前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Docker容器数据持久化路径映射 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
ActiveMQ
一、引言 在大数据时代,我们经常需要处理大量的信息。为了让大家的数据既安全又可靠,我们得找到一个稳妥的办法,既能把数据妥善保管起来,还能安全无虞地传输数据。这就是ActiveMQ的作用,它是一个开源的消息中间件,可以用于处理高并发的网络应用程序。ActiveMQ支持多种数据存储方式,其中之一就是消息持久化。 本文将重点讨论ActiveMQ中的磁盘同步选项,帮助你更好地理解和使用这个强大的消息中间件。 二、什么是磁盘同步? 磁盘同步是指在硬盘上进行的数据修改被系统接收并写入到内存后,再由操作系统将这些修改提交到硬件设备上的过程。磁盘同步可以防止因意外情况导致的数据丢失。 三、ActiveMQ中的磁盘同步选项 在ActiveMQ中,有两种磁盘同步模式可供选择: 1. 自动(autocommit) 自动模式是默认的磁盘同步模式。在这种模式下,每当一个事务(transaction)完成后,都会立即提交到磁盘。这样做的好处是可以快速地响应客户端的请求,但是也有一定的风险。假如系统的某个环节出了状况,可能会让那些还没处理完的事情没法恢复原状,这样一来,就可能导致数据对不上号,出现混乱。 2. 手动(manual) 手动模式下,需要手动触发磁盘同步。在这种模式下,每次提交事务之前都需要先调用commit方法。这种方式确实安全系数挺高,不过呢,它也有个小缺点,就是会让系统的反应速度没那么快。因为每次提交的时候,都得耐心等待磁盘操作彻底完成才能进行下一步,这就像是在排队等电梯,得等电梯门完全打开、乘客上下完毕,才能轮到我们一样。 四、磁盘同步选项的设置 在ActiveMQ中,可以通过配置文件来设置磁盘同步选项。以下是一个简单的配置示例: xml useJmx="true" persistent="false"> /var/activemq/data 5000 5000 在这个配置中,我们将持久化设置为false,这意味着所有的消息都不会被保存到磁盘。如果你想启用持久化,只需将persistenceAdapter标签下的directory属性设置为你想要保存消息的位置即可。 五、结论 总的来说,ActiveMQ提供了两种磁盘同步模式供我们选择,可以根据我们的需求来选择最合适的模式。在日常使用时,咱们千万得留心合理设置磁盘同步这个选项,要不然一不小心碰上数据同步出岔子,可能会让咱辛辛苦苦保存的数据消失得无影无踪呢。希望这篇文章能对你有所帮助,如果你有任何问题,欢迎留言交流。
2023-12-08 11:06:07
463
清风徐来-t
Go Gin
数据库异常处理是任何涉及数据持久化操作的软件开发项目中的重要环节。在使用Go Gin框架处理数据库插入异常的基础上,进一步探究现代编程实践中如何增强系统健壮性和错误恢复能力具有极高的现实意义。 近期,Google Cloud在其官方博客上发布了一篇题为《设计和实现可靠的分布式系统:错误处理》的文章,深入剖析了在构建大规模分布式系统时如何设计全面且有效的错误处理机制,包括对各种可能的数据库异常进行分类、捕获和恢复。文章强调了在面对网络不稳定、并发冲突或事务失败等复杂场景时,采用幂等性设计、重试策略以及补偿事务等方法的重要性。 此外,Go语言本身也提供了丰富的错误处理工具链,如在1.13版本引入的errors包以及社区广泛使用的pkg/errors库,它们能帮助开发者更精细地定义、传播和记录错误信息,从而提升程序的可读性和调试效率。 综上所述,在实际项目中,我们不仅要关注特定框架(如Go Gin)下的异常处理技巧,还需结合业界最佳实践与语言特性,以全局视角审视并优化整个系统的错误处理架构,确保其在面对异常情况时仍能保持稳定运行,并提供良好的用户体验。
2023-05-17 12:57:54
470
人生如戏-t
Hibernate
...ibernate进行数据库操作时会遇到一个非常棘手的问题——实体类与数据库表不匹配。这个问题可能会让咱们的应用程序闹脾气罢工,所以咱们得学几招应对这种情况,确保它能顺畅运行哈。 二、问题概述 当我们创建一个Java对象并将其持久化到数据库中时,Hibernate会将这个对象映射到数据库中的一个表。不过,有时候我们可能会遇到这么个情况:得对实体类做点调整,但又不想动那个数据库表结构一分一毫。这就产生了实体类与数据库表不匹配的问题。 三、问题原因分析 首先,我们要明白为什么会出现这种问题。通常,这有两个原因: 1. 数据库设计 在早期的项目开发过程中,我们可能没有对数据库进行详细的设计,或者因为各种原因(如时间限制、技术选择等),数据库的设计并不完全符合我们的业务需求。这就可能导致实体类与数据库表不匹配。 2. 重构需求 随着项目的持续发展,我们可能会发现原来的实体类有一些不足之处,需要进行一些修改。但是这些修改可能会导致实体类与数据库表不匹配。 四、解决方法 面对实体类与数据库表不匹配的问题,我们可以采取以下几种解决方案: 1. 手动更新数据库 这是最直接也是最简单的方法。查了查数据库,我获取到了实体类所对应的表格结构信息,接着亲自手动对数据库的表结构进行了更新。这种方法虽然可行,但缺点是工作量大,且容易出错。 2. 使用Hibernate的工具类 Hibernate提供了一些工具类,可以帮助我们自动更新数据库的表结构。例如,我们可以使用org.hibernate.tool.hbm2ddl.SchemaExport类来生成DDL脚本,然后执行这个脚本来更新数据库的表结构。这种方法的优点是可以减少工作量,缺点是如果表结构比较复杂,生成的DDL脚本可能会比较长。 3. 使用JPA的特性 如果我们正在使用Java Persistence API(JPA)来操作数据库,那么可以考虑使用JPA的一些特性来处理实体类与数据库表不匹配的问题。比如,我们可以通过在实体类上贴个@Table标签,告诉系统这个类对应的是哪张数据表;给属性打上@Column标签,就好比在说“这个属性就是那张表里的某列”;而给主键字段标记上@Id注解,就类似在强调“瞧,这是它的身份证号”。这样的方式,是不是感觉更加直观、接地气了呢?这样一来,我们就能轻松实现一个目标:无需对数据库表结构动手脚,也能确保实体类和数据库表完美同步、保持一致。就像是在不重新装修房间的前提下,让家具布局和设计图纸完全匹配一样。 五、总结 总的来说,实体类与数据库表不匹配是一个常见的问题,我们需要根据实际情况选择合适的解决方案。甭管你是手把手更新数据库,还是使唤Hibernate那些工具娃,甚至玩转JPA的各种骚操作,都得咱们肚子里有点数据库的墨水和技术上的两把刷子才行。因此,我们应该不断提升自己的技术水平,以便更好地应对各种技术挑战。
