浅出的讨论能帮助你在日常开发中更好地运用这一特性,让你的代码更加健壮和优雅。
2024-01-02 08:54:06
101
桃李春风一杯酒_
Javascript
... not run":Javascript执行失败的深度解析与实战解决策略 在我们日常的Web开发过程中,JavaScript作为浏览器端的主要编程语言,其运行状况直接影响着网页的功能表现。当你打开浏览器的开发者工具,发现蹦出个“Script did not run”的错误提示时,这就像是在悄悄告诉你:哎呀,你的JavaScript脚本好像没有正常运行。本文将从实际场景出发,通过详细的代码示例和深入探讨,帮你理解和解决这个常见的问题。 1. 错误概述 “Script did not run”的含义 首先,“Script did not run”是一个相对宽泛的错误提示,它可能指向多种情况,比如脚本文件加载失败、语法错误导致脚本无法执行、或者是由于某些特定条件未满足,使得脚本逻辑跳过或中断执行等。下面我们将逐一分析并给出实例说明。 示例1:脚本加载失败 javascript // 假设我们在HTML中引用了一个不存在的JS文件 在此例中,当浏览器尝试加载non_existent_script.js但找不到该文件时,就会出现“Script did not run”的错误提示。 2. 语法错误导致脚本无法执行 语法错误是初学者最常见的问题之一,也是引发“Script did not run”报错的原因。 javascript // 一个带有语法错误的示例 function test() { console.log("Hello, world!" } test(); // 缺少闭合括号,因此脚本无法执行 在上述例子中,由于函数体内的字符串没有正确闭合,JavaScript引擎在解析阶段就会抛出错误,从而导致整个脚本停止执行。 3. 脚本逻辑错误与异常处理不当 有时,即使脚本文件成功加载且语法无误,也可能因为内部逻辑错误或者异常未被捕获而触发“Script did not run”。 javascript // 逻辑错误示例,试图访问null对象的属性 let obj = null; console.log(obj.property); // 抛出TypeError异常,脚本在此处终止执行 // 异常处理改进方案: try { console.log(obj.property); } catch (error) { console.error('An error occurred:', error); } 在这个案例中,当尝试访问null对象的属性时,JavaScript会抛出TypeError异常。要是不处理这种异常情况,脚本就可能会被迫“撂挑子”,然后闹出个“脚本没运行起来”的状况。 4. 解决策略与思考过程 面对“Script did not run”的问题,我们的解决步骤可以归纳为以下几点: - 检查资源加载:确保所有引用的JavaScript文件都能正常加载,路径是否正确,文件是否存在。 - 审查语法:使用文本编辑器的语法高亮功能或IDE的错误提示,快速定位并修复语法错误。 - 调试逻辑:利用浏览器的开发者工具(如Chrome DevTools),通过断点、步进、查看变量值等方式,逐步排查程序逻辑中的问题。 - 善用异常处理:在可能出现错误的地方使用try...catch结构,对异常进行妥善处理,避免脚本因未捕获的异常而终止执行。 总的来说,“Script did not run”虽是一个看似简单的错误提示,但它背后隐藏的问题却需要我们根据具体情况进行细致入微的排查和解决。希望以上的代码实例和讨论能真正帮到你,让你对这个问题有个更接地气的理解,然后在实际操作时,能够迅速找到解题的“灵丹妙药”。在寻找答案、解决难题的过程中,咱们得拿出十足的耐心和细致劲儿,就像那侦探查案一样,得像剥洋葱那样一层层揭开谜团,最后,真相总会大白于天下。
2023-03-26 16:40:33
374
柳暗花明又一村
转载文章
...深入理解Python字符串操作的基础之上,我们可以进一步探索其在实际开发和数据分析中的高级应用。近日,随着Python 3.9版本的发布,字符串新增了"formatted string literals"(f-string)这一特性,使得格式化字符串更为便捷高效。f-string允许直接在字符串中嵌入表达式,执行结果将被转换为字符串并插入到相应位置,大大提升了代码可读性和编写效率。 例如,在处理大量文本数据时,我们可能需要根据变量动态生成报告内容。传统的format方法虽能满足需求,但使用f-string可以更直观地看到最终输出效果,如name = "Alice"; age = 25; print(f"Hello, {name}, you are {age} years old.")。此外,对于多语言支持、国际化场景,Python自带的gettext模块结合字符串操作能够实现灵活的本地化翻译功能。 另外,字符串操作在Web开发领域同样至关重要,比如在构建URL、处理HTTP请求头或解析JSON数据时,常常会运用到切片、拼接、替换等操作。近期Django框架发布的更新中,就优化了对复杂字符串模板的处理机制,开发者能更方便地利用Python内置的字符串函数进行前后端交互。 同时,在网络安全和密码学领域,字符串操作也发挥着关键作用,如哈希加密、Base64编码解码等都需要对字符串进行特殊处理。最新研究指出,通过合理运用Python字符串函数,可在保证安全性的前提下提升数据传输和存储的效率。 总的来说,掌握Python字符串操作不仅有助于日常编程任务,还能紧跟技术发展趋势,应对不同领域的挑战,从而提升项目质量和开发效率。持续关注Python社区的最新进展和最佳实践,将帮助开发者更好地驾驭这一强大的编程工具。
2023-05-11 17:43:10
353
转载
Superset
...回HTTP错误的全面解析与解决方案 1. 引言 Superset,Apache软件基金会旗下的强大数据可视化和商业智能平台,以其丰富的图表类型、强大的SQL查询能力和便捷的API接口广受开发者喜爱。在实际编程干活的时候,咱们可能经常会碰到这么个情况:调用API接口,结果它返回了个HTTP错误,这就跟半路杀出个程咬金似的,妥妥地把我们的开发进度给绊住了。这篇文章的目标呢,就是想把这个问题掰开揉碎了讲明白,咱们会借助一些实实在在的代码例子,一块儿琢磨出问题出在哪儿,然后再对症下药,拿出解决的好法子来。 2. API调用中的HTTP错误概览 在与Superset的API进行交互时,HTTP错误是常见的反馈形式,它代表了请求处理过程中的异常情况。常见的HTTP错误状态码包括400(Bad Request)、401(Unauthorized)、403(Forbidden)、404(Not Found)等,每一种错误都对应着特定的问题场景。 - 例如:尝试访问一个不存在的资源可能会返回404错误: python import requests url = "http://your-superset-server/api/v1/fake-resource" response = requests.get(url) if response.status_code == 404: print("Resource not found!") 3. 分析并处理常见HTTP错误 3.1 400 Bad Request 这个错误通常意味着客户端发送的请求存在语法错误或参数缺失。比如在Superset里捣鼓创建仪表板的时候,如果你忘了给它提供必须的JSON格式数据,服务器就可能会蹦出个错误提示给你。 python 错误示例:缺少必要参数 payload = {} 应该包含dashboard信息的json对象 response = requests.post("http://your-superset-server/api/v1/dashboard", json=payload) if response.status_code == 400: print("Invalid request, missing required parameters.") 解决方法是确保你的请求包含了所有必需的参数并且它们的数据类型和格式正确。 3.2 401 Unauthorized 当客户端尝试访问需要认证的资源而未提供有效凭据时,会出现此错误。在Superset中,这意味着我们需要带上有效的API密钥或其他认证信息。 python 正确示例:添加认证头 headers = {'Authorization': 'Bearer your-api-key'} response = requests.get("http://your-superset-server/api/v1/datasets", headers=headers) 3.3 403 Forbidden 即使你提供了认证信息,也可能由于权限不足导致403错误。这表示用户没有执行当前操作的权限。检查用户角色和权限设置,确保其有权执行所需操作。 3.4 404 Not Found 如上所述,当请求的资源在服务器上不存在时,将返回404错误。请确认你的API路径是否准确无误。 4. 总结与思考 在使用Superset API的过程中遭遇HTTP错误是常态而非例外。每一个错误码,其实都在悄悄告诉我们一个具体的小秘密,就是某个环节出了点小差错。这就需要我们在碰到问题时化身福尔摩斯,耐心细致地拨开层层迷雾,把问题的来龙去脉摸个一清二楚。每一个“啊哈!”时刻,就像是我们对技术的一次热情拥抱和深刻领悟,它不仅让咱们对编程的理解更上一层楼,更是我们在编程旅途中的宝贵财富和实实在在的成长印记。所以呢,甭管是捣鼓API调用出岔子了,还是在日常开发工作中摸爬滚打,咱们都得瞪大眼睛,保持一颗明察秋毫的心,还得有股子耐心去解决问题。让每一次失败的HTTP请求,都变成咱通往成功的垫脚石,一步一个脚印地向前走。
2023-06-03 18:22:41
67
百转千回
MemCache
...以其快速、高效的内存对象缓存能力,在提升系统性能和降低数据库负载方面发挥着关键作用。然而,在实际使用过程中,我们偶尔会遇到“Value too large to be stored in a single chunk”这样的错误提示。今天,咱们就手拉手,一起去揭开这个看似神神秘秘的错误面纱,用实际的代码例子,像破案一样摸清它的来龙去脉,最后把这个问题给妥妥地解决掉。 2. MemCache的工作原理与chunk概念解析 在MemCache内部,它将存储的数据项分割成固定大小的chunks进行存储(默认为1MB)。当一个值(value)过大以至于无法一次性放入一个chunk时,就会抛出“Value too large to be stored in a single chunk”的异常。这就像是你硬要把一只大大的熊宝宝塞进一个超级迷你的小口袋里,任凭你怎么使劲、怎么折腾,这个艰巨的任务都几乎不可能完成。 python import memcache mc = memcache.Client(['127.0.0.1:11211'], debug=1) 假设这里有一个超大的数据对象,比如一个非常长的字符串或复杂的数据结构 huge_value = 'A' (1024 1024 2) 大于默认chunk大小的字符串 try: mc.set('huge_key', huge_value) except ValueError as e: print(f"Oops! We got an error: {e}") 输出:"Value too large to be stored in a single chunk" 3. 解决“Value too large to be stored in a single chunk”问题的方法 面对这种情况,我们可以从两个角度来应对: 3.1 优化数据结构或压缩数据 首先,考虑是否可以对存储的数据进行优化。比如,假如你现在要缓存的是文本信息,你可以尝试简化一下内容,或者换个更省空间的数据格式,就拿JSON来说吧,比起XML它能让你的数据体积变得更小巧。另外,也可以使用压缩算法来减少数据大小,如Gzip。 python import zlib from io import BytesIO compressed_value = zlib.compress(huge_value.encode()) mc.set('compressed_key', compressed_value) 3.2 调整MemCache的chunk大小 其次,如果优化数据结构或压缩后仍无法满足需求,且确实需要缓存大型数据,那么可以尝试调整Memcached服务器的chunk大小。通常情况下,为了让MemCache启动时能分配更大的单个内存块,你需要动手调整一下启动参数,也就是那个 -I 参数(或者,你也可以选择在配置文件里设置 chunk_size 这个选项),把它调大一些。这样就好比给 MemCache 扩大了每个“小仓库”的容量,让它能装下更多的数据。但是,亲,千万要留意,增大chunk大小可是会吃掉更多的内存资源呢。所以在动手做这个调整之前,一定要先摸清楚你的内存使用现状和业务需求,不然的话,可能会有点小麻烦。 bash memcached -m 64 -I 4m 上述命令启动了一个内存大小为64MB且每个chunk大小为4MB的MemCached服务。 4. 总结与思考 在MemCache的世界里,“Value too large to be stored in a single chunk”并非不可逾越的鸿沟,而是一个促使我们反思数据处理策略和资源利用效率的机会。无论是捣鼓数据结构,把数据压缩得更小,还是摆弄MemCache的配置设置,这些都是我们在追求那个超给力缓存解决方案的过程中,实实在在踩过、试过的有效招数。同时呢,这也给我们提了个醒,在捣鼓和构建系统的时候,可别忘了时刻关注并妥善处理好性能、内存使用和业务需求这三者之间那种既微妙又关键的平衡关系。就像亲手做一道美味的大餐,首先得像个挑剔的美食家那样,用心选好各种新鲜上乘的食材(也就是我们需要的数据);然后呢,你得像玩俄罗斯方块一样,巧妙地把它们在有限的空间(也就是内存)里合理摆放好;最后,掌握好火候可是大厨的必杀技,这就好比我们得精准配置各项参数。只有这样,才能烹制出一盘让人垂涎欲滴的佳肴——那就是我们的高效缓存系统啦!
