前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[Spark SQL开发技巧 ]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
转载文章
...型数据库 支持丰富的SQL语句类型,比如:关联子查询 支持绝大部分PostgreSQL的SQL语句 分布式多版本并发控制(MVCC:Multi-version Concurrency Control) 支持JSON和XML格式 Postgres-XL缺少的功能 内建的高可用机制 使用外部机制实现高可能,如:Corosync/Pacemaker 有未来功能提升的空间 增加节点/重新分片数据(re-shard)的简便性 数据重分布(redistribution)期间会锁表 可采用预分片(pre-shard)方式解决,在同台物理服务器上建立多个数据节点,每个节点存储一个数据分片。数据重分布时,将一些数据节点迁出即可 某些外键、唯一性约束功能 Postgres-XL架构 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-M9lFuEIP-1640133702200)(./assets/postgre-xl.jpg)] 基于开源项目Postgres-XC XL增加了MPP,允许数据节点间直接通讯,交换复杂跨节点关联查询相关数据信息,减少协调器负载。 多个协调器(Coordinator) 应用程序的数据库连入点 分析查询语句,生成执行计划 多个数据节点(DataNode) 实际的数据存储 数据自动打散分布到集群中各数据节点 本地执行查询 一个查询在所有相关节点上并行查询 全局事务管理器(GTM:Global Transaction Manager) 提供事务间一致性视图 部署GTM Proxy实例,以提高性能 Postgre-XL主要组件 GTM (Global Transaction Manager) - 全局事务管理器 GTM是Postgres-XL的一个关键组件,用于提供一致的事务管理和元组可见性控制。 GTM Standby GTM的备节点,在pgxc,pgxl中,GTM控制所有的全局事务分配,如果出现问题,就会导致整个集群不可用,为了增加可用性,增加该备用节点。当GTM出现问题时,GTM Standby可以升级为GTM,保证集群正常工作。 GTM-Proxy GTM需要与所有的Coordinators通信,为了降低压力,可以在每个Coordinator机器上部署一个GTM-Proxy。 Coordinator --协调器 协调器是应用程序到数据库的接口。它的作用类似于传统的PostgreSQL后台进程,但是协调器不存储任何实际数据。实际数据由数据节点存储。协调器接收SQL语句,根据需要获取全局事务Id和全局快照,确定涉及哪些数据节点,并要求它们执行(部分)语句。当向数据节点发出语句时,它与GXID和全局快照相关联,以便多版本并发控制(MVCC)属性扩展到集群范围。 Datanode --数据节点 用于实际存储数据。表可以分布在各个数据节点之间,也可以复制到所有数据节点。数据节点没有整个数据库的全局视图,它只负责本地存储的数据。接下来,协调器将检查传入语句,并制定子计划。然后,根据需要将这些数据连同GXID和全局快照一起传输到涉及的每个数据节点。数据节点可以在不同的会话中接收来自各个协调器的请求。但是,由于每个事务都是惟一标识的,并且与一致的(全局)快照相关联,所以每个数据节点都可以在其事务和快照上下文中正确执行。 Postgres-XL继承了PostgreSQL Postgres-XL是PostgreSQL的扩展并继承了其很多特性: 复杂查询 外键 触发器 视图 事务 MVCC(多版本控制) 此外,类似于PostgreSQL,用户可以通过多种方式扩展Postgres-XL,例如添加新的 数据类型 函数 操作 聚合函数 索引类型 过程语言 安装 环境说明 由于资源有限,gtm一台、另外两台身兼数职。 主机名 IP 角色 端口 nodename 数据目录 gtm 192.168.20.132 GTM 6666 gtm /nodes/gtm 协调器 5432 coord1 /nodes/coordinator xl1 192.168.20.133 数据节点 5433 node1 /nodes/pgdata gtm代理 6666 gtmpoxy01 /nodes/gtm_pxy1 协调器 5432 coord2 /nodes/coordinator xl2 192.168.20.134 数据节点 5433 node2 /nodes/pgdata gtm代理 6666 gtmpoxy02 /nodes/gtm_pxy2 要求 GNU make版本 3.8及以上版本 [root@pg ~] make --versionGNU Make 3.82Built for x86_64-redhat-linux-gnuCopyright (C) 2010 Free Software Foundation, Inc.License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>This is free software: you are free to change and redistribute it.There is NO WARRANTY, to the extent permitted by law. 需安装GCC包 需安装tar包 用于解压缩文件 默认需要GNU Readline library 其作用是可以让psql命令行记住执行过的命令,并且可以通过键盘上下键切换命令。但是可以通过--without-readline禁用这个特性,或者可以指定--withlibedit-preferred选项来使用libedit 默认使用zlib压缩库 可通过--without-zlib选项来禁用 配置hosts 所有主机上都配置 [root@xl2 11] cat /etc/hosts127.0.0.1 localhost192.168.20.132 gtm192.168.20.133 xl1192.168.20.134 xl2 关闭防火墙、Selinux 所有主机都执行 关闭防火墙: [root@gtm ~] systemctl stop firewalld.service[root@gtm ~] systemctl disable firewalld.service selinux设置: [root@gtm ~]vim /etc/selinux/config 设置SELINUX=disabled,保存退出。 This file controls the state of SELinux on the system. SELINUX= can take one of these three values: enforcing - SELinux security policy is enforced. permissive - SELinux prints warnings instead of enforcing. disabled - No SELinux policy is loaded.SELINUX=disabled SELINUXTYPE= can take one of three two values: targeted - Targeted processes are protected, minimum - Modification of targeted policy. Only selected processes are protected. mls - Multi Level Security protection. 