前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[心跳机制配置不合理引发的断线问题 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Struts2
...n)模式下的数据绑定问题后,我们不难发现,随着Web开发技术的持续演进,各类MVC框架对于数据绑定机制的设计与实现也在不断优化。例如,Spring MVC通过其强大的@ModelAttribute注解和灵活的数据Binder配置,为开发者提供了更为精细的数据绑定控制能力,从而有效避免属性覆盖、数据校验以及转换异常等问题。 近期,Apache Struts社区也针对数据绑定安全性和易用性发布了若干更新。Struts 2.5版本及以后引入了OGNL表达式的安全改进措施,增强了对模型对象属性访问的控制,从而降低了因不当数据绑定引发的安全风险。同时,新版Struts2还优化了类型转换器的默认行为,并鼓励开发者根据实际场景定制类型转换规则,以应对复杂业务需求中的数据转换挑战。 此外,对于现代Web应用而言,前端表单验证与后端数据处理的有效配合愈发重要。诸如Vue.js、React等现代前端框架结合JSON Schema或AJV等工具,可在用户提交前完成初步的数据校验,减轻服务器端的压力,并提升用户体验。而在后端,无论使用何种MVC框架,都应该坚持最小权限原则,合理设计数据模型并实施严格的数据绑定策略,以确保系统的稳定与安全。 综上所述,面对数据绑定这一核心议题,开发者不仅需要掌握现有框架如Struts2的实现细节,更应关注行业动态和技术趋势,结合最新的安全实践和高效的数据处理方式,才能在实际项目中游刃有余地应对各种数据绑定问题。
2023-10-28 09:39:32
111
烟雨江南
PostgreSQL
...持,并优化了错误提示机制,使得用户在遇到InvalidColumnTypeCastError这类问题时能够更快定位和修复。例如,新版本的to_char()和to_numeric()函数在进行数据类型转换时,提供了更灵活且严谨的参数校验,有助于减少因误操作导致的数据类型不匹配错误。 此外,在实际应用中,为避免InvalidColumnTypeCastError等类似问题的发生,开发者不仅需要熟悉数据库系统提供的转换工具与方法,还要强化对业务逻辑的理解,确保数据模型设计合理。近期,一篇发表在《ACM Transactions on Database Systems》的研究文章深入探讨了数据类型转换中的潜在陷阱与最佳实践,通过对大量实例分析,作者强调了在设计阶段充分考虑数据完整性和一致性的重要性,并提倡在编程实践中采用防御性编程策略以应对未知的数据类型转换异常。 与此同时,随着大数据和云计算技术的发展,跨平台、多环境下的数据迁移与同步也日益频繁,这也对数据类型的兼容性及转换机制提出了更高要求。因此,无论是数据库管理员还是软件开发者,都需要紧跟技术潮流,不断学习和完善自身的数据库知识体系,从而有效预防和解决由数据类型转换引发的各种问题。
2023-08-30 08:38:59
297
草原牧歌-t
Maven
...冲突、资源加载异常等问题,进而引发程序无法正常编译或运行的情况。例如,在一个复杂的项目中,如果A模块需要B模块某个特定版本的jar包,而同时C模块又依赖于B模块另一个不兼容的版本,这就可能造成jar hell问题。 Maven , Maven是一款流行的Java项目管理工具和构建自动化工具,它提供了一套标准的项目结构和构建生命周期,并通过pom.xml文件来管理项目的配置信息和依赖关系。Maven能够自动下载、解析并构建项目所需的依赖库,有效地帮助开发者解决jar hell等依赖管理问题。 pom.xml , 全称为Project Object Model(项目对象模型)XML文件,是Maven项目的核心配置文件。在这个文件中,开发者可以定义项目的基本信息(如groupId、artifactId、version)、依赖关系、构建过程中的插件配置、构建目标等。通过合理编写和维护pom.xml文件,可以确保项目的所有依赖关系清晰有序,从而避免jar hell的发生。
2023-11-01 23:45:20
379
昨夜星辰昨夜风-t
Go Iris
...表单数据验证的提案,引发了广泛的讨论。该提案建议引入更灵活的验证机制,允许开发者自定义更多的验证规则,以减少手动编写验证逻辑的工作量。这一提议得到了许多同行的支持,认为这将显著提高开发效率并减少潜在的错误。 此外,有开发者分享了一篇深入解读的文章,探讨了如何在Go Iris中实现复杂的表单数据验证流程,包括如何利用第三方库如govalidator来增强内置的验证功能。文章还提到了一些实际案例,展示了如何通过合理的架构设计来简化验证逻辑,从而提升系统的可维护性和扩展性。 与此同时,另一篇文章则从安全性的角度出发,强调了表单数据验证的重要性,特别是在处理用户输入时,有效的验证可以防止SQL注入、XSS攻击等常见的安全漏洞。作者引用了OWASP(开放网络应用安全项目)的最佳实践指南,建议开发者在表单数据验证过程中采用多层防御策略,确保应用程序的安全性。 这些最新的讨论和分享不仅丰富了Go Iris框架的使用体验,也为广大开发者提供了更多实用的指导和参考。通过不断学习和借鉴这些实践经验,我们可以更好地应对Web开发中的各种挑战,推动项目的顺利进行。
2025-03-04 16:13:10
54
岁月静好
Apache Solr
...Exception的问题之后,深入理解和掌握Solr的配置与网络通信机制对于保障搜索引擎高效稳定运行至关重要。近期,Apache Solr 8.11版本发布,带来了诸多性能优化和安全增强功能,包括对SSL/TLS连接的进一步改进,支持更多现代加密协议,这有助于开发者更好地处理与证书相关的异常情况。 同时,针对云环境和分布式部署场景下Solr集群可能出现的网络问题,《Apache Solr权威指南》一书提供了详尽的实践解析和案例分析,指导读者如何排查、预防类似SolrServerException等由于网络或配置引发的故障。 此外,在实际开发过程中,遵循最佳实践进行Solr服务器配置也相当关键。例如,确保正确的请求超时设置、合理规划核心(Core)和集合(Collection)配置,以及利用Zookeeper进行高效的集群管理和监控等策略,都能有效降低遭遇此类异常的风险。 近期,InfoQ等技术媒体也报道了多个成功解决大型企业级搜索服务中Solr相关问题的实际案例,其中涉及到了对Solr日志的有效分析、自定义插件开发以适应特定业务需求等方面的经验分享,值得广大Solr使用者借鉴参考。
2023-03-23 18:45:13
463
凌波微步-t
Tomcat