2023-06-12 16:06:00
50
清风徐来
SpringBoot
...ue.js项目的交互过程中,开发者们可能会遇到一些意想不到的问题,其中最令人困惑的可能就是前端发送的数据到了后端却莫名其妙地变成了0。这不仅影响用户体验,也对代码调试提出了挑战。接下来,咱们一块儿踏上解谜之旅吧!从头开始,一点点弄懂这个神秘的“0”,就像拆开礼物上的层层包装,最终揭示它的奇妙真相。 二、场景再现 假设我们正在开发一个简单的用户注册系统,前端Vue.js负责收集用户信息,然后通过axios发送给SpringBoot后端进行验证和存储。你知道吗,有时候我们在Vue的那些小元件里边,填好账号名和密码,一激动点发送按钮,结果呢,后头的服务器接收的数据里,邮箱那一栏就莫名其妙地变成了0,就像被人动了手脚似的。 javascript // Vue.js 部分 - 送出数据的部分 methods: { registerUser() { const formData = { username: this.username, password: this.password, email: this.email, // 这里原本应该是用户的邮箱地址 }; axios.post('/api/register', formData) .then(response => { console.log(response.data); }) .catch(error => { console.error(error); }); } } 三、问题分析 1. 类型转换 首先,检查一下是不是类型转换的问题。SpringBoot在接收数据时,如果类型不匹配,可能会尝试将其转换为可接受的数据类型。比如说,假如你邮箱地址栏不小心输入了个纯数字“0”,当你想把它当成字符串来处理的时候,这家伙可能会调皮地变成一个空荡荡的啥都没有。 java // SpringBoot 部分 - 接收数据的Controller @PostMapping("/register") public ResponseEntity registerUser(@RequestBody Map formData) { String email = formData.get("email").toString(); // 如果email是数字0,这里会变成"" // ... } 2. 默认值 另一个可能的原因是,前端在发送数据前没有正确处理可能的空值或默认值。你知道吗,有时候在发邮件前,email这哥们儿可能还没人填,这时它就暂且是JavaScript里的那个神秘存在“undefined”。一到要变成JSON格式,它就自动变身为“null”,然后后端大哥看见了,贴心地给它换个零蛋。 3. 数据验证 SpringBoot的@RequestBody注解默认会对JSON数据进行有效性校验,如果数据不符合约定的格式,它可能被视作无效,从而转化为默认值。检查Model层是否定义了默认值规则。 java // Model层 public class User { private String email; // ...其他字段 @NotBlank(message = "Email cannot be blank") public String getEmail() { return email; } public void setEmail(String email) { this.email = email; } } 四、解决策略 1. 前端校验 确保在发送数据之前对前端数据进行清理和验证,避免空值或非预期值被发送。 2. 明确数据类型 在Vue.js中,可以使用v-model.number或者v-bind:value配合计算属性,确保数据在发送前已转换为正确的类型。 3. 后端配置 SpringBoot可以配置Jackson或Gson等JSON库,设置@JsonInclude(JsonInclude.Include.NON_NULL)来忽略所有空值。 4. 异常处理 添加适当的异常处理,捕获可能的转换异常并提供有用的错误消息。 五、结论 解决这个问题的关键在于理解数据流的每个环节,从前端到后端,每一个可能的类型转换和验证步骤都需要仔细审查。你知道吗,有时候生活就像个惊喜包,比如说JavaScript那些隐藏的小秘密,但别急,咱们一步步找,那问题的源头准能被咱们揪出来!希望这篇文章能帮助你在遇到类似困境时,更好地定位和解决“0”问题,提升开发效率和用户体验。 --- 当然,实际的代码示例可能需要根据你的项目结构和配置进行调整,以上只是一个通用的指导框架。记住,遇到问题时,耐心地查阅文档,结合调试工具,往往能更快地找到答案。祝你在前端与后端的交互之旅中一帆风顺!
2024-04-13 10:41:58
82
柳暗花明又一村_
转载文章
...va创建表 创建存储过程 创建触发器 环境说明 本实验环境基于Oracle 12C和JDK1.8,其中Oracle 12C支持多租户特性,相较于之前的Oracle版本,使用‘C用户名‘表示用户,例如如果数据库用户叫kevin,则登陆时使用Ckevin进行登陆。 一、Oracle高级消息队列AQ Oracle AQ是Oracle中的消息队列,是Oracle中的一种高级应用,每个版本都在不断的加强,使用DBMS_AQ系统包进行相应的操作,是Oracle的默认组件,只要安装了Oracle数据库就可以使用。使用AQ可以在多个Oracle数据库、Oracle与Java、C等系统中进行数据传输。 下面分步骤说明如何创建Oracle AQ 1. 创建消息负荷payload Oracle AQ中传递的消息被称为有效负荷(payloads),格式可以是用户自定义对象或XMLType或ANYDATA。本例中我们创建一个简单的对象类型用于传递消息。 create type demo_queue_payload_type as object (message varchar2(4000)); 2. 创建队列表 队列表用于存储消息,在入队时自动存入表中,出队时自动删除。使用DBMS_AQADM包进行数据表的创建,只需要写表名,同时设置相应的属性。对于队列需要设置multiple_consumers为false,如果使用发布/订阅模式需要设置为true。 begin dbms_aqadm.create_queue_table( queue_table => 'demo_queue_table', queue_payload_type => 'demo_queue_payload_type', multiple_consumers => false ); end; 执行完后可以查看oracle表中自动生成了demo_queue_table表,可以查看影响子段(含义比较清晰)。 3. 创建队列并启动 创建队列并启动队列: begin dbms_aqadm.create_queue ( queue_name => 'demo_queue', queue_table => 'demo_queue_table' ); dbms_aqadm.start_queue( queue_name => 'demo_queue' ); end; 至此,我们已经创建了队列有效负荷,队列表和队列。可以查看以下系统创建了哪些相关的对象: SELECT object_name, object_type FROM user_objects WHERE object_name != 'DEMO_QUEUE_PAYLOAD_TYPE'; OBJECT_NAME OBJECT_TYPE ------------------------------ --------------- DEMO_QUEUE_TABLE TABLE SYS_C009392 INDEX SYS_LOB0000060502C00030$$ LOB AQ$_DEMO_QUEUE_TABLE_T INDEX AQ$_DEMO_QUEUE_TABLE_I INDEX AQ$_DEMO_QUEUE_TABLE_E QUEUE AQ$DEMO_QUEUE_TABLE VIEW DEMO_QUEUE QUEUE 我们看到一个队列带出了一系列自动生成对象,有些是被后面直接用到的。不过有趣的是,创建了第二个队列。这就是所谓的异常队列(exception queue)。如果AQ无法从我们的队列接收消息,将记录在该异常队列中。 消息多次处理出错等情况会自动转移到异常的队列,对于异常队列如何处理目前笔者还没有找到相应的写法,因为我使用的场景并不要求消息必须一对一的被处理,只要起到通知的作用即可。所以如果消息转移到异常队列,可以执行清空队列表中的数据 delete from demo_queue_table; 4. 队列的停止和删除 如果需要删除或重建可以使用下面的方法进行操作: BEGIN DBMS_AQADM.STOP_QUEUE( queue_name => 'demo_queue' ); DBMS_AQADM.DROP_QUEUE( queue_name => 'demo_queue' ); DBMS_AQADM.DROP_QUEUE_TABLE( queue_table => 'demo_queue_table' ); END; 5. 入队消息 入列操作是一个基本的事务操作(就像往队列表Insert),因此我们需要提交。 declare r_enqueue_options DBMS_AQ.ENQUEUE_OPTIONS_T; r_message_properties DBMS_AQ.MESSAGE_PROPERTIES_T; v_message_handle RAW(16); o_payload demo_queue_payload_type; begin o_payload := demo_queue_payload_type('what is you name ?'); dbms_aq.enqueue( queue_name => 'demo_queue', enqueue_options => r_enqueue_options, message_properties => r_message_properties, payload => o_payload, msgid => v_message_handle ); commit; end; 通过SQL语句查看消息是否正常入队: select from aq$demo_queue_table; select user_data from aq$demo_queue_table; 6. 出队消息 使用Oracle进行出队操作,我没有实验成功(不确定是否和DBMS_OUTPUT的执行权限有关),代码如下,读者可以进行调试: declare r_dequeue_options DBMS_AQ.DEQUEUE_OPTIONS_T; r_message_properties DBMS_AQ.MESSAGE_PROPERTIES_T; v_message_handle RAW(16); o_payload demo_queue_payload_type; begin DBMS_AQ.DEQUEUE( queue_name => 'demo_queue', dequeue_options => r_dequeue_options, message_properties => r_message_properties, payload => o_payload, msgid => v_message_handle ); DBMS_OUTPUT.PUT_LINE( ' Browse message is [' || o_payload.message || ']' ); end; 二、Java使用JMS监听并处理Oracle AQ队列 Java使用JMS进行相应的处理,需要使用Oracle提供的jar,在Oracle安装目录可以找到:在linux中可以使用find命令进行查找,例如 find pwd -name 'jmscommon.jar' 需要的jar为: app/oracle/product/12.1.0/dbhome_1/rdbms/jlib/jmscommon.jar app/oracle/product/12.1.0/dbhome_1/jdbc/lib/ojdbc7.jar app/oracle/product/12.1.0/dbhome_1/jlib/orai18n.jar app/oracle/product/12.1.0/dbhome_1/jlib/jta.jar app/oracle/product/12.1.0/dbhome_1/rdbms/jlib/aqapi_g.jar 1. 创建连接参数类 实际使用时可以把参数信息配置在properties文件中,使用Spring进行注入。 package org.kevin.jms; / @author 李文锴 连接参数信息 / public class JmsConfig { public String username = "ckevin"; public String password = "a111111111"; public String jdbcUrl = "jdbc:oracle:thin:@127.0.0.1:1521:orcl"; public String queueName = "demo_queue"; } 2. 创建消息转换类 因为消息载荷是Oracle数据类型,需要提供一个转换工厂类将Oracle类型转换为Java类型。 