前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[DPC 数据并行性能优化]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Apache Solr
...信息,成为了开发者和数据科学家们面临的挑战。Apache Solr,这玩意儿啊,简直就是搜索界的超级英雄!它不仅速度快得飞起,还能在多台服务器上同时工作,就像组建了一支无坚不摧的搜索小分队。而且,它的功能那叫一个强大,用起来特别灵活,就像是个万能工,啥活都能干。所以,不管是大企业还是小团队,用它来做搜索和分析,那可真是再合适不过了。很多开发者都对它情有独钟,因为它真的能帮我们解决不少难题,提升工作效率,简直就是咱们的好帮手嘛!在这篇文章中,我们将深入探讨Solr的核心技术——倒排索引,揭开其背后的工作原理,以及如何通过代码实践来优化搜索体验。 1. 倒排索引是什么? 倒排索引,又称为反向索引,是一种用于存储和检索文档中词汇位置的技术。在老派的正向索引里,咱们是按照词儿出现的先后顺序来整理的。比如说,你查一个词,咱们就顺着文章的顺序给你找。但在倒排索引这阵子,玩法就不一样了,它是按照文档的编号来排的。就好比,你找某个文档,咱们就直接告诉你这个文档在哪儿,而不是先从头翻到尾。这样找东西,是不是更高效呢?哎呀,简单来说,倒排索引就像是一个超级大笔记本,专门用来记下每个单词(咱们就叫它“词汇”吧)都藏在哪些故事(文档)里头,而且还会记得每个词在故事里的准确位置。这样,当我们想找某个词的时候,就能直接翻到对应的页码,快速找到所有相关的内容了。这招儿可比一页一页地找,省事儿多了!哎呀,这设计超级棒!就像是有个魔法一样,你一搜,立马就能找到对应的文档清单。这样一来,找东西的速度嗖嗖的,效率那叫一个高,简直让人爽到飞起! 2. Solr的倒排索引实现 Solr 是基于 Apache Lucene 构建的,Lucene 是一个开源的全文检索库。在 Solr 中,倒排索引是通过索引器(Indexer)来构建的。当文档被索引时,Lucene 分析器(Analyzer)将文本分解成一系列词素(tokens),然后为每个词素创建一个倒排列表,这个列表包含了所有包含该词素的文档的标识符及其在文档中的位置信息。 示例代码:构建倒排索引 以下是一个简单的示例代码片段,展示如何使用 Solr API 构建倒排索引: java import org.apache.solr.client.solrj.SolrClient; import org.apache.solr.client.solrj.impl.HttpSolrClient; import org.apache.solr.client.solrj.response.UpdateResponse; import org.apache.solr.common.SolrInputDocument; public class SolrIndexer { private static final String SOLR_URL = "http://localhost:8983/solr/mycore"; private static final SolrClient solrClient = new HttpSolrClient(SOLR_URL); public static void main(String[] args) throws Exception { // 创建索引文档 SolrInputDocument document = new SolrInputDocument(); document.addField("id", 1); document.addField("title", "Java Programming Guide"); document.addField("content", "This is a guide for Java programming."); // 提交文档到索引 UpdateResponse response = solrClient.add(document); System.out.println("Documents added: " + response.getAddedDocCount()); // 关闭连接 solrClient.close(); } } 这段代码展示了如何创建一个简单的 Solr 索引文档,并将其添加到索引中。每一步都涉及到倒排索引的构建过程,即对文档中的文本进行分析和索引化。 3. 倒排索引的优化与应用 倒排索引的优化主要集中在索引构建的效率和查询的性能上。为了让你的索引构建工作跑得更快,咱们可以给索引器来点小调整,就像给你的自行车加点油,让它跑得飞快!首先,咱们可以试试增加并行度,就像开多台打印机同时工作,效率自然翻倍。还有,优化分词器,就像是给你的厨房添置一台高效的榨汁机,让食材(数据)处理得又快又好。这样一来,你的索引构建工作不仅高效,还能像欢快的小鸟一样轻松自在地翱翔在数据世界里。同时,通过合理的查询优化策略,如利用缓存、预加载、分片查询等技术,可以进一步提高查询性能。 在实际应用中,倒排索引不仅用于全文搜索,还可以应用于诸如推荐系统、语义理解等领域。例如,在一个电商网站中,倒排索引可以帮助用户快速找到相关的产品,或者根据用户的搜索历史和浏览行为提供个性化推荐。 4. 结语 倒排索引是 Solr 的核心组件,它不仅极大地提高了搜索性能,也为构建复杂的信息检索系统提供了强大的基础。哎呀,兄弟!咱们得给倒排索引这玩意儿好好整一整,让它变得更聪明,搜索起来也更快更高效!这样咱就能找到用户想要的内容,就像魔法一样,瞬间搞定!这不就是咱们追求的智能全文搜索嘛!希望本文能帮助你深入了解 Solr 的倒排索引机制,并激发你在实际项目中的创新应用。让我们一起探索更多可能,构建更加出色的信息检索系统吧!
2024-07-25 16:05:59
425
秋水共长天一色
转载文章
...和选项后,进一步了解数据库备份与恢复的策略以及行业内的最新进展显得尤为重要。近期,MySQL 8.0版本对mysqldump功能进行了增强,新增了并行导出多个表的能力,显著提升了大数据量场景下的备份效率(来源:MySQL官方文档,2023年更新)。对于企业级用户来说,结合云存储服务实现自动化、周期性的mysqldump备份任务已成为标准实践,例如阿里云RDS就提供了基于mysqldump的全量与增量备份方案。 此外,数据安全在备份过程中是不可忽视的一环。《InfoWorld》杂志在一篇深度报道中指出,尽管mysqldump具备众多实用选项,但在处理包含敏感信息的大规模数据库时,建议采用加密传输或配合SSL配置以确保数据在传输过程中的安全性。同时,也有专家提倡利用像Percona Xtrabackup这样的第三方工具进行物理备份,特别是在InnoDB存储引擎下,它能提供更细粒度的热备份与恢复操作。 另外值得注意的是,针对数据库性能优化,业界倡导将备份时间安排在业务低峰期,并结合缓存技术与索引调整等手段减少备份期间对在线服务的影响。随着容器化和Kubernetes等云原生技术的发展,如何在分布式环境下高效运用mysqldump进行数据迁移与灾备也成为IT专业人士关注的新课题。 综上所述,掌握mysqldump的基本操作仅仅是开始,不断跟进最新的数据库管理技术和最佳实践,深入理解和灵活应用不同备份恢复策略,才能确保在复杂多变的业务场景中,有效保障数据的安全性和系统的稳定性。
2023-02-01 23:51:06
265
转载
Impala
... Impala的查询性能与硬件配置:深度解析与实践探索 引言 在大数据时代,高效的数据分析成为企业决策的重要支撑。Apache Impala,这个家伙可真不简单!它就像个超级英雄,专门负责搞定那些海量数据的大任务。别看数据量大得能装满好几座山(PB级别),Impala一上阵,立马就能飞快地帮我们查询到需要的信息,而且还是那种边聊天边玩手机也能随时翻阅数据的那种速度,简直不要太爽!所以,如果你想找一个既能快速响应又能处理大数据的小伙伴,Impala绝对是你的菜!嘿,你知道吗?Impala的厉害之处在于它有个超酷的设计理念!那就是不让那些中间的数据白白地躺在那儿不动,而是尽可能地让所有的任务一起并肩作战。这样一来,不管你的数据有多大,Impala都能像小菜一碟一样,高效地完成查询,让你的数据分析快人一步!是不是超级牛逼啊?然而,要充分发挥Impala的潜力,硬件配置的选择与优化至关重要。嘿,兄弟!这篇大作就是要好好扒一扒 Impala 这个家伙的查询速度和咱们硬件设备之间的那点事儿。咱们要拿真实的代码例子来说明,怎么才能把这事儿给整得既高效又顺溜。咱们得聊聊,怎么根据你的硬件配置,调整 Impala 的设置,让它跑起来更快,效率更高。别担心,咱们不会用一堆干巴巴的术语让你头疼,而是用一些接地气的语言,让你一看就懂,一学就会的那种。准备好了吗?咱们这就开始,探索这个神秘的关系,找出最佳的优化策略,让你的查询快如闪电,流畅如丝! 1. Impala查询性能的关键因素 Impala的性能受到多种因素的影响,包括但不限于硬件资源、数据库架构、查询优化策略等。硬件配置作为基础,直接影响着查询的响应时间和效率。 - 内存:Impala需要足够的内存来缓存查询计划和执行状态,同时存储中间结果。内存的大小直接影响到并行度和缓存效果,进而影响查询性能。 - CPU:CPU的计算能力决定了查询执行的速度,尤其是在多线程环境下。合理的CPU分配可以显著提升查询速度。 - 网络:数据存储和计算之间的网络延迟也会影响查询性能,尤其是在分布式环境中。优化网络配置可以减少数据传输时间。 2. 实例代码 配置与优化 接下来,我们通过一段简单的代码实例,展示如何通过配置和优化来提升Impala的查询性能。 示例代码:查询性能调优配置 python 假设我们正在使用Cloudera Manager进行配置管理 调整Impala节点的内存配置 cloudera_manager.set_impala_config('memory', { 'query_mem_limit': '2GB', 根据实际需求调整查询内存限制 'coordinator_memory_limit': '16GB', 协调器的最大内存限制 'executor_memory_limit': '16GB' 执行器的最大内存限制 }) 调整CPU配额 cloudera_manager.set_impala_config('cpu', { 'max_threads_per_node': 8, 每个节点允许的最大线程数 'max_threads_per_core': 2 每个核心允许的最大线程数 }) 开启并行查询功能 cloudera_manager.set_impala_config('parallelism', { 'default_parallelism': 'auto' 自动选择最佳并行度 }) 运行查询前,确保表数据更新已同步到Impala cloudera_manager.refresh_table('your_table_name') cloudera_manager.compute_stats('your_table_name') print("配置已更新,查询性能调优已完成。") 这段代码展示了如何通过Cloudera Manager调整Impala节点的内存限制、CPU配额以及开启自动并行查询功能。通过这样的配置,我们可以针对特定的查询场景和数据集进行优化,提高查询性能。 3. 性能监控与诊断 为了确保硬件配置达到最佳状态,持续的性能监控和诊断至关重要。利用Impala自带的诊断工具,如Explain Plan和Profile,可以帮助我们深入了解查询执行的详细信息,包括但不限于执行计划、CPU和内存使用情况、I/O操作等。 Examine Plan 示例 bash 使用Explain Plan分析查询执行计划 impala-shell> EXPLAIN SELECT FROM your_table WHERE column = 'value'; 输出的结果将展示查询的执行计划,帮助识别瓶颈所在,为后续的优化提供依据。 4. 结语 Impala的查询性能与硬件配置息息相关,合理的配置不仅能提升查询效率,还能优化资源利用,降低运行成本。通过本文的探讨和示例代码的展示,希望能够激发读者对Impala性能优化的兴趣,并鼓励大家在实践中不断探索和尝试,以实现大数据分析的最佳效能。嘿,兄弟!你得明白,真正的硬仗可不只在找答案,而是在于找到那个对特定工作环境最合适的平衡点。这事儿啊,一半靠的是技巧,另一半还得靠点智慧。就像调鸡尾酒一样,你得知道加多少冰,放什么酒,才能调出那个完美的味道。所以,别急着去死记硬背那些公式和规则,多琢磨琢磨,多试试错,慢慢你会发现,找到那个平衡点,其实挺像在创作一首诗,又像是在解一道谜题。
2024-08-19 16:08:50
71
晚秋落叶
Spark
