前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[基于角色的访问控制RBAC示例 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
c++
...变得复杂。共享资源的访问需要进行精细控制,以防止死锁、竞争条件和数据不一致等问题。例如,使用互斥锁(mutex)、读写锁(read-write locks)或原子操作等技术来保证线程安全。 2. 跨平台兼容性:不同操作系统和硬件平台对资源管理的支持程度不同。确保资源管理代码在各种环境中都能正确运行,需要考虑平台差异和标准一致性。 3. 性能优化:资源管理操作,如资源获取和释放,可能会对程序性能产生影响。在追求资源管理的同时,需要平衡性能需求,避免不必要的开销。 4. 资源泄露与内存管理:在动态分配资源的情况下,确保资源在不再需要时被正确释放,是避免内存泄漏和资源泄露的关键。智能指针虽然有效,但在某些场景下仍需谨慎使用,特别是在与第三方库交互时。 应对策略 1. 采用现代C++特性:利用C++11及之后版本的特性,如范围基类(range-based for loops)、智能指针(std::unique_ptr, std::shared_ptr)和RAII原则,简化资源管理过程,提高代码可读性和安全性。 2. 使用线程安全库:选择支持线程安全的库,如Boost.Thread或Intel TBB(Threading Building Blocks),可以简化多线程编程,减少资源管理相关的错误。 3. 深入理解并使用现代内存管理技术:掌握C++的智能指针、RAII、RAII原则和现代内存管理概念,如RAII(Resource Acquisition Is Initialization),能够有效地管理资源,减少内存泄漏的风险。 4. 性能优化与测试:在实现资源管理策略时,结合性能分析工具(如Valgrind、gperftools)进行性能评估,确保资源管理操作不会对程序性能产生负面影响。同时,进行充分的单元测试和压力测试,验证资源管理的正确性和鲁棒性。 5. 持续学习与适应新技术:软件开发领域不断演进,新技术和最佳实践层出不穷。持续关注C++和软件工程领域的最新发展,学习新的资源管理工具和技术,如现代容器类库(如std::optional, std::variant)和并发库,能够帮助开发者更好地应对资源管理的挑战。 通过上述策略,开发者可以更有效地管理资源,确保程序在各种复杂场景下的稳定性和安全性,同时优化性能,满足现代软件开发的需求。
2024-10-05 16:01:00
49
春暖花开
Golang
...假设我们正在开发一个基于命令行的Golang服务,该服务依赖于一个配置文件来设置监听端口和日志级别。配置文件内容如下: yaml server: port: 8080 logLevel: info 代码示例: 示例代码1:基本的命令行参数解析 go package main import ( "fmt" "os" "strconv" "github.com/spf13/pflag" ) func main() { var port int var logLevel string pflag.IntVar(&port, "port", 8080, "Server listening port") pflag.StringVar(&logLevel, "log-level", "info", "Log level (debug|info|warn|error)") if err := pflag.Parse(); err != nil { fmt.Println("Error parsing flags:", err) os.Exit(1) } fmt.Printf("Listening on port: %d\n", port) fmt.Printf("Log level: %s\n", logLevel) } 示例代码2:加载配置文件并验证 go package main import ( "encoding/yaml" "fmt" "io/ioutil" "log" yamlfile "path/to/your/config.yaml" // 假设这是你的配置文件路径 ) type Config struct { Server struct { Port int yaml:"port" LogLevel string yaml:"logLevel" } yaml:"server" } func main() { configFile, err := ioutil.ReadFile(yamlfile) if err != nil { log.Fatalf("Failed to read config file: %v", err) } var config Config err = yaml.Unmarshal(configFile, &config) if err != nil { log.Fatalf("Failed to parse config: %v", err) } fmt.Printf("Configured port: %d\n", config.Server.Port) fmt.Printf("Configured log level: %s\n", config.Server.LogLevel) } 4. 错误处理与预防策略 当遇到“配置文件无效”的错误时,关键在于: - 详细的错误信息:确保错误信息足够详细,能够指向具体问题所在。 - 日志记录:在关键步骤加入日志输出,帮助追踪问题发生的具体环节。 - 输入验证:对配置文件的每一项进行严格验证,确保其符合预期格式和值域。 - 配置文件格式一致性:保持配置文件格式的一致性和规范性,避免使用过于灵活但难以解析的格式。 - 异常处理:在加载配置文件和解析过程中添加适当的错误处理逻辑,避免程序崩溃。 5. 结语 拥抱变化与持续优化 面对“配置文件无效”的挑战,关键是保持耐心与细致,从每一次错误中学习,不断优化配置管理实践。哎呀,兄弟!咱们的目标可不小。我们得把输入的东西好好检查一下,不让那些乱七八糟的玩意儿混进来。同时,咱们还得给系统多穿几层防护,万一出了啥差错,也能及时发现,迅速解决。这样,咱们的系统不仅能在风雨中稳如泰山,还能方便咱们后期去调整和优化,就像是自己的孩子一样,越养越顺手,你说是不是?嘿,兄弟!如果你在Golang的海洋里漂泊,那我这小文就是为你准备的一盏明灯。在这片充满智慧和创造力的社区里,大家互相分享经验,就像老渔民分享钓鱼秘籍一样,让每个人都能从前辈们的实战中汲取营养,共同进步。这篇文章,就像是你旅途中的指南针,希望能给你带来灵感,让你的编程之路不再孤单,走得更远,飞得更高!
2024-08-22 15:58:15
169
落叶归根
RabbitMQ
...布式系统里可是个关键角色,它的稳定性和可靠性直接关系到整个系统的运行表现,一点儿都不能马虎。RabbitMQ,作为一款广泛使用的开源消息队列服务,它不仅提供了强大的消息传递功能,还支持多种消息模式和协议。不过嘛,在实际用起来的时候,因为网络不给力或者服务器罢工啥的,客户端和RabbitMQ服务器之间的连接就可能出问题了。因此,如何优雅地处理这些连接故障,成为确保系统稳定运行的关键。 1. 了解RabbitMQ的基本概念 在深入探讨如何处理连接故障之前,我们先来简单了解一下RabbitMQ的基础知识。RabbitMQ就像是一个开源的邮局,它负责在不同的程序之间传递消息,就像是给它们送信一样。你可以把消息发到一个或者多个队列里,然后消费者应用就从这些队列里面把消息取出来处理掉。RabbitMQ可真是个多才多艺的小能手,支持好几种消息传递方式,比如点对点聊天和广播式发布/订阅。这就让它变得特别灵活,不管你是要一对一私聊还是要群发消息,它都能轻松搞定。 2. 连接故障 常见原因与影响 在探讨如何处理连接故障之前,我们有必要了解连接故障通常是由哪些因素引起的,以及它们会对系统造成什么样的影响。 - 网络问题:这是最常见的原因,比如网络延迟增加、丢包等。 - 服务器问题:服务器宕机、重启或者维护时,也会导致连接中断。 - 配置错误:不正确的配置可能导致客户端无法正确连接到服务器。 - 资源限制:当服务器资源耗尽时(如内存不足),也可能导致连接失败。 这些故障不仅会打断正在进行的消息传递,还可能影响到整个系统的响应时间,严重时甚至会导致数据丢失或服务不可用。所以啊,我们要想办法让系统变得更皮实,就算碰到那些麻烦事儿,它也能稳如老狗,继续正常运转。 3. 如何优雅地处理连接故障 3.1 使用重试机制 首先,我们可以利用重试机制来应对短暂的网络波动或临时性的服务不可用。通过设置合理的重试次数和间隔时间,可以有效地提高消息传递的成功率。以下是一个简单的Python代码示例,展示了如何使用pika库连接到RabbitMQ服务器,并在连接失败时进行重试: python import pika from time import sleep def connect_to_rabbitmq(): max_retries = 5 retry_delay = 5 seconds for i in range(max_retries): try: connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) print("成功连接到RabbitMQ") return connection except Exception as e: print(f"尝试{i+1}连接失败,将在{retry_delay}秒后重试...") sleep(retry_delay) print("多次重试后仍无法连接到RabbitMQ,程序将退出") exit(1) 调用函数尝试建立连接 connection = connect_to_rabbitmq() 3.2 实施断线重连策略 除了基本的重试机制外,我们还可以实现更复杂的断线重连策略。例如,当检测到连接异常时,立即尝试重新建立连接,并记录重连日志以便后续分析。另外,我们也可以试试用指数退避算法来调整重连的时间间隔,这样就不会在短时间内反复向服务器发起连接请求,也能让服务器稍微轻松一点。 下面展示了一个基于RabbitMQ官方客户端库pika的断线重连示例: python import pika from time import sleep class ReconnectingRabbitMQClient: def __init__(self, host='localhost'): self.host = host self.connection = None self.channel = None def connect(self): while True: try: self.connection = pika.BlockingConnection(pika.ConnectionParameters(self.host)) self.channel = self.connection.channel() print("成功连接到RabbitMQ") break except Exception as e: print(f"尝试连接失败,将在{2self.retry_count}秒后重试...") self.retry_count += 1 sleep(2self.retry_count) def close(self): if self.connection: self.connection.close() def send_message(self, message): if not self.channel: self.connect() self.channel.basic_publish(exchange='', routing_key='hello', body=message) client = ReconnectingRabbitMQClient() client.send_message('Hello World!') 在这个例子中,我们创建了一个ReconnectingRabbitMQClient类,它包含了连接、关闭连接以及发送消息的方法。特别要注意的是connect方法里的那个循环,这家伙每次连接失败后都会先歇一会儿,然后再杀回来试试看。而且这休息的时间也是越来越长,越往后重试间隔就按指数往上翻。 3.3 异步处理与心跳机制 对于那些需要长时间保持连接的应用场景,我们还可以采用异步处理方式,配合心跳机制来维持连接的有效性。心跳其实就是一种简单的保活方法,就像定时给对方发个信息或者挥挥手,确认一下对方还在不在。这样就能赶紧发现并搞定那些断掉的连接,免得因为放太长时间没动静而导致连接中断的问题。 4. 总结与展望 处理RabbitMQ中的连接故障是一项复杂但至关重要的任务。通过上面提到的几种招数——比如重试机制、断线重连和心跳监测,我们的系统会变得更强壮,也更靠谱了。当然,针对不同应用场景和需求,还需要进一步定制化和优化这些方案。比如说,对于那些对延迟特别敏感的应用,你得更仔细地调整重试策略,不然用户可能会觉得卡顿或者直接闪退。至于那些需要应对海量并发连接的场景嘛,你就得上点“硬货”了,比如用更牛的技术来搞定负载均衡和集群管理,这样才能保证系统稳如老狗。总而言之,就是咱们得不停地试啊试的,然后就能慢慢弄出个既快又稳的分布式消息传递系统。 --- 以上就是关于RabbitMQ中如何处理连接故障的一些探讨。希望这些内容能帮助你在实际工作中更好地应对挑战,打造更加可靠的应用程序。如果你有任何疑问或想要分享自己的经验,请随时留言讨论!