2023-03-09 21:04:36
545
秋水共长天一色-t
.net
...理问题后,进一步了解数据库访问模式与架构设计对于优化应用程序性能至关重要。近期,微软发布了Entity Framework Core 6.0版本,引入了一系列改进和新特性,如对数据库事务更精细的控制、更好的并发处理支持以及改善DbContext生命周期管理机制。 例如,在实际开发场景中,开发者可以利用EF Core 6.0中的“依赖注入”功能更好地管理DbContext实例,确保其在整个请求周期内保持活性,同时避免多次创建和dispose DbContext带来的问题。此外,该版本还提供了更为灵活的事务管理API,使得开发者能精确控制事务范围,减少因异常导致的无效操作或数据不一致的情况。 另外,一项来自.NET社区的最佳实践指出,结合Repository模式和Unit of Work模式使用EF Core,能够有效隔离数据访问逻辑,进一步提升代码可读性和维护性,同时降低上述错误出现的概率。通过合理运用这些模式,开发者可以在进行复杂事务处理时确保DbContext始终处于正确的工作状态。 因此,对于致力于解决“DbContext已被dispose或不在事务中”这类问题的.NET开发者来说,紧跟技术发展动态,深入学习和应用最新的Entity Framework Core版本特性及设计模式,无疑将极大地提高应用程序的数据持久化能力和整体稳定性。
2024-01-10 15:58:24
517
飞鸟与鱼-t
Hibernate
ORM(对象关系映射) , ORM是一种编程技术,它将关系数据库的数据结构与面向对象编程语言中的对象模型进行映射,允许开发人员以面向对象的方式来操作数据库。在Hibernate框架中,ORM使得Java开发者能够通过操作Java对象来间接实现对数据库表的CRUD(创建、读取、更新和删除)操作,而无需直接编写SQL语句。 Hibernate配置 , Hibernate配置是指在使用Hibernate框架时,需要定义的一系列关于数据源、实体类映射、事务管理等方面的设置信息。这些配置可以通过XML文件或注解方式进行,并用于初始化SessionFactory对象,它是Hibernate的核心配置容器,包含了所有持久化层操作所需的信息。 实体类 , 在面向对象编程和ORM框架(如Hibernate)中,实体类是对现实世界中某一具体事物的抽象,通常对应数据库中的一张表。实体类中包含了一系列属性(对应于表的字段)以及相关的方法,如getter/setter方法。当我们在Java程序中操作实体类对象时,Hibernate会自动将这些操作转换为对数据库中相应记录的操作。例如,在文章中提到的“User”实体类,可能就对应着数据库中的“users”表,其中的“username”属性则对应着表中的“username”字段。
2023-06-23 12:49:40
551
笑傲江湖-t
Etcd
在理解和应对Etcd数据库面临电源故障等问题后,进一步关注分布式存储系统的高可用性和容灾方案显得尤为重要。近期,Kubernetes社区就针对集群的稳定性与数据保护进行了深度探讨和实践更新。 2022年,Google Cloud团队发布了一项关于利用etcd-raft一致性算法提升云原生环境下的数据持久性和服务恢复能力的研究成果。他们通过模拟大规模集群断电场景,展示了在优化配置和增加节点冗余的基础上,结合先进的数据同步策略,可以有效降低因电源故障导致的数据丢失风险,并显著缩短系统恢复时间。 此外,业界也在积极探索更先进的容灾解决方案,如采用双活数据中心设计,使得Etcd集群在主数据中心发生故障时,能迅速切换至备用数据中心继续提供服务,实现RPO(恢复点目标)和RTO(恢复时间目标)的双重优化。 同时,随着硬件技术的发展,如固态硬盘(SSD)的普及以及新型持久化内存(Persistent Memory, PMEM)的应用,也为Etcd等分布式键值存储系统的可靠性提供了新的保障手段。这些技术能够有效减少写入延迟,提高数据持久性,为构建更加健壮、稳定的容器编排环境奠定基础。 综上所述,面对电源故障等潜在威胁,持续跟进最新研究动态和技术实践,结合实际业务需求灵活运用多种防护策略,是确保Etcd数据库乃至整个Kubernetes集群稳健运行的关键所在。
2023-05-20 11:27:36
520
追梦人-t
Flink
在实际的大数据处理场景中,RocksDBStateBackend corruption问题的出现并非孤立事件,而是与分布式系统稳定性、存储引擎安全性和容错机制设计紧密相关。近期,Apache Flink社区持续关注并致力于优化状态后端的稳定性和性能表现。例如,在2022年初,Flink 1.14版本中引入了对RocksDB配置的更细粒度控制,允许用户根据实际需求调整内存表和压缩策略等核心参数,以降低数据损坏的风险。 此外,业界也在积极探索新的存储解决方案来增强状态管理的安全性。Google在2021年开源了Rust实现的高性能键值存储引擎——RustyDB,其设计之初就将数据一致性与防止corruption作为重要考量,未来有望成为Flink等大数据框架的备选状态后端之一。 同时,对于运行大规模实时计算任务的企业而言,定期进行系统健康检查、严格遵循最佳实践(如设置合理的checkpoint间隔和持久化策略)以及采用多层冗余备份方案,都是避免RocksDBStateBackend corruption问题的关键措施。通过持续跟踪最新的技术动态、深入理解底层存储引擎的工作原理,并结合实践经验不断优化系统配置,能够有效提升数据处理系统的健壮性和可靠性。
2023-09-05 16:25:22
417
冬日暖阳-t
Hibernate