随着大数据时代的到来,Apache Spark作为高效的大规模数据处理引擎,其应用日益广泛,特别是在人工智能、机器学习等领域发挥着关键作用。然而,面对海量数据和复杂业务场景,Spark应用的稳定性和性能优化成为亟待解决的问题。本文将深入探讨如何通过优化日志记录策略、引入自动化监控工具、实施精准性能调优等方法,全面提升Spark应用的稳定性和性能,从而更好地支撑大数据时代的业务需求。 一、日志记录优化:从被动到主动 传统的日志记录方式往往侧重于问题发生后的记录和事后分析,缺乏事前预警和预防机制。为了提升Spark应用的稳定性,应采用主动监控和预测性分析相结合的日志记录策略: - 日志级别调整:根据应用不同阶段的需求动态调整日志级别,既能保证关键信息的完整记录,又能避免无谓的性能开销。 - 日志聚合与分析:利用现代大数据分析工具(如ELK Stack、Logstash、Kibana等),实现日志的实时聚合、分析与可视化,便于快速识别异常模式和性能瓶颈。 - 自定义告警规则:基于历史数据和业务特性,设定合理的异常阈值和告警规则,实现异常的即时发现和响应。 二、自动化监控工具的引入 自动化监控工具能够持续跟踪Spark应用的运行状况,及时发现潜在问题并采取措施: - 实时监控:通过集成Prometheus、Grafana等监控工具,实现对应用性能、资源使用、任务执行时间等关键指标的实时监控。 - 自动扩展:利用Kubernetes等容器化平台的自动扩展功能,根据负载变化动态调整集群规模,确保资源高效利用。 - 故障恢复:通过HDFS、Zookeeper等组件提供的容错机制,实现任务失败时的自动重试或数据冗余备份,提升应用的高可用性。 三、精准性能调优策略 针对Spark应用的特定场景,实施精准的性能调优策略,可以从以下几个方面入手: - 参数优化:根据具体工作负载,调整Spark配置参数,如executor内存分配、shuffle操作的并行度等,以达到最优性能。 - 数据倾斜处理:采用数据预洗、分桶等技术,减少数据倾斜对任务执行效率的影响。 - 任务调度优化:合理规划任务执行顺序和依赖关系,避免不必要的等待时间,提高任务执行效率。 结论 通过优化日志记录策略、引入自动化监控工具、实施精准性能调优,可以显著提升Apache Spark应用的稳定性和性能,有效应对大数据时代面临的挑战。结合实时数据分析、故障预测与自动恢复等现代技术手段,企业能够构建更加可靠、高效的Spark生态系统,支持复杂业务场景下的数据驱动决策。
2024-09-07 16:03:18
141
秋水共长天一色
Mongo
... 引言 在数据库的世界里,MongoDB以其独特的NoSQL特性,为开发者提供了灵活性极高的数据存储解决方案。哎呀,兄弟!你想想看,咱们要是碰上一堆数据要处理,那些老一套的查询方法啊,那可真是不够用,捉襟见肘。就像你手头一堆零钱,想买个大蛋糕,结果发现零钱不够,还得再跑一趟银行兑换整钞。那时候,你就得琢磨琢磨,是不是有啥更省力、效率更高的办法了。哎呀,你知道的,MapReduce就像一个超级英雄,专门在大数据的世界里解决难题。它就像个大厨,能把一大堆食材快速变成美味佳肴。以前,处理海量数据就像是给蜗牛搬家,慢得让人着急。现在有了MapReduce,就像给搬家公司装了涡轮增压,速度嗖嗖的,效率那叫一个高啊!无论是分析市场趋势、优化业务流程还是挖掘用户行为,MapReduce都成了我们的好帮手,让我们的工作变得更轻松,效率也蹭蹭往上涨!本文将带你深入了解MongoDB中的MapReduce,从基础概念到实际应用,再到优化策略,一步步带你掌握这门技术。 1. MapReduce的基础概念 MapReduce是一种编程模型,用于大规模数据集的并行运算。在MongoDB中,我们可以通过map()和reduce()函数实现数据的分组、转换和聚合。基本流程如下: - Map阶段:数据被分割成多个分片,每个分片经过map()函数处理,产生键值对形式的数据流。 - Shuffle阶段:键相同的数据会被合并在一起,为reduce()阶段做准备。 - Reduce阶段:针对每个键,执行reduce()函数,合并所有相关值,产生最终的结果集。 2. MongoDB中的MapReduce实践 为了让你更好地理解MapReduce在MongoDB中的应用,下面我将通过一个具体的例子来展示如何使用MapReduce处理数据。 示例代码: 假设我们有一个名为sales的集合,其中包含销售记录,每条记录包含product_id和amount两个字段。我们的目标是计算每个产品的总销售额。 javascript // 首先,我们定义Map函数 db.sales.mapReduce( function() { // 输出键为产品ID,值为销售金额 emit(this.product_id, this.amount); }, function(key, values) { // 将所有销售金额相加得到总销售额 var total = 0; for (var i = 0; i < values.length; i++) { total += values[i]; } return total; }, { "out": { "inline": 1, "pipeline": [ {"$group": {"_id": "$_id", "total_sales": {$sum: "$value"} }} ] } } ); 这段代码首先通过map()函数将每个销售记录映射到键为product_id和值为amount的键值对。哎呀,这事儿啊,就像是这样:首先,你得有个列表,这个列表里头放着一堆商品,每一项商品下面还有一堆数字,那是各个商品的销售价格。然后,咱们用一个叫 reduce() 的魔法棒来处理这些数据。这个魔法棒能帮咱们把每一样商品的销售价格加起来,就像数钱一样,算出每个商品总共卖了多少钱。这样一来,我们就能知道每种商品的总收入啦!哎呀,你懂的,我们用out这个参数把结果塞进了一个临时小盒子里面。然后,我们用$group这个魔法棒,把数据一通分类整理,看看哪些地方数据多,哪些地方数据少,这样就给咱们的数据做了一次大扫除,整整齐齐的。 3. 性能优化与注意事项 在使用MapReduce时,有几个关键点需要注意,以确保最佳性能: - 数据分区:合理的数据分区可以显著提高MapReduce的效率。通常,我们会根据数据的分布情况选择合适的分区策略。 - 内存管理:MapReduce操作可能会消耗大量内存,特别是在处理大型数据集时。合理设置maxTimeMS选项,限制任务运行时间,避免内存溢出。 - 错误处理:在实际应用中,处理潜在的错误和异常情况非常重要。例如,使用try-catch块捕获并处理可能出现的异常。 4. 进阶技巧与高级应用 对于那些追求更高效率和更复杂数据处理场景的开发者来说,以下是一些进阶技巧: - 使用索引:在Map阶段,如果数据集中有大量的重复键值对,使用索引可以在键的查找过程中节省大量时间。 - 异步执行:对于高并发的应用场景,可以考虑将MapReduce操作异步化,利用MongoDB的复制集和分片集群特性,实现真正的分布式处理。 结语 MapReduce在MongoDB中的应用,为我们提供了一种高效处理大数据集的强大工具。哎呀,看完这篇文章后,你可不光是知道了啥是MapReduce,啥时候用,还能动手在自己的项目里把MapReduce用得溜溜的!就像是掌握了新魔法一样,你学会了怎么给这玩意儿加点料,让它在你的项目里发挥出最大效用,让工作效率蹭蹭往上涨!是不是感觉整个人都精神多了?这不就是咱们追求的效果嘛!嘿,兄弟!听好了,掌握新技能最有效的办法就是动手去做,尤其是像MapReduce这种技术。别光看书上理论,找一个你正在做的项目,大胆地将MapReduce实践起来。你会发现,通过实战,你的经验会大大增加,对这个技术的理解也会更加深入透彻。所以,行动起来吧,让自己的项目成为你学习路上的伙伴,你肯定能从中学到不少东西!让我们继续在数据处理的旅程中探索更多可能性!
2024-08-13 15:48:45
149
柳暗花明又一村
转载文章
...下配置MPICH进行并行编程的经验后,我们可以进一步探索当前并行计算技术的发展趋势以及MPI(Message Passing Interface)在现代高性能计算领域中的应用现状。 近年来,随着大数据和人工智能等领域的飞速发展,对计算能力的需求日益增长,MPI作为并行计算的重要通信接口标准,在解决大规模科学计算、机器学习等问题上发挥着关键作用。最新版本的MPICH已支持更多的优化策略和特性,如更好的多核CPU利用、对GPU加速计算的支持以及更高效的网络传输协议,以适应不断变化的高性能计算环境需求。 同时,微软Azure云平台和AWS Amazon EC2等云服务提供商也相继推出了预装MPI的高性能计算实例,用户无需在本地搭建复杂环境,即可直接在云端进行MPI并行程序开发与测试,极大地降低了使用门槛,促进了并行计算技术的普及与应用。 另外,随着跨平台开发需求的增长,开源社区也在积极推动MPICH在Linux、macOS等其他操作系统上的兼容性和性能优化。例如,Microsoft Research团队合作推出的Open MPI项目,旨在提供一个高度可扩展且跨平台的MPI实现,为开发者提供更多选择和灵活性。 此外,对于希望深入了解MPI编程原理及其实战技巧的读者,可以参考《Using MPI - 3rd Edition》这本书,作者详细解析了MPI的各种函数用法,并提供了大量实例代码,是MPI编程入门到精通的绝佳教程资源。 综上所述,无论是从MPI技术的最新进展、云计算环境下的并行计算解决方案,还是深入学习MPI编程的专业书籍推荐,都为那些想要在并行计算领域持续探索和实践的读者提供了丰富的延伸阅读内容。
2023-04-09 11:52:38
113
转载
转载文章
在深入探讨了海量数据处理的基本方法后,我们了解到,随着数字化进程的加速和互联网技术的发展,大数据已经成为各行各业不可或缺的资源。近年来,国内外许多企业和研究机构不断突破海量数据处理的技术瓶颈,实现了更高效的数据挖掘与分析。 例如,在2022年,Apache Spark社区发布了Spark 3.2版本,进一步优化了其对大规模数据处理的能力,特别是对结构化、半结构化数据的支持更加完善,通过Catalyst优化器的升级以及动态分区剪枝等新特性,有效提升了处理海量数据时的性能表现。 此外,Google公司近期发布的关于Bloom Filter的新研究成果,揭示了一种新型布隆过滤器变体——Counting Bloom Filter with Carry Sketches(CBCS),能够在保持较低错误率的同时,更精准地统计大规模数据集中元素出现的次数,为解决海量数据判重问题提供了新的解决方案。 同时,针对分布式环境下数据存储与计算的需求,Hadoop生态系统的组件如HDFS和YARN也在持续演进中,以适应实时流处理、机器学习等新兴应用场景。而诸如Kafka、Flink等流处理框架的兴起,也为海量数据的实时分析提供了强大支持。 不仅如此,学术界对于Trie树、Bitmap等数据结构的研究也在不断深入,结合新型硬件如SSD、GPU等进行并行优化,使得这些经典数据结构在现代海量数据处理场景下焕发新生。未来,随着量子计算和边缘计算等前沿技术的发展,海量数据处理的方法将更加丰富多元,效率也将有质的飞跃。 综上所述,海量数据处理技术正以前所未有的速度发展和完善,从理论研究到工程实践,各类创新技术和解决方案层出不穷,为大数据时代的数据价值挖掘奠定了坚实基础。广大读者可以通过关注最新的科研成果、行业报告和技术博客,深入了解这一领域的发展趋势和应用案例,以便更好地应对和解决实际工作中的海量数据挑战。
2024-03-01 12:40:17
541
转载
转载文章
...源免除排队等待,引入并行编译技术也是常用做法,如Maven3支持多核并行构建。 自定义流程 不同行业存在不同的行业规范、监管要求,各个企业有一套内部质量规范,这些要求都对软件交付流程有定制需求,如要求使用商用的代码扫描工具做安全扫描,如构建结果与企业内部通信系统对接发送消息。 在团队协同方面,不同的公司,对DevOps流程在不同团队之间分工有差异,典型的有开发者负责代码编写构建出构建物(如jar包),而部署模板、配置由运维人员负责;有的企业开发人员负责构建并部署到测试环境;有的企业开发人员直接可以部署到生产环境。这些不同的场景,对CI/CD的流程、权限管控都有定制需求。 提升资源利用率 OCI标准包含容器镜像标准与容器运行时标准两部分,容器运行时标准聚焦在定义如何将镜像包从镜像仓库拉取到本地并更新、如何隔离运行时资源这些方面。得益于分层存储与打包即部署的特性,容器镜像从到镜像仓库拉取到本地运行速度非常快(通常小于30秒,依赖镜像本身大小等因素),基于此可以实现按需分配容器运行时资源(cpu与内存),并限定单个容器资源用量;然后根据容器进程资源使用率设定弹性伸缩规则,实现自动的弹性伸缩。 这种方式相对于传统的按峰值配置资源方式,可以提升资源利用率。 按需弹性伸缩在体验与成本之间达成平衡 联动弹性伸缩 应用运行到容器,按需分配资源之后,理想情况下,Kubernetes的池子里没有空闲的资源。这时候扩容应用实例数,新扩容的实例会因资源不足调度失败。这时候需要资源池能自动扩容,加入新的虚拟机,调度新扩容的应用。 由于应用对资源的配比与Flavor有要求,因此新加入的虚拟机,应当是与应用所需要的资源配比与Flavor一致的。缩容也是类似。 弹性伸缩还有一个诉求点是“平滑”,对业务做到不感知,也称为“优雅”扩容/缩容。 请求风暴 上面提到的弹性伸缩一般是有计划或缓慢增压的场景,存在另外一种无法预期的请求风暴场景,这种场景的特征是无法预测、突然请求量增大数倍或数十倍、持续时间短。典型的例子如行情交易系统,当行情突变的时候,用户访问量徒增,持续几十分钟或一个小时。 这种场景的弹性诉求,要求短时间内能将资源池扩大数倍,关键是速度要快(秒级),否则会来不及扩容,系统已经被冲垮(如果无限流的话)。 