2024-12-02 16:11:51
95
红尘漫步
转载文章
...实现了较为方便的手动控制,下面对这个过程进行一下梳理。 -------------------------------------------------------------------------------------分界线------------------------------------------------------------------------------------- 1.首先是参考了这一篇文章:https://zhuanlan.zhihu.com/p/336990051 主要介绍了两种方式解决这个问题: 使用racadm温度调控,但是配置教程是Ubuntu16.04下的,过程中有些linux语句在18.04中运行报错,本身对linux就不是很熟,然后我果断放弃。 更新BIOS 和IDRAC,他2022年3月3日通过更新版本,实现了风扇转速的控制,但是我2022年6月,按照他给的下载版本,更新了,发现没用啊??!!回退版本没用,更新版本也没用,就很离谱,难道因为他是2080ti,我是3090的问题??操作步骤如下: 参考该博客对服务器IDRAC配置 https://www.dell.com/support/kbdoc/zh-cn/000177212,查看解决方案中的开机自检期间为F2进行配置 配置好后,在服务器后后面有个IDRAC的网线插口,用网线与笔记本连接,连接成功后会显示未识别网络(如果是红叉的话是没有连接成功,检查上一步,尝试关机重启等),修改IP地址,跟上一步设置的服务器IP在同一网段,不是同一IP!!,比如服务器是192.168.0.120,笔记本可以设置192.168.0.100。(https://new.qq.com/omn/20210119/20210119A01ROV00.html) IE浏览器打开192.168.0.100网址,提示不安全,然后忽略掉,输入账号密码就可以进去了 进去后在下图位置,上传更新文件进行安装。 2.后面又看到一篇博客:https://blog.csdn.net/qq_36810544/article/details/115734795这篇博客比上边那篇早,应该是有参考吧,说是更新版本就行了,然并卵啊,可能是因为他是Ubuntu20.04,我是18.04的原因? 3.最后没招了,用IPMITOOL手动调节吧,参考了博客:https://blog.51cto.com/u_15072918/4392813 这篇博客也是更新后仍然无法识别3090(实际上我下的新版本的IDRAC是可以识别出有GPU的,但是还是显示不可用哇),所以就把IDRAC的版本回退到3.30以下使用IPMITOOL进行行手动调节转速了。 具体步骤如下: 将IDRAC回退到3.30版本,下载地址:https://www.dell.com/support/home/zh-cn/drivers/driversdetails 有的版本IDRAC可能需要把IMPI取消禁用,就在笔记本访问的IP地址的网页里修改即可,应该是在IDRAC设置中,没找到的话应该是不需要操作。 下载IPMITOOLWIN版本程序后解压,终端cd进入该文件夹,然后运行ipmitool命令: 关闭自动控制:ipmitool -I lanplus -U 用户名 -P 密码 -H 服务器地址 raw 0x30 0x30 0x01 0x00 设置风扇转速:ipmitool -I lanplus -U 用户名 -P 密码 -H 192.168.0.120 raw 0x30 0x30 0x02 0xff 0x64 ,最后两位对应16进制的风扇转速。64对应100%。 3.转速现在是可以手动调节了,但是每次都要执行终端命令太麻烦了,然后我写了一个小的gui界面,可以更方便地对风扇转速进行调节。界面如下,可以通过+和-增加和降低风速,也可以设定数值进行Set。 为了防止过热,最低风扇转速设置成了30%。需要注意:这个文件中IDRAC的IP必须是192.168.0.120才可以。 本文就先写到这里了,调节软件如果有需求的话可以后续上传,我在程序中也放了IPMITOOLWIN的文件,不需要再进行下载。有更好的解决方法也欢迎评论区分享。 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_42686221/article/details/125478351。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-24 14:29:07
174
转载
转载文章
...QL语句,简化了数据访问操作,实现了数据的增删改查等功能。 Spring Framework , Spring是一个开源的企业级Java应用程序框架,文中使用的版本是Spring-4.0.0。Spring以其控制反转(IoC)和面向切面编程(AOP)等特性著称,能帮助开发者构建高质量、松耦合的应用系统。在该项目中,Spring负责管理和整合各组件,如数据源配置、事务管理以及集成Mybatis实现业务逻辑层的功能。 DAO(Data Access Object)接口 , 在软件开发领域,DAO是一种设计模式,常用于将底层的数据访问细节与业务逻辑分离。在本文中,创建的UserMapper.java文件就是一个DAO接口示例,定义了一系列与用户表t_user相关的CRUD操作方法,如保存(save)、更新(update)、删除(delete)、按ID查找(findById)以及查询所有用户信息(findAll)。通过这种方式,业务层代码只需调用这些接口方法即可进行数据库操作,无需关心具体的SQL执行细节。 XML映射文件 , 在Mybatis框架中,XML映射文件用于描述SQL语句以及SQL结果如何映射到Java对象上。例如,UserMapper.xml文件就是对UserMapper.java接口中的方法对应的SQL实现,每个方法对应一个SQL片段,并通过 参数名 的方式引用Java方法传递过来的参数,确保SQL执行时能够动态绑定参数值,同时也提供了处理结果集映射到Java对象的方法,实现了ORM(对象关系映射)功能。
2023-09-05 11:56:25
114
转载
Hive
Hive无法访问HDFS文件系统的问题排查与解决 一、引言 Hive与HDFS的亲密关系 大家好啊!今天咱们聊聊Hive和HDFS这对CP(组合)。Hive 这个东西呢,其实就是个搭在 Hadoop 身上的数据仓库工具,说白了嘛,它的工作方式特别直白——把你的 SQL 查询语句给翻译成 MapReduce 任务,然后甩给 Hadoop 去干活儿。而HDFS呢,就是存储这些数据的地方。它们就像一对老朋友,互相依赖,缺一不可。 但有时候,这俩家伙可能会闹别扭,尤其是当你发现Hive突然不能访问HDFS了。这可真是让人头疼,因为这意味着你的数据查询直接凉凉。所以今天我们就来聊聊,为什么会出现这种情况,以及该怎么解决。 二、可能的原因 为什么Hive访问不了HDFS? 2.1 网络问题 首先,我们得想想是不是网络出了问题。嘿,你知道吗?我猜你们公司那位网络大神最近是不是偷偷调整了防火墙的设置?或者是服务器那边抽风了,直接断网了?反正不管咋回事儿,现在Hive跟HDFS就像是隔了一座大山,怎么也连不上,所以它想读数据都读不到啊! 举个例子吧,假设你的Hive配置文件里写着HDFS的地址是hdfs://namenode:9000/,但是实际上NameNode所在的机器根本不在网络范围内,那Hive当然会报错啦。 解决方法:检查一下网络连接是否正常。你可以试着ping一下HDFS的NameNode地址,看看能不能通。如果不行的话,赶紧找网络管理员帮忙修一下。 2.2 权限问题 其次,权限问题也是常见的原因。HDFS对文件和目录是有严格权限控制的,如果你的用户没有足够的权限去读取某个文件,那么Hive自然也无能为力。 举个栗子,假如你有一个HDFS路径/user/hive/warehouse/my_table,但是这个目录的权限设置成了只有root用户才能访问,而你的Hive用户不是root,那肯定就悲剧了。 解决方法:检查HDFS上的文件和目录权限。如果你想看看某个文件的权限,可以用这个命令:hadoop fs -ls /path/to/file。看完之后,要是觉得权限不对劲,就动手改一下呗,比如说用hadoop fs -chmod 755 /path/to/file,给它整成合适的权限就行啦! 2.3 HDFS服务未运行 还有一种可能是HDFS服务本身挂掉了。比如说,NameNode突然罢工了,DataNode也闹起了情绪,甚至整个集群都瘫痪了,啥都不干了。哎呀糟糕了,这情况有点悬啊!HDFS直接罢工了,完全不干活,任凭Hive使出浑身解数也无济于事。这下可好,整个系统像是瘫了一样,啥也跑不起来了。 解决方法:检查HDFS的服务状态。可以通过命令jps查看是否有NameNode和DataNode进程在运行。如果没有,那就得赶紧启动它们,或者重启整个HDFS服务。 三、实战演练 Hive访问HDFS的具体操作 接下来,我们通过一些实际的例子来看看如何用Hive操作HDFS。 3.1 创建表并加载数据到HDFS 假设我们现在要创建一个简单的表,并将数据加载到HDFS中。我们可以先创建一个本地文件data.txt,内容如下: id,name,age 1,Alice,25 2,Bob,30 3,Charlie,35 然后上传到HDFS: bash hadoop fs -put data.txt /user/hive/warehouse/my_table/ 接着在Hive中创建表: sql CREATE TABLE my_table ( id INT, name STRING, age INT ) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' STORED AS TEXTFILE; 最后加载数据: sql LOAD DATA INPATH '/user/hive/warehouse/my_table/data.txt' INTO TABLE my_table; 这样,我们的数据就成功存到了HDFS上,并且Hive也能读取到了。 3.2 查询数据 现在我们可以试试查询数据: sql SELECT FROM my_table; 如果一切正常,你应该能看到类似这样的结果: OK 1 Alice 25 2 Bob 30 3 Charlie 35 Time taken: 0.077 seconds, Fetched: 3 row(s) 但如果之前出现了访问不了HDFS的情况,这里就会报错。所以我们要确保每一步都正确无误。 四、总结与展望 总之,Hive无法访问HDFS的问题虽然看起来很复杂,但实际上只要找到根本原因,解决起来并不难。无论是网络问题、权限问题还是服务问题,都有相应的解决办法。嘿,大家听我说啊!以后要是再碰到这种事儿,别害怕,也别乱了阵脚。就当是玩个解谜游戏,一步一步慢慢来,肯定能找出办法搞定它! 未来,随着大数据技术的发展,Hive和HDFS的功能也会越来越强大。说不定哪天它们还能像人类一样交流感情呢!(开玩笑啦) 好了,今天的分享就到这里啦。如果你还有什么疑问或者经验想要分享,欢迎随时留言讨论哦!让我们一起进步,一起探索大数据的奥秘吧!