...是个牛哄哄的对象关系映射框架,它就像开发者与数据库之间的超级小助手,让大伙儿能够更加轻松愉快地和数据库打交道,处理数据啥的简直不要太方便! 今天我们要讲的主题是SessionFactory的初始化与作用。这可真是咱们不能忽视的关键一步呀,它可是会直接影响到我们程序跑得顺不顺畅,数据安不安全的大问题嘞!那么,我们一起来学习一下吧! 二、什么是SessionFactory 首先,我们需要明确一点:SessionFactory是一个工厂类,用于创建Session对象。Session是Hibernate的核心,它负责处理所有的持久化操作。SessionFactory,你就想象成一个超级能干的制造小能手,它的任务就是帮咱们精心打造出一个个我们需要的Session对象。 三、SessionFactory初始化过程 接下来,我们就来详细讲解一下SessionFactory的初始化过程。 1. 配置文件加载 我们先看第一步,配置文件加载。在这里,我们主要指的是hibernate.cfg.xml这个文件。这个文件里头记录了一些Hibernate的基础配置内容,就好比是数据库连接的小秘籍,还有实体类映射的说明书啥的。 2. 创建SessionFactory实例 有了配置文件之后,我们就可以开始创建SessionFactory实例了。这个过程是通过调用Configuration类的configure()方法实现的。 java Configuration configuration = new Configuration().configure(); SessionFactory sessionFactory = configuration.buildSessionFactory(); 3. 初始化SessionFactory 最后一步就是初始化SessionFactory了。这一步骤的重点,就像是给Hibernate来一场赛前热身,做些“幕后工作”,像是把SQL语句好好捯饬捯饬、让它跑得更快更顺溜,还有就是调整缓存设置,让数据存取效率嗖嗖地提升。 java sessionFactory.openSession(); 四、SessionFactory的作用 了解了SessionFactory的初始化过程后,我们再来谈谈它的作用。 1. Session对象的生成 就像前面提到的那样,SessionFactory是一个工厂类,它的主要任务就是生成Session对象。我们可以利用SessionFactory来创建多个Session对象,每个Session对象都可以用来进行持久化操作。 2. 事务管理 SessionFactory还可以帮助我们管理事务。在Hibernate中,事务是由Session对象管理的。如果你想在一个操作流程里搞定多个要保存的东西,其实特别简单,你只需要在一个Session对象里面挨个调用对应的方法就OK啦,就像咱们平时在电脑上打开一个窗口,然后在这个窗口里完成一系列操作一样方便。 3. 数据库优化 除了上述功能外,SessionFactory还有一个很重要的作用就是进行数据库优化。例如,它可以预编译SQL语句,从而提高执行速度;它还可以设置缓存策略,避免频繁从数据库中读取数据。 五、总结 以上就是关于SessionFactory的初始化过程以及作用的详细介绍。总的来说,SessionFactory在Hibernate里扮演着核心角色,对我们这些开发者来说,掌握它的一些基本操作和原理,那可是必不可少的! 希望通过这篇文章,能让你对SessionFactory有一个更深入的理解。如果你还有其他问题,欢迎随时留言,我会尽力回答你的。 六、致谢 最后,我要感谢每一位读者朋友的支持和鼓励。大家伙儿对我的支持和热爱,就像火把一样点燃了我前进的动力!我会倍加努力,不断钻研,给大家带来更多新鲜、有趣、接地气的技术分享,让咱们一起在技术的海洋里畅游吧! 谢谢大家,期待下次再见! Best regards, [你的名字]
2023-07-29 23:00:44
491
半夏微凉-t
VUE
...ue.js那个贼牛的数据驱动功能,还有双向数据绑定的黑科技,来亲手打造一个从头到脚都充满响应性的UI组件库,让你的用户界面动起来,活灵活现的! 下面是一段简单的代码示例: css { { message } } 在这个例子中,我们创建了一个表单元素,并通过v-model指令绑定了message数据,当表单元素的值改变时,message的值也会相应地改变,从而实现了响应式设计。 二、动态路由 动态路由是指根据URL的变化,动态加载对应的页面内容。在使用Vue.js的时候,我们可以巧妙地借助路由守卫和动态参数这两样法宝,轻松实现这个功能。就像是武侠小说里那样,路由守卫就像是守护关卡的大侠,能帮我们在页面跳转的关键时刻进行拦截和判断;而动态参数嘛,就像是一把可以灵活变化的密钥,使得我们能够根据实际需要,传递并获取到实时变化的数据信息,从而更好地完成这个功能的操作。 下面是一个简单的代码示例: php-template { { item.name } } 在这个例子中,我们使用了动态参数来传递item对象的id属性,然后在动态路由页面中通过$route.params获取到这个id属性,从而动态加载对应的内容。 三、数据持久化 在很多情况下,我们需要保存用户的操作历史或者是登录状态等等。这时,我们就需要用到数据持久化功能。而在Vue.js中,我们可以利用localStorage来实现这个功能。 下面是一个简单的代码示例: javascript export default { created() { this.loadFromLocalStorage(); }, methods: { saveToLocalStorage(key, value) { localStorage.setItem(key, JSON.stringify(value)); }, loadFromLocalStorage() { const data = localStorage.getItem(this.key); if (data) { this.data = JSON.parse(data); } } } } 在这个例子中,我们在created钩子函数中调用了loadFromLocalStorage方法,从localStorage中读取数据并赋值给data。接着,在saveToLocalStorage这个小妙招里,我们把data这位小伙伴变了个魔术,给它变成JSON格式的字符串,然后轻轻松松地塞进了localStorage的大仓库里。 四、文件上传 在很多应用中,我们都需要让用户上传文件,例如图片、视频等等。而在Vue.js中,我们可以利用FileReader API来实现这个功能。 下面是一个简单的代码示例: php-template 在这个例子中,我们使用了multiple属性来允许用户一次选择多个文件。然后在handleFiles方法中,我们遍历选定的文件数组,并利用FileReader API将文件内容读取出来。 以上就是我分享的一些尚未开发的Vue.js项目,希望大家能够从中找到自己的兴趣点,并且勇敢地尝试去做。相信只要你足够努力,你就一定能成为一名优秀的Vue.js开发者!