目前基于 Virtual Kubelet 与云厂家的 Serverless 容器,理论上可以提供应对请求风暴的方案。不过在具体实施时候,需要考虑传统托管式Kubernetes容器管理平台与Serverless容器之间互通的问题,需要基于具体厂家提供的能力来评估。 基于容器技术实现计算调度平台 计算(大数据/AI训练等)场景的特征是短时间内需要大量算力,算完即释放。容器的环境一致性以及调度便利性适合这种场景。 技术选型 容器技术是属于基础设施范围,但是与传统虚拟化技术(Xen/KVM)比较,容器技术是应用虚拟化,不是纯粹的资源虚拟化,与传统虚拟化存在差异。在容器技术选型时候,需要结合当前团队在应用管理与资源管理的现状,对照容器技术与虚拟化技术的差异,选择最合适的容器技术栈。 什么是容器技术 (1)容器是一种轻量化的应用虚拟化技术。 在讨论具体的容器技术栈的时候,先介绍目前几种常用的应用虚拟化技术,当前有3种主流的应用虚拟化技术: LXC,MicroVM,UniKernel(LibOS)。 LXC: Linux Container,通过 Linux的 namespace/cgroups/chroot 等技术隔离进程资源,目前应用最广的docker就是基于LXC实现应用虚拟化的。 MicroVM: MicroVM 介于 传统的VM 与 LXC之间,隔离性比LXC好,但是比传统的VM要轻量,轻量体现在体积小(几M到几十M)、启动快(小于1s)。 AWS Firecracker 就是一种MicroVM的实现,用于AWS的Serverless计算领域,Serverless要求启动快,租户之间隔离性好。 UniKernel: 是一种专用的(特定编程语言技术栈专用)、单地址空间、使用 library OS 构建出来的镜像。UniKernel要解决的问题是减少应用软件的技术栈层次,现代软件层次太多导致越来越臃肿:硬件+HostOS+虚拟化模拟+GuestOS+APP。UniKernel目标是:硬件+HostOS+虚拟化模拟+APP-with-libos。 三种技术对比表: 开销 体积 启动速度 隔离/安全 生态 LXC 低(几乎为0) 小 快(等同进程启动) 差(内核共享) 好 MicroVM 高 大 慢(小于1s) 好 中(Kata项目) UniKernel 中 中 中 好 差 根据上述对比来看,LXC是应用虚拟化首选的技术,如果LXC无法满足隔离性要,则可以考虑MicroVM这种技术。当前社区已经在着手融合LXC与MicroVM这两种技术,从应用打包/发布调度/运行层面统一规范,Kubernetes集成Kata支持混合应用调度特性可以了解一下。 UniKernel 在应用生态方面相对比较落后,目前在追赶中,目前通过 linuxkit 工具可以在UniKernel应用镜像中使用docker镜像。这种方式笔者还未验证过,另外docker镜像运行起来之后,如何监控目前还未知。 从上述三种应用虚拟化技术对比,可以得出结论: (2)容器技术与传统虚拟化技术不断融合中。 再从规范视角来看容器技术,可以将容器技术定义为: (3)容器=OCI+CRI+辅助工具。 OCI规范包含两部分,镜像规范与运行时规范。简要的说,要实现一个OCI的规范,需要能够下载镜像并解压镜像到文件系统上组成成一个文件目录结构,运行时工具能够理解这个目录结构并基于此目录结构管理(创建/启动/停止/删除)进程。 容器(container)的技术构成就是实现OCI规范的技术集合。 对于不同的操作系统(Linux/Windows),OCI规范的实现技术不同,当前docker的实现,支持Windows与Linux与MacOS操作系统。当前使用最广的是Linux系统,OCI的实现,在Linux上组成容器的主要技术: chroot: 通过分层文件系统堆叠出容器进程的rootfs,然后通过chroot设置容器进程的根文件系统为堆叠出的rootfs。 cgroups: 通过cgroups技术隔离容器进程的cpu/内存资源。 namesapce: 通过pid, uts, mount, network, user namesapce 分别隔离容器进程的进程ID,时间,文件系统挂载,网络,用户资源。 网络虚拟化: 容器进程被放置到独立的网络命名空间,通过Linux网络虚拟化veth, macvlan, bridge等技术连接主机网络与容器虚拟网络。 存储驱动: 本地文件系统,使用容器镜像分层文件堆叠的各种实现驱动,当前推荐的是overlay2。 广义的容器还包含容器编排,即当下很火热的Kubernetes。Kubernetes为了把控容器调度的生态,发布了CRI规范,通过CRI规范解耦Kubelet与容器,只要实现了CRI接口,都可以与Kubelet交互,从而被Kubernetes调度。OCI规范的容器实现与CRI标准接口对接的实现是CRI-O。 辅助工具用户构建镜像,验证镜像签名,管理存储卷等。 容器定义 容器是一种轻量化的应用虚拟化技术。 容器=OCI+CRI+辅助工具。 容器技术与传统虚拟化技术不断融合中。 什么是容器编排与调度 选择了应用虚拟化技术之后,还需要应用调度编排,当前Kubernetes是容器领域内编排的事实标准,不管使用何种应用虚拟化技术,都已经纳入到了Kubernetes治理框架中。 Kubernetes 通过 CRI 接口规范,将应用编排与应用虚拟化实现解耦:不管使用何种应用虚拟化技术(LXC, MicroVM, LibOS),都能够通过Kubernetes统一编排。 当前使用最多的是docker,其次是cri-o。docker与crio结合kata-runtime都能够支持多种应用虚拟化技术混合编排的场景,如LXC与MicroVM混合编排。 docker(now): Moby 公司贡献的 docker 相关部件,当前主流使用的模式。 docker(daemon) 提供对外访问的API与CLI(docker client) containerd 提供与 kubelet 对接的 CRI 接口实现 shim负责将Pod桥接到Host namespace。 cri-o: 由 RedHat/Intel/SUSE/IBM/Hyper 公司贡献的实现了CRI接口的符合OCI规范的运行时,当前包括 runc 与 kata-runtime ,也就是说使用 cir-o 可以同时运行LXC容器与MicroVM容器,具体在Kata介绍中有详细说明。 CRI-O: 实现了CRI接口的进程,与 kubelet 交互 crictl: 类似 docker 的命令行工具 conmon: Pod监控进程 other cri runtimes: 其他的一些cri实现,目前没有大规模应用到生产环境。 容器与传统虚拟化差异 容器(container)的技术构成 前面主要讲到的是容器与编排,包括CRI接口的各种实现,我们把容器领域的规范归纳为南向与北向两部分,CRI属于北向接口规范,对接编排系统,OCI就属于南向接口规范,实现应用虚拟化。 简单来讲,可以这么定义容器: 容器(container) ~= 应用打包(build) + 应用分发(ship) + 应用运行/资源隔离(run)。 build-ship-run 的内容都被定义到了OCI规范中,因此也可以这么定义容器: 容器(container) == OCI规范 OCI规范包含两部分,镜像规范与运行时规范。简要的说,要实现一个OCI的规范,需要能够下载镜像并解压镜像到文件系统上组成成一个文件目录结构,运行时工具能够理解这个目录结构并基于此目录结构管理(创建/启动/停止/删除)进程。 容器(container)的技术构成就是实现OCI规范的技术集合。 对于不同的操作系统(Linux/Windows),OCI规范的实现技术不同,当前docker的实现,支持Windows与Linux与MacOS操作系统。当前使用最广的是Linux系统,OCI的实现,在Linux上组成容器的主要技术: chroot: 通过分层文件系统堆叠出容器进程的rootfs,然后通过chroot设置容器进程的根文件系统为堆叠出的rootfs。 cgroups: 通过cgroups技术隔离容器进程的cpu/内存资源。 namesapce: 通过pid, uts, mount, network, user namesapce 分别隔离容器进程的进程ID,时间,文件系统挂载,网络,用户资源。 网络虚拟化: 容器进程被放置到独立的网络命名空间,通过Linux网络虚拟化veth, macvlan, bridge等技术连接主机网络与容器虚拟网络。 存储驱动: 本地文件系统,使用容器镜像分层文件堆叠的各种实现驱动,当前推荐的是overlay2。 广义的容器还包含容器编排,即当下很火热的Kubernetes。Kubernetes为了把控容器调度的生态,发布了CRI规范,通过CRI规范解耦Kubelet与容器,只要实现了CRI接口,都可以与Kubelet交互,从而被Kubernetes调度。OCI规范的容器实现与CRI标准接口对接的实现是CRI-O。 容器与虚拟机差异对比 容器与虚拟机的差异可以总结为2点:应用打包与分发的差异,应用资源隔离的差异。当然,导致这两点差异的根基是容器是以应用为中心来设计的,而虚拟化是以资源为中心来设计的,本文对比容器与虚拟机的差异,更多的是站在应用视角来对比。 从3个方面对比差异:资源隔离,应用打包与分发,延伸的日志/监控/DFX差异。 1.资源隔离 隔离机制差异 容器 虚拟化 mem/cpu cgroup, 使用时候设定 require 与 limit 值 QEMU, KVM network Linux网络虚拟化技术(veth,tap,bridge,macvlan,ipvlan), 跨虚拟机或出公网访问:SNAT/DNAT, service转发:iptables/ipvs, SR-IOV Linux网络虚拟化技术(veth,tap,bridge,macvlan,ipvlan), QEMU, SR-IOV storage 本地存储: 容器存储驱动 本地存储:virtio-blk 差异引入问题与实践建议 应用程序未适配 cgroup 的内存隔离导致问题: 典型的是 JVM 虚拟机,在 JVM 启动时候会根据系统内存自动设置 MaxHeapSize 值,通常是系统内存的1/4,但是 JVM 并未考虑 cgroup 场景,读系统内存时候任然读取主机的内存来设置 MaxHeapSize,这样会导致内存超过 cgroup 限制从而导致进程被 kill 。问题详细阐述与解决建议参考Java inside docker: What you must know to not FAIL。 多次网络虚拟化问题: 如果在虚拟机内使用容器,会多一层网络虚拟化,并加入了SNAT/DNAT技术, iptables/ipvs技术,对网络吞吐量与时延都有影响(具体依赖容器网络方案),对问题定位复杂度变高,同时还需要注意网络内核参数调优。 典型的网络调优参数有:转发表大小 /proc/sys/net/netfilter/nf_conntrack_max 使用iptables 作为service转发实现的时候,在转发规则较多的时候,iptables更新由于需要全量更新导致非常耗时,建议使用ipvs。详细参考[华为云在 K8S 大规模场景下的 Service 性能优化实践](https://zhuanlan.zhihu.com/p/37230013)。 容器IP地址频繁变化不固定,周边系统需要协调适配,包括基于IP地址的白名单或防火墙控制策略需要调整,CMDB记录的应用IP地址需要适配动态IP或者使用服务名替代IP地址。 存储驱动带来的性能损耗: 容器本地文件系统是通过联合文件系统方式堆叠出来的,当前主推与默认提供的是overlay2驱动,这种模式应用写本地文件系统文件或修改已有文件,使用Copy-On-Write方式,也就是会先拷贝源文件到可写层然后修改,如果这种操作非常频繁,建议使用 volume 方式。 2.应用打包与分发 应用打包/分发/调度差异 容器 虚拟化 打包 打包既部署 一般不会把应用程序与虚拟机打包在一起,通过部署系统部署应用 分发 使用镜像仓库存储与分发 使用文件存储 调度运行 使用K8S亲和/反亲和调度策略 使用部署系统的调度能力 差异引入问题与实践建议 部署提前到构建阶段,应用需要支持动态配置与静态程序分离;如果在传统部署脚本中依赖外部动态配置,这部分需要做一些调整。 打包格式发生变化,制作容器镜像需要注意安全/效率因素,可参考Dockerfile最佳实践 容器镜像存储与分发是按layer来组织的,镜像在传输过程中放篡改的方式是传统软件包有差异。 3.监控/日志/DFX 差异 容器 虚拟化 监控 cpu/mem的资源上限是cgroup定义的;containerd/shim/docker-daemon等进程的监控 传统进程监控 日志采集 stdout/stderr日志采集方式变化;日志持久化需要挂载到volume;进程会被随机调度到其他节点导致日志需要实时采集否则分散很难定位 传统日志采集 问题定位 进程down之后自动拉起会导致问题定位现场丢失;无法停止进程来定位问题因为停止即删除实例 传统问题定位手段 差异引入问题实践与建议 使用成熟的监控工具,运行在docker中的应用使用cadvisor+prometheus实现采集与警报,cadvisor中预置了常用的监控指标项 对于docker管理进程(containerd/shim/docker-daemon)也需要一并监控 使用成熟的日志采集工具,如果已有日志采集Agent,则可以考虑将日志文件挂载到volume后由Agent采集;需要注意的是stderr/stdout输出也要一并采集 如果希望容器内应用进程退出后保留现场定位问题,则可以将Pod的restartPolicy设置为never,进程退出后进程文件都还保留着(/var/lib/docker/containers)。