2025-04-01 16:11:37
105
幽谷听泉
Kafka
...者和消费者是两个核心角色。生产者负责将数据写入Kafka集群,而消费者则从这些主题中读取数据。嘿,你知道吗?Kafka这家伙,他可是个玩转分布式系统的高手!他设计的那个系统,就像个超级快递员一样,能保证你的信息无论去哪儿,都能安全无误地送达。这背后有个秘密武器,那就是消息持久化和高可用性机制。就像是在每个包裹上都贴了个追踪标签,不管遇到啥情况,都能找到它的踪迹。这样一来,无论是你发的信息还是数据,都能稳稳当当地到达目的地,不用担心会迷路或者丢失。这不就是咱们想要的安全可靠嘛!哎呀,你知道吗?在咱们实际操作的时候,有时候会遇到一些出乎意料的小麻烦。比如说,“InvalidProducerGroupLogPartitionLogSegmentState”,这句看起来就挺专业的,但其实就是告诉我们,系统在处理数据时遇到了点小问题,可能是某个部分的状态不对劲了。得赶紧找找是哪里出了岔子,然后对症下药,把这个问题解决掉。毕竟,咱们的系统就像个大家庭,每个成员都得好好配合,才能顺畅运行啊!本文旨在深入探讨这一问题的原因、解决方法以及预防措施。 二、问题解析 理解“InvalidProducerGroupLogPartitionLogSegmentState” 当我们在Kafka的日志中看到这个错误信息时,通常意味着生产者组的日志分区或日志段的状态不正常。这可能是由于多种原因导致的,包括但不限于: - 日志段损坏:Kafka在存储消息时,会将其分割成多个日志段(log segments)。哎呀,你猜怎么着?如果某个日志段因为存储的时候出了点小差错,或者是硬件哪里有点小故障,那可就有可能导致一些问题冒出来!就像是你家电脑里的文件不小心被删了,或者硬盘突然罢工了,结果你得花时间去找回丢失的信息,这事儿在日志里也可能会发生。所以,咱们得好好照顾这些数据,别让它们乱跑乱跳,对吧? - 日志清理策略冲突:Kafka的默认配置可能与特定场景下的需求不匹配,例如日志清理策略设置为保留时间过短或日志备份数量过多等,都可能导致日志段状态异常。 - 生产者组管理问题:生产者组内部的成员管理不当,或者组内成员的增加或减少频繁,也可能引发这种状态的错误。 三、代码示例 如何检测和修复问题 为了更直观地理解这个问题及其解决方法,下面我们将通过一些简单的代码示例来演示如何在Kafka环境中检测并修复这类问题。 示例代码1:检查和修复日志段状态 首先,我们需要使用Kafka提供的命令行工具kafka-log-consumer来检查日志段的状态。以下是一个基本的命令示例: bash 连接到Kafka集群 bin/kafka-log-consumer.sh --zookeeper localhost:2181 --topic your-topic-name --group your-group-name 检查特定日志段的状态 bin/kafka-log-consumer.sh --zookeeper localhost:2181 --topic your-topic-name --group your-group-name --log-segment-state INVALID 如果发现特定日志段的状态为“INVALID”,可以尝试使用kafka-log-cleaner工具来修复问题: bash 启动日志清理器,修复日志段 bin/kafka-log-cleaner.sh --zookeeper localhost:2181 --topic your-topic-name --group your-group-name --repair 示例代码2:调整日志清理策略 对于日志清理策略的调整,可以通过修改Kafka配置文件server.properties来实现。以下是一个示例配置,用于延长日志段的保留时间: properties 延长日志段保留时间 log.retention.hours=24 确保在进行任何配置更改后,重启Kafka服务器以使更改生效: bash 重启Kafka服务器 service kafka-server-start.sh config/server.properties 四、最佳实践与预防措施 为了预防“InvalidProducerGroupLogPartitionLogSegmentState”错误的发生,建议采取以下最佳实践: - 定期监控:使用Kafka监控工具(如Kafka Manager)定期检查集群状态,特别是日志清理和存储情况。 - 合理配置:根据实际业务需求合理配置Kafka的参数,如日志清理策略、备份策略等,避免过度清理导致数据丢失。 - 容错机制:设计具有高容错性的生产者和消费者逻辑,能够处理临时网络中断或其他不可预测的错误。 - 定期维护:执行定期的集群健康检查和日志清理任务,及时发现并解决问题。 五、结语 从失败到成长 面对“InvalidProducerGroupLogPartitionLogSegmentState”这样的问题,虽然它可能会带来暂时的困扰,但正是这些挑战促使我们深入理解Kafka的工作机制和最佳实践。哎呀,学着怎么识别问题,然后把它们解决掉,这事儿可真挺有意思的!不仅能让你的电脑或者啥设备运行得更稳当,还不停地长本事,就像个技术侦探一样,对各种情况都能看得透透的。这不是简单地提升技能,简直是开挂啊!记住,每一次挑战都是成长的机会,让我们在技术的道路上不断前行。
2024-08-28 16:00:42
108
春暖花开
Apache Atlas
...限不足:Hook需要访问目标系统的API接口,但如果权限配置不当,自然会报错。 为了验证我的猜测,我决定先从最简单的配置检查做起。打开atlas-application.properties文件,我仔细核对了以下内容: properties atlas.hook.kafka.enabled=true atlas.hook.kafka.consumer.group=atlas-kafka-group atlas.kafka.bootstrap.servers=localhost:9092 确认无误后,我又检查了Kafka服务是否正常运行,确保Atlas能够连接到它。虽然这一系列操作看起来很基础,但它们往往是排查问题的第一步。 --- 4. 实战演练 动手修复Hook部署失败 接下来,让我们一起动手试试如何修复Hook部署失败吧!首先,我们需要明确一点:问题的根源可能有很多,因此我们需要分步骤逐一排除。 Step 1: 检查依赖关系 假设我们的Hook是基于Hive的,那么首先需要确保Hive的客户端库已经正确添加到了项目中。例如,在Maven项目的pom.xml文件里,我们应该看到类似如下的配置: xml org.apache.hive hive-jdbc 3.1.2 如果版本不对,或者缺少了必要的依赖项,就需要更新或补充。记得每次修改完配置后都要重新构建项目哦! Step 2: 调试日志级别 为了让日志更加详细,帮助我们定位问题,可以在log4j.properties文件中将日志级别调整为DEBUG级别: properties log4j.rootLogger=DEBUG, console 这样做虽然会让日志输出变得冗长,但却能为我们提供更多有用的信息。 Step 3: 手动测试连接 有时候,Hook部署失败并不是代码本身的问题,而是网络或者环境配置出了差错。这时候,我们可以尝试手动测试一下Atlas与目标系统的连接情况。例如,对于Kafka Hook,可以用下面的命令检查是否能正常发送消息: bash kafka-console-producer.sh --broker-list localhost:9092 --topic test-topic 如果这条命令执行失败,那就可以确定是网络或者Kafka服务的问题了。 --- 5. 总结与反思 成长中的点滴收获 经过这次折腾,我对Apache Atlas有了更深的理解,同时也意识到,任何技术工具都不是万能的,都需要我们投入足够的时间和精力去学习和实践。 最后想说的是,尽管Hook部署失败的经历让我一度感到挫败,但它也教会了我很多宝贵的经验。比如: - 不要害怕出错,错误往往是进步的起点; - 日志是排查问题的重要工具,要学会善加利用; - 团队合作很重要,遇到难题时不妨寻求同事的帮助。 希望这篇文章对你有所帮助,如果你也有类似的经历或见解,欢迎随时交流讨论!我们一起探索技术的世界,共同进步!