...一种管理数据库连接的机制,它允许应用程序复用已建立的数据库连接,从而提高性能。数据源连接泄漏是指由于程序设计错误或资源管理不当,导致从数据源获取的数据库连接在使用完毕后未能正确关闭并归还给数据源,使得这些未关闭的连接持续占用系统资源,无法被其他请求重用,进而引发系统资源耗尽、性能下降甚至服务崩溃的问题。 Tomcat , Apache Tomcat是一个开源免费的Servlet和JSP容器,它是实现Java EE(现称Jakarta EE)Web应用程序服务器功能的一个轻量级解决方案。在本文语境中,Tomcat是承载Java Web应用运行的服务端环境,其内部配置的数据源用于与数据库进行交互。 JVisualVM , JVisualVM是Oracle公司提供的一个Java开发工具,集成了多个监视、故障排查和分析工具,可用于监控Java应用程序的运行状态,包括CPU、内存、线程、类加载等详细信息。在本文中,开发者可以利用JVisualVM实时监测Tomcat应用服务器的内存消耗情况,以便发现和解决由数据源连接泄漏导致的资源浪费问题。
2023-06-08 17:13:33
244
落叶归根-t
Go-Spring
...taSource”的问题,相信我,这绝对会让开发者们头疼不已,抓耳挠腮。这篇文会带你深入地“盘一盘”这个问题,咱们不仅会唠唠嗑理论知识,更会手把手地带你走进Go-Spring的世界,通过一些实实在在的代码实例,演示怎么在Go-Spring这个环境里头,正确又巧妙地设置和运用JNDI这个工具,成功获取到DataSource。 2. JNDI与DataSource的关系简述 在Java EE世界里,JNDI提供了一个统一的服务查找机制,使得应用程序可以独立于具体实现去查找如DataSource这样的资源。DataSource,你可以把它想象成数据库连接池的大管家,它把与数据库连线的各种操作都打包得整整齐齐。这样一来,我们访问数据库的时候就变得更溜了,不仅速度嗖嗖地提升,效率也是蹭蹭往上涨,就像有个贴心助手在背后打理这一切,让我们的数据库操作既流畅又高效。 3. 在Go-Spring中遭遇的问题阐述 虽然Go-Spring借鉴了Spring框架的设计理念,但由于Go语言本身并未直接支持JNDI服务,因此在Go-Spring环境中直接模拟Java中的JNDI获取DataSource的方式并不适用。这可能会导致我们在尝试获取DataSource时遇到“无法从JNDI资源中获取DataSource”的错误提示。 4. Go-Spring中的解决方案探索 既然Go语言原生不支持JNDI,那我们该如何在Go-Spring中解决这个问题呢?这里我们需要转换思路,采用Go语言自身的资源管理方式以及Go-Spring提供的依赖注入机制来构建和管理DataSource。 go // 假设我们有一个自定义的DataSource实现 type MyDataSource struct { // 这里包含连接池等实现细节 } // 实现DataSource接口的方法 func (m MyDataSource) GetConnection() (sql.DB, error) { // 获取数据库连接的具体逻辑 } // 在Go-Spring的配置文件中注册DataSource Bean @Configuration func Config Beans(ctx ApplicationContext) { dataSource := &MyDataSource{/ 初始化参数 /} ctx.Bean("dataSource", dataSource) } // 在需要使用DataSource的Service或Repository中注入 @Service type MyService struct { dataSource DataSource autowired:"dataSource" // 其他业务方法... } 5. 小结与思考 尽管Go-Spring并没有直接复刻Java Spring中的JNDI机制,但其依赖注入的理念让我们能够以一种更符合Go语言习惯的方式来管理和组织资源,比如这里的DataSource。当你遇到“无法从JNDI资源里获取DataSource”这类棘手问题时,咱可以换个聪明的方式来解决。首先,我们可以精心设计一个合理的Bean架构,然后巧妙地运用Go-Spring的依赖注入功能。这样一来,就不用再按照传统的老套路去JNDI里苦苦查找了,而且你会发现,这样做不仅同样能达到目的,甚至还能收获更优的效果,简直是一举两得的妙招儿! 在整个解决问题的过程中,我们可以看到Go-Spring对原始Spring框架理念的传承,同时也体现了Go语言简洁、高效的特性。这其实也像是在告诉我们,在实际开发工作中,就像打游戏那样,得瞅准了技术环境的“地形地貌”,灵活切换战术,把咱们精心挑选的技术栈当作趁手的武器,最大限度地发挥它的威力,实实在在地去攻克那些棘手的问题。
2023-11-21 21:42:32
504
冬日暖阳
HBase
...大的工具也可能会出现问题,就像HBase一样。在这篇文章里,我们打算聊聊一个大家可能都碰到过的问题——HBase表的数据有时候会在某个时间点神秘消失。 二、数据丢失的原因 在大数据世界里,数据丢失是一个普遍存在的问题,它可能是由于硬件故障、网络中断、软件错误或者人为操作失误等多种原因导致的。而在HBase中,数据丢失的主要原因是磁盘空间不足。当硬盘空间不够,没法再存新的数据时,HBase这个家伙就会动手干一件事:它会把那些陈年旧的数据块打上“已删除”的标签,并且把它们占用的地盘给腾出来,这样一来就空出地方迎接新的数据了。这种机制可以有效地管理磁盘空间,但同时也可能导致数据丢失。 三、如何防止数据丢失 那么,我们如何防止HBase表的数据在某个时间点上丢失呢?以下是一些可能的方法: 3.1 数据备份 定期对HBase数据进行备份是一种有效的防止数据丢失的方法。HBase提供了多种备份方式,包括物理备份和逻辑备份等。例如,我们可以使用HBase自带的Backup和Restore工具来创建和恢复备份。 java // 创建备份 hbaseShell.execute("backup table myTable to 'myBackupDir'"); // 恢复备份 hbaseShell.execute("restore table myTable from backup 'myBackupDir'"); 3.2 使用HFileSplitter HFileSplitter是HBase提供的一种用于分片和压缩HFiles的工具。通过分片,我们可以更有效地管理和备份HBase数据。例如,我们可以将一个大的HFile分割成多个小的HFiles,然后分别进行备份。 java // 分割HFile hbaseShell.execute("split myTable 'ROW_KEY_SPLITTER:CHUNK_SIZE'"); // 备份分片后的HFiles hbaseShell.execute("backup split myTable"); 四、总结 数据丢失是任何大数据系统都无法避免的问题,但在HBase中,通过合理的配置和正确的操作,我们可以有效地防止数据丢失。同时,咱们也得明白一个道理,就是哪怕咱们拼尽全力,也无法给数据的安全性打包票,做到万无一失。所以,当我们用HBase时,最好能培养个好习惯,定期给数据做个“体检”和“备胎”,这样万一哪天它闹情绪了,咱们也能快速让它满血复活。 五、参考文献 [1] Apache HBase官方网站:https://hbase.apache.org/ [2] HBase Backup and Restore Guide:https://hbase.apache.org/book.html_backup_and_restore [3] HFile Splitter Guide:https://hbase.apache.org/book.html_hfile_splitter