2023-04-20 20:52:25
380
梦幻星空_t
MemCache
...务崩溃后丢失所有缓存数据:深入探讨与应对策略 0 1. 引言 Memcached,这个在Web开发领域久负盛名的分布式内存对象缓存系统,以其快速、简洁的设计赢得了广大开发者的心。然而,在我们尽情享受这波性能飙升带来的快感时,可别忘了有个隐藏的小危机:一旦Memcached服务突然闹脾气挂掉了,那所有的缓存数据就像肥皂泡一样,“砰”一下就消失得无影无踪了。这无疑是对应用连续性和稳定性的一大挑战。本文就以此为主题,通过实例代码和深入探讨,揭示这一问题并提供应对方案。 0 2. Memcached缓存机制及风险揭示 Memcached的工作原理是将用户临时存储在内存中的数据(如数据库查询结果)以键值对的形式暂存,当后续请求再次需要相同数据时,直接从内存中获取,避免了昂贵的磁盘IO操作,从而显著提高了响应速度。不过,因为内存这家伙的特性,一旦这服务闹罢工或者重启了,它肚子里暂存的数据就无法长久保存下来,这样一来,所有的缓存数据可就全都没啦。 python import memcache mc = memcache.Client(['localhost:11211'], debug=0) mc.set('key', 'value') 存储数据到Memcached data = mc.get('key') 从Memcached获取数据 上述Python代码展示了如何使用Memcached进行简单的数据存取,但在服务崩溃后,'key'对应的'value'将会丢失。 0 3. 面对Memcached崩溃时的数据丢失困境 面对这样的问题,首先我们需要理解的是,这不是Memcached设计上的缺陷,而是基于其内存缓存定位的选择。那么,作为开发者,我们应当如何应对呢? 03.1 理解并接受 首先,我们要理解并接受这种可能存在的数据丢失情况,并在架构设计阶段充分考虑其影响,确保即使缓存失效,系统仍能正常运作。 03.2 数据重建策略 其次,建立有效的数据重建策略至关重要。比如,假如我们发现从Memcached这小子那里获取数据时扑了个空,别担心,咱可以灵活应对,重新去数据库这个靠谱的仓库里翻出所需的数据,然后再把这些数据塞回给Memcached,让它满血复活。 python try: data = mc.get('key') except memcache.Error: 当Memcached访问异常时,从数据库重构建缓存数据 db_data = fetch_from_database('key') mc.set('key', db_data) data = db_data 03.3 使用备份和集群 另外,Memcached支持多服务器集群配置,通过在多台服务器上分散存储缓存数据,即使某一台服务器崩溃,其他服务器仍然能够提供部分缓存服务,降低整体数据丢失的影响。 03.4 数据持久化探索 虽然Memcached本身不支持数据持久化,但社区有一些变通的解决方案,如memcachedb、twemproxy等中间件,它们在一定程度上实现了缓存数据的持久化,不过这会牺牲一部分性能且增加系统复杂性,因此在选择时需权衡利弊。 0 4. 结论与思考 尽管Memcached服务崩溃会导致所有缓存数据丢失,但这并不妨碍它在提升系统性能方面发挥关键作用。作为开发者,咱们得充分意识到这个问题的重要性,并且动手去解决它。咱可以想想怎么设计出更合理的架构,重建一下数据策略,再比如利用集群技术和持久化方案这些手段,就能妥妥地应对这个问题了。每一个技术工具都有它自己的“用武之地”和“短板”,关键在于我们如何去洞察并巧妙运用,让它们在实际场景中最大程度地发光发热,发挥出最大的价值。就像一把锤子,不是所有问题都是钉子,但只要找准地方,就能敲出实实在在的效果。每一次遇到挑战,都是一次深度理解技术和优化系统的契机,让我们共同在实践中成长。
2023-09-25 18:48:16
60
青山绿水
Nacos
...划,新版本着重优化了数据持久化、集群稳定性以及API易用性等方面,进一步提升了配置管理效率和系统的高可用性。 此外,随着云原生技术的快速发展,Istio等服务网格解决方案对配置管理提出了新的挑战与需求。实际上,Nacos不仅可以作为独立的配置中心使用,还可与Istio等组件集成,实现更精细的服务治理与配置管理。例如,通过适配Nacos作为Istio的数据源,可以实现在服务网格环境中动态地管理和推送配置,为微服务架构提供了更为灵活高效的解决方案。 与此同时,业界对于配置中心的安全性和一致性也愈发重视,如何确保敏感信息的安全存储和传输,以及在分布式环境下的配置一致性,是当前研究和实践的热点。Nacos也在持续探索和完善这方面的功能,以满足企业级应用对于安全和一致性的严苛要求。 综上所述,在实际运用Nacos或其他配置中心的过程中,关注其最新的发展动态和技术趋势,结合具体业务场景进行深度定制和优化,无疑能够助力企业在微服务架构的道路上行稳致远。
2023-09-10 17:16:06
55
繁华落尽_t
PHP
...来越多的企业开始采用容器化技术,如Docker和Kubernetes,来管理和部署应用。然而,在容器化环境中,文件系统管理和目录访问成为了一个新的挑战。例如,最近某知名互联网公司在其Kubernetes集群中部署了一个新的应用,由于容器内的文件系统与宿主机上的文件系统隔离,导致频繁出现“无法访问目录”的错误。经过排查,发现是因为容器内指定的目录路径与宿主机上的实际路径不匹配,且权限设置不当。 这一案例提醒我们,即使是成熟的容器化技术,也需仔细规划文件系统的挂载和权限设置。例如,在Kubernetes中,可以使用hostPath卷类型将宿主机上的目录挂载到容器内,但需要注意路径的一致性和权限的正确配置。此外,还可以考虑使用存储类(StorageClass)和持久卷(PersistentVolume)等高级功能,以更好地管理数据和目录访问。 除了容器化环境外,对于传统的PHP应用部署,随着DevOps理念的普及,自动化部署工具如Jenkins、GitLab CI/CD等也被广泛使用。这些工具在执行构建和部署任务时,可能会遇到与文件系统相关的各种问题,包括目录不存在或权限不足。因此,在编写自动化脚本时,应加入必要的检查和处理逻辑,例如使用shell_exec()函数执行mkdir命令创建目录,或使用chmod命令调整目录权限,确保应用能够正常运行。 综上所述,无论是容器化环境还是传统部署方式,合理规划文件系统管理和目录访问策略,都是保障应用稳定运行的重要环节。希望这些信息能为正在面临类似问题的技术人员提供一些参考和启示。