2025-04-03 16:11:35
61
醉卧沙场
Kibana
...可以通过Kibana访问。如果还没有创建索引模式,可以按照以下步骤操作: bash 登录Kibana界面 1. 点击左侧菜单栏中的“Management”。 2. 找到“Stack Management”部分,点击“Index Patterns”。 3. 点击“Create index pattern”按钮。 4. 输入你的索引名称(例如 "logstash-"),然后点击“Next step”。 5. 选择时间字段(通常是@timestamp),点击“Create index pattern”完成配置。 > 思考点:这里的关键在于选择合适的索引名称和时间字段。如果你的时间字段命名不规范,后续可能会导致数据无法正确筛选哦! 3.2 第二步:设置索引生命周期策略 接下来,我们要为索引创建生命周期策略。这是Kibana中最核心的部分,直接决定了数据的保留方式。 示例代码: javascript PUT _ilm/policy/my_policy { "policy": { "phases": { "hot": { "actions": { "rollover": { "max_size": "50gb", "max_age": "30d" } } }, "delete": { "min_age": "1y", "actions": { "delete": {} } } } } } 这段代码的意思是: - 热阶段(Hot Phase):当索引大小达到50GB或者超过30天时,触发滚动操作。 - 删除阶段(Delete Phase):超过1年后,自动删除该索引。 > 小贴士:这里的max_size和max_age可以根据你的实际需求调整。比如,如果你的服务器内存较小,可以将max_size调低一点。 3.3 第三步:将策略应用到索引 设置好生命周期策略后,我们需要将其绑定到具体的索引上。具体步骤如下: bash POST /my-index/_settings { "index.lifecycle.name": "my_policy", "index.lifecycle.rollover_alias": "my_index" } 这段代码的作用是将之前创建的my_policy策略应用到名为my-index的索引上。同时,通过rollover_alias指定滚动索引的别名。 --- 4. 实战案例 数据保留策略的实际效果 为了让大家更直观地理解数据保留策略的效果,我特意准备了一个小案例。假设你是一名电商公司的运维工程师,每天都会收到大量的订单日志,格式如下: json { "order_id": "123456789", "status": "success", "timestamp": "2023-09-01T10:00:00Z" } 现在,你想对这些日志进行生命周期管理,具体要求如下: - 最近3个月的数据需要保留。 - 超过3个月的数据自动归档到冷存储。 - 超过1年的数据完全删除。 实现方案: 1. 创建索引模式,命名为orders-。 2. 定义生命周期策略 javascript PUT _ilm/policy/orders_policy { "policy": { "phases": { "hot": { "actions": { "rollover": { "max_size": "10gb", "max_age": "3m" } } }, "warm": { "actions": { "freeze": {} } }, "delete": { "min_age": "1y", "actions": { "delete": {} } } } } } 3. 将策略绑定到索引 bash POST /orders-/_settings { "index.lifecycle.name": "orders_policy", "index.lifecycle.rollover_alias": "orders" } 运行以上代码后,你会发现: - 每隔3个月,新的订单日志会被滚动到一个新的索引中。 - 超过3个月的旧数据会被冻结,存入冷存储。 - 超过1年的数据会被彻底删除,释放存储空间。 --- 5. 总结与展望 通过今天的分享,相信大家对如何在Kibana中设置数据保留策略有了更深的理解。虽然设置过程看似繁琐,但实际上只需要几步就能搞定。而且啊,要是咱们好好用数据保留这招,不仅能让系统跑得更快、更顺畅,还能帮咱们把那些藏在数据里的宝贝疙瘩给挖出来,多好呀! 最后,我想说的是,技术学习是一个不断探索的过程。如果你在实践中遇到问题,不妨多查阅官方文档或者向社区求助。毕竟,我们每个人都是技术路上的探索者,一起努力才能走得更远! 好了,今天的分享就到这里啦!如果你觉得这篇文章有用,记得点赞支持哦~咱们下次再见!
2025-04-30 16:26:33
20
风轻云淡
MemCache
...mCache中,用户访问时直接从内存读取,岂不是快如闪电? 不过呢,事情可没那么简单。MemCache这小子虽然挺能干的,但也不是省油的灯啊!比如说吧,你老是疯狂地去请求数据,结果服务器偏偏不给面子,连个响应都没有,那它就直接给你来个“服务连接超时”的报错,气得你直跺脚。这就像你去餐厅点菜,服务员一直不在,你说能不急吗? --- 2. 服务连接超时到底是个啥? 服务连接超时,简单来说就是你的程序试图与MemCache服务器建立连接,但因为某些原因(比如网络延迟、服务器过载等),连接请求迟迟得不到回应,最终超时失败。这种错误通常会伴随着一条令人沮丧的信息:“连接超时”。 让我分享一个小故事:有一次我在调试一个项目时,发现某个接口总是返回“服务连接超时”,我当时的第一反应是“天啊,是不是MemCache崩了?”于是我赶紧登录服务器检查日志,结果发现MemCache运行正常,只是偶尔响应慢了一点。后来我才意识到,可能是客户端配置的问题。 所以,当遇到这种错误时,不要慌!我们得冷静下来,分析一下可能的原因。 --- 2.1 可能的原因有哪些? 1. 网络问题 MemCache服务器和客户端之间的网络不稳定。 2. MemCache配置不当 比如设置了太短的超时时间。 3. 服务器负载过高 MemCache服务器被太多请求压垮。 4. 客户端代码问题 比如没有正确处理异常情况。 --- 3. 如何解决服务连接超时? 接下来,咱们就从代码层面入手,看看如何优雅地解决这个问题。我会结合实际例子,手把手教你如何避免“服务连接超时”。 --- 3.1 检查网络连接 首先,确保你的MemCache服务器和客户端之间网络通畅。你可以试试用ping命令测试一下: bash ping your-memcache-server 如果网络不通畅,那就得找运维同事帮忙优化网络环境了。不过,如果你确定网络没问题,那就继续往下看。 --- 3.2 调整超时时间 很多时候,“服务连接超时”是因为你设置的超时时间太短了。默认情况下,MemCache的超时时间可能比较保守,你需要根据实际情况调整它。 在Java中,可以这样设置超时时间: java import net.spy.memcached.AddrUtil; import net.spy.memcached.MemcachedClient; public class MemCacheExample { public static void main(String[] args) throws Exception { // 创建MemCache客户端,设置超时时间为5秒 MemcachedClient memcachedClient = new MemcachedClient(AddrUtil.getAddresses("localhost:11211"), 5000); System.out.println("成功连接到MemCache服务器!"); } } 这里的关键是5000,表示超时时间为5秒。你可以根据实际情况调整这个值,比如改成10秒或者20秒。 --- 3.3 使用重试机制 有时候,一次连接失败并不代表MemCache服务器真的挂了。在这种情况下,我们可以加入重试机制,让程序自动尝试重新连接。 下面是一个简单的Python示例: python import time from pymemcache.client.base import Client def connect_to_memcache(): attempts = 3 while attempts > 0: try: client = Client(('localhost', 11211)) print("成功连接到MemCache服务器!") return client except Exception as e: print(f"连接失败,重试中... ({attempts}次机会)") time.sleep(2) attempts -= 1 raise Exception("无法连接到MemCache服务器,请检查配置!") client = connect_to_memcache() 在这个例子中,程序会尝试三次连接MemCache服务器,每次失败后等待两秒钟再重试。如果三次都失败,就抛出异常提示用户。 --- 3.4 监控MemCache状态 最后,建议你定期监控MemCache服务器的状态。你可以通过工具(比如MemAdmin)查看服务器的健康状况,包括内存使用率、连接数等指标。 如果你发现服务器负载过高,可以考虑增加MemCache实例数量,或者优化业务逻辑减少不必要的请求。 --- 4. 总结 服务连接超时不可怕,可怕的是不去面对 好了,到这里,关于“服务连接超时”的问题基本就说完了。虽然MemCache确实容易让人踩坑,但只要我们用心去研究,总能找到解决方案。 最后想说的是,技术这条路没有捷径,遇到问题不要急躁,多思考、多实践才是王道。希望我的分享对你有所帮助,如果你还有什么疑问,欢迎随时来找我讨论!😄 祝大家编码愉快!