2023-08-27 19:48:31
414
海阔天空-t
RocketMQ
...息队列进行相应的优化配置和管理。 生产者 , 在消息队列系统中,生产者指的是生成和发布消息的一方,通常是一个服务、应用程序或系统组件。它负责将业务产生的数据包装成消息格式,并将其投递到指定的消息队列中等待被消费。文中通过Java代码模拟了一个快速发送消息的生产者,其每秒可发送大量消息至RocketMQ,导致可能产生消息堆积问题。 并发量 , 在计算机编程和系统架构中,特别是在涉及多线程或多任务处理时,并发量指的是系统在同一时间能够处理的任务数量或者说是同时执行的操作数。在文章所讨论的RocketMQ场景中,调整生产者的并发量意味着控制生产者一次性向消息队列批量发送消息的最大数量,以此来达到限制生产者发送消息速度的目的,防止消息队列因接收消息过快而无法及时处理,进而引发消息积压的问题。
2023-12-19 12:01:57
52
晚秋落叶-t
Netty
...。那么,面对这种棘手问题,我们应该如何理解和解决呢?让我们一起探讨和揭秘吧! 1. 异常理解 解密UnexpectedMessageSizeException 在使用Netty进行通信时,尤其是在处理TCP协议的数据流时,由于TCP本身是无边界的,所以需要我们在应用层去判断消息的边界。Netty这家伙有个聪明的做法,就是给每个消息设定一个合适的“大小上限”——maxMessageSize,这样一来,任何消息都不能长得没边儿。要是有哪个消息过于“膨胀”,胆敢超过这个限制值,不好意思,Netty可不会客气,直接会给你抛出一个“意料之外的消息尺寸异常”——UnexpectedMessageSizeException,以此来表明它的原则性和纪律性。 这个异常的背后,实际上是Netty对传输层安全性的保障措施,防止因恶意或错误的大数据包导致内存溢出等问题。 2. 溯源分析 引发异常的原因 下面是一个简单的代码示例,展示了未正确配置maxMessageSize可能引发此异常: java public class MyServerInitializer extends ChannelInitializer { @Override protected void initChannel(SocketChannel ch) throws Exception { ChannelPipeline pipeline = ch.pipeline(); // 假设我们没有设置任何限制 pipeline.addLast(new LengthFieldBasedFrameDecoder(Integer.MAX_VALUE, 0, 4, 0, 4)); pipeline.addLast(new StringDecoder(CharsetUtil.UTF_8)); pipeline.addLast(new ServerHandler()); } } 在上述代码中,我们未给LengthFieldBasedFrameDecoder设置最大帧长度,因此理论上它可以接受任意大小的消息,这就可能导致UnexpectedMessageSizeException。 3. 解决方案 合理设置消息大小限制 为了解决这个问题,我们需要在初始化解码器时,明确指定一个合理的maxMessageSize。例如: java public class MyServerInitializer extends ChannelInitializer { private static final int MAX_FRAME_LENGTH = 1024 1024; // 设置每条消息的最大长度为1MB @Override protected void initChannel(SocketChannel ch) throws Exception { ChannelPipeline pipeline = ch.pipeline(); // 正确设置最大帧长度 pipeline.addLast(new LengthFieldBasedFrameDecoder(MAX_FRAME_LENGTH, 0, 4, 0, 4)); pipeline.addLast(new StringDecoder(CharsetUtil.UTF_8)); pipeline.addLast(new ServerHandler()); } } 这样,如果收到的消息大小超过1MB,LengthFieldBasedFrameDecoder将不再尝试解码并会抛出异常,而不是消耗大量内存。 4. 进一步探讨 异常处理与优化策略 虽然我们已经设置了消息大小的限制,但仍然建议在实际业务场景中对接收到超大消息的情况进行适当的异常处理,比如记录日志、关闭连接等操作: java public class ServerHandler extends SimpleChannelInboundHandler { @Override public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) { if (cause instanceof TooLongFrameException || cause instanceof UnexpectedMessageSizeException) { System.out.println("Caught an oversized message, closing connection..."); ctx.close(); } else { // 其他异常处理逻辑... } } // ...其他处理器逻辑... } 最后,对于消息大小的设定,并非越大越好,而应根据具体应用场景和服务器资源状况进行权衡。另外,咱们也可以琢磨琢磨用些招儿来对付大消息这个难题,比如把消息分块传输,或者使使劲儿,用压缩算法给它“瘦身”一下。 总的来说,处理Netty中的UnexpectedMessageSizeException关键在于提前预防,合理设置消息大小上限,以及妥善处理异常情况。只有把这些技巧摸得门儿清、运用自如,咱们的Netty应用程序才能真正变得身强力壮、高效无比。在这个过程中,不断地思考、实践与优化,才是编程乐趣之所在!