2024-10-24 15:43:56
65
海阔天空
RabbitMQ
...量、低延迟以及出色的数据持久化能力,在大数据处理和流式计算领域获得了广泛应用。在《Apache Kafka实战:高并发场景下的消息处理与性能优化》一文中,作者详细剖析了如何利用Kafka的分区机制实现高效的并发处理,并对比了其与RabbitMQ在消息确认、事务处理等方面的异同。 同时,阿里巴巴开源的消息中间件RocketMQ也值得关注。它特别适用于大规模、高并发的互联网应用场景,提供了丰富的事务消息、定时/延时消息等功能。在一篇名为《RocketMQ在高并发环境下的关键技术解析》的文章中,通过实际案例解析了RocketMQ如何确保消息的顺序性和事务一致性,这对于理解不同消息队列产品在应对并发挑战时的设计思路具有很高的参考价值。 此外,对于消息队列的未来发展趋势,实时分析、智能调度及边缘计算等领域为消息传递提出了新的要求。诸如Pulsar等新一代消息队列产品正逐步融入AI驱动的智能运维体系,以适应更加复杂的业务场景需求。因此,关注并研究这些前沿技术和最佳实践,将有助于我们在构建高效、可靠且可扩展的分布式系统时做出更明智的选择。
2024-03-03 10:52:21
89
醉卧沙场-t
Cassandra
...了Cassandra数据库中内存表(Memtable)切换异常的原理与应对策略后,我们可以进一步关注近期关于NoSQL数据库性能优化和故障处理的相关实践案例。例如,在2022年的一篇技术分享文章中,某大型互联网公司就公开了其在使用Cassandra时遭遇的类似问题以及解决过程,他们通过动态调整Memtable大小、优化写入流程,并结合硬件升级,成功地降低了由于Memtable满载导致的系统延迟问题,显著提升了服务稳定性。 此外,随着云原生时代的到来,Kubernetes等容器编排平台对于管理分布式系统的支持也在不断深化,为解决Cassandra这类分布式数据库的运维难题提供了新的思路。例如,有团队尝试将Cassandra部署在Kubernetes集群上,利用弹性伸缩功能自动根据负载情况调整节点资源,有效防止因资源不足引发的Memtable切换异常。 同时,学术界对NoSQL数据库内部机制的研究也在持续更新。最新的研究论文指出,通过对Memtable结构进行深度优化设计,比如引入多层分级存储、改进数据刷盘算法等方法,能够在保证数据持久性的同时,显著减少由Memtable切换带来的性能影响,这一研究成果有望在未来版本的Cassandra中得到应用。 综上所述,理解并妥善处理Cassandra数据库中的Memtable切换异常只是数据库运维工作的一部分,我们还需紧跟行业趋势和技术发展,结合最新研究成果与实践经验,以实现更加高效稳定的数据库运维管理。
2023-12-10 13:05:30
504
灵动之光-t
Docker
Docker,这个家伙可厉害啦,它是一款当下超火的开源容器化技术。有了Docker,开发者们甭管是在自己电脑上,还是在云端服务器,都能轻松地构建、测试和部署应用程序,完全不用担心底层基础设施的各种差异带来的小麻烦,让开发工作变得既简单又高效。如果你是个刚刚入门的小白,或者对Docker这个神奇工具的工作原理和它能玩出什么花样感到好奇,这篇接地气的Docker教程就是你的通关秘籍,带你全方位、无死角地掌握Docker的一切。 1. Docker的基本概念 Docker是一种轻量级的虚拟化技术,它可以将应用程序及其依赖项打包到一个可移植的镜像中,然后在任何地方运行。这种镜像能够在开发、测试和生产环境里灵活反复使用,这样一来,不仅能够大大提升我们的开发效率,还能让应用程序变得更加稳如磐石。 例如,我们可以使用以下命令创建一个包含Node.js和Express框架的应用程序的Docker镜像: bash FROM node:12-alpine WORKDIR /app COPY package.json ./ RUN npm install COPY . . EXPOSE 3000 CMD [ "npm", "start" ] 这个Dockerfile定义了一个基于Node.js 12.0.0-alpine镜像的镜像,然后安装了项目所需的所有依赖项,并设置了端口映射为3000。最后,我们可以通过运行以下命令来构建这个Docker镜像: go docker build -t my-node-app . 这将生成一个名为my-node-app的Docker镜像,我们可以使用以下命令将其运行起来: css docker run -p 3000:3000 --name my-running-app my-node-app 现在,你可以通过访问http://localhost:3000来查看你的应用程序是否正常工作。 2. Docker的优点 Docker的主要优点包括: - 隔离:Docker容器是在宿主机上的进程,它们具有自己的网络、文件系统和资源限制,因此可以避免不同应用程序之间的冲突。 - 可移植性:由于Docker镜像是轻量级的,它们可以在任何支持Docker的平台上运行,无论该平台是在开发人员的本地计算机上还是在云服务器上。 - 快速部署:通过使用预构建的Docker镜像,可以快速地部署应用程序,而不需要担心底层基础设施的差异。 3. Docker的使用场景 Docker适用于许多不同的场景,包括但不限于: - 开发:Docker可以帮助开发人员在同一台机器上运行多个实例,每个实例都具有其特定的配置和依赖项。