2025-04-08 15:44:16
88
雪落无痕
Go Gin
...ping,当客户端访问这个地址时,会返回JSON格式的数据{"message": "pong"}。 个人感悟 刚接触这段代码的时候,我有点被惊到了——这么少的代码竟然能完成如此多的功能!当然,这也得益于Gin的设计理念:尽可能简化开发流程,让程序员专注于业务逻辑而不是框架细节。 --- 三、实时处理的核心 WebSocket支持 既然我们要讨论实时处理,那么就不得不提WebSocket。WebSocket就像是一个永不掉线的“聊天热线”,能让浏览器和服务器一直保持着畅通的联系。跟传统的请求-响应模式不一样,它可以让双方随时自由地“唠嗑”,想发啥就发啥,特别适合那些需要实时互动的应用,比如聊天室里你一言我一语,或者股票行情那种分分钟都在变化的东西,用它简直太合适了! Gin内置了对WebSocket的支持,我们可以直接通过中间件来实现这一功能。下面是一个完整的WebSocket示例: go package main import ( "log" "net/http" "github.com/gin-gonic/gin" "github.com/gorilla/websocket" ) var upgrader = websocket.Upgrader{ ReadBufferSize: 1024, WriteBufferSize: 1024, CheckOrigin: func(r http.Request) bool { return true // 允许跨域 }, } func handleWebSocket(c gin.Context) { ws, err := upgrader.Upgrade(c.Writer, c.Request, nil) if err != nil { log.Println("Failed to upgrade:", err) return } defer ws.Close() for { messageType, msg, err := ws.ReadMessage() if err != nil { log.Println("Error reading message:", err) break } log.Printf("Received: %s\n", string(msg)) err = ws.WriteMessage(messageType, msg) if err != nil { log.Println("Error writing message:", err) break } } } func main() { r := gin.Default() r.GET("/ws", handleWebSocket) r.Run(":8080") } 在这段代码中,我们利用gorilla/websocket包实现了WebSocket升级,并在handleWebSocket函数中处理了消息的读取与发送。你可以试着在浏览器里输入这个地址:ws://localhost:8080/ws,然后用JavaScript发个消息试试,看能不能马上收到服务器的回应。 深入探讨 说实话,刚开始写这部分代码的时候,我还担心WebSocket的兼容性问题。后来发现,只要正确设置了CheckOrigin方法,大多数现代浏览器都能正常工作。这让我更加坚定了对Gin的信心——它虽然简单,但足够强大! --- 四、进阶技巧 并发与性能优化 在实际项目中,我们可能会遇到高并发的情况。为了保证系统的稳定性,我们需要合理地管理线程池和内存分配。Gin提供了一些工具可以帮助我们做到这一点。 例如,我们可以使用sync.Pool来复用对象,减少垃圾回收的压力。下面是一个示例: go package main import ( "sync" "time" "github.com/gin-gonic/gin" ) var pool sync.Pool func init() { pool = &sync.Pool{ New: func() interface{} { return make([]byte, 1024) }, } } func handler(c gin.Context) { data := pool.Get().([]byte) defer pool.Put(data) copy(data, []byte("Hello World!")) time.Sleep(100 time.Millisecond) // 模拟耗时操作 c.String(http.StatusOK, string(data)) } func main() { r := gin.Default() r.GET("/", handler) r.Run(":8080") } 在这个例子中,我们定义了一个sync.Pool来存储临时数据。每次处理请求时,从池中获取缓冲区,处理完毕后再放回池中。这样可以避免频繁的内存分配和释放,从而提升性能。 反思与总结 其实,刚开始学习这段代码的时候,我对sync.Pool的理解还停留在表面。直到后来真正用它解决了性能瓶颈,我才意识到它的价值所在。这也让我明白,优秀的框架只是起点,关键还是要结合实际需求去探索和实践。 --- 五、未来展望 Gin与实时处理的无限可能 Gin的强大之处不仅仅在于它的易用性和灵活性,更在于它为开发者提供了广阔的想象空间。无论是构建大型分布式系统,还是打造小型实验项目,Gin都能胜任。 如果你也想尝试用Gin构建实时处理系统,不妨从一个小目标开始——比如做一个简单的在线聊天室。相信我,当你第一次看到用户实时交流的画面时,那种成就感绝对会让你欲罢不能! 最后的话 写这篇文章的过程,其实也是我自己重新审视Gin的过程。其实这个东西吧,说白了挺简单的,但让我学到了一个本事——用最利索的办法搞定事情。希望能这篇文章也能点醒你,让你在今后的开发路上,慢慢琢磨出属于自己的那套玩法!加油吧,程序员们!
2025-04-07 16:03:11
66
时光倒流
转载文章
...大会上,有专家分享了基于oneAPI在自动驾驶、人工智能医疗影像处理等方面的应用案例,突显了oneAPI在实际项目中的强大适应性和灵活性。 对于开发者来说,参与Intel Developer Zone社区或访问GitHub上的oneAPI示例代码库是持续跟进和学习的最佳途径之一,这里不仅有详尽的教程指导,还有众多开发者分享的一线实践经验,帮助你更好地掌握oneAPI,并将其应用于解决复杂计算问题和应对未来挑战。
2023-07-22 10:28:50
322
转载
转载文章
...I(应用程序接口)的访问功能。它允许Python程序员以编程方式执行许多Windows操作系统的底层任务,如模拟用户输入、控制窗口、处理文件和目录等。在本文中,作者利用win32api模块中的mouse_event和keybd_event函数实现了对鼠标点击、移动以及键盘按键的模拟操作,这对于自动化测试、脚本编写以及需要自动交互的应用场景尤为实用。 用户界面自动化(UI Automation) , 用户界面自动化是一种软件测试方法和技术,旨在通过编写脚本或程序代替人工操作,实现对应用程序用户界面的各种元素(如按钮、文本框、菜单等)进行自动化的点击、输入、验证等交互行为。在本文中,作者通过Python win32api模块模拟键盘和鼠标事件,从而实现在Windows环境下对用户界面的自动化控制,这是用户界面自动化的一种具体实践形式,常用于提高测试效率、减少重复工作并确保软件功能稳定可靠。
2023-06-07 19:00:58
55
转载
HessianRPC
...止连接长时间占用。 基于这些原则,我们可以调整代码如下: java dataSource.setTestOnBorrow(true); // 每次获取连接前测试其有效性 dataSource.setMinPoolSize(10); // 最小连接数 dataSource.setMaxPoolSize(50); // 最大连接数 dataSource.setIdleTimeout(300); // 空闲连接的最大存活时间(秒) dataSource.setAcquireIncrement(5); // 每次增加的连接数 通过这些设置,我们可以在一定程度上缓解连接池的压力。嘿,告诉你一个小窍门啊!你可以根据自己的业务需求,灵活调整连接池的大小,想大就大,想小就小, totally up to you!例如,在高峰时段适当增加 maxPoolSize,而在低谷时段减少它。 五、反思与总结 学习的旅程永无止境 回顾整个过程,我深刻体会到,技术学习是一个不断试错和改进的过程。一开始捣鼓 HessianRPC 的时候,我就是照着文档把配置抄下来了,压根没琢磨这些参数到底是干啥的,就觉得照着做就行了吧,管它什么意思呢!直到出现问题,我才意识到自己对底层机制的理解是多么浅薄。 不过,也正是因为这次经历,我学会了更加细致地思考每一个配置项的作用。而且,通过实际动手调试代码,我发现了很多之前忽略的小细节。比如,有时候一个小小的布尔值设置错误,就能让整个系统陷入混乱。 最后,我想说的是,无论是使用HessianRPC还是其他技术框架,都要保持一颗好奇的心。只有真正理解了工具的工作原理,才能在遇到问题时从容应对。希望这篇文章能给大家带来一些启发,让我们一起在这个充满挑战的技术世界中不断进步!