但是这么做的话需要进程没有及时恢复,会影响业务,需要自己实现进程重拉起。 团队配合 与周边的开发团队、架构团队、测试团队、运维团队评审并交流方案,与周边团队达成一致。 落地策略与注意事项 逐步演进过程中网络互通 根据当前已经存在的基础实施情况,选择容器化落地策略。通常使用逐步演进的方式,由于容器化引入了独立的网络namespace导致容器与传统虚拟机进程网络隔离,逐步演进过程中如何打通隔离的网络是最大的挑战。 分两种场景讨论: 不同服务集群之间使用VIP模式互通: 这种模式相对简单,基于VIP做灰度发布。 不同服务集群之间使用微服务点对点模式互通(SpringCloud/ServiceComb/Dubbo都是这一类): 这种模式相对复杂,在逐步容器化过程中,要求容器网络与传统虚拟机网络能够互通(难点是在虚拟机进程内能够直接访问到容器网络的IP地址),当前解决这个问题有几种方法。 自建Kubernetes场景,可使用开源的kube-router,kube-router 使用BGP协议实现容器网络与传统虚拟机网络之间互通,要求网络交换机支持BGP协议。 使用云厂商托管Kubernetes场景,选择云厂商提供的VPC-Router互通的网络插件,如阿里云的Terway网络插件, 华为云的Underlay网络模式。 选择物理机还是虚拟机 选择物理机运行容器还是虚拟机运行容器,需要结合基础设施与业务隔离性要求综合考虑。分两种场景:自建IDC、租用公有云。 自建IDC: 理想情况是使用物理机组成一个大集群,根据业务诉求,对资源保障与安全性要求高的应用,使用MicorVM方式隔离;普通应用使用LXC方式隔离。所有物理机在一个大集群内,方便削峰填谷提升资源利用率。 租用公有云:当前公有云厂家提供的裸金属服务价格较贵且只能包周期,使用裸金属性价比并不高,使用虚拟机更合适。 集群规模与划分 选择集群时候,是多个应用共用一个大集群,还是按应用分组分成多个小集群呢?我们把节点规模数量>=1000的定义为大集群,节点数<1000的定义为小集群。 大集群的优点是资源池共享容器,方便资源调度(削峰填谷);缺点是随着节点数量与负载数量的增多,会引入管理性能问题(需要量化): DNS 解析表变大,增加/删除 Service 或 增加/删除 Endpoint 导致DNS表刷新慢 K8S Service 转发表变大,导致工作负载增加/删除刷新iptables/ipvs记录变慢 etcd 存储空间变大,如果加上ConfigMap,可能导致 etcd 访问时延增加 小集群的优点是不会有管理性能问题,缺点是会导致资源碎片化,不容易共享。共享分两种情况: 应用之间削峰填谷:目前无法实现 计算任务与应用之间削峰填谷:由于计算任务是短时任务,可以通过上层的任务调度软件,在多个集群之间分发计算任务,从而达到集群之间资源共享的目的。 选择集群规模的时候,可以参考上述分析,结合实际情况选择适合的集群划分。 Helm? Helm是为了解决K8S管理对象散碎的问题,在K8S中并没有"应用"的概念,只有一个个散的对象(Deployment, ConfigMap, Service, etc),而一个"应用"是多个对象组合起来的,且这些对象之间还可能存在一定的版本配套关系。 Helm 通过将K8S多个对象打包为一个包并标注版本号形成一个"应用",通过 Helm 管理进程部署/升级这个"应用"。这种方式解决了一些问题(应用分发更方便)同时也引入了一些问题(引入Helm增加应用发布/管理复杂度、在K8S修改了对象后如何同步到Helm)。对于是否需要使用Helm,建议如下: 在自运维模式下不使用Helm: 自运维模式下,很多场景是开发团队交付一个运行包,运维团队负责部署与配置下发,内部通过兼容性或软件包与配置版本配套清单、管理软件包与配置的配套关系。 在交付软件包模式下使用Helm: 交付软件包模式下,Helm 这种把散碎组件组装为一个应用的模式比较适合,使用Helm实现软件包分发/部署/升级场比较简单。 Reference DOCKER vs LXC vs VIRTUAL MACHINES Cgroup与LXC简介 Introducing Container Runtime Interface (CRI) in Kubernetes frakti rkt appc-spec OCI 和 runc:容器标准化和 docker Linux 容器技术史话:从 chroot 到未来 Linux Namespace和Cgroup Java inside docker: What you must know to not FAIL QEMU,KVM及QEMU-KVM介绍 kvm libvirt qemu实践系列(一)-kvm介绍 KVM 介绍(4):I/O 设备直接分配和 SR-IOV [KVM PCI/PCIe Pass-Through SR-IOV] prometheus-book 到底什么是Unikernel? The Rise and Fall of the Operating System The Design and Implementation of the Anykernel and Rump Kernels UniKernel Unikernel:从不入门到入门 OSv 京东如何打造K8s全球最大集群支撑万亿电商交易 Cloud Native App Hub 更多云最佳实践 https://best.practices.cloud 本篇文章为转载内容。原文链接:https://blog.csdn.net/sinat_33155975/article/details/118013855。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-17 15:03:28
225
转载
转载文章
...供调试、源代码控制及性能剖析的游戏开发工具 引擎基础系统、渲染、碰撞、物理、角色动画、游戏世界对象模型等引擎子系统 多平台游戏引擎 多处理器环境下的游戏编程 工作管道及游戏资产数据库 作者/译者简介 作者介绍:Jason Gregory在1994年开始任职专业软件工程师,自1999年3月开始在游戏产业中任职软件工程师。在圣迭哥Midway Home Entertainment公司开始游戏编程的他,为《疯狂飞行员(Freaky Flyers)》及《Crank the Weasel》开发PlayStation 2/Xbox上的动画系统。在2003年,他转到洛杉矶艺电,为《荣誉勋章:血战太平洋(Medal of Honor: Pacific Assault)》开发游戏引擎及游戏性技术,并在《荣誉勋章:空降神兵(Medal of Honor: Airborne)》中担任首席工程师。他现时是顽皮狗公司的通才程序员,为《神秘海域:德雷克船长的宝藏(Uncharted: Drake's Fortune)》及《神秘海域:纵横四海(Uncharted: Among Thieves)》开发引擎及游戏性软件。他也在南加州大学教授游戏技术的课程。 译者简介:叶劲峰(Milo Yip)从小自习编程,并爱好计算机图形学。上中学时兼职开发策略RPG《王子传奇》,该游戏在1995年于台湾发行。其后他获取了香港大学认知科学学士、香港中文大学系统工程及工程管理哲学硕士。毕业后在香港理工大学设计学院从事游戏引擎及相关技术的研发,职至项目主任。除发表学术文章外,也曾合著《DirectX9游戏编程实务》。2008年往上海育碧担任引擎工程师开发《美食从天而降(Cloudy with a Chance of Meatballs)》Xbox360/PS3/Wii/PC,2009年起于麻辣马开发《爱丽丝:疯狂回归(Alice: Madness Returns)》Xbox360/PS3/PC,2011年加入腾讯互动娱乐引擎技术中心担任专家工程师,所研发的技术已用于《斗战神》、《天涯明月刀》、《众神争霸》等项目中。 推荐序1 最初拿到《Game Engine Architecture》一书的英文版,是编辑侠少邮寄给我的打印版。他建议我接下翻译此书的合同。当时我正在杭州带领一个团队开发3D游戏引擎,我和我的同事都对这本书的内容颇有兴趣,两大本打印的英文书立刻在同事间传开。可惜那段时间个人精力顾及不来,把近千页的英文读物精读而后翻译成中文对个人的业余时间是个极大的挑战,不能担此翻译任务颇为遗憾。 不久以后听说Milo Yip(叶劲峰)已开始着手翻译,甚为欣喜。翻译此巨著,他一定是比我更合适的人选。我和Milo虽未曾蒙面,但神交已久。在网络上读过一些他的成长经历,和我颇为相似,心有戚戚。他对游戏3D实时渲染技术研究精深为我所不及,我们曾通过Google Talk讨论过许多技术问题,他都有独到的见解。翻译工作开始后,Milo是香港人,英文技术术语在香港的中文译法和大陆的有许多不同。但此书由大陆出版社出版,考虑到面对的读者主要是大陆程序员,Milo希望能更符合大陆程序员的用词习惯,所以在翻译一开始就通过Google Docs创建了协作页面,邀请大家共同探讨书中技术名词的中译名。从中我们可以一窥他作为译者的慎重。 三年之后,有幸在出版之前就拿到了完整的译本。这是一本用LaTeX精心排版的800页的电子书,我只花了一周时间,几乎是一口气读完。流畅的阅读享受,绝对不仅仅是因为原著精彩的内容,精美的版面和翔实的译注也加了不少分。 在阅读本书的过程中,我不只一次地获得共鸣。例如在第5章的内存管理系统的介绍中,作者介绍的几种游戏特有的内存管理方法我都曾在项目中用过,而这是第一次有书籍专门将这些方法详尽记录;又如第11章动画系统的介绍,我们也同样在3D引擎开发过程中改进原有动画片段混合方法的经历。虽然书中介绍的每个技术点,都可能可以在某篇论文,某本其他的书的章节,某篇网络blog上见过,但之前却无一本书可以把这些东西放在一起相互参照。对于从事游戏引擎开发的程序员来说,了解各种引擎在处理每个具体问题时的方案是相当重要的。而每种方案又各有利弊,即使不做引擎开发工作而是在某一特定游戏引擎上做游戏开发,从中也可以理解引擎的局限性以及可能的改进方法。尤其是第14章介绍的对游戏性相关系统的设计,各个开发人员几乎都是凭经验设计,很少见有书籍对这些做总结。对于基于渲染引擎做开发的游戏程序员,这是必须面对的工作,这一章会有很大的借鉴意义。 本书作者是业内资深的游戏引擎开发人,他所参于的《神秘海域》和《最后生还者》都是我的个人最爱。在玩游戏的过程中,作为游戏程序员的天性,自然会不断地猜想各个技术点是如何实现的,背后需要怎样的工具支持。能在书中一一得到印证是件特别开心的事情。作者反复强调代码实践的重要性,在书中遍布着C++代码。我不认为这些代码有直接取来使用的价值,但它们极大地帮助了读者理解书中的技术点。书中列出的顽皮狗工作室用lisp方言作为游戏配置脚本的范例也给我很大的启发,有了这些具体的代码示例以及作者本身的一线工程师背景,也让我确信书中那些关于主机游戏开发相关等,我所没有接触过的内容都也绝非泛泛而谈。 国内的游戏开发社区的壮大,主要是随最近十年的MMO风潮而生。而就在大型网络游戏在中国有些畸形发展,让这类游戏偏离电子游戏游戏性的趋势时,我们有幸迎来了为移动设备开发游戏的大潮。游戏开发的重心重新回到游戏性本身。我们更需要去借鉴单机游戏是如何为玩家带来更纯粹的游戏体验,我相信书中记录的各种技术点会变的更有帮助。 资深游戏开发及创业者 云风 @简悦云风 推荐序2 在我认识的许多游戏业开发同仁中,只有少数香港同胞,Milo Yip(叶劲峰)却正是这样一位给我印象非常深刻的优秀香港游戏开发者。我俩认识,是在Milo加入腾讯互动娱乐研发部引擎技术中心后,说来到现在也只是两年多时间。其间,他为人的谦逊务实,对待技术问题的严谨求真态度,对算法设计和性能优化的娴熟技术,都为人所称道。Milo一丝不苟的工作风格,甚至表现在对待技术文档排版这类事情上(Milo常执著地用LaTeX将技术文档排到完美),我想这一定是他在香港读大学、硕士及在香港理工大学的多媒体创新中心从事研究员,一贯沿袭至今的好作风。 我很高兴腾讯游戏有实力吸引到这样优秀的技术专家;即使在其已从上海迁回香港家中,依然选择到深圳腾讯互动娱乐总部工作。叶兄从此工作日每天早晚过关,来往香港和深圳两地,虽有舟车劳顿,但是兼顾了对家庭的照顾和在游戏引擎方面的专业研究,希望这样的状况是令他满意的。 认识叶兄当时,我便知道他在进行Jason Gregory所著《游戏引擎架构》一书的中译工作。因为自己从前也有业余翻译游戏开发有关书籍的经历,所以我能理解其中的辛苦和责任重大,对叶兄也更多一分钦佩。我以为,本书以及本书的中文读者最大的幸运便是,遇到叶兄这位对游戏有着如同对家对国般强烈责任感,犹如“游戏科学工作者”般的专业译者! 现在(2013年年末)无疑是游戏史上对独立游戏制作者最友好的年代。开发设备方便获得(相对过往仅由主机厂商授权才能获得专利开发设备,现在有一台智能手机和一台个人电脑就可以开发)、技术工具友好、调试过程简单方便,且互联网上有丰富的例程和开源代码参考,也有网上社区便于交流。