2023-11-27 15:28:29
152
林中小径
Flink
...性不断增加,网络分区问题成为了一个不可忽视的技术挑战。例如,在2023年7月,阿里云宣布其E-MapReduce服务在某些区域遭遇了大规模的网络分区事件,导致部分用户的实时数据分析任务受到了严重影响。这一事件引发了业界对于网络分区问题的关注,特别是如何在分布式系统中实现高可用性和容错性。 在这次事件中,阿里云迅速启动了应急预案,通过启用检查点和保存点机制,成功帮助用户恢复了大部分任务。然而,这次事件也暴露出了一些潜在的问题,比如检查点的频率设置是否合理、状态后端的选择是否恰当等。因此,如何更高效地利用这些机制成为了当前研究的重点。 此外,学术界也在不断探索新的解决方案。例如,一篇发表在《IEEE Transactions on Parallel and Distributed Systems》的研究论文提出了一种基于机器学习的预测模型,可以在网络分区发生前进行预警,从而提前采取预防措施。该模型通过分析历史数据,识别出可能导致网络分区的因素,并据此优化系统的配置和资源分配。 这些研究不仅提高了我们对网络分区问题的理解,也为未来的设计和开发提供了宝贵的参考。面对日益复杂的分布式系统环境,如何有效应对网络分区带来的挑战,将是未来一段时间内技术发展的关键方向之一。
2024-12-30 15:34:27
46
飞鸟与鱼
Maven
...memory”这样的问题。 实际上,除了调整Maven运行时的JVM参数外,合理利用Java的新特性,如ZGC(Z Garbage Collector)或Shenandoah GC,可以显著降低GC暂停时间并提高内存使用效率。此外,结合现代云原生环境下的容器化部署实践,通过设置合理的容器内存限制,并利用Kubernetes等平台提供的资源配额管理机制,能够确保即使在复杂多变的生产环境中,Maven构建以及其他Java应用也能获得稳定且高效的内存资源配置。 同时,对于大型项目而言,持续集成与持续部署(CI/CD)流程中的Maven优化亦是关键。例如,采用多模块构建、增量编译等策略来减少一次性加载到内存的依赖数量,从而有效避免内存溢出问题。在实际操作中,不妨参考业界广泛采用的Apache Maven最佳实践文档,以确保项目的构建过程既快速又稳定。 总之,在面对Maven构建过程中内存不足这类常见问题时,开发者不仅需要掌握基础的JVM调优技术,更要紧跟技术发展趋势,结合最新的Java版本特性和云原生理念,全方位提升项目构建与运行效能。
2023-02-05 22:24:29
109
柳暗花明又一村_
Tesseract
...对zlib依赖的关键问题后,我们对软件开发中的依赖管理和基础库的重要性有了更深的理解。实际上,近期开源社区就发生了一起关于基础库更新导致全球范围内的大型项目受影响的真实案例:2021年,npm(Node.js的包管理器)生态中一个名为“colors”的流行日志着色库进行了一次破坏性更新,由于其广泛的依赖关系,许多开发者在更新依赖时遭遇了意料之外的问题。 深入解读这一事件,我们可以看到即使是最小的基础组件变动也可能引发蝴蝶效应,影响到整个技术生态链。这也进一步强调了在项目开发与维护过程中,密切关注并及时更新依赖库版本、合理管理软件供应链安全的重要性。同时,为避免类似问题,业界正积极推动采用更严格的依赖锁定机制和更完善的开源组件生命周期管理策略。 此外,对于像zlib这样广泛使用的底层压缩库,其最新版本通常会包含性能优化、安全修复以及对新特性的支持。因此,定期检查并升级这些基础工具库是保持项目健壮性和安全性的重要一环。例如,近期发布的zlib 1.2.12版就包含了多个bug修复和潜在的安全改进,对于使用Tesseract OCR等依赖zlib的应用而言,及时跟进此类更新具有实际意义。
2023-05-05 18:04:37
91
柳暗花明又一村
ZooKeeper
...的电话那样。本文将从问题产生的原因出发,深入分析,并给出相应的解决方案。 二、问题现象与产生原因 当ZooKeeper客户端连接断开后,通常情况下,客户端应该能够自动重新建立连接并恢复服务。不过呢,有时候我们会碰到这么个情况:客户端没能够妥妥地应对这个问题,它非但没有停下来,反而还在不断地试图跟ZooKeeper服务器进行通信。这就导致了服务器的资源被一直占着用,就像有人把你的玩具一直霸着玩,都不给别人碰一下似的。 这个问题的主要原因在于ZooKeeper客户端的设计。ZooKeeper客户端在连接断开后,会一直尝试重新连接,而不会主动关闭连接。这就意味着,一旦网络信号不稳定或者服务器闹情绪了,客户端它可不管那么多,还是会一个劲儿地发送请求,这不仅白白消耗了服务器的宝贵资源,还可能殃及池鱼,影响到其他本来正常工作的客户端连接。 三、解决方法 针对上述问题,我们可以采用以下两种方式来解决: 1. 优化ZooKeeper客户端代码 首先,我们可以修改ZooKeeper客户端的代码,使其在连接断开后能够主动关闭连接。这样一来,就算网络突然抽风或者服务器闹情绪罢工了,客户端也能识趣地不再去频繁请求,这样就能有效地避免咱们宝贵的服务器资源被白白浪费掉啦。 以下是一个简单的示例: java public class MyZooKeeper extends ZooKeeper { private final String connectString; private volatile boolean connected = false; public MyZooKeeper(String connectString, int sessionTimeout, Watcher watcher) throws IOException { super(connectString, sessionTimeout, watcher); this.connectString = connectString; } @Override protected void finalize() throws Throwable { if (!connected) { super.close(); } super.finalize(); } public synchronized void reconnect() throws IOException { connected = false; close(); super.initialize(connectString, sessionTimeout, watcher); } } 在这个示例中,我们在MyZooKeeper类中添加了一个reconnect方法,用于在连接断开后重新连接Zookeeper服务器。 2. 使用心跳机制 另外,我们还可以利用ZooKeeper的心跳机制,定时向服务器发送心跳包,以便检测连接是否正常。假如在预定的时间内,服务器迟迟没有给咱回应,那咱就大概率觉得这连接怕是已经断掉了。