package org.kevin.jms; import java.sql.SQLException; import oracle.jdbc.driver.OracleConnection; import oracle.jdbc.internal.OracleTypes; import oracle.jpub.runtime.MutableStruct; import oracle.sql.CustomDatum; import oracle.sql.CustomDatumFactory; import oracle.sql.Datum; import oracle.sql.STRUCT; / @author 李文锴 数据类型转换类 / @SuppressWarnings("deprecation") public class QUEUE_MESSAGE_TYPE implements CustomDatum, CustomDatumFactory { public static final String _SQL_NAME = "QUEUE_MESSAGE_TYPE"; public static final int _SQL_TYPECODE = OracleTypes.STRUCT; MutableStruct _struct; // 12表示字符串 static int[] _sqlType = { 12 }; static CustomDatumFactory[] _factory = new CustomDatumFactory[1]; static final QUEUE_MESSAGE_TYPE _MessageFactory = new QUEUE_MESSAGE_TYPE(); public static CustomDatumFactory getFactory() { return _MessageFactory; } public QUEUE_MESSAGE_TYPE() { _struct = new MutableStruct(new Object[1], _sqlType, _factory); } public Datum toDatum(OracleConnection c) throws SQLException { return _struct.toDatum(c, _SQL_NAME); } public CustomDatum create(Datum d, int sqlType) throws SQLException { if (d == null) return null; QUEUE_MESSAGE_TYPE o = new QUEUE_MESSAGE_TYPE(); o._struct = new MutableStruct((STRUCT) d, _sqlType, _factory); return o; } public String getContent() throws SQLException { return (String) _struct.getAttribute(0); } } 3. 主类进行消息处理 package org.kevin.jms; import java.util.Properties; import javax.jms.Message; import javax.jms.MessageConsumer; import javax.jms.MessageListener; import javax.jms.Queue; import javax.jms.QueueConnection; import javax.jms.QueueConnectionFactory; import javax.jms.Session; import oracle.jms.AQjmsAdtMessage; import oracle.jms.AQjmsDestination; import oracle.jms.AQjmsFactory; import oracle.jms.AQjmsSession; / @author 李文锴 消息处理类 / public class Main { public static void main(String[] args) throws Exception { JmsConfig config = new JmsConfig(); QueueConnectionFactory queueConnectionFactory = AQjmsFactory.getQueueConnectionFactory(config.jdbcUrl, new Properties()); QueueConnection conn = queueConnectionFactory.createQueueConnection(config.username, config.password); AQjmsSession session = (AQjmsSession) conn.createQueueSession(false, Session.AUTO_ACKNOWLEDGE); conn.start(); Queue queue = (AQjmsDestination) session.getQueue(config.username, config.queueName); MessageConsumer consumer = session.createConsumer(queue, null, QUEUE_MESSAGE_TYPE.getFactory(), null, false); consumer.setMessageListener(new MessageListener() { @Override public void onMessage(Message message) { System.out.println("ok"); AQjmsAdtMessage adtMessage = (AQjmsAdtMessage) message; try { QUEUE_MESSAGE_TYPE payload = (QUEUE_MESSAGE_TYPE) adtMessage.getAdtPayload(); System.out.println(payload.getContent()); } catch (Exception e) { e.printStackTrace(); } } }); Thread.sleep(1000000); } } 使用Oracle程序块进行入队操作,在没有启动Java时看到队列表中存在数据。启动Java后,控制台正确的输出的消息;通过Oracle程序块再次写入消息,发现控制台正确处理消息。Java的JMS监听不是立刻进行处理,可能存在几秒中的时间差,时间不等。 三、监控表记录变化通知Java 下面的例子创建一个数据表,然后在表中添加触发器,当数据变化后触发器调用存储过程给Oracle AQ发送消息,然后使用Java JMS对消息进行处理。 1. 创建表 创建student表,包含username和age两个子段,其中username时varchar2类型,age时number类型。 2. 创建存储过程 创建send_aq_msg存储过程,因为存储过程中调用dbms数据包,系统包在存储过程中执行需要进行授权(使用sys用户进行授权): grant execute on dbms_aq to ckevin; 注意存储过程中包含commit语句。 create or replace PROCEDURE send_aq_msg (info IN VARCHAR2) as r_enqueue_options DBMS_AQ.ENQUEUE_OPTIONS_T; r_message_properties DBMS_AQ.MESSAGE_PROPERTIES_T; v_message_handle RAW(16); o_payload demo_queue_payload_type; begin o_payload := demo_queue_payload_type(info); dbms_aq.enqueue( queue_name => 'demo_queue', enqueue_options => r_enqueue_options, message_properties => r_message_properties, payload => o_payload, msgid => v_message_handle ); commit; end send_aq_msg; 3. 创建触发器 在student表中创建触发器,当数据写入或更新时,如果age=18,则进行入队操作。需要调用存储过程发送消息,但触发器中不能包含事物提交语句,因此需要使用pragma autonomous_transaction;声明自由事物: CREATE OR REPLACE TRIGGER STUDENT_TR AFTER INSERT OR UPDATE OF AGE ON STUDENT FOR EACH ROW DECLARE pragma autonomous_transaction; BEGIN if :new.age = 18 then send_aq_msg(:new.username); end if; END; 创建完触发器后向执行插入或更新操作: insert into student (username,age) values ('jack.lee.3k', 18); update student set age=18 where username='jack003'; Java JMS可以正确的处理消息。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_42309178/article/details/115241521。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-17 14:22:22
138
转载
转载文章
...空”有两种含义,一是对象引用为null,二是对象实例存在但其大小(如List的size或Map的entry数量)为0。CollectionUtils.isEmpty()方法能够同时处理这两种情况,简化了开发者的代码逻辑,避免了因空指针异常而导致的问题。 EasyExcel , EasyExcel是阿里巴巴开源的一个Java处理Excel工具,专注于让Excel数据处理变得简单、快速且占用内存低。通过使用EasyExcel,开发者可以轻松实现Excel文件的读写操作,支持大文件流式读写、自定义样式和模板填充等功能,并提供了丰富的API及回调接口以满足复杂场景下的表格数据处理需求。 MybatisPlus , MybatisPlus是在Mybatis的基础上进行扩展的一套持久层框架,它提供了丰富的增强功能,例如单表基本的CRUD操作、分页查询、性能分析插件以及动态表名、自动填充字段等特性。MybatisPlus简化了开发人员对数据库的操作,降低了SQL编写的工作量,尤其在处理简单的单表操作时,极大地提升了开发效率和代码可读性。 JSON , JSON(JavaScript Object Notation)是一种轻量级的数据交换格式,易于人阅读和编写,同时也易于机器解析和生成。在文中提到的Fastjson是一个Java语言编写的高性能功能完备的JSON库,它可以将Java对象转换成JSON字符串,也可以将JSON字符串反序列化成Java对象,广泛应用于Web服务与前后端数据交互、配置文件存储、日志记录等多种场景。 IPage , IPage是MybatisPlus中封装的分页对象,用来进行数据分页查询。它包含了当前页码、每页显示条数以及总记录数等信息。在执行SQL查询时,MybatisPlus会根据IPage对象的内容自动拼接SQL分页语句,从而实现了数据的高效分页加载,减轻了数据库压力并优化了应用程序性能。
2023-05-26 23:30:52
268
转载
转载文章
...联系原作者授权 伴生对象 在 Kotlin 中并不没有 static 这个关键字,该如何处理呢?这里需要用到 Kotlin 的伴生对象来处理。 类内部的对象声明可以用 companion 关键字标记: class MyClass { 该伴生对象的成员可通过只使用类名作为限定符来调用: val instance = MyClass.create() 可以省略伴生对象的名称,在这种情况下将使用名称 Companion: class MyClass { 伴生对象的作用 类似于 Java 中使用类访问静态成员的语法。因为 Kotlin 取消了 static 关键字,所以 Kotlin 引入伴生对象来弥补没有静态成员的不足。可见,伴生对象的主要作用就是为其所在的外部类模拟静态成员。 在 Java 代码中调用伴生对象 如何在 Java 代码中调用 Kotlin 的伴生对象呢? public static void main(String[] args) { 如果声明伴生对象有名称,则使用: 类名.伴生对象名.方法名() 类名.半生对象名.属性的setter,getter方法 如果声明伴生对象无名称,则采用 Companion 关键字调用: .Companion.方法名() @JvmField 和 @JvmStatic 的使用 在上面的例子中,我们知道了可以在 Java 代码中调用 Kotlin 中伴生对象的成员,类似于 Java 类中的静态成员。但是看上去和 Java 中的还是略有区别,因为类名和方法名/属性setter,getter方法名之间多了个伴生对象的名称或者 Companion 关键字。如何使其在调用的时候与 Java 中的调用看上去一样呢? Kotlin 为我们提供了 @JvmField 和 @JvmStatic 两个注解。@JvmField 使用在属性上,@JvmStatic 使用在方法上。如: class Test { 这样我们在 Java 代码中调用的时候就和 Java 类调用静态成员的形式一致了,Kotlin 代码调用方式不变: System.out.println(Test.flag); System.out.println(Test.add(1, 2)); const 关键字 在伴生对象中,我们可能需要声明一个常量,目的是等同于 Java 中的静态常量。有两种方式,一种是上面所提到的使用 @JvmField 注解,另一种则是使用 const 关键字修饰。这两种声明方式都等同于 Java 中 static final 所修饰的变量。如下代码: companion 扩展属性和扩展方法 扩展函数 Kotlin的扩展函数可以让你作为一个类成员进行调用的函数,但是是定义在这个类的外部。