很多爱好者能够很快地制作出可运行的游戏原型,其中一些也能发布到应用商店。 但是不全面掌握各方面知识,尤其是游戏引擎架构知识,往往只能停留在勉强修改、凑合重用别人提供的资源的应用程度上,难以做极限的性能改进,更妄谈革命式的架构创新。这样的程度是很难在成千上万的游戏中脱颖而出的。我们所认可的真正的游戏大作,必定是在某方面大幅超越用户期待的产品。为了打造这样的产品,游戏内容创作者(策划、美术等)需要“戴着镣铐跳舞”(在当前的机能下争取更多的创作自由度),而引擎架构合理的游戏可以经得起──也值得进行──反复优化,最终可以提供更多的自由度,这是大作出现的技术前提。 书的作者、译者、出版社的编者,加上读者,大家是因书而结缘的有缘人。因叶兄这本《游戏引擎架构》译著而在线上线下相识的读者们,你们是不是因“了解游戏引擎架构,从而制作/优化好游戏”这样的理想而结了缘呢? 亲爱的读者,愿你的游戏有一天因谜题巧妙绝伦、趣味超凡、虚拟世界气势磅礴、视觉效果逼真精美等专业因素取得业界褒奖,并得到玩家真诚的赞美。希望届时曾读叶兄这本《游戏引擎架构》译作的你,也可以回馈社会,回馈游戏开发的学习社区,帮助新人。希望你也可以建立微信公众号、博客等,或翻译游戏开发书籍,造福外语不好的读者,所以如果你的外语(英语、日语、韩语之于游戏行业比较重要)水平仍需精进,现在也可以同步加油了! 腾讯《天天爱消除》游戏团队Leader 沙鹰 @也是沙鹰 译序 数千年以来,艺术家们通过文学、绘画、雕塑、建筑、音乐、舞蹈、戏剧等传统艺术形式充实人类的精神层面。自20世纪中叶,计算机的普及派生出另一种艺术形式──电子游戏。游戏结合了上述传统艺术以及近代科技派生的其他艺术(如摄影、电影、动画),并且完全脱离了艺术欣赏这种单向传递的方式──游戏必然是互动的,“玩家”并不是“读者”、“观众”或“听众”,而是进入游戏世界、感知并对世界做出反应的参与者。 基于游戏的互动本质,游戏的制作通常比其他大众艺术复杂。商业游戏的制作通常需要各种人才的参与,而他们则需要依赖各种工具及科技。游戏引擎便是专门为游戏而设计的工具及科技集成。之所以称为引擎,如同交通工具中的引擎,提供了最核心的技术部分。因为复杂,研发成本高,人们不希望制作每款游戏(或车款)时都重新设计引擎,重用性是游戏引擎的一个重要设计目标。 然而,各游戏本身的性质以及平台的差异,使研发完全通用的游戏引擎变得极困难,甚至不可能。市面上出售的游戏引擎,有一些虽然已经达到很高的技术水平,但在商业应用中,很多时候还是需要因应个别游戏项目对引擎改造、整合、扩展及优化。因此,即使能使用市面上最好的商用引擎或自研引擎,我们仍需要理解当中的架构、各种机制和技术,并且分析及解决在制作中遇到的问题。这些也是译者曾任于上海两家工作室时的主要工作范畴。 选择翻译此著作,主要原因是在阅读中得到共鸣,并且能知悉一些知名游戏作品实际上所采用的方案。有感坊间大部分游戏开发书籍并不是由业内人士执笔,内容只足够应付一些最简单的游戏开发,欠缺宏观比较各种方案,技术与当今实际情况也有很大差距。而一些Gems类丛书虽然偶有好文章,但受形式所限欠缺系统性、全面性。难得本书原作者身为世界一流游戏工作室的资深游戏开发者(注1),在繁重的游戏开发工作外,还在大学教授游戏开发课程以至编写本著作。此外,从与内地同事的交流中,了解到许多从业者不愿意阅读外文书籍。为了普及知识及反馈业界社会,希望能尽绵力。 或许有些人以为本著作是针对单机/游戏机游戏的,并不适合国内以网游为主的环境。但译者认为这是一种误解,许多游戏本身所涉及的技术是具通用性的。例如游戏性相关的游戏性系统、场景管理、人工智能、物理模拟等部分,许多时候也会同时用于网游的前台和后台。现时,一些动作为主、非MMO的国内端游甚至会直接在后台运行传统意义上的游戏引擎。至于前台相关的技术,单机和端游的区别更少。此外,随着近年移动终端的兴起,其硬件性能已超越传统掌上游戏机,开发手游所需的技术与传统掌上游戏机并无太大差异。还可预料,现时单机/游戏机的一些较高级的架构及技术,将在不远的未来着陆移动终端平台。 译者认为,本书涵括游戏开发技术的方方面面,同时适合入门及经验丰富的游戏程序员。书名中的架构二字,并不单是给出一个系统结构图,而是描述每个子系统的需求、相关技术及与其他子系统的关系。对译者本人而言,本书的第11章(动画系统)及第14章(运行时游戏性基础系统)是本书特別精彩之处,含有许多少见于其他书籍的内容。而第10章(渲染引擎)由于是游戏引擎中的一个极大的部分,有限的篇幅可能未能覆盖广度及深度,推荐读者参考[1](注2),人工智能方面也需参考其他专著。 本译作采用LaTeX排版(注3),以Inkscape编译矢量图片。为了令阅读更流畅,内文中的网址都统一改以脚注标示。另外,由于现时游戏开发相关的文献以英文为主,而且游戏开发涉及的知识面很广,本译作尽量以括号形式保留英文术语。为了方便读者查找内容,在附录中增设中英文双向索引(索引条目与原著的不同)。 本人在香港成长学习及工作,至2008年才赴内地游戏工作室工作,不黯内地的中文写作及用字习惯,翻译中曾遇到不少困难。有幸得到出版社人员以及良师益友的帮助,才能完成本译作。特别感谢周筠老师支持本作的提案,并耐心地给予协助及鼓励。编辑张春雨老师和卢鸫翔老师,以及好友余晟给予了大量翻译上的知识及指导。也感谢游戏业界专家云风、大宝和Dave给予了许多宝贵意见。此书的翻译及排版工作比预期更花时间,感谢妻子及儿女们的体谅。此次翻译工作历时三年半,因工作及家庭事宜导致严重延误,唯有在翻译及排版工作上更尽心尽力,希望求得等待此译作的读者们谅解。无论是批评或建议,诚希阁下通过电邮miloyip@gmail.com、新浪微博、豆瓣等渠道不吝赐教。 叶劲峰(Milo Yip) 2013年10月 原作者是顽皮狗(Naughty Dog)《神秘海域(Uncharted)》系列的通才程序员、《最后生还者(The Last of Us)》的首席程序员,之前还曾在EA和Midway工作。 中括号表示引用附录中的参考文献。一些参考条目加入了其中译本的信息。 具体是使用CTEX套装,它是在MiKTeX的基础上增加中文的支持。 前言 最早的电子游戏完全由硬件构成,但微处理器(microprocessor)的高速发展完全改变了游戏的面貌。现在的游戏是在多用途的PC和专门的电子游戏主机(video game console)上玩的,凭借软件带来绝妙的游戏体验。从最初的游戏诞生至今已有半个世纪,但很多人仍然认为游戏是一个未成熟的产业。即使游戏可能是个年轻的产业,若仔细观察,也会发现它正在高速发展。 现时游戏已成为一个上百亿美元的产业,覆盖不同年龄、性别的广泛受众。 千变万化的游戏,可以分为从纸牌游戏到大型多人在线游戏(massively multiplayer online game,MMOG)等多个种类(category)和“类型(genre)”(注1),也可以运行在任何装有微芯片(microchip)的设备上 。你现在可以在PC、手机及多种特别为游戏而设计的手持/电视游戏主机上玩游戏。家用电视游戏通常代表最尖端的游戏科技,又由于它们是周期性地推出新版本,因此有游戏机“世代”(generation)的说法。最新一代(注2)的游戏机包括微软的Xbox 360和索尼的PlayStation 3,但一定不可忽视长盛不衰的PC,以及最近非常流行的任天堂Wii。 最近,剧增的下载式休闲游戏,使这个多样化的商业游戏世界变得更复杂。虽然如此,大型游戏仍然是一门大生意。今天的游戏平台非常复杂,有难以置信的运算能力,这使软件的复杂度得以进一步提升。所有这些先进的软件都需要由人创造出来,这导致团队人数增加,开发成本上涨。随着产业变得成熟,开发团队要寻求更好、更高效的方式去制作产品,可复用软件(reusable software)和中间件(middleware)便应运而生,以补偿软件复杂度的提升。 由于有这么多风格迥异的游戏及多种游戏平台,因此不可能存在单一理想的软件方案。然而,业界已经发展出一些模式 ,也有大量的潜在方案可供选择。现今的问题是如何找到一个合适的方案去迎合某个项目的需要。再进一步,开发团队必须考虑项目的方方面面,以及如何把各方面集成。对于一个崭新的游戏设计,鲜有可能找到一个完美搭配游戏设计各方面的软件包。 现时业界内的老手,入行时都是“开荒牛”。我们这代人很少是计算机科学专业出身(Matt的专业是航空工程、Jason的专业是系统设计工程),但现时很多学院已设有游戏开发的课程和学位。时至今日,为了获取有用的游戏开发信息,学生和开发者必须找到好的途径。对于高端的图形技术,从研究到实践都有大量高质量的信息。可是,这些信息经常不能直接应用到游戏的生产环境,或者没有一个生产级质量的实现。对于图形以外的游戏开发技术,市面上有一些所谓的入门书籍,没提及参考文献就描述很多内容细节,像自己发明的一样。这种做法根本没有用处,甚至经常带有不准确的内容。另一方面,市场上有一些高端的专门领域书籍,例如物理、碰撞、人工智能等。可是,这类书或者啰嗦到让你难以忍受,或者高深到让部分读者无法理解,又或者内容过于零散而难于融会贯通。有一些甚至会直接和某项技术挂钩,软硬件一旦改动,其内容就会迅速过时。 此外,互联网也是收集相关知识的绝佳工具。可是,除非你确实知道要找些什么,否则断链、不准确的资料、质量差的内容也会成为学习障碍。 好在,我们有Jason Gregory,他是一位拥有在顽皮狗(Naughty Dog)工作经验的业界老手,而顽皮狗是全球高度瞩目的游戏工作室之一。Jason在南加州大学教授游戏编程课程时,找不到概括游戏架构的教科书。值得庆幸的是,他承担了这个任务,填补了这个空白。 Jason把应用到实际发行游戏的生产级别知识,以及整个游戏开发的大局编集于本书。他凭经验,不仅融汇了游戏开发的概念和技巧,还用实际的代码示例及实现例子去说明怎样贯通知识来制作游戏。本书的引用及参考文献可以让读者更深入探索游戏开发过程的各方面。虽然例子经常是基于某些技术的,但是概念和技巧是用来实际创作游戏的,它们可以超越个别引擎或API的束缚。 本书是一本我们入行做游戏时想要的书。我们认为本书能让入门者增长知识,也能为有经验者开拓更大的视野。 Jeff Lander(注3) Matthew Whiting(注4) 译注:Genre一词在文学中为体裁。电影和游戏里通常译作类型。不同的游戏类型可见1.2节。 译注:按一般说法,2005年至今属于第7个游戏机世代。这3款游戏机的发行年份为Xbox 360(2005)、PlayStation 3(2006)、Wii(2006)。有关游戏机世代可参考维基百科。 译注:Jeff Lander现时为Darwin 3D公司的首席技术总监、Game Tech公司创始人,曾为艺电首席程序员、Luxoflux公司游戏性及动画技术程序员。 译注:Matthew Whiting现时为Wholesale Algorithms公司程序员,曾为Luxoflux公司首席软件工程师、Insomniac Games公司程序员。 序言 欢迎来到《游戏引擎架构》世界。本书旨在全面探讨典型商业游戏引擎的主要组件。游戏编程是一个庞大的主题,有许多内容需要讨论。不过相信你会发现,我们讨论的深度将足以使你充分理解本书所涵盖的工程理论及常用实践的方方面面。话虽如此,令人着迷的漫长游戏编程之旅其实才刚刚启程。与此相关的每项技术都包含丰富内容,本书将为你打下基础,并引领你进入更广阔的学习空间。 本书焦点在于游戏引擎的技术及架构。我们会探讨商业游戏引擎中,各个子系统的相关理论,以及实现这些理论所需要的典型数据结构、算法和软件接口。游戏引擎与游戏的界限颇为模糊。我们将把注意力集中在引擎本身,包括多个低阶基础系统(low-level foundation system)、渲染引擎(rendering engine)、碰撞系统(collision system)、物理模拟(physics simulation)、人物动画(character animation),及一个我称为游戏性基础层(gameplay foundation layer)的深入讨论。此层包括游戏对象模型(game object model)、世界编辑器(world editor)、事件系统(event system)及脚本系统(scripting system)。我们也将会接触游戏性编程(gameplay programming)的多个方面,包括玩家机制(player mechanics)、摄像机(camera)及人工智能(artificial intelligence,AI)。然而,这类讨论会被限制在游戏性系统和引擎接口范围。 本书可以作为大学中等级游戏程序设计中两到三门课程的教材。当然,本书也适合软件工程师、业余爱好者、自学的游戏程序员,以及游戏行业从业人员。通过阅读本书,资历较浅的游戏程序员可以巩固他们所学的游戏数学、引擎架构及游戏科技方面的知识。专注某一领域的资深程序员也能从本书更为全面的介绍中获益。 为了更好地学习本书内容,你需要掌握基本的面向对象编程概念并至少拥有一些C++编程经验。尽管游戏行业已经开始尝试使用一些新的、令人兴奋的编程语言,然而工业级的3D游戏引擎仍然是用C或C++编写的,任何认真的游戏程序员都应该掌握C++。我们将在第3章重温一些面向对象编程的基本原则,毫无疑问,你还会从本书学到一些C++的小技巧,不过C++的基础最好还是通过阅读[39]、[31]及[32]来获得。如果你对C++已经有点生疏,建议你在阅读本书的同时,最好能重温这几本或者类似书籍。如果你完全没有C++经验,在看本书之前,可以考虑先阅读[39]的前几章,或者尝试学习一些C++的在线教程。 