这时候,客户端最好麻溜地把这连接给关掉,别耽误功夫。 以下是一个使用心跳机制的示例: java public class HeartbeatZooKeeper extends ZooKeeper { private final String connectString; private volatile boolean connected = false; private long lastHeartbeatTime = 0; public HeartbeatZooKeeper(String connectString, int sessionTimeout, Watcher watcher) throws IOException { super(connectString, sessionTimeout, watcher); this.connectString = connectString; } @Override protected void finalize() throws Throwable { if (!connected) { super.close(); } super.finalize(); } @Override public void sendPacket(ProtocolHeader header, ByteBuffer packet) throws KeeperException.ConnectionLossException { // 发送心跳包时,先检查连接是否已经断开 checkConnectivity(); // 发送心跳包 super.sendPacket(header, packet); } private void checkConnectivity() throws KeeperException.ConnectionLossException { long currentTime = System.currentTimeMillis(); if (currentTime - lastHeartbeatTime > sessionTimeout / 2) { throw new KeeperException.ConnectionLossException("Connection lost"); } } } 在这个示例中,我们在sendPacket方法中添加了一段代码,用于检查连接是否已经断开。如果超出了预定的时间限制,系统就会给你抛出一个KeeperException.ConnectionLossException异常,这就意味着你的连接已经“掉线”了。 四、总结 通过以上的讨论,我们了解到ZooKeeper客户端连接断开后无法自动断开的问题是由其设计缺陷引起的。我们可以通过修改ZooKeeper客户端代码或者使用心跳机制来解决这个问题。这不仅能够节省服务器资源,也能够提高客户端的可用性和稳定性。
2024-01-15 22:22:12
67
翡翠梦境-t
Go-Spring
...e To Live)机制有效管理数据过期问题,从而降低由于缓存异常引发的系统风险。 同时,也有不少研究者和开发者开始关注缓存一致性和安全性的问题。今年早些时候,一项关于缓存污染攻击的研究揭示了攻击者可能利用恶意数据导致缓存失效或误导系统行为的风险,进一步强调了在设计和使用缓存服务时,不仅要考虑性能优化,还需兼顾安全防护措施的重要性。 此外,随着Service Mesh技术的发展, Istio等服务网格解决方案提供了对缓存治理更精细的控制能力,允许开发人员在不修改应用代码的情况下,动态配置缓存策略,增强了分布式缓存管理的可观测性和可控性。 综上所述,在面对缓存服务异常问题时,除了及时发现与修复外,紧跟业界最新研究成果和技术趋势,深入了解并合理运用各类工具与最佳实践,才能确保在复杂多变的分布式环境中,我们的缓存服务能够持续稳定地发挥其提升系统性能的关键作用。
2023-11-23 18:26:05
512
心灵驿站-t
Maven
...天咱就来好好唠唠这类问题究竟是怎么冒出来的,又该如何把它给摆平。 1. Resource Filtering基础概念与应用场景 首先,让我们回顾一下Maven的Resource Filtering机制。通过在pom.xml中配置build > resources > resource标签,并设置filtering属性为true,Maven会在构建时扫描并替换资源文件中的变量。例如: xml src/main/resources true 这样一来,当资源文件如config.properties中有${version}这样的变量时,Maven会从项目或系统的属性中查找对应的值进行替换。 2. 遇到的Resource Filtering错误实例 然而,在实际应用中,我们可能会遇到如下几种典型的"Resourcefilteringerrors": 2.1 变量未定义错误 假设我们的config.properties文件中有这样一行: properties app.version=${project.version} 但如果我们没有在POM文件或其他地方定义project.version这个属性,Maven在构建时就会抛出类似“找不到对应属性值”的错误。 2.2 过滤规则冲突错误 另外一种常见问题是,由于过滤规则设置不当导致的冲突。比如,某个应该被过滤的文件意外地被设置为不进行过滤,或者反之,导致预期的内容替换未能发生。 2.3 特殊字符处理错误 在某些场景下,资源文件中可能包含特殊字符,如${}, 如果这些字符不是用来表示Maven属性占位符,但在过滤过程中却被误解析,也会引发错误。 3. 解决Resource Filtering错误的方法 对于上述提到的问题,我们可以采取以下措施来应对: 3.1 定义缺失的属性 对于变量未定义的情况,我们需要确保所有使用的属性都有相应的定义。可以在pom.xml中增加版本信息等属性,如下所示: xml 1.0.0-SNAPSHOT 3.2 正确配置过滤规则 针对过滤规则冲突,应精确指定哪些资源需要过滤,哪些不需要。例如,如果只希望对特定的资源配置过滤,可以细化资源配置: xml src/main/resources /config.properties true 3.3 特殊字符转义 对于含有非属性占位符${}的特殊字符问题,可以在资源文件中使用\进行转义,例如${literal}应写为\\${literal},以防止被Maven误解析。 4. 总结与思考 在Maven的世界里,Resource Filtering无疑是一项强大且实用的功能,它能够帮助我们实现资源文件的动态化配置,大大增强了项目的灵活性。但同时,我们也需要正确理解和合理使用这一特性,避免陷入Resource Filtering错误的困境。只有当我们把这些玩意儿的工作原理摸得门儿清,把那些可能潜伏的坑都给填平了,才能让它们真正火力全开,帮我们把开发效率往上猛提,保证每一个构建环节都顺滑无比,一点儿磕绊都没有。当你遇到问题时,就得化身成福尔摩斯那样,瞪大眼睛、开动脑筋,仔仔细细地观察、抽丝剥茧地分析。然后,再通过实实在在的代码实例去摸透、动手尝试,一步步解决这个难题。这,就是编程那让人着迷的地方,也是每一位开发者在成长道路上必定会经历的一段精彩旅程。