另外,Docker这小家伙还能在持续集成和持续部署(CI/CD)的流程里大显身手呢! - 测试:Docker可以模拟不同的操作系统和网络环境,以便进行兼容性和性能测试。 - 运行时:Docker可以用于在生产环境中运行应用程序,因为它的隔离特性可以确保应用程序不会影响其他应用程序。 - 基础设施即服务(IaaS):Docker可以与云平台(如AWS、Google Cloud、Azure等)集成,从而提供一种高度可扩展和灵活的基础架构解决方案。 4. Docker的最佳实践 虽然Docker提供了很多便利,但也有一些最佳实践需要遵循,以确保您的Docker容器始终处于最佳状态。这些最佳实践包括: - 使用轻量级的操作系统:选择轻量级的Docker镜像作为基础镜像,以减少镜像的大小和启动时间。 - 最小化运行时依赖项:只在容器内安装应用程序所需的必要组件,以防止潜在的安全漏洞。 - 使用端口映射:在Docker容器外部公开端口号,以便客户端可以连接到容器内的应用程序。 - 使用守护进程:如果应用程序需要持久运行,那么应该将其包装在一个守护进程中,这样即使容器关闭,应用程序仍然可以继续运行。 - 使用卷:如果应用程序需要持久存储数据,那么应该将其挂载到一个Docker卷中,而不是在容器内部存储数据。
2023-02-17 17:09:52
515
追梦人-t
Superset
...rset是一个开源的数据可视化和商业智能工具,它允许用户通过简单的界面创建丰富的数据仪表板和可交互的图表。在本文中,Superset被用作主要的数据分析与可视化解決方案,用户可以通过修改其配置文件来自定义和优化服务。 SQLALCHEMY_DATABASE_URI , 这是一个环境变量或配置项,用于在SQLAlchemy(Python SQL工具包和对象关系映射器)中指定数据库连接字符串。在Superset的上下文中,SQLALCHEMY_DATABASE_URI用于设置Superset自身使用的元数据数据库的连接信息,包括数据库类型、用户名、密码、主机地址以及数据库名称。 环境变量 , 环境变量是操作系统用来存储关于系统环境信息的一种机制,这些信息可以被操作系统及运行在其上的程序访问。在本文中,提到Superset可能通过环境变量引用配置文件,因此修改环境变量的值后,需要确保系统正确识别并应用新值,以加载正确的配置文件路径。 配置缓存 , 在软件系统中,配置缓存通常是指将配置信息存储在内存中,以便快速读取和使用,从而提高性能。在Apache Superset中,部分配置可能被缓存以提升响应速度,这意味着即使配置文件已被更新,如果缓存未被清理,Superset仍可能使用旧的配置信息。解决此问题时,用户需要了解如何清理或刷新Superset的相关配置缓存,确保新的配置生效。
2024-01-24 16:27:57
240
冬日暖阳
Golang
...统的功能,这对于构建容器镜像、处理配置文件等场景具有显著优势。 同时,随着Kubernetes和Docker等容器技术的发展,理解并掌握如何在分布式和容器化环境中安全高效地进行文件系统操作至关重要。比如,在Kubernetes中利用Volume进行持久化存储时,Go语言编写的控制器或operator如何正确管理Pod间共享的文件资源,避免并发写入导致的数据不一致问题。 此外,针对大规模数据处理场景,可研究Golang结合开源库如gofsutil来实现跨平台的文件系统挂载与管理,或者参考Netflix的开源项目如HDFS-Go客户端,了解如何在Go中实现与大数据文件系统(如Hadoop HDFS)的无缝集成。 最后,对于安全性要求极高的场景,不妨阅读相关安全研究论文及业界案例,探讨如何通过Go实现加密文件系统、访问控制列表等功能,确保敏感数据在存储和传输过程中的安全性。这些实时的、针对性的技术发展和实践应用将极大地丰富您对Go语言处理文件系统操作的理解,并帮助您在实际项目开发中做出更为明智和高效的决策。
2024-02-24 11:43:21
428
雪落无痕
Tomcat
...t实例,以及如何利用容器化技术如Docker来简化部署流程。 以阿里巴巴集团为例,他们采用了一种名为Pandora的解决方案,通过结合Kubernetes和Docker技术,实现了Tomcat应用的自动化部署和弹性伸缩。Pandora不仅提升了系统的可维护性和可靠性,还显著降低了运维成本。这一实践表明,传统Web服务器如Tomcat仍然具有广阔的应用前景,但需要借助现代技术手段来提升其适应性和效率。 此外,随着HTTP/2协议的推广,如何优化Tomcat以支持这一新标准也成为了一个热点话题。HTTP/2提供了多路复用、头部压缩等特性,可以显著提升Web应用的加载速度和用户体验。为了充分利用这些优势,开发者需要了解并调整Tomcat的相关配置,如启用HTTP/2支持、优化连接池设置等。这些改进不仅能增强应用性能,还能为用户提供更加流畅的浏览体验。 最后,随着安全意识的不断提高,确保Web应用的安全性变得尤为重要。除了传统的防火墙和入侵检测系统外,还可以通过配置Tomcat的SSL/TLS证书来加密通信数据,保护用户隐私。同时,定期更新Tomcat版本和依赖库,修补已知漏洞,也是保障应用安全不可或缺的一环。 总之,尽管Tomcat是一款成熟稳定的Web服务器,但在快速变化的技术环境中,仍需不断学习和采用新技术,才能更好地满足现代应用开发的需求。
2024-11-23 16:20:14
22
山涧溪流
RabbitMQ
...灵活地把控消息的发送路径;同时呢,还能利用RabbitMQ提供的持久化特性,确保你的每一条消息都像被牢牢焊在传输带上一样,绝对可靠,永不丢失。等等这些骚操作,都是RabbitMQ的拿手好戏。 总的来说,我认为RabbitMQ是一种非常强大且灵活的消息代理服务器,非常适合用于大规模的分布式系统。虽然刚开始你可能得花些时间去摸透和掌握它,但我打包票,一旦你真正掌握了,你绝对会发现,这玩意儿简直就是你在开发工作中的左膀右臂,离了它,你可能都玩不转了!