这样可以很方便的扩展一个已经存在的类,为它添加额外的方法 下面我们为String添加一个toInt的方法 package com.binzi.kotlin 在这个扩展函数中,你可以直接访问你扩展的类的函数和属性,就像定义在这个类中的方法一样,但是扩展函数并不允许你打破封装。跟定义在类中方法不同,它不能访问那些私有的、受保护的方法和属性。 扩展函数的导入 我们直接在包里定义扩展函数。这样我们就可以在整个包里面使用这些扩展,如果我们要使用其他包的扩展,我们就需要导入它。导入扩展函数跟导入类是一样的方式。 import 有时候,可能你引入的第三方包都对同一个类型进行了相同函数名扩展,为了解决冲突问题,你可以使用下面的方式对扩展函数进行改名 import com.binzi.kotlin.toInt as toInteger 扩展函数不可覆盖 扩展方法的原理 Kotlin 中类的扩展方法并不是在原类的内部进行拓展,通过反编译为Java代码,可以发现,其原理是使用装饰模式,对源类实例的操作和包装,其实际相当于我们在 Java中定义的工具类方法,并且该工具类方法是使用调用者为第一个参数的,然后在工具方法中操作该调用者 如: fun String?.toInt(): 反编译为对应的Java代码: public 扩展属性 类的扩展属性原理其实与扩展方法是一样的,只是定义的形式不同,扩展属性必须定义get和set方法 为MutableList扩展一个firstElement属性: var 反编译后的java代码如下: public static final Object getFirstElement(@NotNull List $this$firstElement) { 内部类 kotlin的内部类与java的内部类有点不同java的内部类可以直接访问外部类的成员,kotlin的内部类不能直接访问外部类的成员,必须用inner标记之后才能访问外部类的成员 没有使用inner标记的内部类 class A{ 反编译后的java代码 public 用inner标记的内部类 class A{ 反编译后的java代码 public 从上面可以看出,没有使用inner标记的内部类最后生成的是静态内部类,而使用inner标记的生成的是非静态内部类 匿名内部类 匿名内部类主要是针对那些获取抽象类或者接口对象而来的。最常见的匿名内部类View点击事件: //java,匿名内部类的写法 上面这个是java匿名内部类的写法,kotlin没有new关键字,那么kotlin的匿名内部类该怎么写呢? object : View.OnClickListener{ 方法的参数是一个匿名内部类,先写object:,然后写你的参数类型View.OnClickListener{} kotlin还有一个写法lambda 表达式,非常之方便: print( 数据类 在Java中没有专门的数据类,常常是通过JavaBean来作为数据类,但在Kotlin中提供了专门的数据类。 Java public 从上面的例子中可以看到,如果要使用数据类,需要手动写相应的setter/getter方法(尽管IDE也可以批量生成),但是从代码阅读的角度来说,在属性较多的情况下,诸多的seeter/getter方法还是不利于代码的阅读和维护。 Kotlin 在Kotlin中,可以通过关键字data来生成数据类: data 即在class关键字之前添加data关键字即可。编译器会根据主构造函数中的参数生成相应的数据类。自动生成setter/getter、toString、hashCode等方法 要声明一个数据类,需要满足: 主构造函数中至少有一个参数 主构造函数中所有参数需要标记为val或var 数据类不能是抽象、开发、密封和内部的 枚举类 枚举类是一种特殊的类,kotlin可以通过enum class关键字定义枚举类。 枚举类可以实现0~N个接口; 枚举类默认继承于kotlin.Enum类(其他类最终父类都是Any),因此kotlin枚举类不能继承类; 非抽象枚举类不能用open修饰符修饰,因此非抽象枚举类不能派生子类; 抽象枚举类不能使用abstract关键字修饰enum class,抽象方法和抽象属性需要使用; 枚举类构造器只能使用private修饰符修饰,若不指定,则默认为private; 枚举类所有实例在第一行显式列出,每个实例之间用逗号隔开,整个声明以分号结尾; 枚举类是特殊的类,也可以定义属性、方法、构造器; 枚举类应该设置成不可变类,即属性值不允许改变,这样更安全; 枚举属性设置成只读属性后,最好在构造器中为枚举类指定初始值,如果在声明时为枚举指定初始值,会导致所有枚举值(或者说枚举对象)的该属性都一样。 定义枚举类 / 定义一个枚举类 / 枚举类实现接口 枚举值分别实现接口的抽象成员 enum 枚举类统一实现接口的抽象成员 enum 分别实现抽象枚举类抽象成员 enum 委托 委托模式 是软件设计模式中的一项基本技巧。在委托模式中,有两个对象参与处理同一个请求,接受请求的对象将请求委托给另一个对象来处理。委托模式是一项基本技巧,许多其他的模式,如状态模式、策略模式、访问者模式本质上是在更特殊的场合采用了委托模式。委托模式使得我们可以用聚合来替代继承。 Java中委托: interface Printer { Kotlin: interface Printer { by表示 p 将会在 PrintImpl 中内部存储, 并且编译器将自动生成转发给 p 的所有 Printer 的方法。 委托属性 有一些常见的属性类型,虽然我们可以在每次需要的时候手动实现它们, 但是如果能够为大家把他们只实现一次并放入一个库会更好。例如包括: 延迟属性(lazy properties): 其值只在首次访问时计算; 可观察属性(observable properties): 监听器会收到有关此属性变更的通知; 把多个属性储存在一个映射(map)中,而不是每个存在单独的字段中。 为了涵盖这些(以及其他)情况,Kotlin 支持 委托属性 。 委托属性的语法是: var : 在 by 后面的表达式是该 委托, 因为属性对应的 get()(和 set())会被委托给它的 getValue() 和 setValue() 方法。 标准委托: Kotlin 标准库为几种有用的委托提供了工厂方法。 延迟属性 Lazy lazy() 接受一个 lambda 并返回一个 Lazy 实例的函数,返回的实例可以作为实现延迟属性的委托:第一次调用 get() 会执行已传递给 lazy() 的 lambda 表达式并记录结果, 后续调用 get() 只是返回记录的结果。例如: val lazyValue: String 可观察属性 Observable Delegates.observable() 接受两个参数:初始值和修改时处理程序(handler)。每当我们给属性赋值时会调用该处理程序(在赋值后执行)。它有三个参数:被赋值的属性、旧值和新值: class User { 如果想拦截赋的新值,并根据你是不是想要这个值来决定是否给属性赋新值,可以使用 vetoable() 取代 observable(),接收的参数和 observable 一样,不过处理程序 返回值是 Boolean 来决定是否采用新值,即在属性被赋新值生效之前 会调用传递给 vetoable 的处理程序。例如: class User { 把属性存在map 中 一个常见的用例是在一个映射(map)里存储属性的值。这经常出现在像解析 JSON 或者做其他“动态”事情的应用中。在这种情况下,你可以使用映射实例自身作为委托来实现委托属性。 例如: class User(map: Map 在上例中,委托属性会从构造函数传入的map中取值(通过字符串键——属性的名称),如果遇到声明的属性名在map 中找不到对应的key 名,或者key 对应的value 值的类型与声明的属性的类型不一致,会抛出异常。 内联函数 当一个函数被声明为inline时,它的函数体是内联的,也就是说,函数体会被直接替换到函数被调用地方 inline函数(内联函数)从概念上讲是编译器使用函数实现的真实代码来替换每一次的函数调用,带来的最直接的好处就是节省了函数调用的开销,而缺点就是增加了所生成字节码的尺寸。基于此,在代码量不是很大的情况下,我们是否有必要将所有的函数定义为内联?让我们分两种情况进行说明: 将普通函数定义为内联:众所周知,JVM内部已经实现了内联优化,它会在任何可以通过内联来提升性能的地方将函数调用内联化,并且相对于手动将普通函数定义为内联,通过JVM内联优化所生成的字节码,每个函数的实现只会出现一次,这样在保证减少运行时开销的同时,也没有增加字节码的尺寸;所以我们可以得出结论,对于普通函数,我们没有必要将其声明为内联函数,而是交给JVM自行优化。 将带有lambda参数的函数定义为内联:是的,这种情况下确实可以提高性能;但在使用的过程中,我们会发现它是有诸多限制的,让我们从下面的例子开始展开说明: inline 假如我们这样调用doSomething: fun main(args: Array<String>) { 上面的调用会被编译成: fun main(args: Array<String>) { 从上面编译的结果可以看出,无论doSomething函数还是action参数都被内联了,很棒,那让我们换一种调用方式: fun main(args: Array<String>) { 上面的调用会被编译成: fun main(args: Array<String>) { doSomething函数被内联,而action参数没有被内联,这是因为以函数型变量的形式传递给doSomething的lambda在函数的调用点是不可用的,只有等到doSomething被内联后,该lambda才可以正常使用。 通过上面的例子,我们对lambda表达式何时被内联做一下简单的总结: 当lambda表达式以参数的形式直接传递给内联函数,那么lambda表达式的代码会被直接替换到最终生成的代码中。 当lambda表达式在某个地方被保存起来,然后以变量形式传递给内联函数,那么此时的lambda表达式的代码将不会被内联。 上面对lambda的内联时机进行了讨论,消化片刻后让我们再看最后一个例子: inline 上面的例子是否有问题?是的,编译器会抛出“Illegal usage of inline-parameter”的错误,这是因为Kotlin规定内联函数中的lambda参数只能被直接调用或者传递给另外一个内联函数,除此之外不能作为他用;那我们如果确实想要将某一个lambda传递给一个非内联函数怎么办?我们只需将上述代码这样改造即可: inline 很简单,在不需要内联的lambda参数前加上noinline修饰符就可以了。 以上便是我对内联函数的全部理解,通过掌握该特性的运行机制,相信大家可以做到在正确的时机使用该特性,而非滥用或因恐惧弃而不用。 Kotlin下单例模式 饿汉式实现 //Java实现 懒汉式 //Java实现 上述代码中,我们可以发现在Kotlin实现中,我们让其主构造函数私有化并自定义了其属性访问器,其余内容大同小异。 如果有小伙伴不清楚Kotlin构造函数的使用方式。请点击 - - - 构造函数 不清楚Kotlin的属性与访问器,请点击 - - -属性和字段 线程安全的懒汉式 //Java实现 大家都知道在使用懒汉式会出现线程安全的问题,需要使用使用同步锁,在Kotlin中,如果你需要将方法声明为同步,需要添加@Synchronized注解。 双重校验锁式 //Java实现 哇!小伙伴们惊喜不,感不感动啊。我们居然几行代码就实现了多行的Java代码。其中我们运用到了Kotlin的延迟属性 Lazy。 Lazy内部实现 public 观察上述代码,因为我们传入的mode = LazyThreadSafetyMode.SYNCHRONIZED, 那么会直接走 SynchronizedLazyImpl,我们继续观察SynchronizedLazyImpl。 Lazy接口 SynchronizedLazyImpl实现了Lazy接口,Lazy具体接口如下: public 继续查看SynchronizedLazyImpl,具体实现如下: SynchronizedLazyImpl内部实现 private 通过上述代码,我们发现 SynchronizedLazyImpl 覆盖了Lazy接口的value属性,并且重新了其属性访问器。其具体逻辑与Java的双重检验是类似的。 到里这里其实大家还是肯定有疑问,我这里只是实例化了SynchronizedLazyImpl对象,并没有进行值的获取,它是怎么拿到高阶函数的返回值呢?。这里又涉及到了委托属性。 委托属性语法是:val/var : by 。在 by 后面的表达式是该 委托, 因为属性对应的 get()(和 set())会被委托给它的 getValue() 和 setValue() 方法。属性的委托不必实现任何的接口,但是需要提供一个 getValue() 函数(和 setValue()——对于 var 属性)。 而Lazy.kt文件中,声明了Lazy接口的getValue扩展函数。故在最终赋值的时候会调用该方法。 internal.InlineOnly 静态内部类式 //Java实现 静态内部类的实现方式,也没有什么好说的。Kotlin与Java实现基本雷同。 补充 在该篇文章结束后,有很多小伙伴咨询,如何在Kotlin版的Double Check,给单例添加一个属性,这里我给大家提供了一个实现的方式。(不好意思,最近才抽出时间来解决这个问题) class SingletonDemo private constructor( 其中关于?:操作符,如果 ?: 左侧表达式非空,就返回其左侧表达式,否则返回右侧表达式。请注意,当且仅当左侧为空时,才会对右侧表达式求值。 Kotlin 智能类型转换 对于子父类之间的类型转换 先看这样一段 Java 代码 public 尽管在 main 函数中,对 person 这个对象进行了类型判断,但是在使用的时候还是需要强制转换成 Student 类型,这样是不是很不智能? 同样的情况在 Kotlin 中就变得简单多了 fun main(args: Array<String>) { 在 Kotlin 中,只要对类型进行了判断,就可以直接通过父类的对象去调用子类的函数了 安全的类型转换 还是上面的那个例子,如果我们没有进行类型判断,并且直接进行强转,会怎么样呢? public static void main(String[] args) { 结果就只能是 Exception in thread "main" java.lang.ClassCastException 那么在 Kotlin 中是不是会有更好的解决方法呢? val person: Person = Person() 在转换操作符后面添加一个 ?,就不会把程序 crash 掉了,当转化失败的时候,就会返回一个 null 在空类型中的智能转换 需要提前了解 Kotlin 类型安全的相关知识(Kotlin 中的类型安全(对空指针的优化处理)) String? = aString 在定义的时候定义成了有可能为 null,按照之前的写法,我们需要这样写 String? = 但是已经进行了是否为 String 类型的判断,所以就一定 不是 空类型了,也就可以直接输出它的长度了 T.()->Unit 、 ()->Unit 在做kotlin开发中,经常看到一些系统函数里,用函数作为参数 public .()-Unit与()->Unit的区别是我们调用时,在代码块里面写this,的时候,两个this代表的含义不一样,T.()->Unit里的this代表的是自身实例,而()->Unit里,this代表的是外部类的实例。 推荐阅读 对 Kotlin 与 Java 编程语言的思考 使用 Kotlin 做开发一个月后的感想 扫一扫 关注我的公众号如果你想要跟大家分享你的文章,欢迎投稿~ 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_39611037/article/details/109984124。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-06-23 23:56:14