2023-03-30 22:47:35
107
草原牧歌_
MemCache
...和深入探讨,揭示这一问题并提供应对方案。 0 2. Memcached缓存机制及风险揭示 Memcached的工作原理是将用户临时存储在内存中的数据(如数据库查询结果)以键值对的形式暂存,当后续请求再次需要相同数据时,直接从内存中获取,避免了昂贵的磁盘IO操作,从而显著提高了响应速度。不过,因为内存这家伙的特性,一旦这服务闹罢工或者重启了,它肚子里暂存的数据就无法长久保存下来,这样一来,所有的缓存数据可就全都没啦。 python import memcache mc = memcache.Client(['localhost:11211'], debug=0) mc.set('key', 'value') 存储数据到Memcached data = mc.get('key') 从Memcached获取数据 上述Python代码展示了如何使用Memcached进行简单的数据存取,但在服务崩溃后,'key'对应的'value'将会丢失。 0 3. 面对Memcached崩溃时的数据丢失困境 面对这样的问题,首先我们需要理解的是,这不是Memcached设计上的缺陷,而是基于其内存缓存定位的选择。那么,作为开发者,我们应当如何应对呢? 03.1 理解并接受 首先,我们要理解并接受这种可能存在的数据丢失情况,并在架构设计阶段充分考虑其影响,确保即使缓存失效,系统仍能正常运作。 03.2 数据重建策略 其次,建立有效的数据重建策略至关重要。比如,假如我们发现从Memcached这小子那里获取数据时扑了个空,别担心,咱可以灵活应对,重新去数据库这个靠谱的仓库里翻出所需的数据,然后再把这些数据塞回给Memcached,让它满血复活。 python try: data = mc.get('key') except memcache.Error: 当Memcached访问异常时,从数据库重构建缓存数据 db_data = fetch_from_database('key') mc.set('key', db_data) data = db_data 03.3 使用备份和集群 另外,Memcached支持多服务器集群配置,通过在多台服务器上分散存储缓存数据,即使某一台服务器崩溃,其他服务器仍然能够提供部分缓存服务,降低整体数据丢失的影响。 03.4 数据持久化探索 虽然Memcached本身不支持数据持久化,但社区有一些变通的解决方案,如memcachedb、twemproxy等中间件,它们在一定程度上实现了缓存数据的持久化,不过这会牺牲一部分性能且增加系统复杂性,因此在选择时需权衡利弊。 0 4. 结论与思考 尽管Memcached服务崩溃会导致所有缓存数据丢失,但这并不妨碍它在提升系统性能方面发挥关键作用。作为开发者,咱们得充分意识到这个问题的重要性,并且动手去解决它。咱可以想想怎么设计出更合理的架构,重建一下数据策略,再比如利用集群技术和持久化方案这些手段,就能妥妥地应对这个问题了。每一个技术工具都有它自己的“用武之地”和“短板”,关键在于我们如何去洞察并巧妙运用,让它们在实际场景中最大程度地发光发热,发挥出最大的价值。就像一把锤子,不是所有问题都是钉子,但只要找准地方,就能敲出实实在在的效果。每一次遇到挑战,都是一次深度理解技术和优化系统的契机,让我们共同在实践中成长。
2023-09-25 18:48:16
61
青山绿水
Redis
...践。 1. 合理配置Redis服务器参数 (1)调整内存分配策略 Redis默认使用jemalloc作为内存分配器,对于不同的工作负载,可以适当调整jemalloc的相关参数以优化内存碎片和分配效率。例如,可以通过修改redis.conf文件中的maxmemory-policy来设置内存淘汰策略,如选择LRU(最近最少使用)策略: bash maxmemory-policy volatile-lru (2)限制客户端连接数 过多的并发连接可能会导致Redis资源消耗过大,降低响应速度。因此,我们需要合理设置最大客户端连接数: bash maxclients 10000 请根据实际情况调整此数值。 2. 使用Pipeline和Multi-exec批量操作 Redis Pipeline功能允许客户端一次性发送多个命令并在服务器端一次性执行,从而减少网络往返延迟,显著提升性能。以下是一个Python示例: python import redis r = redis.Redis(host='localhost', port=6379, db=0) pipe = r.pipeline() for i in range(1000): pipe.set(f'key_{i}', 'value') pipe.execute() 另外,Redis的Multi-exec命令用于事务处理,也能实现批量操作,确保原子性的同时提高效率。 3. 数据结构与编码优化 Redis支持多种数据结构,选用合适的数据结构能极大提高查询效率。比如说,如果我们经常要做一些关于集合的操作,像是找出两个集合的交集啊、并集什么的,那这时候,我们就该琢磨着别再用那个简单的键值对(Key-Value)了,而是考虑选用Set或者Sorted Set,它们在这方面更管用。 python 使用Sorted Set进行范围查询 r.zadd('sorted_set', {'user1': 100, 'user2': 200, 'user3': 300}) r.zrangebyscore('sorted_set', 150, 350) 同时,Redis提供了多种数据编码方式,比如哈希表的ziplist编码能有效压缩存储空间,提高读写速度,可通过修改hash-max-ziplist-entries和hash-max-ziplist-value进行配置。 4. 精细化监控与问题排查 定期对Redis服务器进行性能监控和日志分析至关重要。Redis自带的INFO命令能提供丰富的运行时信息,包括内存使用情况、命中率、命令统计等,结合外部工具如RedisInsight、Grafana等进行可视化展示,以便及时发现潜在性能瓶颈。 当遇到性能问题时,我们要像侦探一样去思考和探索:是由于内存不足导致频繁淘汰数据?还是因为某个命令执行过于耗时?亦或是客户端并发过高引发的问题?通过针对性的优化措施,逐步改善Redis服务器的响应时间和性能表现。 总结来说,优化Redis服务器的关键在于深入了解其内部机制,合理配置参数,巧妙利用其特性,以及持续关注和调整系统状态。让我们一起携手,打造更为迅捷、稳定的Redis服务环境吧!