学习编程技能最好的方法就是写代码。在阅读本书时,强烈建议你选择一些特别感兴趣的主题付诸实践。举例来说,如果你觉得人物动画很有趣,那么可以首先安装OGRE,并测试一下它的蒙皮动画示范。接着还可以尝试用OGRE实现本书谈及的一些动画混合技巧。下一步你可能会打算用游戏手柄控制人物在平面上行走。等你能玩转一些简单的东西了,就应该以此为基础,继续前进!之后可以转移到另一个游戏技术范畴,周而复始。这些项目是什么并不重要,重要的是你在实践游戏编程的艺术,而不是纸上谈兵。 游戏科技是一个活生生、会呼吸的家伙 ,永远不可能将之束缚于书本之上 。因此,附加的资源、勘误、更新、示例代码、项目构思等已经发到本书的网站。 目录 推荐序1 iii推荐序2 v译序 vii序言 xvii前言 xix致谢 xxi第一部分 基础 1第1章 导论 31.1 典型游戏团队的结构 41.2 游戏是什么 71.3 游戏引擎是什么 101.4 不同游戏类型中的引擎差异 111.5 游戏引擎概观 221.6 运行时引擎架构 271.7 工具及资产管道 46第2章 专业工具 532.1 版本控制 532.2 微软Visual Studio 612.3 剖析工具 782.4 内存泄漏和损坏检测 792.5 其他工具 80第3章 游戏软件工程基础 833.1 重温C++及最佳实践 833.2 C/C++的数据、代码及内存 903.3 捕捉及处理错误 118第4章 游戏所需的三维数学 1254.1 在二维中解决三维问题 1254.2 点和矢量 1254.3 矩阵 1394.4 四元数 1564.5 比较各种旋转表达方式 1644.6 其他数学对象 1684.7 硬件加速的SIMD运算 1734.8 产生随机数 180第二部分 低阶引擎系统 183第5章 游戏支持系统 1855.1 子系统的启动和终止 1855.2 内存管理 1935.3 容器 2085.4 字符串 2255.5 引擎配置 234第6章 资源及文件系统 2416.1 文件系统 2416.2 资源管理器 251第7章 游戏循环及实时模拟 2777.1 渲染循环 2777.2 游戏循环 2787.3 游戏循环的架构风格 2807.4 抽象时间线 2837.5 测量及处理时间 2857.6 多处理器的游戏循环 2967.7 网络多人游戏循环 304第8章 人体学接口设备(HID) 3098.1 各种人体学接口设备 3098.2 人体学接口设备的接口技术 3118.3 输入类型 3128.4 输出类型 3168.5 游戏引擎的人体学接口设备系统 3188.6 人体学接口设备使用实践 332第9章 调试及开发工具 3339.1 日志及跟踪 3339.2 调试用的绘图功能 3379.3 游戏内置菜单 3449.4 游戏内置主控台 3479.5 调试用摄像机和游戏暂停 3489.6 作弊 3489.7 屏幕截图及录像 3499.8 游戏内置性能剖析 3499.9 游戏内置的内存统计和泄漏检测 356第三部分 图形及动画 359第10章 渲染引擎 36110.1 采用深度缓冲的三角形光栅化基础 36110.2 渲染管道 40410.3 高级光照及全局光照 42610.4 视觉效果和覆盖层 43810.5 延伸阅读 446第11章 动画系统 44711.1 角色动画的类型 44711.2 骨骼 45211.3 姿势 45411.4 动画片段 45911.5 蒙皮及生成矩阵调色板 47111.6 动画混合 47611.7 后期处理 49311.8 压缩技术 49611.9 动画系统架构 50111.10 动画管道 50211.11 动作状态机 51511.12 动画控制器 535第12章 碰撞及刚体动力学 53712.1 你想在游戏中加入物理吗 53712.2 碰撞/物理中间件 54212.3 碰撞检测系统 54412.4 刚体动力学 56912.5 整合物理引擎至游戏 60112.6 展望:高级物理功能 616第四部分 游戏性 617第13章 游戏性系统简介 61913.1 剖析游戏世界 61913.2 实现动态元素:游戏对象 62313.3 数据驱动游戏引擎 62613.4 游戏世界编辑器 627第14章 运行时游戏性基础系统 63714.1 游戏性基础系统的组件 63714.2 各种运行时对象模型架构 64014.3 世界组块的数据格式 65714.4 游戏世界的加载和串流 66314.5 对象引用与世界查询 67014.6 实时更新游戏对象 67614.7 事件与消息泵 69014.8 脚本 70714.9 高层次的游戏流程 726第五部分 总结 727第15章 还有更多内容吗 72915.1 一些未谈及的引擎系统 72915.2 游戏性系统 730参考文献 733中文索引 737英文索引 755 参考文献 Tomas Akenine-Moller, Eric Haines, and Naty Hoffman. Real-Time Rendering (3rd Edition). Wellesley, MA: A K Peters, 2008. 中译本:《实时计算机图形学(第2版)》,普建涛译,北京大学出版社,2004. Andrei Alexandrescu. Modern C++ Design: Generic Programming and Design Patterns Applied. Resding, MA: Addison-Wesley, 2001. 中译本:《C++设计新思维:泛型编程与设计模式之应用》,侯捷/於春景译,华中科技大学出版社,2003. Grenville Armitage, Mark Claypool and Philip Branch. Networking and Online Games: Understanding and Engineering Multiplayer Internet Games. New York, NY: John Wiley and Sons, 2006. James Arvo (editor). Graphics Gems II. San Diego, CA: Academic Press, 1991. Grady Booch, Robert A. Maksimchuk, Michael W. Engel, Bobbi J. Young, Jim Conallen, and Kelli A. Houston. Object-Oriented Analysis and Design with Applications (3rd Edition). Reading, MA: Addison-Wesley, 2007. 中译本:《面向对象分析与设计(第3版)》,王海鹏/潘加宇译,电子工业出版社,2012. Mark DeLoura (editor). Game Programming Gems. Hingham, MA: Charles River Media, 2000. 中译本:《游戏编程精粹 1》, 王淑礼译,人民邮电出版社,2004. Mark DeLoura (editor). Game Programming Gems 2. Hingham, MA: Charles River Media, 2001. 中译本:《游戏编程精粹 2》,袁国忠译,人民邮电出版社,2003. Philip Dutré, Kavita Bala and Philippe Bekaert. Advanced Global Illumination (2nd Edition). Wellesley, MA: A K Peters, 2006. David H. Eberly. 3D Game Engine Design: A Practical Approach to Real-Time Computer Graphics. San Francisco, CA: Morgan Kaufmann, 2001. 国内英文版:《3D游戏引擎设计:实时计算机图形学的应用方法(第2版)》,人民邮电出版社,2009. David H. Eberly. 3D Game Engine Architecture: Engineering Real-Time Applications with Wild Magic. San Francisco, CA: Morgan Kaufmann, 2005. David H. Eberly. Game Physics. San Francisco, CA: Morgan Kaufmann, 2003. Christer Ericson. Real-Time Collision Detection. San Francisco, CA: Morgan Kaufmann, 2005. 中译本:《实时碰撞检测算法技术》,刘天慧译,清华大学出版社,2010. Randima Fernando (editor). GPU Gems: Programming Techniques, Tips and Tricks for Real-Time Graphics. Reading, MA: Addison-Wesley, 2004. 中译本:《GPU精粹:实时图形编程的技术、技巧和技艺》,姚勇译,人民邮电出版社,2006. James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Computer Graphics: Principles and Practice in C (2nd Edition). Reading, MA: Addison-Wesley, 1995. 中译本:《计算机图形学原理及实践──C语言描述》,唐泽圣/董士海/李华/吴恩华/汪国平译,机械工业出版社,2004. Grant R. Fowles and George L. Cassiday. Analytical Mechanics (7th Edition). Pacific Grove, CA: Brooks Cole, 2005. John David Funge. AI for Games and Animation: A Cognitive Modeling Approach. Wellesley, MA: A K Peters, 1999. Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissiddes. Design Patterns: Elements of Reusable Object-Oriented Software. Reading, MA: Addison-Wesley, 1994. 中译本:《设计模式:可复用面向对象软件的基础》,李英军/马晓星/蔡敏/刘建中译,机械工业出版社,2005. Andrew S. Glassner (editor). Graphics Gems I. San Francisco, CA: Morgan Kaufmann, 1990. Paul S. Heckbert (editor). Graphics Gems IV. San Diego, CA: Academic Press, 1994. Maurice Herlihy, Nir Shavit. The Art of Multiprocessor Programming. San Francisco, CA: Morgan Kaufmann, 2008. 中译本:《多处理器编程的艺术》,金海/胡侃译,机械工业出版社,2009. Roberto Ierusalimschy, Luiz Henrique de Figueiredo and Waldemar Celes. Lua 5.1 Reference Manual. Lua.org, 2006. Roberto Ierusalimschy. Programming in Lua, 2nd Edition. Lua.org, 2006. 中译本:《Lua程序设计(第2版)》,周惟迪译,电子工业出版社,2008. Isaac Victor Kerlow. The Art of 3-D Computer Animation and Imaging (2nd Edition). New York, NY: John Wiley and Sons, 2000. David Kirk (editor). Graphics Gems III. San Francisco, CA: Morgan Kaufmann, 1994. Danny Kodicek. Mathematics and Physics for Game Programmers. Hingham, MA: Charles River Media, 2005. Raph Koster. A Theory of Fun for Game Design. Phoenix, AZ: Paraglyph, 2004. 中译本:《快乐之道:游戏设计的黄金法则》,姜文斌等译,百家出版社,2005. John Lakos. Large-Scale C++ Software Design. Reading, MA: Addison-Wesley, 1995. 