470
转载
转载文章
...ue,并跟进漏洞修复过程;在第一次修复之后,复核并指出修复代码无效,给出了有效patch。这个过程是常规操作。 漏洞疑点 有意思的是,在漏洞披露邮件中,Pavel重点谈了自己对这系列漏洞的一些周边发现,也是这里提到的原因。其中,关于存在漏洞的代码,作者表述: 我最初认为,这些问题是libvnc开发者自己代码中的错误,但看起来并非如此。其中有一些(如CoRRE数据处理函数中的堆缓冲区溢出),出现在AT&T实验室1999年的代码中,而后被很多软件开发者原样复制(在Github上搜索一下HandleCoRREBPP函数,你就知道),LibVNC和TightVNC也是如此。 为了证实,翻阅了这部分代码,确实在其中数据处理相关代码文件看到了剑桥和AT&T实验室的文件头GPL声明注释,中国菜刀 这证实这些文件是直接从最初剑桥实验室版本VNC移植过来的,且使用方式是 直接代码包含,而非独立库引用方式。在官方开源发布并停止更新后,LibVNC使用的这部分代码基本没有改动——除了少数变量命名方式的统一,以及本次漏洞修复。通过搜索,我找到了2000年发布的相关代码文件,确认这些文件与LibVNC中引入的原始版本一致。 另外,Pavel同时反馈了TightVNC中相同的问题。TightVNC与LibVNC没有继承和直接引用关系,但上述VNC代码同样被TightVNC使用,问题的模式不约而同。Pavel测试发现在Ubuntu最新版本TightVNC套件(1.3.10版本)中同样存在该问题,上报给当前软件所有者GlavSoft公司,但对方声称目前精力放在不受GPL限制的TightVNC 2.x版本开发中,对开源的1.x版本漏洞代码“可能会进行修复”。看起来,这个问题被踢给了各大Linux发行版社区来焦虑了——如果他们愿意接锅。 问题思考 在披露邮件中,Pavel认为,这些代码bug“如此明显,让人无法相信之前没被人发现过……也许是因为某些特殊理由才始终没得到修复”。 事实上,我们都知道目前存在一些对开源基础软件进行安全扫描的大型项目,例如Google的OSS;同时,仍然存活的开源项目也越来越注重自身代码发布前的安全扫描,Fortify、Coverity的扫描也成为很多项目和平台的标配。在这样一些眼睛注视下,为什么还有这样的问题?我认为就这个具体事例来说,可能有如下两个因素: ·上游已死。仍然在被维护的代码,存在版本更迭,也存在外界的持续关注、漏洞报告和修复、开发的迭代,对于负责人的开发者,持续跟进、评估、同步代码的改动是可能的。但是一旦一份代码走完了生命周期,就像一段史实一样会很少再被改动。 ·对第三方上游代码的无条件信任。我们很多人都有过基础组件、中间件的开发经历,不乏有人使用Coverity开启全部规则进行代码扫描、严格修复所有提示的问题甚至编程规范warning;报告往往很长,其中也包括有源码形式包含的第三方代码中的问题。但是,我们一方面倾向于认为这些被广泛使用的代码不应存在问题(不然早就被人挖过了),一方面考虑这些引用的代码往往是组件或库的形式被使用,应该有其上下文才能认定是否确实有可被利用的漏洞条件,现在单独扫描这部分代码一般出来的都是误报。所以这些代码的问题都容易被忽视。 但是透过这个具体例子,再延伸思考相关的实践,这里最根本的问题可以总结为一个模式: 复制粘贴风险。复制粘贴并不简单意味着剽窃,实际是当前软件领域、互联网行业发展的基础模式,但其中有一些没人能尝试解决的问题: ·在传统代码领域,如C代码中,对第三方代码功能的复用依赖,往往通过直接进行库的引入实现,第三方代码独立而完整,也较容易进行整体更新;这是最简单的情况,只需要所有下游使用者保证仅使用官方版本,跟进官方更新即可;但在实践中很难如此贯彻,这是下节讨论的问题。 ·有些第三方发布的代码,模式就是需要被源码形式包含到其他项目中进行统一编译使用(例如腾讯的开源Json解析库RapidJSON,就是纯C++头文件形式)。在开源领域有如GPL等规约对此进行规范,下游开发者遵循协议,引用代码,强制或可选地显式保留其GPL声明,可以进行使用和更改。这样的源码依赖关系,结合规范化的changelog声明代码改动,侧面也是为开发过程中跟进考虑。但是一个成型的产品,比如企业自有的服务端底层产品、中间件,新版本的发版更新是复杂的过程,开发者在旧版本仍然“功能正常”的情况下往往倾向于不跟进新版本;而上游代码如果进行安全漏洞修复,通常也都只在其最新版本代码中改动,安全修复与功能迭代并存,如果没有类似Linux发行版社区的努力,旧版本代码完全没有干净的安全更新patch可用。 ·在特定场景下,有些开发实践可能不严格遵循开源代码协议限定,引入了GPL等协议保护的代码而不做声明(以规避相关责任),丢失了引入和版本的信息跟踪;在另一些场景下,可能存在对开源代码进行大刀阔斧的修改、剪裁、定制,以符合自身业务的极端需求,但是过多的修改、人员的迭代造成与官方代码严重的失同步,丧失可维护性。 ·更一般的情况是,在开发中,开发者个体往往心照不宣的存在对网上代码文件、代码片段的复制-粘贴操作。被参考的代码,可能有上述的开源代码,也可能有各种Github作者练手项目、技术博客分享的代码片段、正式开源项目仅用来说明用法的不完备示例代码。这些代码的引入完全无迹可寻,即便是作者自己也很难解释用了什么。这种情况下,上面两条认定的那些与官方安全更新失同步的问题同样存在,且引入了独特的风险:被借鉴的代码可能只是原作者随手写的、仅仅是功能成立的片段,甚至可能是恶意作者随意散布的有安全问题的代码。由此,问题进入了最大的发散空间。 在Synopsys下BLACKDUCK软件之前发布的《2018 Open Source Security and Risk Analysis Report》中分析,96%的应用中包含有开源组件和代码,开源代码在应用全部代码中的占比约为57%,78%的应用中在引用的三方开源代码中存在历史漏洞。也就是说,现在互联网上所有厂商开发的软件、应用,其开发人员自己写的代码都是一少部分,多数都是借鉴来的。而这还只是可统计、可追溯的;至于上面提到的非规范的代码引用,如果也纳入进来考虑,三方代码占应用中的比例会上升到多少?曾经有分析认为至少占80%,我们只期望不会更高。 Ⅱ. 从碎片到乱刃:OpenSSH在野后门一览 在进行基础软件梳理时,回忆到反病毒安全软件提供商ESET在2018年十月发布的一份白皮书《THE DARK SIDE OF THE FORSSHE: A landscape of OpenSSH backdoors》。其站在一个具有广泛用户基础的软件提供商角度,给出了一份分析报告,数据和结论超出我们对于当前基础软件使用全景的估量。以下以我的角度对其中一方面进行解读。 一些必要背景 SSH的作用和重要性无需赘言;虽然我们站在传统互联网公司角度,可以认为SSH是通往生产服务器的生命通道,但当前多样化的产业环境已经不止于此(如之前libssh事件中,不幸被我言中的,SSH在网络设备、IoT设备上(如f5)的广泛使用)。 OpenSSH是目前绝大多数SSH服务端的基础软件,有完备的开发团队、发布规范、维护机制,本身是靠谱的。如同绝大多数基础软件开源项目的做法,OpenSSH对漏洞有及时的响应,针对最新版本代码发出安全补丁,但是各大Linux发行版使用的有各种版本的OpenSSH,这些社区自行负责将官方开发者的安全补丁移植到自己系统搭载的低版本代码上。天空彩 白皮书披露的现状 如果你是一个企业的运维管理人员,需要向企业生产服务器安装OpenSSH或者其它基础软件,最简单的方式当然是使用系统的软件管理安装即可。但是有时候,出于迁移成本考虑,可能企业需要在一个旧版本系统上,使用较新版本的OpenSSL、OpenSSH等基础软件,这些系统不提供,需要自行安装;或者需要一个某有种特殊特性的定制版本。这时,可能会选择从某些rpm包集中站下载某些不具名第三方提供的现成的安装包,或者下载非官方的定制化源码本地编译后安装,总之从这里引入了不确定性。 这种不确定性有多大?我们粗估一下,似乎不应成为问题。但这份白皮书给我们看到了鲜活的数据。 ESET研究人员从OpenSSH的一次历史大规模Linux服务端恶意软件Windigo中获得启示,采用某种巧妙的方式,面向在野的服务器进行数据采集,主要是系统与版本、安装的OpenSSH版本信息以及服务端程序文件的一个特殊签名。整理一个签名白名单,包含有所有能搜索到的官方发布二进制版本、各大Linux发行版本各个版本所带的程序文件版本,将这些标定为正常样本进行去除。最终结论是: ·共发现了几百个非白名单版本的OpenSSH服务端程序文件ssh和sshd; ·分析这些样本,将代码部分完全相同,仅仅是数据和配置不同的合并为一类,且分析判定确认有恶意代码的,共归纳为 21个各异的恶意OpenSSH家族; ·在21个恶意家族中,有12个家族在10月份时完全没有被公开发现分析过;而剩余的有一部分使用了历史上披露的恶意代码样本,甚至有源代码; ·所有恶意样本的实现,从实现复杂度、代码混淆和自我保护程度到代码特征有很大跨度的不同,但整体看,目的以偷取用户凭证等敏感信息、回连外传到攻击者为主,其中有的攻击者回连地址已经存在并活跃数年之久; ·这些后门的操控者,既有传统恶意软件黑产人员,也有APT组织; ·所有恶意软件或多或少都在被害主机上有未抹除的痕迹。ESET研究者尝试使用蜜罐引诱出攻击者,但仍有许多未解之谜。这场对抗,仍未取胜。 白皮书用了大篇幅做技术分析报告,此处供细节分析,不展开分析,以下为根据恶意程序复杂度描绘的21个家族图谱: 问题思考 问题引入的可能渠道,我在开头进行了一点推测,主要是由人的原因切入的,除此以外,最可能的是恶意攻击者在利用各种方法入侵目标主机后,主动替换了目标OpenSSH为恶意版本,从而达成攻击持久化操作。但是这些都是止血的安全运维人员该考虑的事情;关键问题是,透过表象,这显露了什么威胁形式? 这个问题很好回答,之前也曾经反复说过:基础软件碎片化。 如上一章节简单提到,在开发过程中有各种可能的渠道引入开发者不完全了解和信任的代码;在运维过程中也是如此。二者互相作用,造成了软件碎片化的庞杂现状。在企业内部,同一份基础软件库,可能不同的业务线各自定制一份,放到企业私有软件仓库源中,有些会有人持续更新供自己产品使用,有些由系统软件基础设施维护人员单独维护,有些则可能是开发人员临时想起来上传的,他们自己都不记得;后续用到的这个基础软件的开发和团队,在这个源上搜索到已有的库,很大概率会倾向于直接使用,不管来源、是否有质量背书等。长此以往问题会持续发酵。而我们开最坏的脑洞,是否可能有黑产人员入职到内部,提交个恶意基础库之后就走人的可能?现行企业安全开发流程中审核机制的普遍缺失给这留下了空位。 将源码来源碎片化与二进制使用碎片化并起来考虑,我们不难看到一个远远超过OpenSSH事件威胁程度的图景。但这个问题不是仅仅靠开发阶段规约、运维阶段规范、企业内部管控、行业自查、政府监管就可以根除的,最大的问题归根结底两句话: 不可能用一场战役对抗持续威胁;不可能用有限分析对抗无限未知。 Ⅲ. 从自信到自省:RHEL、CentOS backport版本BIND漏洞 2018年12月20日凌晨,在备战冬至的软件供应链安全大赛决赛时,我注意到漏洞预警平台捕获的一封邮件。但这不是一个漏洞初始披露邮件,而是对一个稍早已披露的BIND在RedHat、CentOS发行版上特定版本的1day漏洞CVE-2018-5742,由BIND的官方开发者进行额外信息澄(shuǎi)清(guō)的邮件。 一些必要背景 关于BIND 互联网的一个古老而基础的设施是DNS,这个概念在读者不应陌生。而BIND“是现今互联网上最常使用的DNS软件,使用BIND作为服务器软件的DNS服务器约占所有DNS服务器的九成。BIND现在由互联网系统协会负责开发与维护参考。”所以BIND的基础地位即是如此,因此也一向被大量白帽黑帽反复测试、挖掘漏洞,其开发者大概也一直处在紧绷着应对的处境。 关于ISC和RedHat 说到开发者,上面提到BIND的官方开发者是互联网系统协会(ISC)。ISC是一个老牌非营利组织,目前主要就是BIND和DHCP基础设施的维护者。