2025-05-14 16:14:51
74
风轻云淡
Apache Solr
...入缓存机制。对于频繁访问且数据变化不大的元数据,可以在本地缓存一段时间。当外部服务不可用时,可以回退使用缓存数据,直到服务恢复。 python class ExternalMetadataCache: def __init__(self, ttl=600): self.cache = {} self.ttl = ttl def get(self, doc_id): if doc_id not in self.cache or (self.cache[doc_id]['timestamp'] + self.ttl) < time.time(): self.cache[doc_id] = {'data': fetch_external_metadata(doc_id), 'timestamp': time.time()} return self.cache[doc_id]['data'] metadata_cache = ExternalMetadataCache() def fetch_external_metadata_safe(doc_id): return metadata_cache.get(doc_id) 2. 重试机制 在请求外部服务时添加重试逻辑,当第一次请求失败后,可以设置一定的时间间隔后再次尝试,直到成功或达到最大重试次数。 python def fetch_external_metadata_retriable(doc_id, max_retries=3, retry_delay=5): for i in range(max_retries): try: return fetch_external_metadata(doc_id) except Exception as e: print(f"Attempt {i+1} failed with error: {e}. Retrying in {retry_delay} seconds...") time.sleep(retry_delay) raise Exception("Max retries reached.") 四、结论与展望 通过上述策略,我们可以在一定程度上减轻外部服务依赖对Solr性能的影响。然而,重要的是要持续监控系统的运行状况,并根据实际情况调整优化措施。嘿,你听说了吗?科技这玩意儿啊,那可是越来越牛了!你看,现在就有人在琢磨怎么对付那些让人上瘾的东西。将来啊,说不定能搞出个既高效又结实的办法,帮咱们摆脱这个烦恼。想想都挺激动的,对吧?哎呀,兄弟!构建一个稳定又跑得快的搜索系统,那可得好好琢磨琢磨外部服务这事儿。你知道的,这些服务就像是你家里的电器,得选对了,用好了,整个家才能舒舒服服的。所以啊,咱们得先搞清楚这些服务都是干啥的,它们之间怎么配合,还有万一出了点小状况,咱们能不能快速应对。这样,咱们的搜索系统才能稳如泰山,嗖嗖地飞快,用户一搜就满意,那才叫真本事呢! --- 请注意,以上代码示例是基于Python和相关库编写的,实际应用时需要根据具体环境和技术栈进行相应的调整。
2024-09-21 16:30:17
40
风轻云淡
MemCache
...中存储数据来提供快速访问。哎呀,这个家伙可真能玩转各种数据类型啊!不管是那些字母串、一长串的数字清单,还是乱七八糟的集合,它都能轻松驾驭。而且,它还提供了一套超简单的操作工具,就像给小孩子们准备的玩具一样,简单易懂,轻轻松松就能搞定这些数据,真是太贴心了!MemCache这种玩意儿啊,就像是你跟朋友玩游戏,你负责喊口号出招,朋友负责听你的指挥去打怪兽或者抢金币。这游戏里头,MemCache的服务器就是那个强大的后盾,它负责把所有东西都记下来,还有找你要的东西。所以,简单来说,你就是客户端,是操作者;MemCache服务器呢,就是那个后台,负责处理一切数据的事情。这样子,你们俩配合起来,游戏玩得又快又好! 3. MutexException问题剖析 当多个线程同时尝试访问或修改同一数据时,MutexException的出现往往是因为互斥锁管理不当。哎呀,互斥锁就像是共享空间的门神,它负责在任何时候只让一个小伙伴进入这个共享区域,比如图书馆或者厨房,这样大家就不会抢着用同一本书或者同一把锅啦。这样就能避免发生混乱和冲突,保证大家都能平平安安地享受公共资源。在MemCache中,这种冲突可能发生在读取、写入或删除数据的操作上。 4. 实战案例 MemCache使用示例 为了更好地理解MemCache的工作流程及其可能出现的问题,我们通过一个简单的示例来展示其基本用法: python from pymemcache.client import base 创建MemCache客户端连接 client = base.Client(('localhost', 11211)) 缓存一个值 client.set('key', 'value') 从缓存中获取值 print(client.get('key')) 删除缓存中的值 client.delete('key') 5. 避免MutexException的策略 解决MutexException的关键在于正确管理互斥锁。以下是一些实用的策略: a. 使用原子操作 MemCache提供了原子操作,如add、replace、increment等,可以安全地执行更新操作而无需额外的锁保护。 b. 线程安全编程 确保所有涉及到共享资源的操作都是线程安全的。这意味着避免在多线程环境中直接访问全局变量或共享资源,而是使用线程本地存储或其他线程安全的替代方案。 c. 锁优化 合理使用锁。哎呀,你懂的,有时候网站或者应用里头有些东西经常被大家看,但是实际上内容变动不多。这时候,为了不让系统在处理这些信息的时候卡壳太久,我们可以用个叫做“读锁”的小技巧。简单来说,读锁就像是图书馆里的书,大家都想翻阅,但是不打算乱动它,所以不需要特别紧锁起来,这样能提高大家看书的效率,也避免了不必要的等待。此外,考虑使用更高效的锁实现,比如使用更细粒度的锁或非阻塞算法。 d. 锁超时 在获取锁时设置超时时间,避免无限等待。哎呀,如果咱们在规定的时间内没拿到钥匙(这里的“锁”就是需要获得的权限或资源),那咱们就得想点别的办法了。比如说,咱们可以先把手头的事情放一放,退一步海阔天空嘛,回头再试试;或者干脆来个“再来一次”,看看运气是不是转了一把。别急,总有办法解决问题的! 6. 结语 MemCache的未来与挑战 随着技术的发展,MemCache面临着更多的挑战,包括更高的并发处理能力、更好的跨数据中心一致性以及对新兴数据类型的支持。然而,通过持续优化互斥锁管理策略,我们可以有效地避免MutexException等并发相关问题,让MemCache在高性能缓存系统中发挥更大的作用。嘿,小伙伴们!在咱们的编程路上,要记得跟紧时代步伐,多看看那些最棒的做法和新出炉的技术。这样,咱们就能打造出既稳固又高效的超级应用了!别忘了,技术这玩意儿,就像个不停奔跑的小兔子,咱们得时刻准备着,跟上它的节奏,不然可就要被甩在后面啦!所以,多学习,多实践,咱们的编程技能才能芝麻开花节节高!
2024-09-02 15:38:39
39
人生如戏
Mongo
...duce处理数据。 示例代码: 假设我们有一个名为sales的集合,其中包含销售记录,每条记录包含product_id和amount两个字段。我们的目标是计算每个产品的总销售额。 javascript // 首先,我们定义Map函数 db.sales.mapReduce( function() { // 输出键为产品ID,值为销售金额 emit(this.product_id, this.amount); }, function(key, values) { // 将所有销售金额相加得到总销售额 var total = 0; for (var i = 0; i < values.length; i++) { total += values[i]; } return total; }, { "out": { "inline": 1, "pipeline": [ {"$group": {"_id": "$_id", "total_sales": {$sum: "$value"} }} ] } } ); 这段代码首先通过map()函数将每个销售记录映射到键为product_id和值为amount的键值对。哎呀,这事儿啊,就像是这样:首先,你得有个列表,这个列表里头放着一堆商品,每一项商品下面还有一堆数字,那是各个商品的销售价格。然后,咱们用一个叫 reduce() 的魔法棒来处理这些数据。这个魔法棒能帮咱们把每一样商品的销售价格加起来,就像数钱一样,算出每个商品总共卖了多少钱。这样一来,我们就能知道每种商品的总收入啦!哎呀,你懂的,我们用out这个参数把结果塞进了一个临时小盒子里面。然后,我们用$group这个魔法棒,把数据一通分类整理,看看哪些地方数据多,哪些地方数据少,这样就给咱们的数据做了一次大扫除,整整齐齐的。 3. 性能优化与注意事项 在使用MapReduce时,有几个关键点需要注意,以确保最佳性能: - 数据分区:合理的数据分区可以显著提高MapReduce的效率。通常,我们会根据数据的分布情况选择合适的分区策略。 - 内存管理:MapReduce操作可能会消耗大量内存,特别是在处理大型数据集时。合理设置maxTimeMS选项,限制任务运行时间,避免内存溢出。 - 错误处理:在实际应用中,处理潜在的错误和异常情况非常重要。例如,使用try-catch块捕获并处理可能出现的异常。 4. 进阶技巧与高级应用 对于那些追求更高效率和更复杂数据处理场景的开发者来说,以下是一些进阶技巧: - 使用索引:在Map阶段,如果数据集中有大量的重复键值对,使用索引可以在键的查找过程中节省大量时间。 - 异步执行:对于高并发的应用场景,可以考虑将MapReduce操作异步化,利用MongoDB的复制集和分片集群特性,实现真正的分布式处理。 结语 MapReduce在MongoDB中的应用,为我们提供了一种高效处理大数据集的强大工具。哎呀,看完这篇文章后,你可不光是知道了啥是MapReduce,啥时候用,还能动手在自己的项目里把MapReduce用得溜溜的!就像是掌握了新魔法一样,你学会了怎么给这玩意儿加点料,让它在你的项目里发挥出最大效用,让工作效率蹭蹭往上涨!是不是感觉整个人都精神多了?这不就是咱们追求的效果嘛!嘿,兄弟!听好了,掌握新技能最有效的办法就是动手去做,尤其是像MapReduce这种技术。别光看书上理论,找一个你正在做的项目,大胆地将MapReduce实践起来。你会发现,通过实战,你的经验会大大增加,对这个技术的理解也会更加深入透彻。所以,行动起来吧,让自己的项目成为你学习路上的伙伴,你肯定能从中学到不少东西!让我们继续在数据处理的旅程中探索更多可能性!