2023-11-29 11:08:17
237
初心未变
VUE
...会碰到一些让人头疼的问题。比如说吧,当你辛辛苦苦把Vue应用部署到服务器上后,可能会发现有那么几个页面,或者甚至所有页面,在加载的时候竟然蹦出了404错误,这可真是让人抓狂的情况啊。这个看似棘手的问题背后,实则隐藏着诸多可能的原因,以及相应的解决策略。今天,我们将一起深入探讨这个问题,并通过实例代码来详细解析。 2. 报错404常见原因分析 2.1 路由配置问题 Vue项目使用vue-router进行路由管理时,如果没有正确配置base属性,可能导致静态资源路径不正确,进而引发404错误。例如: javascript // vue.config.js 或 router/index.js 中的配置 const router = new Router({ base: '/your-project-name/', // 必须与实际部署路径一致 routes: [...] }) 2.2 静态资源路径问题 当Vue项目构建生成的静态资源路径与服务器实际部署路径不匹配时,也会导致404错误。比如,你瞧啊,Vue这家伙,默认会把所有的静态资源都塞到static这个文件夹里,这个文件夹呢,就在dist目录的怀抱里。要是服务器小哥没找准方向,没有正确指向这个藏宝地,那可就麻烦咯,保不准会出现点状况滴。 javascript // vue.config.js 文件中修改输出目录和静态资源目录 module.exports = { publicPath: './', // 根据实际情况调整 assetsDir: 'static', ... } 2.3 服务端配置问题 Nginx等服务器配置不当,未正确处理Vue项目的SPA(Single Page Application)特性,也可能是404报错的元凶。对于SPA应用,通常需要配置Nginx将所有非静态资源请求重定向至index.html: nginx location / { try_files $uri $uri/ /index.html; } 2.4 History模式与Hash模式差异 Vue Router支持History和Hash两种路由模式。在实际生产环境中,如果你的应用使用的是History模式,那么可能会因为服务器设置没配好,一不小心就给你来个404错误。这时候,你就得翻回去瞅瞅上文2.3章节,按照那里说的一步步把服务器配置搞定哈。 javascript // router/index.js 中配置路由模式 const router = new Router({ mode: 'history', // 或者 'hash' routes: [...] }) 3. 解决方案及实践 针对上述提到的各种情况,我们需要逐一排查并采取相应措施: - 检查并修正vue.config.js中的publicPath和assetsDir配置,确保与服务器部署路径匹配。 - 根据项目实际需求,合理设置vue-router的base属性。 - 对于服务器配置,尤其是SPA应用,务必按照SPA特性进行正确的路由重定向配置。 - 如果使用History模式,请确保服务器已做相应配置以支持。 在整个过程中,不断尝试、观察、思考并验证是我们解决问题的关键步骤。同时呢,要像侦探一样对技术细节保持敏锐洞察,还要像哲学家那样深入理解问题的本质,这样才能有效防止这类问题再次冒出来,可别让它再给我们捣乱! 4. 结语 面对Vue打包后报错404这类问题,无需恐慌,只需耐心细致地从各个层面寻找线索,一步步排除故障。就像侦探查案那样,我们一步步地捣鼓、琢磨、优化,最后肯定能把那个“404迷宫”的大门钥匙给找出来,让它无所遁形。希望本文能够帮助你在解决类似问题时更加得心应手,让我们的Vue项目运行如丝般顺滑!
2023-10-10 14:51:55
77
青山绿水_
Apache Solr
...Solr管理员头疼的问题——数据在某个时间点突然暴增,导致存储空间不足。这问题就像夏天突然来了一场暴雨,让我们措手不及。别慌啊,今天我们来聊聊怎么应对这个问题,让你的Solr系统变得更强大。 2. 数据异常增长的原因分析 首先,我们需要了解数据异常增长的原因。可能是因为: - 业务活动高峰:比如双十一这种大促销活动,可能会导致大量数据涌入。 - 数据清洗错误:如果数据清洗逻辑有误,可能会导致重复数据的产生。 - 系统配置问题:比如内存或磁盘空间不足,导致数据无法正常处理。 为了更好地理解问题,我们可以从日志入手。Solr的日志文件里通常会记下一些重要的东西,比如说数据入库的时间和频率之类的信息。通过查看这些日志,我们能更准确地定位问题所在。 3. 检查和优化存储空间 接下来,我们来看看具体的操作步骤。 3.1 检查当前存储空间 首先,我们需要检查当前的存储空间情况。可以使用以下命令来查看: bash df -h 这个命令会显示所有分区的使用情况。要是哪个分区眼看就要爆满,那咱们就得琢磨着怎么给它减减压了。 3.2 优化索引配置 如果存储空间不足,我们可以考虑调整索引的配置。比如,减少每个文档的大小,或者增加分片的数量。下面是一个简单的配置示例: xml TieredMergePolicy 10 5 在这个配置中,mergeFactor 控制了合并操作的频率,而 maxMergedSegmentMB 则控制了最大合并段的大小。你可以根据实际情况调整这些参数。 3.3 压缩和删除旧数据 另外一种方法是定期压缩和删除旧的数据。Solr提供了多种压缩策略,比如 forceMergeDeletesPct 和 expungeDeletes。下面是一个示例代码: java // Java 示例代码 SolrClient solr = new HttpSolrClient.Builder("http://localhost:8983/solr/mycollection").build(); solr.commit(new CommitCmd(true, true)); solr.close(); 这段代码会强制合并并删除标记为删除的文档。当然,你也可以设置定时任务来自动执行这些操作。 4. 监控和预警机制 最后,建立一套完善的监控和预警机制也是非常重要的。我们可以使用Prometheus、Grafana等工具来实时监控Solr的状态,并设置报警规则。这样一来,如果存储空间快不够了,系统就会自动发个警报,提醒管理员赶紧采取行动。 5. 总结 好了,今天的分享就到这里。希望这些方法能够帮助大家解决Solr存储空间不足的问题。记住,及时监控和优化是非常重要的。如果你还有其他问题,欢迎随时留言讨论! 总之,面对数据暴增的问题,我们需要冷静分析,合理规划,才能确保系统的稳定运行。希望这篇分享对你有所帮助,让我们一起努力,让Solr成为更强大的搜索工具吧!