而BIND本身如同大多数历史悠久的互联网基础开源软件,是4个UCB在校生在DARPA资助下于1984年的实验室产物,直到2012年由ISC接管。 那么RedHat在此中是什么角色呢?这又要提到我之前提到的Linux发行版和自带软件维护策略。Red Hat Enterprise Linux(RHEL)及其社区版CentOS秉持着稳健的软件策略,每个大的发行版本的软件仓库,都只选用最必要且质量久经时间考验的软件版本,哪怕那些版本实在是老掉牙。这不是一种过分的保守,事实证明这种策略往往给RedHat用户在最新漏洞面前提供了保障——代码总是跑得越少,潜在漏洞越多。 但是这有两个关键问题。一方面,如果开源基础软件被发现一例有历史沿革的代码漏洞,那么官方开发者基本都只为其最新代码负责,在当前代码上推出修复补丁。另一方面,互联网基础设施虽然不像其上的应用那样爆发性迭代,但依然持续有一些新特性涌现,其中一些是必不可少的,但同样只在最新代码中提供。两个刚需推动下,各Linux发行版对长期支持版本系统的软件都采用一致的策略,即保持其基础软件在一个固定的版本,但对于这些版本软件的最新漏洞、必要的最新软件特性,由发行版维护者将官方开发者最新代码改动“向后移植”到旧版本代码中,即backport。这就是基础软件的“官宣”碎片化的源头。 讲道理,Linux发行版维护者与社区具有比较靠谱的开发能力和监督机制,backport又基本就是一些复制粘贴工作,应当是很稳当的……但真是如此吗? CVE-2018-5742漏洞概况 CVE-2018-5742是一个简单的缓冲区溢出类型漏洞,官方评定其漏洞等级moderate,认为危害不大,漏洞修复不积极,披露信息不多,也没有积极给出代码修复patch和新版本rpm包。因为该漏洞仅在设置DEBUG_LEVEL为10以上才会触发,由远程攻击者构造畸形请求造成BIND服务崩溃,在正常的生产环境几乎不可能具有危害,RedHat官方也只是给出了用户自查建议。 这个漏洞只出现在RHEL和CentOS版本7中搭载的BIND 9.9.4-65及之后版本。RedHat同ISC的声明中都证实,这个漏洞的引入原因,是RedHat在尝试将BIND 9.11版本2016年新增的NTA机制向后移植到RedHat 7系中固定搭载的BIND 9.9版本代码时,偶然的代码错误。NTA是DNS安全扩展(DNSSEC)中,用于在特定域关闭DNSSEC校验以避免不必要的校验失败的机制;但这个漏洞不需要对NTA本身有进一步了解。 漏洞具体分析 官方没有给出具体分析,但根据CentOS社区里先前有用户反馈的bug,我得以很容易还原漏洞链路并定位到根本原因。 若干用户共同反馈,其使用的BIND 9.9.4-RedHat-9.9.4-72.el7发生崩溃(coredump),并给出如下的崩溃时调用栈backtrace: 这个调用过程的逻辑为,在9 dns_message_logfmtpacket函数判断当前软件设置是否DEBUG_LEVEL大于10,若是,对用户请求数据包做日志记录,先后调用8 dns_message_totext、7 dns_message_sectiontotext、6 dns_master_rdatasettotext、5 rdataset_totext将请求进行按协议分解分段后写出。 由以上关键调用环节,联动RedHat在9.9.4版本BIND源码包中关于引入NTA特性的源码patch,进行代码分析,很快定位到问题产生的位置,在上述backtrace中的5,masterdump.c文件rdataset_totext函数。漏洞相关代码片段中,RedHat进行backport后,这里引入的代码为: 这里判断对于请求中的注释类型数据,直接通过isc_buffer_putstr宏对缓存进行操作,在BIND工程中自定义维护的缓冲区结构对象target上,附加一字节字符串(一个分号)。而漏洞就是由此产生:isc_buffer_putstr中不做缓冲区边界检查保证,这里在缓冲区已满情况下将造成off-by-one溢出,并触发了缓冲区实现代码中的assertion。 而ISC上游官方版本的代码在这里是怎么写的呢?找到ISC版本BIND 9.11代码,这里是这样的: 这里可以看到,官方代码在做同样的“附加一个分号”这个操作时,审慎的使用了做缓冲区剩余空间校验的str_totext函数,并额外做返回值成功校验。而上述提到的str_totext函数与RETERR宏,在移植版本的masterdump.c中,RedHat开发者也都做了保留。但是,查看代码上下文发现,在RedHat开发者进行代码移植过程中,对官方代码进行了功能上的若干剪裁,包括一些细分数据类型记录的支持;而这里对缓冲区写入一字节,也许开发者完全没想到溢出的可能,所以自作主张地简化了代码调用过程。 问题思考 这个漏洞本身几乎没什么危害,但是背后足以引起思考。 没有人在“借”别人代码时能不出错 不同于之前章节提到的那种场景——将代码文件或片段复制到自己类似的代码上下文借用——backport作为一种官方且成熟的做法,借用的代码来源、粘贴到的代码上下文,是具有同源属性的,而且开发者一般是追求稳定性优先的社区开发人员,似乎质量应该有足够保障。但是这里的关键问题是:代码总要有一手、充分的语义理解,才能有可信的使用保障;因此,只要是处理他人的代码,因为不够理解而错误使用的风险,只可能减小,没办法消除。 如上分析,本次漏洞的产生看似只是做代码移植的开发者“自作主张”之下“改错了”。但是更广泛且可能的情况是,原始开发者在版本迭代中引入或更新大量基础数据结构、API的定义,并用在新的特性实现代码中;而后向移植开发人员仅需要最小规模的功能代码,所以会对增量代码进行一定规模的修改、剪裁、还原,以此适应旧版本基本代码。这些过程同样伴随着第三方开发人员不可避免的“望文生义”,以及随之而来的风险。后向移植操作也同样助长了软件碎片化过程,其中每一个碎片都存在这样的问题;每一个碎片在自身生命周期也将有持续性影响。 多级复制粘贴无异于雪上加霜 这里简单探讨的是企业通行的系统和基础软件建设实践。一些国内外厂商和社区发布的定制化Linux发行版,本身是有其它发行版,如CentOS特定版本渊源的,在基础软件上即便同其上游发行版最新版本间也存在断层滞后。RedHat相对于基础软件开发者之间已经隔了一层backport,而我们则人为制造了二级风险。 在很多基础而关键的软件上,企业系统基础设施的维护者出于与RedHat类似的初衷,往往会决定自行backport一份拷贝;通过早年心脏滴血事件的洗礼,即暴露出来OpenSSL一个例子。无论是需要RHEL还没来得及移植的新版本功能特性,还是出于对特殊使用上下文场景中更高执行效率的追求,企业都可能自行对RHEL上基础软件源码包进行修改定制重打包。这个过程除了将风险幂次放大外,也进一步加深了代码的不可解释性(包括基础软件开发人员流动性带来的不可解释)。 Ⅳ. 从武功到死穴:从systemd-journald信息泄露一窥API误用 1月10日凌晨两点,漏洞预警平台爬收取一封漏洞披露邮件。披露者是Qualys,那就铁定是重型发布了。最后看披露漏洞的目标,systemd?这就非常有意思了。 一些必要背景 systemd是什么,不好简单回答。Linux上面软件命名,习惯以某软件名后带个‘d’表示后台守护管理程序;所以systemd就可以说是整个系统的看守吧。而即便现在描述了systemd是什么,可能也很快会落伍,因为其初始及核心开发者Lennart Poettering(供职于Red Hat)描述它是“永无开发完结完整、始终跟进技术进展的、统一所有发行版无止境的差异”的一种底层软件。笼统讲有三个作用:中央化系统及设置管理;其它软件开发的基础框架;应用程序和系统内核之间的胶水。如今几乎所有Linux发行版已经默认提供systemd,包括RHEL/CentOS 7及后续版本。总之很基础、很底层、很重要就对了。systemd本体是个主要实现init系统的框架,但还有若干关键组件完成其它工作;这次被爆漏洞的是其journald组件,是负责系统事件日志记录的看守程序。 额外地还想简单提一句Qualys这个公司。该公司创立于1999年,官方介绍为信息安全与云安全解决方案企业,to B的安全业务非常全面,有些也是国内企业很少有布局的方面;例如上面提到的涉及碎片化和代码移植过程的历史漏洞移动,也在其漏洞管理解决方案中有所体现。但是我们对这家公司粗浅的了解来源于其安全研究团队近几年的发声,这两年间发布过的,包括有『stack clash』、『sudo get_tty_name提权』、『OpenSSH信息泄露与堆溢出』、『GHOST:glibc gethostbyname缓冲区溢出』等大新闻(仅截至2017年年中)。从中可见,这个研究团队专门啃硬骨头,而且还总能开拓出来新的啃食方式,往往爆出来一些别人没想到的新漏洞类型。从这个角度,再联想之前刷爆朋友圈的《安全研究者的自我修养》所倡导的“通过看历史漏洞、看别人的最新成果去举一反三”的理念,可见差距。 CVE-2018-16866漏洞详情 这次漏洞披露,打包了三个漏洞: ·16864和16865是内存破坏类型 ·16866是信息泄露 ·而16865和16866两个漏洞组和利用可以拿到root shell。 漏洞分析已经在披露中写的很详细了,这里不复述;而针对16866的漏洞成因来龙去脉,Qualys跟踪的结果留下了一点想象和反思空间,我们来看一下。 漏洞相关代码片段是这样的(漏洞修复前): 读者可以先肉眼过一遍这段代码有什么问题。实际上我一开始也没看出来,向下读才恍然大悟。 这段代码中,外部信息输入通过buf传入做记录处理。输入数据一般包含有空白字符间隔,需要分隔开逐个记录,有效的分隔符包括空格、制表符、回车、换行,代码中将其写入常量字符串;在逐字符扫描输入数据字符串时,将当前字符使用strchr在上述间隔符字符串中检索是否匹配,以此判断是否为间隔符;在240行,通过这样的判断,跳过记录单元字符串的头部连续空白字符。 但是问题在于,strchr这个极其基础的字符串处理函数,对于C字符串终止字符'\0'的处理上有个坑:'\0'也被认为是被检索字符串当中的一个有效字符。所以在240行,当当前扫描到的字符为字符串末尾的NULL时,strchr返回的是WHITESPACE常量字符串的终止位置而非NULL,这导致了越界。 看起来,这是一个典型的问题:API误用(API mis-use),只不过这个被误用的库函数有点太基础,让我忍不住想是不是还会有大量的类似漏洞……当然也反思我自己写的代码是不是也有同样情况,然而略一思考就释然了——我那么笨的代码都用for循环加if判断了:) 漏洞引入和消除历史 有意思的是,Qualys研究人员很贴心地替我做了一步漏洞成因溯源,这才是单独提这个漏洞的原因。漏洞的引入是在2015年的一个commit中: 在GitHub中,定位到上述2015年的commit信息,这里commit的备注信息为: journald: do not strip leading whitespace from messages. Keep leading whitespace for compatibility with older syslog implementations. Also useful when piping formatted output to the logger command. Keep removing trailing whitespace. OK,看起来是一个兼容性调整,对记录信息不再跳过开头所有连续空白字符,只不过用strchr的简洁写法比较突出开发者精炼的开发风格(并不),说得过去。 之后在2018年八月的一个当时尚未推正式版的另一次commit中被修复了,先是还原成了ec5ff4那次commit之前的写法,然后改成了加校验的方式: 虽然Qualys研究者认为上述的修改是“无心插柳”的改动,但是在GitHub可以看到,a6aadf这次commit是因为有外部用户反馈了输入数据为单个冒号情况下journald堆溢出崩溃的issue,才由开发者有目的性地修复的;而之后在859510这个commit再次改动回来,理由是待记录的消息都是使用单个空格作为间隔符的,而上一个commit粗暴地去掉了这种协议兼容性特性。 如果没有以上纠结的修改和改回历史,也许我会倾向于怀疑,在最开始漏洞引入的那个commit,既然改动代码没有新增功能特性、没有解决什么问题(毕竟其后三年,这个改动的代码也没有被反映issue),也并非出于代码规范等考虑,那么这么轻描淡写的一次提交,难免有人为蓄意引入漏洞的嫌疑。当然,看到几次修复的原因,这种可能性就不大了,虽然大家仍可以保留意见。但是抛开是否人为这个因素,单纯从代码的漏洞成因看,一个传统但躲不开的问题仍值得探讨:API误用。 API误用:程序员何苦为难程序员 如果之前的章节给读者留下了我反对代码模块化和复用的印象,那么这里需要正名一下,我们认可这是当下开发实践不可避免的趋势,也增进了社会开发速度。而API的设计决定了写代码和用代码的双方“舒适度”的问题,由此而来的API误用问题,也是一直被当做单纯的软件工程课题讨论。在此方面个人并没有什么研究,自然也没办法系统地给出分类和学术方案,只是谈一下自己的经验和想法。 一篇比较新的学术文章总结了API误用的研究,其中一个独立章节专门分析Java密码学组件API误用的实际,当中引述之前论文认为,密码学API是非常容易被误用的,比如对期望输入数据(数据类型,数据来源,编码形式)要求的混淆,API的必需调用次序和依赖缺失(比如缺少或冗余多次调用了初始化函数、主动资源回收函数)等。凑巧在此方面我有一点体会:曾经因为业务方需要,需要使用C++对一个Java的密码基础中间件做移植。Java对密码学组件支持,有原生的JDK模块和权威的BouncyCastle包可用;而C/C++只能使用第三方库,考虑到系统平台最大兼容和最小代码量,使用Linux平台默认自带的OpenSSL的密码套件。但在开发过程中感受到了OpenSSL满满的恶意:其中的API设计不可谓不反人类,很多参数没有明确的说明(比如同样是表示长度的函数参数,可能在不同地方分别以字节/比特/分组数为计数单位);函数的线程安全没有任何解释标注,需要自行试验;不清楚函数执行之后,是其自行做了资源释放还是需要有另外API做gc,不知道资源释放操作时是否规规矩矩地先擦除后释放……此类问题不一而足,导致经过了漫长的测试之后,这份中间件才提供出来供使用。