中译本:《大规模C++程序设计》,李师贤/明仲/曾新红/刘显明译,中国电力出版社,2003. Eric Lengyel. Mathematics for 3D Game Programming and Computer Graphics (2nd Edition). Hingham, MA: Charles River Media, 2003. Tuoc V. Luong, James S. H. Lok, David J. Taylor and Kevin Driscoll. Internationalization: Developing Software for Global Markets. New York, NY: John Wiley & Sons, 1995. Steve Maguire. Writing Solid Code: Microsoft's Techniques for Developing Bug Free C Programs. Bellevue, WA: Microsoft Press, 1993. 国内英文版:《编程精粹:编写高质量C语言代码》,人民邮电出版社,2009. Scott Meyers. Effective C++: 55 Specific Ways to Improve Your Programs and Designs (3rd Edition). Reading, MA: Addison-Wesley, 2005. 中译本:《Effective C++:改善程序与设计的55个具体做法(第3版)》,侯捷译,电子工业出版社,2011. Scott Meyers. More Effective C++: 35 New Ways to Improve Your Programs and Designs. Reading, MA: Addison-Wesley, 1996. 中译本:《More Effective C++:35个改善编程与设计的有效方法(中文版)》,侯捷译,电子工业出版社,2011. Scott Meyers. Effective STL: 50 Specific Ways to Improve Your Use of the Standard Template Library. Reading, MA: Addison-Wesley, 2001. 中译本:《Effective STL:50条有效使用STL的经验》,潘爱民/陈铭/邹开红译,电子工业出版社,2013. Ian Millington. Game Physics Engine Development. San Francisco, CA: Morgan Kaufmann, 2007. Hubert Nguyen (editor). GPU Gems 3. Reading, MA: Addison-Wesley, 2007. 中译本:《GPU精粹3》,杨柏林/陈根浪/王聪译,清华大学出版社,2010. Alan W. Paeth (editor). Graphics Gems V. San Francisco, CA: Morgan Kaufmann, 1995. C. Michael Pilato, Ben Collins-Sussman, and Brian W. Fitzpatrick. Version Control with Subversion (2nd Edition). Sebastopol , CA: O'Reilly Media, 2008. (常被称作“The Subversion Book”,线上版本.) 国内英文版:《使用Subversion进行版本控制》,开明出版社,2009. Matt Pharr (editor). GPU Gems 2: Programming Techniques for High-Performance Graphics and General-Purpose Computation. Reading, MA: Addison-Wesley, 2005. 中译本:《GPU精粹2:高性能图形芯片和通用计算编程技巧》,龚敏敏译,清华大学出版社,2007. Bjarne Stroustrup. The C++ Programming Language, Special Edition (3rd Edition). Reading, MA: Addison-Wesley, 2000. 中译本《C++程序设计语言(特别版)》,裘宗燕译,机械工业出版社,2010. Dante Treglia (editor). Game Programming Gems 3. Hingham, MA: Charles River Media, 2002. 中译本:《游戏编程精粹3》,张磊译,人民邮电出版社,2003. Gino van den Bergen. Collision Detection in Interactive 3D Environments. San Francisco, CA: Morgan Kaufmann, 2003. Alan Watt. 3D Computer Graphics (3rd Edition). Reading, MA: Addison Wesley, 1999. James Whitehead II, Bryan McLemore and Matthew Orlando. World of Warcraft Programming: A Guide and Reference for Creating WoW Addons. New York, NY: John Wiley & Sons, 2008. 中译本:《魔兽世界编程宝典:World of Warcraft Addons完全参考手册》,杨柏林/张卫星/王聪译,清华大学出版社,2010. Richard Williams. The Animator's Survival Kit. London, England: Faber & Faber, 2002. 中译本:《原动画基础教程:动画人的生存手册》,邓晓娥译,中国青年出版社,2006. 勘误 第1次印册(2014年2月) P.xviii: 译注中 Wholesale Algoithms -> Wholesale Algorithms P.10: 最后一段第一行 微软的媒体播放器 -> 微软的Windows Media Player (多谢读者OpenGPU来函指正) P.15: 1.4.3节第三点 按妞 -> 按钮 (多谢读者一个小小凡人来函指正) P.40: 正文最后一行 按扭 -> 按钮 P.50: 1.7.8节第二节第一行 同是 -> 同时 (多谢读者czfdd来函指正) P.98: 代码 writeExampleStruct(Example& ex, Stream& ex) 中 Stream& ex -> Stream& stream (多谢读者Snow来函指正) P.106: 第一段中有六处 BBS -> BSS,最后一段代码的注释也有同样错误 (多谢读者trout来函指正) P.119: 译注中 软体工程 -> 软件工程 (多谢读者Snow来函指正) P.214: 正文第一段有两处 虚内存 -> 虚拟内存 (多谢读者Snow来函指正) P.216: 脚注24应标明为译注 (多谢读者Snow来函指正) P.221: 第一段代码的第二个断言应为 ASSERT(link.m_pPrev != NULL); (多谢读者Snow来函指正) P.230: 5.4.4.1节 第二段 软体 -> 软件 P.286: 脚注4应标明为译注 (多谢读者Snow来函指正) P.322: 第二段 按扭事件字 -> 按钮事件 P.349: 9.8节第二段第二行两处 部析器 -> 剖析器 (多谢读者Snow来函指正) P.738-572: 双数页页眉 参考文献 -> 中文索引 P.755-772: 双数页页眉 参考文献 -> 英文索引 P.755: kd tree项应归入K而不是Symbols 以上的错误已于第2次印册中修正。 第2次印册及之前 P.11: 第四行 细致程度 -> 层次细节 (这是level-of-detail/LOD的内地通译,多谢读者OpenGPU来函指正) P.12: 正文第一段及图1.2标题 使命之唤 -> 使命召唤 (多谢读者OpenGPU来函指正) P.12: 正文第一段 战栗时空 -> 半条命 (多谢读者OpenGPU来函指正) P.16: 第一点 表面下散射 -> 次表面散射 (多谢读者OpenGPU来函指正) P.17: 1.4.4节第五行 次文化 -> 亚文化 (此译法在内地更常用。多谢读者OpenGPU来函提示) P.22: 战栗时空 -> 半条命 P.24: 战栗时空2 -> 半条命2 P.34: 1.6.8.2节第一行 提呈 -> 提交 (这术语在本书其他地方都写作提交。多谢读者OpenGPU来函提示) P.35: 第七行 提呈 -> 提交 (这术语在本书其他地方都写作提交。多谢读者OpenGPU来函提示) P.50: 战栗时空2 -> 半条命2 P.365: 第四段第二行: 细致程度 -> 层次细节 P.441: 10.4.3.2节第三行 细致程度 -> 层次细节 P.494: sinusiod -> sinusoid (多谢读者OpenGPU来函指正) P.511: 11.10.4节第一行 谈入 -> 淡入 (多谢读者Snow来函指正) P.541: 战栗时空2 -> 半条命2 P.627: 战栗时空2 -> 半条命2 P.654: 第二行 建康值 -> 血量 (原来是改正错别字,但译者发现应改作前后统一使用的“血量”。多谢读者Snow来函指正) P.692: 第二行 内部分式 -> 内部方式 (多谢读者Snow来函指正) P.696: 14.7.6节第四行 不设实际 -> 不切实际 (多谢读者Snow来函指正) 以上的错误已于第3次印册中修正。 其他意见 P.220: 正文第一段 m_root.m_pElement 和 P.218 第一段代码中的 m_pElem 不统一。原文有此问题,但因为它们是不同的struct,暂不列作错误。 (多谢读者Snow来函提示) P.331: 8.5.8节第二段中 “反覆”较常见的写法为“反复”,但前者也是正确的,暂不列作错误。 (多谢读者Snow来函提示) P.390: 10.1.3.3节静态光照第二段中“取而代之,我们会使用一张光照纹理贴到所有受光源影响范围内的物体上。这样做能令动态物体经过光源时得到正确的光照。” 后面的一句与前句好像难以一起理解。译者认为,作者应该是指,使用同一静态光源去为静态物件生成光照纹理,以及用于动态对象的光照,能使两者的效果维持一致性。译者会考虑对译文作出改善或加入译注解译。(多谢读者店残来函查询) P.689: 第五行 并行处理世代 -> 并行处理时代 是对era较准确的翻译。 (多谢读者Snow来函提示) 本篇文章为转载内容。原文链接:https://blog.csdn.net/mypongo/article/details/38388381。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-12 23:04:05
327
转载
JQuery插件下载
...刷新操作,加载最新的数据内容,适用于新闻动态、社交媒体、购物平台等场景。2.上拉加载更多:当页面内容加载完毕时,用户向上滚动页面以加载更多数据,支持无限滚动体验,适用于列表、文章、图片等信息丰富的页面。3.自定义样式与事件:插件提供了高度可定制的API,允许开发者根据项目需求调整UI风格、动画效果以及响应事件,确保与现有界面风格无缝融合。4.兼容性与性能优化:针对移动端特性进行优化,确保在不同设备和浏览器上稳定运行,同时优化加载速度,提升用户体验。5.易于集成:作为一款轻量级插件,滴落加载插件易于与现有代码集成,减少开发工作量,加速项目上线流程。6.文档与社区支持:提供详尽的使用指南、示例代码及在线社区,方便开发者快速上手并解决问题。总之,滴落加载插件(Dropload.js)为开发者提供了一种简洁、高效的方式,以实现移动端常见的下拉刷新与上拉加载更多功能,显著提升应用的交互体验和用户满意度。 点我下载 文件大小:73.74 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-08-27 11:08:52
92
本站
JQuery插件下载
...,以显示页面正在处理数据或执行后台操作。这个插件的核心功能包括:1.自定义性:用户可以根据项目风格自定义loading的样式,如颜色、图标或动画效果,以保持品牌形象一致性。2.遮罩层:提供一个透明的遮罩层,确保用户知道页面不是冻结,只是暂时被加载内容所覆盖。3.可配置性:通过配置对象传递参数,如加载文本、显示时间(可选的自动隐藏),使得开发者能够灵活调整其行为。4.回调函数:支持回调机制,当loading显示和隐藏时,可以执行特定的函数,便于处理异步操作完成后的需求,比如更新DOM或清除多余元素。5.跨页面应用:由于是基于jQuery的,它能够方便地与页面其他部分无缝集成,无需额外的复杂设置。6.性能优化:设计精简,旨在对性能影响最小,即使在繁忙的页面上也能提供流畅的用户体验。通过集成这款插件,开发人员可以简化页面加载过程的呈现,提高用户对网站响应速度的感知,从而提升整体网站质量。 点我下载 文件大小:53.41 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-10-18 08:54:07
80
本站
JQuery插件下载