2024-08-13 15:48:45
150
柳暗花明又一村
转载文章
...i.cfg可以灵活的控制web访问端的权限. 4.主机定义文件 定义你要监控的对象,这里定义的“host_name”被应用到其它的所有配置文件中,这个是我们配置Nagios 必须修改的配置文件. [root@test objects] vim hosts.cfg define host{ host_name Nagios-Server ; 设置主机的名字,该名字会出现在hostgroups.cfg 和services.cfg 中。注意,这个名字可以不是该服务器的主机名。 alias Nagios服务器 ; 别名 address 192.168.81.128 ; 主机的IP 地址 check_command check-host-alive ; 检查使用的命令,需要在命令定义文件定义,默认是定义好的。 check_interval 1 ; 检测的时间间隔 retry_interval 1 ; 检测失败后重试的时间间隔 max_check_attempts 3 ; 最大重试次数 check_period 24x7 ; 检测的时段 process_perf_data 0 retain_nonstatus_information 0 contact_groups sagroup ; 需要通知的联系组 notification_interval 30 ; 通知的时间间隔 notification_period 24x7 ; 通知的时间段 notification_options d,u,r ; 通知的选项 w—报警(warning),u—未知(unkown) c—严重(critical),r—从异常情况恢复正常 } define host{ host_name Nagios-Client alias Nagios客户端 address 192.168.81.129 check_command check-host-alive check_interval 1 retry_interval 1 max_check_attempts 3 check_period 24x7 process_perf_data 0 retain_nonstatus_information 0 contact_groups sagroup notification_interval 30 notification_period 24x7 notification_options d,u,r } 5.主机组定义文件 主机组定义文件,可以方便的将相同功能或者在应用上相同的服务器添加到一个主机组里,在WEB 界面可以通过HOST Group 方便的查看该组主机的状态信息. 将刚才定义的两个主机加入到主机组中,针对生产环境就像把所有的MySQL 服务器加到一个MySQL主机组里,将Oracle 服务器加到一个Oracle 主机组里,方便管理和查看,可以配置多个组. [root@test objects] vim hostgroups.cfg define hostgroup { hostgroup_name Nagios-Example ; 主机组名字 alias Nagios 主机组 ; 主机组别名 members Nagios-Server,Nagios-Client ; 主机组成员,用逗号隔开 } 6.服务定义文件 服务定义文件定义你需要监控的对象的服务,比如本例为检测主机是否存活,在后面会讲到如何监控其它服务,比如服务器负载、内存、磁盘等. [root@test objects] vim services.cfg define service { host_name Nagios-Server ; hosts.cfg 定义的主机名称 service_description check-host-alive ; 服务描述 check_period 24x7 ; 检测的时间段 max_check_attempts 3 ; 最大检测次数 normal_check_interval 3 retry_check_interval 2 contact_groups sagroup ; 发生故障通知的联系人组 notification_interval 10 notification_period 24x7 ; 通知的时间段 notification_options w,u,c,r check_command check-host-alive } define service { host_name Nagios-Client service_description check-host-alive check_period 24x7 max_check_attempts 3 normal_check_interval 3 retry_check_interval 2 contact_groups sagroup notification_interval 10 notification_period 24x7 notification_options w,u,c,r check_command check-host-alive } 7.服务组定义文件 和主机组一样,我们可以按需将相同的服务放入一个服务组,这样有规律的分类,便于我们在WEB端查看. [root@test objects] vim servicegroups.cfg define servicegroup{ servicegroup_name Host-Alive ; 组名 alias Host Alive ; 别名设置 members Nagios-Server,check-host-alive,Nagios-Client,check-host-alive } 8.联系人定义文件 定义发生故障时,需要通知的联系人信息.默认安装完成后,该配置文件已经存在,而且该文件不仅定义了联系人,也定义了联系人组,为了条理化的规划,我们把联系人定义放在contacts.cfg文件里,把联系人组放在contactgroups.cfg文件中. [root@test objects] mv contacts.cfg contacts.cfg.bak [root@test objects] vim contacts.cfg define contact{ contact_name maoxian ; 联系人的名字 alias maoxian ; 别名 service_notification_period 24x7 ; 服务报警的时间段 host_notification_period 24x7 ; 主机报警的时间段 service_notification_options w,u,c,r ; 就是在这四种情况下报警。 host_notification_options d,u,r ;同上。 服务报警发消息的命令,在command.cfg 中定义。 service_notification_commands notify-service-by-email 服务报警发消息的命令,在command.cfg 中定义。 host_notification_commands notify-host-by-email email wangyx088@gmail.com ; 定义邮件地址,也就是接收报警邮件地址。 } 9.联系人组定义文件 联系人组定义文件在实际应用中很有好处,我们可以把报警信息分级别,报联系人分级别存放在联系人组里面.例如:当发生一些警告信息的情况下,只发邮件给系统工程师联系人组即可,但是当发生重大问题,比如主机宕机了,可以发给领导联系人组. [root@test objects] vim contactgroups.cfg define contactgroup{ contactgroup_name sagroup ; 组名 alias Nagios Administrators ; 别名 members maoxian ; 联系人组成员 } 10.命令定义文件 commands.cfg 命令定义文件是Nagios中很重要的配置文件,所有在hosts.cfg还是services.cfg使用的命令都必须在命令定义文件中定义才能使用.默认情况下,范例配置文件已经配置好了日常需要使用的命令,所以一般不做修改. 11.时间段定义文件 timeperiods.cfg 我们在检测、通知、报警的时候都需要定义时间段,默认都是使用7x24,这也是默认配置文件里配置好的,如果你需要周六日不做检测,或者在制定的维护时间不做检测,都可以在该时间段定义文件定义好,这样固定维护的时候,就不会为大量的报警邮件或者短信烦恼 [root@test objects] cat timeperiods.cfg |grep -v "^" |grep -v "^$" 可以根据业务需求来更改 12.启动Nagios 1> 修改配置文件所有者 [root@test objects] chown -R nagios:nagios /usr/local/nagios/etc/objects/ 2> 检测配置是否正确 [root@test objects] /usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg 如果配置错误,会给出相应的报错信息,可以根据信息查找,注意,如果配置文件中有不可见字符也可以导致配置错误 3> 重载Nagios [root@test objects] service nagios restart 本文出自 “毛线的linux之路” 博客,请务必保留此出处http://maoxian.blog.51cto.com/4227070/756516 本篇文章为转载内容。原文链接:https://blog.csdn.net/gzh0222/article/details/8549202。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-11-16 20:48:42
484
转载
转载文章
...以适应更高级别的并发控制需求。 同时,随着云计算和大数据技术的发展,RCU在分布式存储系统中的作用也逐渐凸显。例如,Ceph文件系统通过借鉴RCU思想,设计出适用于自身场景的读写同步算法,有效提高了大规模集群环境下的数据一致性保障能力。 综上所述,RCU作为Linux内核中不可或缺的同步原语,其理论研究和实践应用都在与时俱进,为现代操作系统及分布式系统的高效稳定运行提供了有力支撑。未来,我们有理由期待更多基于RCU机制的创新技术和解决方案涌现,持续推动软件工程领域的发展进步。
2023-09-25 09:31:10
106
转载
转载文章
...、HTTP传输协议 基于socket的TCP通信,按HTTP传输协议格式化传输内容。 示例: 1、客户端发送HTTP请求 GET/txt?hal=1000HTTP/1.1 Host:localhost:1024 User-Agent:Mozilla/5.0(X11;Linuxi686;rv:2.0)Gecko/20100101Firefox/4.0 Accept:text/html,application/xhtml+xml,application/xml;q=0.9,/;q=0.8 Accept-Language:zh-cn,zh;q=0.5 Accept-Encoding:gzip,deflate Accept-Charset:GB2312,utf-8;q=0.7,;q=0.7 Keep-Alive:115 Connection:keep-alive GET:发送HTTP请求的方法,还可以是SET或者POST /txt?hal=1000是请求根目录下的txt文件内容并传入参数hal=1000 HTTP/1.1表示HTTP版本是1.1 2、服务端传回HTTP响应 HTTP/1.0200OK Server:ReageWebServer Content-Type:text/html <!DOCTYPEhtmlPUBLIC"-//W3C//DTDXHTML1.0Strict//EN""http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <htmlxmlns="http://www.w3.org/1999/xhtml"> <!--Copyright(c)2000-2008QuadralayCorporation.Allrightsreserved.--> <head> <title>WebWorksHelp5.0</title> </head> <body>wuff</body> </html> 前面四行(包括空行)是消息体,后面是消息。一般要指明消息体的长度,方便客户端的接收处理。 三、示例程序 ====================================================================== / 主要实现功能,处理浏览器的get请求信息,发送网页文件。处理404、403等错误。 1.实现绑定本机机器的1024端口作为ReageWeb服务提供网页服务的端口。(避免与机器上装有web服务器产生端口冲突) 2.实现get获取网页方式。 3.