而在业务场景中,还会存在比如其它语言调用的情形,这些又暴露出来OpenSSL API误用的一些完全无从参考的问题。这一切都成为了噩梦;当然这无法为我自己开解是个不称职开发的指责,但仅就OpenSSL而言其API设计之恶劣也是始终被人诟病的问题,也是之后其他替代者宣称改进的地方。 当然,问题是上下游都脱不了干系的。我们自己作为高速迭代中的开发人员,对于二方、三方提供的中间件、API,又有多少人能自信地说自己仔细、认真地阅读过开发指南和API、规范说明呢?做过通用产品技术运营的朋友可能很容易理解,自己产品的直接用户日常抛出不看文档的愚蠢问题带来的困扰。对于密码学套件,这个问题还好办一些,毕竟如果在没有背景知识的情况下对API望文生义地一通调用,绝大多数情况下都会以抛异常形式告终;但还是有很多情况,API误用埋下的是长期隐患。 不是所有API误用情形最终都有机会发展成为可利用的安全漏洞,但作为一个由人的因素引入的风险,这将长期存在并困扰软件供应链(虽然对安全研究者、黑客与白帽子是很欣慰的事情)。可惜,传统的白盒代码扫描能力,基于对代码语义的理解和构建,但是涉及到API则需要预先的抽象,这一点目前似乎仍然是需要人工干预的事情;或者轻量级一点的方案,可以case by case地分析,为所有可能被误用的API建模并单独扫描,这自然也有很强局限性。在一个很底层可信的开发者还对C标准库API存在误用的现实内,我们需要更多的思考才能说接下来的解法。 Ⅴ. 从规则到陷阱:NASA JIRA误配置致信息泄露血案 软件的定义包括了代码组成的程序,以及相关的配置、文档等。当我们说软件的漏洞、风险时,往往只聚焦在其中的代码中;关于软件供应链安全风险,我们的比赛、前面分析的例子也都聚焦在了代码的问题;但是真正的威胁都来源于不可思议之处,那么代码之外有没有可能存在来源于上游的威胁呢?这里就借助实例来探讨一下,在“配置”当中可能栽倒的坑。 引子:发不到500英里以外的邮件? 让我们先从一个轻松愉快的小例子引入。这个例子初见于Linux中国的一篇译文。 简单说,作者描述了这么一个让人啼笑皆非的问题:单位的邮件服务器发送邮件,发送目标距离本地500英里范围之外的一律失败,邮件就像悠悠球一样只能飞出一定距离。这个问题本身让描述者感到尴尬,就像一个技术人员被老板问到“为什么从家里笔记本上Ctrl-C后不能在公司台式机上Ctrl-V”一样。 经过令人窒息的分析操作后,笔者定位到了问题原因:笔者作为负责的系统管理员,把SunOS默认安装的Senmail从老旧的版本5升级到了成熟的版本8,且对应于新版本诸多的新特性进行了对应配置,写入配置文件sendmail.cf;但第三方服务顾问在对单位系统进行打补丁升级维护时,将系统软件“升级”到了系统提供的最新版本,因此将Sendmail实际回退到了版本5,却为了软件行为一致性,原样保留了高版本使用的配置文件。但Sendmail并没有在大版本间保证配置文件兼容性,这导致很多版本5所需的配置项不存在于保留下来的sendmail.cf文件中,程序按默认值0处理;最终引起问题的就是,邮件服务器与接收端通信的超时时间配置项,当取默认配置值0时,邮件服务器在1个单位时间(约3毫秒)内没有收到网络回包即认为超时,而这3毫秒仅够电信号打来回飞出500英里。 这个“故事”可能会给技术人员一点警醒,错误的配置会导致预期之外的软件行为,但是配置如何会引入软件供应链方向的安全风险呢?这就引出了下一个重磅实例。 JIRA配置错误致NASA敏感信息泄露案例 我们都听过一个事情,马云在带队考察美国公司期间问Google CEO Larry Page自视谁为竞争对手,Larry的回答是NASA,因为最优秀的工程师都被NASA的梦想吸引过去了。由此我们显然能窥见NASA的技术水位之高,这样的人才团队大概至少是不会犯什么低级错误的。 但也许需要重新定义“低级错误”……1月11日一篇技术文章披露,NASA某官网部署使用的缺陷跟踪管理系统JIRA存在错误的配置,可分别泄漏内部员工(JIRA系统用户)的全部用户名和邮件地址,以及内部项目和团队名称到公众,如下: 问题的原因解释起来也非常简单:JIRA系统的过滤器和配置面板中,对于数据可见性的配置选项分别选定为All users和Everyone时,系统管理人员想当然地认为这意味着将数据对所有“系统用户”开放查看,但是JIRA的这两个选项的真实效果逆天,是面向“任意人”开放,即不限于系统登录用户,而是任何查看页面的人员。看到这里,我不厚道地笑了……“All users”并不意味着“All ‘users’”,意不意外,惊不惊喜? 但是这种字面上把戏,为什么没有引起NASA工程师的注意呢,难道这样逆天的配置项没有在产品手册文档中加粗标红提示吗?本着为JIRA产品设计找回尊严的态度,我深入挖掘了一下官方说明,果然在Atlassian官方的一份confluence文档(看起来更像是一份增补的FAQ)中找到了相关说明: 所有未登录访客访问时,系统默认认定他们是匿名anonymous用户,所以各种权限配置中的all users或anyone显然应该将匿名用户包括在内。在7.2及之后版本中,则提供了“所有登录用户”的选项。 可以说是非常严谨且贴心了。比较讽刺的是,在我们的软件供应链安全大赛·C源代码赛季期间,我们设计圈定的恶意代码攻击目标还包括JIRA相关的敏感信息的窃取,但是却想不到有这么简单方便的方式,不动一行代码就可以从JIRA中偷走数据。 软件的使用,你“配”吗? 无论是开放的代码还是成型的产品,我们在使用外部软件的时候,都是处于软件供应链下游的消费者角色,为了要充分理解上游开发和产品的真实细节意图,需要我们付出多大的努力才够“资格”? 上一章节我们讨论过源码使用中必要细节信息缺失造成的“API误用”问题,而软件配置上的“误用”问题则复杂多样得多。从可控程度上讨论,至少有这几种因素定义了这个问题: ·软件用户对必要配置的现有文档缺少了解。这是最简单的场景,但又是完全不可避免的,这一点上我们所有有开发、产品或运营角色经验的应该都曾经体会过向不管不顾用户答疑的痛苦,而所有软件使用者也可以反省一下对所有软件的使用是否都以完整细致的文档阅读作为上手的准备工作,所以不必多说。 ·软件拥有者对配置条目缺少必要明确说明文档。就JIRA的例子而言,将NASA工程师归为上一条错误有些冤枉,而将JIRA归为这条更加合适。在边角但重要问题上的说明通过社区而非官方文档形式发布是一种不负责任的做法,但未引发安全事件的情况下还有多少这样的问题被默默隐藏呢?我们没办法要求在使用软件之前所有用户将软件相关所有文档、社区问答实现全部覆盖。这个问题范围内一个代表性例子是对配置项的默认值以及对应效果的说明缺失。 ·配置文件版本兼容性带来的误配置和安全问题。实际上,上面的SunOS Sendmail案例足以点出这个问题的存在性,但是在真实场景下,很可能不会以这么戏剧性形式出现。在企业的系统运维中,系统的版本迭代常见,但为软件行为一致性,配置的跨版本迁移是不可避免的操作;而且软件的更新迭代也不只会由系统更新推动,还有大量出于业务性能要求而主动进行的定制化升级,对于中小企业基础设施建设似乎是一个没怎么被提及过的问题。 ·配置项组合冲突问题。尽管对于单个配置项可能明确行为与影响,但是特定的配置项搭配可能造成不可预知的效果。这完全有可能是由于开发者与用户在信息不对等的情况下产生:开发者认为用户应该具有必需的背景知识,做了用户应当具备规避配置冲突能力的假设。一个例子是,对称密码算法在使用ECB、CBC分组工作模式时,从密码算法上要求输入数据长度必须是分组大小的整倍数,但如果用户搭配配置了秘钥对数据不做补齐(nopadding),则引入了非确定性行为:如果密码算法库对这种组合配置按某种默认补齐方式操作数据则会引起歧义,但如果在算法库代码层面对这种组合抛出错误则直接影响业务。 ·程序对配置项处理过程的潜在暗箱操作。这区别于简单的未文档化配置项行为,仅特指可能存在的蓄意、恶意行为。从某种意义上,上述“All users”也可以认为是这样的一种陷阱,通过浅层次暗示,引导用户做出错误且可能引起问题的配置。另一种情况是特定配置组合情况下触发恶意代码的行为,这种触发条件将使恶意代码具有规避检测的能力,且在用户基数上具有一定概率的用户命中率。当然这种情况由官方开发者直接引入的可能性很低,但是在众包开发的情况下如果存在,那么扫描方案是很难检测的。 Ⅵ. 从逆流到暗流:恶意代码溯源后的挑战 如果说前面所说的种种威胁都是面向关键目标和核心系统应该思考的问题,那么最后要抛出一个会把所有人拉进赛场的理由。除了前面所有那些在软件供应链下游被动污染受害的情况,还有一种情形:你有迹可循的代码,也许在不经意间会“反哺”到黑色产业链甚至特殊武器中;而现在研究用于对程序进行分析和溯源的技术,则会让你陷入百口莫辩的境地。 案例:黑产代码模块溯源疑云 1月29日,猎豹安全团队发布技术分析通报文章《电信、百度客户端源码疑遭泄漏,驱魔家族窃取隐私再起波澜》,矛头直指黑产上游的恶意信息窃取代码模块,认定其代码与两方产品存在微妙的关联:中国电信旗下“桌面3D动态天气”等多款软件,以及百度旗下“百度杀毒”等软件(已不可访问)。 文章中举证有三个关键点。 首先最直观的,是三者使用了相同的特征字符串、私有文件路径、自定义内部数据字段格式; 其次,在关键代码位置,三者在二进制程序汇编代码层面具有高度相似性; 最终,在一定范围的非通用程序逻辑上,三者在经过反汇编后的代码语义上显示出明显的雷同,并提供了如下两图佐证(图片来源): 文章指出的涉事相关软件已经下线,对于上述样本文件的相似度试验暂不做复现,且无法求证存在相似、疑似同源的代码在三者中占比数据。对于上述指出的代码雷同现象,猎豹安全团队认为: 我们怀疑该病毒模块的作者通过某种渠道(比如“曾经就职”),掌握有中国电信旗下部分客户端/服务端源码,并加以改造用于制作窃取用户隐私的病毒,另外在该病毒模块的代码中,我们还发现“百度”旗下部分客户端的基础调试日志函数库代码痕迹,整个“驱魔”病毒家族疑点重重,其制作传播背景愈发扑朔迷离。 这样的推断,固然有过于直接的依据(例如三款代码中均使用含有“baidu”字样的特征注册表项);但更进一步地,需要注意到,三个样本在所指出的代码位置,具有直观可见的二进制汇编代码结构的相同,考虑到如果仅仅是恶意代码开发者先逆向另外两份代码后借鉴了代码逻辑,那么在面临反编译、代码上下文适配重构、跨编译器和选项的编译结果差异等诸多不确定环节,仍能保持二进制代码的雷同,似乎确实是只有从根本上的源代码泄漏(抄袭)且保持相同的开发编译环境才能成立。 但是我们却又无法做出更明确的推断。这一方面当然是出于严谨避免过度解读;而从另一方面考虑,黑产代码的一个关键出发点就是“隐藏自己”,而这里居然如此堂而皇之地照搬了代码,不但没有进行任何代码混淆、变形,甚至没有抹除疑似来源的关键字符串,如果将黑产视为智商在线的对手,那这里背后是否有其它考量,就值得琢磨了。 代码的比对、分析、溯源技术水准 上文中的安全团队基于大量样本和粗粒度比对方法,给出了一个初步的判断和疑点。那么是否有可能获得更确凿的分析结果,来证实或证伪同源猜想呢? 无论是源代码还是二进制,代码比对技术作为一种基础手段,在软件供应链安全分析上都注定仍然有效。在我们的软件供应链安全大赛期间,针对PE二进制程序类型的题目,参赛队伍就纷纷采用了相关技术手段用于目标分析,包括:同源性分析,用于判定与目标软件相似度最高的同软件官方版本;细粒度的差异分析,用于尝试在忽略编译差异和特意引入的混淆之外,定位特意引入的恶意代码位置。当然,作为比赛中针对性的应对方案,受目标和环境引导约束,这些方法证明了可行性,却难以保证集成有最新技术方案。那么做一下预言,在不计入情报辅助条件下,下一代的代码比对将能够到达什么水准? 这里结合近一年和今年内,已发表和未发表的学术领域顶级会议的相关文章来简单展望: ·针对海量甚至全量已知源码,将可以实现准确精细化的“作者归属”判定。在ACM CCS‘18会议上曾发表的一篇文章《Large-Scale and Language-Oblivious Code Authorship Identification》,描述了使用RNN进行大规模代码识别的方案,在圈定目标开发者,并预先提供每个开发者的5-7份已知的代码文件后,该技术方案可以很有效地识别大规模匿名代码仓库中隶属于每个开发者的代码:针对1600个Google Code Jam开发者8年间的所有代码可以实现96%的成功识别率,而针对745个C代码开发者于1987年之后在GitHub上面的全部公开代码仓库,识别率也高达94.38%。这样的结果在当下的场景中,已经足以实现对特定人的代码识别和跟踪(例如,考虑到特定开发人员可能由于编码习惯和规范意识,在时间和项目跨度上犯同样的错误);可以预见,在该技术方向上,完全可以期望摆脱特定已知目标人的现有数据集学习的过程,并实现更细粒度的归属分析,例如代码段、代码行、提交历史。 ·针对二进制代码,更准确、更大规模、更快速的代码主程序分析和同源性匹配。近年来作为一项程序分析基础技术研究,二进制代码相似性分析又重新获得了学术界和工业界的关注。在2018年和2019(已录用)的安全领域四大顶级会议上,每次都会有该方向最新成果的展示,如S&P‘2019上录用的《Asm2Vec: Boosting Static Representation Robustness for Binary Clone Search against Code Obfuscation and Compiler Optimization》,实现无先验知识的条件下的最优汇编代码级别克隆检测,针对漏洞库的漏洞代码检测可实现0误报、100%召回。而2018年北京HITB会议上,Google Project Zero成员、二进制比对工具BinDiff原始作者Thomas Dullien,探讨了他借用改造Google自家SimHash算法思想,用于针对二进制代码控制流图做相似性检测的尝试和阶段结果;这种引入规模数据处理的思路,也可期望能够在目前其他技术方案大多精细化而低效的情况下,为高效、快速、大规模甚至全量代码克隆检测勾出未来方案。 ·代码比对方案对编辑、优化、变形、混淆的对抗。