...这款插件还具备良好的性能优化,旨在减少加载时间和提升用户体验。它通过精简代码和高效的算法设计,确保在数据量大或复杂场景下也能保持高效运行,不会对页面加载速度造成过大影响。总之,jQuery.sumoselect是开发人员构建现代、响应式、多平台兼容的下拉列表框的理想选择。它不仅简化了开发流程,提高了效率,还保证了最终用户获得最佳的交互体验,不论他们使用的是何种设备或浏览器。 点我下载 文件大小:52.41 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-08-13 11:16:59
74
本站
JQuery插件下载
...这使得它在加载速度和性能优化方面表现出色,适合各类网站和移动应用。2.兼容性:支持IE8及更高版本的浏览器,确保了广泛的应用场景覆盖,即使在较旧的浏览器环境中也能正常工作。3.动态计数效果:当页面滚动到特定元素时,jQuery.CountUp.js可以启动数字的动态增加动画,直观地展示数值的变化过程,提升用户对数据更新的感知。4.高度定制性:开发者可以自定义动画的样式、颜色、速度等参数,以适应不同的设计需求和风格,增强用户体验的一致性和个性化。5.易于集成:通过简单的jQuery调用,即可轻松将数字动画功能添加到现有项目中,无需复杂的配置或学习曲线。应用场景-统计数据展示:在网站的首页或特定页面上,动态展示访问量、订阅人数、产品销量等关键指标,增强信息的视觉冲击力。-进度条显示:在项目管理或任务列表中,以动画形式展示完成度或剩余时间,提供更直观的任务状态反馈。-实时更新:适用于需要实时更新的动态内容,如在线用户数量、直播观看人数等,保持信息的时效性和互动性。总之,jQuery.CountUp.js以其简洁高效、高度定制化和跨浏览器兼容性的优势,成为了开发者构建具有动态数字显示功能网站或应用的有力工具。无论是提升用户体验还是增强信息传达的效率,这款插件都能发挥重要作用。 点我下载 文件大小:43.98 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-10-01 10:55:22
97
本站
MySQL
...何在MySQL中新建数据库之后,进一步的探索可以聚焦于数据库优化、安全性管理以及最新的MySQL版本特性。近日,MySQL 8.0版本的发布带来了许多重要更新,如窗口函数的增强、JSON支持的改进以及默认事务隔离级别的变更(从REPEATABLE READ变为READ COMMITTED),这些都为开发者提供了更高效、灵活的数据管理工具。 针对数据库性能优化,了解索引原理与实践策略至关重要。例如,选择合适的索引类型(B树、哈希、全文等),合理设计表结构以减少JOIN操作的复杂度,以及定期分析并优化执行计划,都是提升MySQL数据库性能的关键手段。 此外,随着数据安全问题日益凸显,MySQL的安全配置和权限管理同样值得深入研究。学习如何设置复杂的密码策略、实现用户访问审计、利用SSL加密传输数据,以及对备份与恢复策略进行定制化设计,是确保数据库系统稳定运行和数据安全的重要步骤。 综上所述,在掌握了MySQL数据库的基础创建操作后,持续关注MySQL最新动态,深入了解数据库性能调优和安全管理领域,将极大地助力您在实际项目中构建更加健壮、高效的数据库架构。
2023-08-12 18:53:34
138
码农
VUE
...Vue.js团队持续优化框架性能与开发者体验,在Vue 3.x版本中对生命周期钩子进行了重构和扩展,新增了诸如onBeforeUnmount等API,以更好地满足现代前端开发需求。同时,官方文档也强烈建议开发者关注并合理使用这些生命周期钩子,特别是在处理如定时器、事件监听器等可能会导致内存泄漏的情况时。 例如,除了beforeDestroy或beforeUnmount外,Vue 3引入了setup()函数,它在组件实例创建之后、渲染之前执行,为资源初始化提供了更为灵活的时机。而在卸载阶段,可以结合onUnmounted()来替代旧版的beforeDestroy钩子,实现更加清晰且易于维护的清理逻辑。 此外,对于大型项目或长期运行的应用,有效管理内存至关重要。开发者应深入理解JavaScript垃圾回收机制,并结合Vue.js特性,确保在组件销毁时解除所有引用,防止无用数据长时间占据内存空间。因此,掌握如何利用Vue.js生命周期钩子进行资源释放,不仅是提升应用性能的关键步骤,也是提高代码质量、避免潜在问题的良好实践。 同时,社区中也有许多针对Vue.js内存管理及性能优化的实战案例和深度解析文章,通过学习这些前沿实践,开发者能够更全面地理解和运用Vue.js生命周期钩子,从而编写出更加高效、健壮的组件代码。
2023-12-03 18:12:48
66
逻辑鬼才
Java
...展》 随着云计算和大数据时代的到来,Java作为企业级应用开发的首选语言,其多线程技术的重要性日益凸显。近日,Oracle发布了Java 17版本,其中对并发编程的支持有了显著提升。新版本引入了Actor模型的改进版——JSR 4204,使得Java开发者能够更轻松地构建无状态、无并发问题的分布式系统。 此外,Java 17引入了JEP 395,即“Coroutines for the Java Virtual Machine”,这允许程序员在单线程环境中编写异步代码,提高了代码的简洁性和可读性。Coroutine技术结合了轻量级线程和协程的优点,使得Java程序员能更好地处理高并发场景下的任务切换。 对于线程池管理,Java 17也提供了新的优化,如对线程池大小动态调整的支持,有助于在保证系统性能的同时避免资源浪费。而Java社区对于并行计算和GPU加速的探索也在不断深入,例如Project Loom计划中的ZGC垃圾收集器,旨在提供更好的线程安全性与性能。 同时,随着微服务架构的流行,Java并发编程的挑战也转向了如何设计和管理复杂的分布式系统。研究者们正在探索如何在分布式环境中实现高效的线程通信,如零拷贝、低延迟网络编程等。 总的来说,Java多线程技术的发展不仅体现在语言层面的更新,更在于如何帮助开发者解决实际问题,提高系统的并发性能和可扩展性。无论是企业级应用开发还是新兴技术领域,Java的并发编程能力都将发挥关键作用。
2024-04-10 16:02:45
375
码农
JQuery
...结合AJAX获取后台数据实时填充链接内容,实现动态路由功能。 另外,针对网站优化及SEO策略,合理地设置a标签href属性对于提升网页质量和搜索引擎排名至关重要。比如,为图片添加详细的alt属性和正确的href链接,确保当图片无法加载时,用户仍可以通过链接访问目标资源,同时也利于搜索引擎理解图片内容。 再者,从安全角度出发,JavaScript在处理href属性时应格外注意防范XSS(跨站脚本攻击),通过encodeURIComponent等函数对用户输入进行转码,避免恶意代码注入。 综上所述,虽然本文着重于jQuery在修改a标签href属性中的应用,但在实际开发过程中,我们需要关注更广泛的议题,包括但不限于DOM操作性能优化、前后端数据交互、用户体验优化以及网站安全性保障等,以适应不断变化的Web开发需求。
2023-11-18 19:01:21
335
数据库专家
Docker
...增强了对容器安全性和性能优化的支持,例如通过改进的存储驱动层确保数据持久化,并且引入了更精细的资源限制控制以实现多容器环境下的高效运维。 与此同时,Kubernetes作为目前主流的容器编排工具,已广泛集成Docker以实现更大规模的应用部署与管理。近期,CNCF社区围绕Kubernetes和Docker的合作生态展开了诸多讨论,包括如何借助Helm charts简化Docker镜像在Kubernetes集群上的部署流程,以及如何利用Operator模式提升复杂有状态应用的生命周期管理能力。 此外,随着云服务提供商如AWS、Azure等不断加大对容器服务的支持力度,用户可以更加便捷地将基于Docker的本地应用程序无缝迁移至云端运行,同时享受到弹性伸缩、负载均衡等一系列高级特性。最近一篇来自TechCrunch的文章报道了AWS Fargate如何让开发者无需管理底层基础设施即可运行Docker容器,从而专注于业务逻辑开发与迭代。 总之,Docker作为容器化技术的基石,在持续演进中不断推动云计算领域的创新与发展。了解并掌握Docker与相关生态系统的发展动态,将有助于我们紧跟技术潮流,优化应用架构设计,提高软件交付效率与质量。
2023-02-25 10:58:36
491
数据库专家
HTML
...制的能力。 此外,在性能优化方面,Facebook的Incremental DOM以及Google的Incremental DOM库(如lit-html)采用差异算法进行最小化DOM操作,仅针对需要更新的部分进行重新渲染,大大提升了大规模数据列表及频繁更新场景下的页面性能。 综上所述,无论是主流前端框架的最新进展,还是底层DOM操作技术的持续优化,都为我们实现更高效、更动态的Web界面提供了有力支持。对于热衷于Web开发的工程师而言,紧跟这些技术和实践的发展,无疑将有助于提升项目质量和用户体验。
2023-11-11 23:44:19
581
编程狂人
JSON
...PI接口设计、前后端数据交互、实时通信等多个核心环节。近期,随着前端框架Vue3和React hooks等现代技术的发展,JSON数组的动态处理与渲染效率得到了显著提升。例如,开发者可以通过Vue3的reactive特性或React Hooks中的useState和useEffect对JSON数组进行高效的状态管理,并实时反映在用户界面上。 同时,随着大数据和云计算技术的普及,JSON数组在处理大规模、非结构化数据时的作用也日益凸显。如Apache Spark等分布式计算框架已支持原生JSON数据类型,使得JSON数组能在海量数据场景下实现快速解析与处理。 此外,在安全性和隐私保护方面,业界正针对JSON数组的数据传输安全推出一系列新标准和解决方案。例如,通过JSON Web Tokens(JWT)进行身份验证时,如何安全地封装和解码包含敏感信息的JSON数组成为了研究热点。 综上所述,JSON数组在现代Web开发中不仅扮演着数据交换的关键角色,而且随着技术发展不断拓展其应用场景。从提高性能优化到强化数据安全性,JSON数组的相关实践和研究都在与时俱进,为构建高效、安全的Web应用提供有力支撑。
2023-07-12 17:59:29
488
键盘勇士
MySQL
...何在MySQL中写入数据后,我们可以进一步关注数据库管理系统的最新动态和最佳实践。近日,MySQL 8.0版本引入了一系列重大更新,包括对安全性、性能以及SQL语法的改进。例如,新的窗口函数提供了更强大的数据分析能力,而Caching_sha2_password身份验证插件则增强了数据库连接的安全性。 同时,随着云技术的发展,各大云服务商如阿里云、AWS等纷纷推出MySQL托管服务,用户无需关心底层服务器运维,即可轻松实现高可用性和扩展性。对于开发人员来说,了解如何在云环境下高效地进行数据写入操作,比如利用批量插入API减少网络延迟,或者通过参数化查询防止SQL注入攻击,成为了必不可少的知识点。 此外,关于数据库优化策略,一篇来自Oracle官方博客的文章《Maximizing MySQL Performance: Tips from the Experts》深度解读了如何通过索引设计、查询优化以及合理使用存储引擎等手段提升MySQL的数据写入效率。文中引用了大量实战案例,为数据库管理员和开发者提供了宝贵的参考经验。 综上所述,在掌握基本的MySQL数据写入操作之外,紧跟数据库技术发展的步伐,关注安全增强、云服务特性及性能优化技巧,是现代开发者必备的技能升级路径。
2023-06-05 22:29:31
72
算法侠
MySQL
...带来了诸多重要更新和性能优化。例如,引入窗口函数以支持复杂的数据分析,提升了安全性(如密码验证插件默认更改为caching_sha2_password),并增强了InnoDB存储引擎的性能。因此,在考虑升级MySQL版本时,开发者不仅需要关注当前运行环境下的版本兼容性,更要深入了解新版本功能是否能够提升应用效能或满足新的业务需求。 同时,MySQL的社区版与企业版之间也存在功能差异。企业用户在选择版本时需结合自身业务规模和技术支持需求来决定。例如,Oracle MySQL企业版提供了高级的集群解决方案、热备份工具及额外的监控选项,这些都是社区版不具备的功能。 此外,MySQL的替代品如PostgreSQL、MariaDB等数据库管理系统也在不断迭代发展,它们在特定场景下可能具备更优的性能或特性。因此,作为开发人员或IT管理员,在决定是否跟随MySQL最新版本更新,或者转向其他数据库系统时,应全面权衡技术选型、成本效益、团队技能储备等因素,并进行详尽的测试和评估。 总之,MySQL版本管理是持续的运维工作之一,理解不同版本的特点与变化趋势,结合实际应用场景制定合理的升级策略,将有助于提高系统的稳定性和应用的竞争力。
2023-10-03 21:22:15
106
软件工程师
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
!!
- 重新执行上一条命令。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"