实现index.html作为网站的首页面 作者:Reage blog:http://blog.csdn.net/rentiansheng / include<stdio.h> include<stdlib.h> include<string.h> include<sys/types.h> include<sys/socket.h> include<sys/un.h> include<netinet/in.h> include<arpa/inet.h> include<fcntl.h> include<string.h> include<sys/stat.h> include<signal.h> defineMAX1024 intres_socket; voidapp_exit(); / @description:开始服务端监听 @parameter ip:web服务器的地址 port:web服务器的端口 @result:成功返回创建socket套接字标识,错误返回-1 / intsocket_listen(charip,unsignedshortintport){ intres_socket;//返回值 intres,on; structsockaddr_inaddress; structin_addrin_ip; res=res_socket=socket(AF_INET,SOCK_STREAM,0); setsockopt(res_socket,SOL_SOCKET,SO_REUSEADDR,&on,sizeof(on)); memset(&address,0,sizeof(address)); address.sin_family=AF_INET; address.sin_port=htons(port); address.sin_addr.s_addr=htonl(INADDR_ANY);//inet_addr("127.0.0.1"); res=bind(res_socket,(structsockaddr)&address,sizeof(address)); if(res){printf("portisused,nottorepeatbind\n");exit(101);}; res=listen(res_socket,5); if(res){printf("listenportiserror;\n");exit(102);}; returnres_socket; } / @description:向客户端发送网页头文件的信息 @parameter conn_socket:套接字描述符。 status:http协议的返回状态码。 @s_status:http协议的状态码的含义 @filetype:向客户端发送的文件类型 / voidsend_http_head(intconn_socket,intstatus,chars_status,charfiletype){ charbuf[MAX]; memset(buf,0,MAX); sprintf(buf,"HTTP/1.0%d%s\r\n",status,s_status); sprintf(buf,"%sServer:ReageWebServer\r\n",buf); sprintf(buf,"%sContent-Type:%s\r\n\r\n",buf,filetype); write(conn_socket,buf,strlen(buf)); } / @description:向客户端发送错误页面信息 @parameter conn_socket:套接字描述符。 status:http协议的返回状态码。 @s_status:http协议的状态码的含义 @filetype:向客户端发送的文件类型 @msg:错误页面信息内容 / voidsend_page_error(intconn_socket,intstatus,chars_status,charmsg){ charbuf[MAX]; sprintf(buf,"<html><head></head><body><h1>%s</h1><hr>ReageWebServer0.01</body></head>",msg); send_http_head(conn_socket,status,s_status,"text/html"); write(conn_socket,buf,strlen(buf)); } / @description:向客户端发送文件 @parameter conn_socket:套接字描述符。 @file:要发送文件路径 / intsend_html(intconn_socket,charfile){ intf; charbuf[MAX]; inttmp; structstatfile_s; //如果file为空,表示发送默认主页。主页暂时固定 if(0==strlen(file)){ strcpy(file,"index.html"); } //如果获取文件状态失败,表示文件不存的,发送404页面,暂时404页面内容固定。 if(stat(file,&file_s)){ send_page_error(conn_socket,404,"Notfound","Notfound<br/>Reagedoesnotimplementthismothod\n"); return0; } //如果不是文件或者无读权限,发送无法读取文件 if(!(S_ISREG(file_s.st_mode))||!(S_IRUSR&file_s.st_mode)){ send_page_error(conn_socket,403,"Forbidden","Forbidden<br/>Reagecouldn'treadthefile\n"); return0; } //发送头文件,现在只提供html页面 send_http_head(conn_socket,200,"OK","text/html"); f=open(file,O_RDONLY); if(0>f){ //打开文件失败,发送404页面,其实感觉发送5xx也可以的,服务器内部错误 send_page_error(conn_socket,404,"Notfound","Notfound<br/>Reagecouldn'treadthefile\n"); return0; } buf[MAX-1]=0;//将文件内容缓冲区最后的位设置位结束标志。 //发送文件的内容 while((tmp=read(f,buf,MAX-1))&&EOF!=tmp){ write(conn_socket,buf,strlen(buf)); } } / @description:提取url中可用的信息。访问的网页和数据访问方式 @parameter: conn_socket:与客户端链接的套接字 uri:要处理的url,注意不是浏览器中的url,而是浏览器发送的http请求 @resutl: / intdo_uri(intconn_socket,charuri){ charp; p=strchr(uri,'?'); if(p){p=0;p++;} send_html(conn_socket,uri); } voidulog(charmsg){} voidprint(charmsg){ ulog(msg); printf(msg); } intmain(intargc,charargv[]){ intconn_socket; inttmp; intline; structsockaddr_inclient_addr; charbuf[MAX]; intlen=sizeof(client_addr); charmethod[100],uri[MAX],version[100]; charpwd[1024]; res_socket=socket_listen("127.0.0.1",1024); //当按ctrl+c结束程序时调用,使用app_exit函数处理退出过程 signal(SIGINT,app_exit); while(1){ conn_socket=accept(res_socket,(structsockaddr)&client_addr,&len); printf("reage\n"); line=0; //从客户端获取请求信息 while(0==(tmp=read(conn_socket,buf,MAX-1))||tmp!=EOF){ buf[MAX-1]=0; break;//我只使用了第一行的请求信息,所以丢弃其他的信息 } //send_http_head(conn_socket,200,"text/html"); sscanf(buf,"%s%s%s",method,uri,version); //目前只处理get请求 if(!strcasecmp(method,"get")) //send_html(conn_socket,"h.html"); do_uri(conn_socket,uri+1); close(conn_socket); } } voidapp_exit(){ //回复ctrl+c组合键的默认行为 signal(SIGINT,SIG_DFL); //关闭服务端链接、释放服务端ip和端口 close(res_socket); printf("\n"); exit(0); } ====================================================================== 本篇文章为转载内容。原文链接:https://blog.csdn.net/iteye_9368/article/details/82520401。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-05-30 18:31:58
92
转载
转载文章
...者对受感染系统的深层访问权限,以维持长期、未被察觉的控制。在本文中,Sysinternals提供的RootkitRevealer工具即用于扫描并检测系统上是否存在基于Rootkit的恶意代码。 NTFS(New Technology File System) , NTFS是Windows NT操作系统系列采用的一种高级文件系统,相较于早期的FAT系统,它提供了更高效的数据存储和安全性特性。文中提到的NTFSInfo工具就是用来查看详细的NTFS分区信息,包括主文件表(MFT)、MFT区域大小与位置,以及NTFS元数据文件大小等重要信息。 Active Directory , Active Directory是Microsoft Windows Server操作系统的一部分,提供网络环境中的中央身份认证、授权与目录服务功能。管理员可以利用Active Directory管理域内的用户账户、计算机、组策略、安全设置等资源。文章提及AdRestore工具能够恢复Server 2003 Active Directory对象,表明该工具在AD故障恢复场景中有重要作用。 登录会话(Logon Sessions) , 在多用户操作系统的环境中,登录会话是指用户通过验证后,在系统上创建的一个独立的工作环境,其中包含了用户的配置、权限和其他相关状态信息。Sysinternals工具集中的LogonSessions工具则能列出当前系统上的所有活动登录会话,帮助管理员监控和管理用户登录情况。 动态磁盘分区(Dynamic Disk Partitioning) , 动态磁盘是Windows操作系统中相对于基本磁盘而言的一种更为灵活的磁盘管理方式,它可以支持诸如跨多个物理磁盘的卷扩展等功能。LDMDump工具在文章中被提及,作用是倾倒逻辑磁盘管理器在Windows 2000动态磁盘分区上的数据库内容,从而让管理员了解和分析动态磁盘的详细配置信息。
2024-01-22 15:44:41
103
转载
Javascript
...新版应用程序中引入了基于AbortError的优化策略,以减少不必要的后台数据同步操作。这一举措显著降低了移动端设备的能耗和内存占用,得到了用户的普遍好评。 与此同时,Google Chrome团队也在最新版本中加强了对AbortError的支持,新增了一项名为“智能取消”的功能。这项功能可以根据用户的操作习惯动态调整未完成请求的优先级,从而提升整体浏览体验。例如,在用户快速切换页面时,系统会自动取消低优先级的任务,确保核心功能的流畅运行。这种技术不仅减少了资源浪费,还大幅缩短了页面加载时间。 从技术角度来看,AbortError的应用不仅仅局限于前端开发。在后端服务中,通过结合WebSocket和AbortSignal,开发者可以实现更高效的实时通信协议。例如,某知名在线教育平台利用这一特性,成功将课堂互动延迟从原来的500毫秒降低到100毫秒以下,极大改善了师生间的协作效率。 此外,随着《通用数据保护条例》(GDPR)在全球范围内的实施,AbortError也被赋予了新的法律意义。在涉及用户隐私的数据传输过程中,合理运用AbortError可以帮助企业更好地遵守法规要求,避免因违规操作而导致的巨额罚款。例如,某跨国科技公司在其云存储服务中引入了基于AbortError的权限管理系统,确保敏感信息在未经授权的情况下无法被访问或下载。 总之,AbortError作为现代Web开发的重要组成部分,正逐步渗透到各个领域。无论是提升用户体验、优化系统性能,还是保障数据安全,它都展现出了巨大的潜力。未来,随着更多创新应用场景的涌现,相信AbortError将在数字世界中发挥更大的作用。
2025-03-27 16:22:54
107
月影清风
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
alias ll='ls -alh' - 创建一个别名,使ll命令等同于ls
-alh查看详细列表。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"