2025-01-31 16:22:58
80
红尘漫步
SeaTunnel
...疼的JSON解析异常问题。 在本文中,我们将以SeaTunnel为例,深入探讨如何解决JSON解析异常的问题,并给出具体的实例代码。 二、什么是SeaTunnel SeaTunnel是一个开源的实时数据同步系统,它主要用于将数据从一个地方快速、准确地同步到另一个地方。SeaTunnel支持多种数据源和目标,包括但不限于MySQL、Oracle、HBase、HDFS等。它还配备了一整套超级好用的API工具箱,让开发者能够轻轻松松地进行数据同步操作,就像玩乐高积木一样便捷。 三、JSON解析异常的原因 JSON解析异常通常发生在数据源返回的JSON格式错误的情况下。比如,假如数据源给咱们返回的JSON字符串里头混进了不应该出现的非法字符,或者整个结构乱七八糟,跟JSON的标准格式对不上号,这时候SeaTunnel可就不乐意了,它会立马抛出一个JSON解析异常来表达它的不满和抗议。 四、解决JSON解析异常的方法 对于JSON解析异常的问题,我们可以采取以下几种方法来解决: 1. 检查并修正数据源返回的JSON数据 这是最直接也是最有效的方法。我们完全可以通过瞅瞅数据源头返回的结果,像侦探破案那样,揪出引发解析异常的那个“罪魁祸首”,然后对症下药,把它修正过来。 2. 使用JSON解析库 SeaTunnel本身已经内置了对JSON的支持,但是如果数据源返回的JSON格式非常复杂,我们可能需要使用更强大的JSON解析库来进行处理。 3. 优化SeaTunnel配置 通过调整SeaTunnel的配置参数,我们可以让其更加灵活地处理各种类型的JSON数据。 五、实战演示 下面,我们将通过一个实际的例子,展示如何使用SeaTunnel处理JSON解析异常的问题。 假设我们需要从一个外部服务器上获取一些JSON格式的数据,并将其同步到本地数据库中。但是,这个服务器上的JSON数据格式有点儿“另类”,它里面掺杂了一大堆不合规的字符呢! 首先,我们需要修改SeaTunnel的配置,使其能够容忍这种特殊的JSON格式。具体来说,我们可以在配置文件中添加以下代码: yaml processors: - name: json properties: tolerant: true 然后,我们可以创建一个新的任务,用于从服务器上获取JSON数据: json { "name": "example", "sources": [ { "type": "http", "properties": { "url": "https://example.com/data.json" } } ], "sinks": [ { "type": "mysql", "properties": { "host": "localhost", "port": 3306, "username": "root", "password": "", "database": "example", "table": "data" } } ] } 最后,我们只需要运行 SeaTunnel 的命令,就可以开始同步数据了: bash ./seata-tunnel.sh run example 六、结论 总的来说,解决SeaTunnel中的JSON解析异常问题并不是一件困难的事情。只要我们掌握了正确的处理方法,就能够有效地避免这种情况的发生。同时,我们也可以利用SeaTunnel的强大功能,来处理各种复杂的JSON数据。
2023-12-05 08:21:31
339
桃李春风一杯酒-t
Beego
...句缓存失效与内存泄漏问题深度探讨 1. 引言 在Go语言开发领域,Beego作为一款成熟的MVC框架深受开发者喜爱。其内置的ORM模块,不仅简化了数据库操作,还提供了诸如预编译语句缓存等高级特性以提升性能。然而,在实际操作的时候,我们可能难免会碰上预编译语句的缓存突然玩不转了,或者内存泄漏这种小插曲。本文将通过实例代码深入剖析这些问题,并尝试探讨相应的解决方案。 2. Beego ORM预编译语句缓存机制 Beego ORM中的预编译语句缓存功能主要为了提高频繁执行SQL查询时的效率。它会把之前执行过的SQL语句预先编译好,然后把这些“煮熟”的语句存放在一个小仓库里。等到下次我们要执行相同的SQL时,它就不用再从头开始忙活了,直接从小仓库里拿出来用就行,这样一来,就省去了重复解析和编译SQL所消耗的那些宝贵资源,让整个过程变得更加流畅高效。 go import "github.com/astaxie/beego/orm" // 初始化Beego ORM o := orm.NewOrm() o.Using("default") // 使用默认数据库 // 假设我们有一个User模型 var user User query := o.QueryTable(new(User)) // 预编译SQL语句(例如:SELECT FROM user WHERE id=?) query.Filter("id", 1).Prepare() // 多次执行预编译后的查询 for i := 0; i < 100; i++ { query.One(&user) } 在这个例子中,Prepare()方法负责对SQL进行预编译并将其存储至缓存。 3. 预编译语句缓存失效问题及其分析 然而,在某些特定场景下,如动态生成SQL或者SQL结构发生改变时,预编译语句缓存可能无法正常发挥作用。例如: go for _, id := range ids { // ids是一个动态变化的id列表 query.Filter("id", id).One(&user) } 在这种情况下,由于每次循环内的id值不同,导致每次Filter调用后生成的SQL语句实质上并不相同,原有的预编译语句缓存就失去了意义,系统会不断地进行新的SQL编译,反而可能导致性能下降。 4. 内存泄漏问题及其解决思路 另一方面,预编译语句缓存若不加以合理管理,可能会引发内存泄漏。虽然Beego ORM这个小家伙自身已经内置了缓存回收的功能,但在那些跑得特别久的应用程序里,假如咱们预编译了一大堆SQL语句却不再用到它们,理论上这部分内存就会被白白占用,不会立马被释放掉。 为了解决这个问题,我们可以考虑适时地清理无用的预编译语句缓存,例如在业务逻辑允许的情况下,结合应用自身的生命周期进行手动清理: go o.ResetStmtCache() // 清空预编译语句缓存 同时,也可以在项目开发阶段关注并优化SQL语句的设计,尽量减少不必要的动态SQL生成,确保预编译语句缓存的有效利用。 5. 结论与思考 综上所述,虽然Beego ORM预编译语句缓存是一项强大而实用的功能,但在实际运用中仍需注意其潜在的问题和挑战。只有深入了解并妥善处理这些问题,才能真正发挥其优势,提升我们的应用性能。未来啊,等技术再进步些,加上咱们社区一块儿使劲儿,我可想看到Beego ORM里头能整出一套更牛更智能的预编译语句缓存策略来。这样一来,可就能给开发者们提供更贴心、更顺手的服务啦!
2023-01-13 10:39:29
560
凌波微步
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
Ctrl + R
- 启动反向搜索历史命令。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"