2023-12-12 10:45:52
36
春暖花开-t
MemCache
...mCache服务器的数据持久化问题探讨:数据丢失的挑战与解决方案 1. 引言 Memcached,这个我们熟悉的高性能、分布式内存对象缓存系统,在Web应用程序中扮演着关键角色,它能极大地提升动态Web应用的性能和可扩展性。不过,你知道吗?Memcached这家伙可纯粹是个临时记忆库,它并不支持数据长期存储这功能。也就是说,一旦服务器打了个盹(重启)或者撂挑子不干了(崩溃),那存放在它脑瓜子里的所有数据,就会瞬间蒸发得无影无踪。这就是咱们今天要重点唠一唠的话题——聊聊Memcached的数据丢失那些事儿。 2. Memcached的数据特性与潜在风险 (1)内存缓存与数据丢失 Memcached的设计初衷是提供临时性的高速数据访问服务,所有的数据都存储在内存中,而非硬盘上。这就意味着,如果突然出现个意外状况,比如系统崩溃啦,或者我们有意为之的重启操作,那内存里暂存的数据就无法原地待命了,会直接消失不见,这样一来,就难免会遇到数据丢失的麻烦喽。 python import memcache mc = memcache.Client(['localhost:11211'], debug=0) mc.set('key', 'value') 将数据存入Memcached 假设此时服务器突然宕机,'key'对应的'value'在重启后将不复存在 (2)业务场景下的影响 对于一些对数据实时性要求较高但又允许一定时间内数据短暂缺失的场景,如用户会话信息、热点新闻等,Memcached的数据丢失可能带来的影响相对有限。不过,在有些场景下,我们需要长期确保数据的一致性,比如你网购时的购物车信息、积分累计记录这些情况。万一这种数据丢失了,那可能就会影响你的使用体验,严重的话,甚至会引发一些让人头疼的业务逻辑问题。 3. 面对数据丢失的应对策略 (1)备份与恢复方案 虽然Memcached本身不具备数据持久化的功能,但我们可以通过其他方式间接实现数据的持久化。例如,可以定期将Memcached中的数据备份到数据库或其他持久化存储中: python 假设有一个从Memcached获取并持久化数据到MySQL的过程 def backup_to_mysql(): all_items = mc.get_multi(mc.keys()) for key, value in all_items.items(): save_to_mysql(key, value) 自定义保存到MySQL的函数 (2)组合使用Redis等具备持久化的缓存系统 另一个可行的方案是结合使用Redis等既具有高速缓存特性和又能持久化数据的系统。Redis不仅可以提供类似Memcached的内存缓存服务,还支持RDB和AOF两种持久化机制,能在一定程度上解决数据丢失的问题。 python import redis r = redis.Redis(host='localhost', port=6379, db=0) r.set('key', 'value') 在Redis中设置键值对,即使服务器重启,数据也能通过持久化机制得以恢复 (3)架构层面优化 在大型分布式系统中,可以通过设计冗余和分布式存储策略来降低单点故障带来的影响。比如,我们可以像搭积木那样部署多个Memcached实例,然后用一致性哈希这类聪明的算法给它们分配工作量和切分数据块。这样不仅能确保整体负载均衡,还能保证每一份数据都有好几个备份,分别存放在不同的节点上,就像把鸡蛋放在不同的篮子里一样,安全又可靠。 4. 结语 人类视角的理解与思考 面对Memcached数据丢失的问题,开发者们不能止步于理解其原理,更应积极寻求有效的应对策略。这就像生活中我们对待易逝的事物,尽管明白“天下无不散之筵席”,但我们依然会拍照留念、撰写日记,以期留住美好瞬间。同样,在我们使用Memcached这玩意儿的时候,也得充分了解它的脾性,借助一些巧妙的技术手段和设计架构,让数据既能痛快地享受高速缓存带来的速度福利,又能机智地避开数据丢失的坑。只有这样,我们的系统才能在效率与可靠性之间取得最佳平衡,更好地服务于业务需求。
2023-05-22 18:41:39
83
月影清风
Mongo
...种存储引擎? 在现代数据库技术的广阔天地中,MongoDB以其独特的非关系型数据模型和灵活的数据结构,在NoSQL数据库领域占据了一席之地。其中一个关键组成部分——存储引擎,对于MongoDB性能、可靠性以及功能特性有着决定性的影响。那么,咱们就来聊一聊MongoDB这家伙到底用的是哪种存储引擎吧!在这篇文章里,我会手把手地带你们深入探索这个问题,还会通过一些实实在在的代码实例,教大家如何查看以及亲自指定这个存储引擎,就像在玩一场技术揭秘的游戏一样。 1. MongoDB存储引擎概述 MongoDB在其发展历程中曾支持过多种存储引擎,包括早期版本中的MMAPv1以及后续逐渐成为默认选择的WiredTiger。当前(2024年),WiredTiger 已经是MongoDB社区版和企业版的标准配置,自MongoDB 3.2版本后被确立为默认存储引擎。这个决策背后的真正原因是,WiredTiger这家伙拥有更先进的并发控制技术,就像个超级交通管理员,能同时处理好多任务还不混乱;它的压缩机制呢,就像是个空间魔法师,能把数据压缩得妥妥的,节省不少空间;再者,它的检查点技术就像个严谨的安全员,总能确保系统状态的一致性和稳定性。所以,在应对大部分工作负载时,WiredTiger的表现那可真是更胜一筹,让人不得不爱! 1.1 WiredTiger的优势 - 文档级并发控制:WiredTiger实现了行级锁,这意味着它可以在同一时间对多个文档进行读写操作,极大地提高了并发性能,特别是在多用户环境和高并发场景下。 - 数据压缩:WiredTiger支持数据压缩功能,能够有效减少磁盘空间占用,这对于大规模数据存储和传输极为重要。 - 检查点与恢复机制:定期创建检查点以确保数据持久化,即使在系统崩溃的情况下也能快速恢复到一个一致的状态。 2. 如何查看MongoDB的存储引擎? 要确定您的MongoDB实例当前使用的存储引擎类型,可以通过运行Mongo Shell并执行以下命令: javascript db.serverStatus().storageEngine 这将返回一个对象,其中包含了存储引擎的名称和其他详细信息,如引擎类型是否为wiredTiger。 