近年所有技术方案都以对代码“变种”的检测有效性作为关键衡量标准,并一定程度上予以保证。上文CCS‘18论文工作,针对典型源代码混淆(如Tigress)处理后的代码,大规模数据集上可有93.42%的准确识别率;S&P‘19论文针对跨编译器和编译选项、业界常用的OLLVM编译时混淆方案进行试验,在全部可用的混淆方案保护之下的代码仍然可以完成81%以上的克隆检测。值得注意的是以上方案都并非针对特定混淆方案单独优化的,方法具有通用价值;而除此以外还有很多针对性的的反混淆研究成果可用;因此,可以认为在采用常规商用代码混淆方案下,即便存在隐藏内部业务逻辑不被逆向的能力,但仍然可以被有效定位代码复用和开发者自然人。 代码溯源技术面前的“挑战” 作为软件供应链安全的独立分析方,健壮的代码比对技术是决定性的基石;而当脑洞大开,考虑到行业的发展,也许以下两种假设的情景,将把每一个“正当”的产品、开发者置于尴尬的境地。 代码仿制 在本章节引述的“驱魔家族”代码疑云案例中,黑产方面通过某种方式获得了正常代码中,功能逻辑可以被自身复用的片段,并以某种方法将其在保持原样的情况下拼接形成了恶意程序。即便在此例中并非如此,但这却暴露了隐忧:将来是不是有这种可能,我的正常代码被泄漏或逆向后出现在恶意软件中,被溯源后扣上黑锅? 这种担忧可能以多种渠道和形式成为现实。 从上游看,内部源码被人为泄漏是最简单的形式(实际上,考虑到代码的完整生命周期似乎并没有作为企业核心数据资产得到保护,目前实质上有没有这样的代码在野泄漏还是个未知数),而通过程序逆向还原代码逻辑也在一定程度上可获取原始代码关键特征。 从下游看,则可能有多种方式将恶意代码伪造得像正常代码并实现“碰瓷”。最简单地,可以大量复用关键代码特征(如字符串,自定义数据结构,关键分支条件,数据记录和交换私有格式等)。考虑到在进行溯源时,分析者实际上不需要100%的匹配度才会怀疑,因此仅仅是仿造原始程序对于第三方公开库代码的特殊定制改动,也足以将公众的疑点转移。而近年来类似自动补丁代码搜索生成的方案也可能被用来在一份最终代码中包含有二方甚至多方原始代码的特征和片段。 基于开发者溯源的定点渗透 既然在未来可能存在准确将代码与自然人对应的技术,那么这种技术也完全可能被黑色产业利用。可能的忧患包括强针对性的社会工程,结合特定开发者历史代码缺陷的漏洞挖掘利用,联动第三方泄漏人员信息的深层渗透,等等。这方面暂不做联想展开。 〇. 没有总结 作为一场旨在定义“软件供应链安全”威胁的宣言,阿里安全“功守道”大赛将在后续给出详细的分解和总结,其意义价值也许会在一段时间之后才能被挖掘。 但是威胁的现状不容乐观,威胁的发展不会静待;这一篇随笔仅仅挑选六个侧面做摘录分析,可即将到来的趋势一定只会进入更加发散的境地,因此这里,没有总结。 本篇文章为转载内容。原文链接:https://blog.csdn.net/systemino/article/details/90114743。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-05 13:33:43
300
转载
JSON
...用的复杂性日益增强,JSON在现代Web开发中的作用愈发关键。除了jQuery中对JSON数据的操作之外,开发者们还可以关注当下更为现代化的JavaScript库和框架对于JSON处理的最新实践。 例如,Vue.js、React和Angular等主流前端框架均提供了强大且便捷的JSON数据绑定与处理机制。Vue.js利用其响应式的数据绑定特性,可以直接将JSON对象赋值给组件的状态(state),实现视图的自动更新;React通过setState方法更新状态,并结合JSX语法实现JSON数据到UI的渲染;Angular则凭借其强大的模板表达式和变更检测系统,让JSON数据操作变得直观高效。 此外,在Node.js后端环境中,诸如Express框架支持直接将JSON传递给路由处理器,并内建了中间件来解析JSON请求体。同时,使用诸如axios或fetch这类现代HTTP客户端库,可以更加优雅地发起异步请求并处理返回的JSON数据。 近期,ECMAScript标准也在JSON支持上进行了优化,如引入JSON.stringify()的第三个参数用于定制化序列化过程,以及JSON.parse()可选的reviver函数对反序列化结果进行深度处理。这些新特性的运用能够帮助开发者更精细地控制JSON数据在程序中的流转和表现形式。 总的来说,理解并熟练掌握JSON数据处理已经成为现代全栈开发者的必备技能,持续关注相关技术和最佳实践的发展,能更好地适应快速变化的Web开发环境,提升开发效率和代码质量。
2023-07-24 23:16:09
441
逻辑鬼才
VUE
...态参数来传递item对象的id属性,然后在动态路由页面中通过$route.params获取到这个id属性,从而动态加载对应的内容。 三、数据持久化 在很多情况下,我们需要保存用户的操作历史或者是登录状态等等。这时,我们就需要用到数据持久化功能。而在Vue.js中,我们可以利用localStorage来实现这个功能。 下面是一个简单的代码示例: javascript export default { created() { this.loadFromLocalStorage(); }, methods: { saveToLocalStorage(key, value) { localStorage.setItem(key, JSON.stringify(value)); }, loadFromLocalStorage() { const data = localStorage.getItem(this.key); if (data) { this.data = JSON.parse(data); } } } } 在这个例子中,我们在created钩子函数中调用了loadFromLocalStorage方法,从localStorage中读取数据并赋值给data。接着,在saveToLocalStorage这个小妙招里,我们把data这位小伙伴变了个魔术,给它变成JSON格式的字符串,然后轻轻松松地塞进了localStorage的大仓库里。 四、文件上传 在很多应用中,我们都需要让用户上传文件,例如图片、视频等等。而在Vue.js中,我们可以利用FileReader API来实现这个功能。 下面是一个简单的代码示例: php-template 在这个例子中,我们使用了multiple属性来允许用户一次选择多个文件。然后在handleFiles方法中,我们遍历选定的文件数组,并利用FileReader API将文件内容读取出来。 以上就是我分享的一些尚未开发的Vue.js项目,希望大家能够从中找到自己的兴趣点,并且勇敢地尝试去做。相信只要你足够努力,你就一定能成为一名优秀的Vue.js开发者!
2023-04-20 20:52:25
380
梦幻星空_t
JSON
JSON线段格式:深入解析与实践应用 在当今的编程世界中,数据交换已经成为软件开发中的核心环节之一。你知道吗,这玩意儿叫JSON(JavaScript Object Notation),就像个轻量级的“数据快递员”,它超级给力的地方就在于那简单易懂的“语言”和书写起来贼方便的特点。正因为如此,这家伙在Web服务、前后端交流这些场合里,可以说是如鱼得水,大展身手,甚至在配置文件这块地盘上,也玩得风生水起,可厉害啦!嘿,伙计们,这次咱们要一起捣鼓点新鲜玩意儿——“JSON线段格式”,一种特别的JSON用法。我将通过一些实实在在的代码实例和咱们的热烈讨论,让你对它有更接地气、更深刻的领悟,保证你掌握起来得心应手! 1. JSON线段格式简介 "JSON线段格式"这一概念并非JSON标准规范的一部分,但实际开发中,我们常会遇到需要按行分割JSON对象的情况,这种处理方式通常被开发者称为“JSON线段格式”。比如,一个日志文件就像一本日记本,每行记录就是一个独立的小故事,而且这个小故事是用JSON格式编写的。这样一来,我们就能像翻书一样,快速地找到并处理每一条单独的记录,完全没必要把整本日记本一次性全部塞进大脑里解析! json {"time": "2022-01-01T00:00:00Z", "level": "info", "message": "Application started."} {"time": "2022-01-01T00:01:00Z", "level": "debug", "message": "Loaded configuration."} 2. 解析JSON线段格式的思考过程 当面对这样的JSON线段格式时,我们的首要任务是设计合理的解析策略。想象一下,你正在编写一个日志分析工具,需要逐行读取并解析这些JSON对象。首先,你会如何模拟人类理解这个过程呢? python import json def parse_json_lines(file): with open(file, 'r') as f: for line in f: 去除末尾换行符,并尝试解析为JSON对象 parsed_line = json.loads(line.strip()) 对每个解析出的JSON对象进行操作,如打印或进一步处理 print(parsed_line) 调用函数解析JSON线段格式的日志文件 parse_json_lines('log.json') 在这个例子中,我们逐行读取文件内容,然后对每一行进行JSON解析。这就像是在模仿人的大脑逻辑:一次只聚焦一行文本,然后像变魔术一样把它变成一个富含意义的数据结构(就像JSON对象那样)。 3. 实战应用场景及优化探讨 在实际项目中,尤其是大数据处理场景下,处理JSON线段格式的数据可能会涉及到性能优化问题。例如,我们可以利用Python的ijson库实现流式解析,避免一次性加载大量数据导致的内存压力: python import ijson def stream_parse_json_lines(file): with open(file, 'r') as f: 使用ijson库的items方法按行解析JSON对象 parser = ijson.items(f, '') for item in parser: process_item(item) 定义一个函数来处理解析出的每个JSON对象 定义处理单个JSON对象的函数 def process_item(item): print(item) 调用函数流式解析JSON线段格式的日志文件 stream_parse_json_lines('log.json') 这样,我们就实现了更加高效且灵活的JSON线段格式处理方式,不仅节约了内存资源,还能实时处理海量数据。 4. 结语 JSON线段格式的魅力所在 总结起来,“JSON线段格式”以其独特的方式满足了大规模数据分块处理的需求,它打破了传统单一JSON文档的概念,赋予了数据以更高的灵活性和可扩展性。当你掌握了JSON线段格式的运用和理解,就像解锁了一项超能力,在解决实际问题时能够更加得心应手,让数据像流水一样顺畅流淌。这样一来,咱们的整体系统就能跑得更欢畅,效率和性能蹭蹭往上涨! 所以,下次当你面临大量的JSON数据需要处理时,不妨考虑采用“JSON线段格式”,它或许就是你寻找的那个既方便又高效的解决方案。毕竟,技术的魅力就在于不断发掘和创新,而每一次新的尝试都可能带来意想不到的收获。
2023-03-08 13:55:38
494
断桥残雪
JQuery
...进,现代浏览器对原生JavaScript API的支持越来越完善,例如Fetch API和XMLHttpRequest。这些API同样可以实现与get()方法类似的功能,并且提供了更丰富的控制选项,如请求头管理、异步流程控制(Promise)以及更好的错误处理机制。 例如,在最新的JavaScript项目中,开发者可以利用Fetch API来获取当前页面URL并发送GET请求,如下所示: javascript let url = new URL(window.location.href); // 添加或修改查询参数 url.searchParams.append('key1', 'value1'); url.searchParams.append('key2', 'value2'); fetch(url) .then(response => response.json()) .then(data => { // 处理返回的内容 }) .catch(error => { // 错误处理 }); 此外,考虑到兼容性和模块化的需求,许多现代前端框架,如React、Vue和Angular等,都封装了自己的HTTP客户端库,便于开发者在不同环境下进行统一且高效的网络数据交互操作。 因此,掌握jQuery的get()方法固然重要,但作为前端开发者,我们还需关注并熟悉新兴的API和技术趋势,以便更好地适应快速变化的Web开发环境,提高代码质量与应用性能。
2023-09-09 17:20:27
1067
断桥残雪_t
Mongo
...而避免后续查询、分析过程中因类型不匹配带来的问题。 此外,对于从API、CSV文件或其他非结构化数据源导入数据至MongoDB的情况,推荐使用如Pandas库(Python)或JSON.parse()方法(JavaScript)等工具预先进行数据清洗和类型转换,确保数据格式合规。同时,结合Schema设计的最佳实践,如运用BSON数据类型和$convert aggregation operator,可以在很大程度上降低因字段类型不匹配引发的风险,提升数据操作效率和准确性。 因此,深入理解和掌握如何有效预防及解决MongoDB中的字段类型不匹配问题,是现代数据工程师与开发人员必备技能之一,有助于构建稳定可靠的数据平台,为业务决策提供精准支撑。
2023-12-16 08:42:04
184
幽谷听泉-t
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
nohup command &
- 在后台运行命令且在退出终端后仍继续运行。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"