3. 指定MongoDB存储引擎 在启动MongoDB服务时,可以通过mongod服务的命令行参数来指定存储引擎。例如,若要明确指定使用WiredTiger引擎启动MongoDB服务器,可以这样做: bash mongod --storageEngine wiredTiger --dbpath /path/to/your/data/directory 这里,--storageEngine 参数用于设置存储引擎类型,而--dbpath 参数则指定了数据库文件存放的位置。 请注意,虽然InMemory存储引擎也存在,但它主要适用于纯内存计算场景,即所有数据仅存储在内存中且不持久化,因此不适合常规数据存储需求。 4. 探讨与思考 选择合适的存储引擎对于任何数据库架构设计都是至关重要的。随着MongoDB的不断成长和进步,核心团队慧眼识珠,挑中了WiredTiger作为默认配置。这背后的原因呢,可不光是因为这家伙在性能上表现得超级给力,更因为它对现代应用程序的各种需求“拿捏”得恰到好处。比如咱们常见的实时分析呀、移动应用开发这些热门领域,它都能妥妥地满足,提供强大支持。不过呢,每个项目都有自己独特的一套规矩和限制,摸清楚不同存储引擎是怎么运转的、适合用在哪些场合,能帮我们更聪明地做出选择,让整个系统的性能表现更上一层楼。 总结来说,MongoDB如今已经将WiredTiger作为其默认且推荐的存储引擎,但这并不妨碍我们在深入研究和评估后根据实际业务场景选择或切换存储引擎。就像一个经验老道的手艺人,面对各种不同的原料和工具,咱们得瞅准具体要干的活儿和环境条件,然后灵活使上最趁手的那个“秘密武器”,才能真正鼓捣出既快又稳、超好用的数据库系统来。
2024-01-29 11:05:49
202
岁月如歌
Spark
Spark在应对数据传输中断问题上的策略与实践 1. 引言 在大数据处理领域,Apache Spark无疑是一颗璀璨的明星。它厉害的地方在于,拥有超高效的内存计算技术和无比强大的分布式处理本领,在对付海量数据时,那展现出来的性能简直牛到不行!然而,在日常实际操作时,我们常常会碰到这样一些头疼的问题:网络时不时闹脾气、硬件时不时掉链子,这些都可能让咱们的数据传输被迫中断,让人措手不及。好嘞,那么Spark究竟是怎么巧妙地应对这些挑战,而且还处理得如此优雅呢?不如咱们一起揭开这个谜底,深入研究一下,并通过实际的代码实例来看看Spark在碰见数据传输中断这档子事时,到底藏着哪些令人拍案叫绝的设计妙招吧! 2. Spark的数据传输机制概述 Spark的核心组件——RDD(弹性分布式数据集)的设计理念就包含了一种对数据容错性的独特理解。RDD有个特别牛的本领,它能像记日记一样,把创建以来的所有转换操作步骤都一一记录下来。这样,万一数据在传输过程中掉了链子或者出现丢失的情况,它就不用从头开始重新找数据,而是直接翻看“历史记录”,按照之前的操作再来一遍计算过程,这个厉害的功能我们称之为“血统”特性。就像是给数据赋予了一种家族传承的记忆力,让数据自己知道怎么重生。 3. 数据传输中断的应对策略 a. CheckPointing机制:为了进一步增强容错性,Spark提供了CheckPointing功能。通过对RDD执行检查点操作,Spark会将RDD数据持久化存储到可靠的存储系统(如HDFS)上。这样,万一数据不小心飞了,咱们就能直接从检查点那里把数据拽回来,完全不需要重新计算那些繁琐的依赖操作。 scala val rdd = sc.parallelize(1 to 100) rdd.checkpoint() // 设置检查点 // ...一系列转化操作后 rdd.count() // 若在此过程中出现数据传输中断,Spark可以从检查点重新恢复数据 b. 宽窄依赖与数据分区:Spark根据任务间的依赖关系将其分为宽依赖和窄依赖。窄依赖这玩意儿,就好比你做拼图时,如果某一片拼错了或者丢了,你只需要重新找那一片或者再拼一次就行,不用全盘重来。而宽依赖呢,就像是Spark在处理大数据时的一个大招,它通过一种叫“lineage”的技术,把任务分成不同的小关卡(stage),然后在每个关卡内部,那些任务可以同时多个一起尝试完成,即使数据传输过程中突然掉链子了,也能迅速调整策略,继续并行推进,大大减少了影响。 c. 动态资源调度:Spark的动态资源调度器能实时监控任务状态,当检测到数据传输中断或任务失败时,会自动重新提交任务并在其他可用的工作节点上执行,从而保证了整体任务的连续性和完整性。 4. 实际案例分析与思考 假设我们在处理一个大规模流式数据作业时遭遇网络波动导致的数据块丢失,此时Spark的表现堪称“智能”。首先,由于RDD的血统特性,Spark会尝试重新计算受影响的数据分片。若该作业启用了CheckPointing功能,则直接从检查点读取数据,显著减少了恢复时间。同时,Spark这家伙有个超级聪明的动态资源调度器,一旦发现问题就像个灵活的救火队员,瞬间就能重新给任务排兵布阵。这样一来,整个数据处理过程就能在眨眼间恢复正常,接着马不停蹄地继续运行下去。 5. 结论 Spark以其深思熟虑的设计哲学和强大的功能特性,有效地应对了数据传输中断这一常见且棘手的问题。无论是血统追溯这一招让错误无处遁形,还是CheckPointing策略的灵活运用,再或者是高效动态调度资源的绝活儿,都充分展现了Spark在处理大数据时对容错性和稳定性的高度重视,就像一位严谨的大厨对待每一道菜肴一样,确保每个环节都万无一失,稳如磐石。这不仅让系统的筋骨更强壮了,还相当于给开发者们在应对那些错综复杂的现实环境时,送上了超级给力的“保护盾”和“强心剂”。 在实践中,我们需要结合具体的应用场景和业务需求,合理利用Spark的这些特性,以最大程度地减少数据传输中断带来的影响,确保数据处理任务的顺利进行。每一次成功地跨过挑战的关卡,背后都有Spark这家伙对大数据世界的独到见解和持之以恒的探索冒险在发挥作用。
2024-03-15 10:42:00
576
星河万里
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
echo $BASH_VERSION
- 显示当前bash shell版本。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"