安装依赖包 所有主机上都执行 yum install -y flex bison readline-devel zlib-devel openjade docbook-style-dsssl gcc 创建用户 所有主机上都执行 [root@gtm ~] useradd postgres[root@gtm ~] passwd postgres[root@gtm ~] su - postgres[root@gtm ~] mkdir ~/.ssh[root@gtm ~] chmod 700 ~/.ssh 配置SSH免密登录 仅仅在gtm节点配置如下操作: [root@gtm ~] su - postgres[postgres@gtm ~] ssh-keygen -t rsa[postgres@gtm ~] cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys[postgres@gtm ~] chmod 600 ~/.ssh/authorized_keys 将刚生成的认证文件拷贝到xl1到xl2中,使得gtm节点可以免密码登录xl1~xl2的任意一个节点: [postgres@gtm ~] scp ~/.ssh/authorized_keys postgres@xl1:~/.ssh/[postgres@gtm ~] scp ~/.ssh/authorized_keys postgres@xl2:~/.ssh/ 对所有提示都不要输入,直接enter下一步。直到最后,因为第一次要求输入目标机器的用户密码,输入即可。 下载源码 下载地址:https://www.postgres-xl.org/download/ [root@slave ~] ll postgres-xl-10r1.1.tar.gz-rw-r--r-- 1 root root 28121666 May 30 05:21 postgres-xl-10r1.1.tar.gz 编译、安装Postgres-XL 所有节点都安装,编译需要一点时间,最好同时进行编译。 [root@slave ~] tar xvf postgres-xl-10r1.1.tar.gz[root@slave ~] ./configure --prefix=/home/postgres/pgxl/[root@slave ~] make[root@slave ~] make install[root@slave ~] cd contrib/ --安装必要的工具,在gtm节点上安装即可[root@slave ~] make[root@slave ~] make install 配置环境变量 所有节点都要配置 进入postgres用户,修改其环境变量,开始编辑 [root@gtm ~]su - postgres[postgres@gtm ~]vi .bashrc --不是.bash_profile 在打开的文件末尾,新增如下变量配置: export PGHOME=/home/postgres/pgxlexport LD_LIBRARY_PATH=$PGHOME/lib:$LD_LIBRARY_PATHexport PATH=$PGHOME/bin:$PATH 按住esc,然后输入:wq!保存退出。输入以下命令对更改重启生效。 [postgres@gtm ~] source .bashrc --不是.bash_profile 输入以下语句,如果输出变量结果,代表生效 [postgres@gtm ~] echo $PGHOME 应该输出/home/postgres/pgxl代表生效 配置集群 生成pgxc_ctl.conf配置文件 [postgres@gtm ~] pgxc_ctl prepare/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxl/pgxc_ctl/pgxc_ctl_bash.ERROR: File "/home/postgres/pgxl/pgxc_ctl/pgxc_ctl.conf" not found or not a regular file. No such file or directoryInstalling pgxc_ctl_bash script as /home/postgres/pgxl/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxl/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxl/pgxc_ctl --configuration /home/postgres/pgxl/pgxc_ctl/pgxc_ctl.confFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxl/pgxc_ctl 配置pgxc_ctl.conf 新建/home/postgres/pgxc_ctl/pgxc_ctl.conf文件,编辑如下: 对着模板文件一个一个修改,否则会造成初始化过程出现各种神奇问题。 pgxcInstallDir=$PGHOMEpgxlDATA=$PGHOME/data pgxcOwner=postgres---- GTM Master -----------------------------------------gtmName=gtmgtmMasterServer=gtmgtmMasterPort=6666gtmMasterDir=$pgxlDATA/nodes/gtmgtmSlave=y Specify y if you configure GTM Slave. Otherwise, GTM slave will not be configured and all the following variables will be reset.gtmSlaveName=gtmSlavegtmSlaveServer=gtm value none means GTM slave is not available. Give none if you don't configure GTM Slave.gtmSlavePort=20001 Not used if you don't configure GTM slave.gtmSlaveDir=$pgxlDATA/nodes/gtmSlave Not used if you don't configure GTM slave.---- GTM-Proxy Master -------gtmProxyDir=$pgxlDATA/nodes/gtm_proxygtmProxy=y gtmProxyNames=(gtm_pxy1 gtm_pxy2) gtmProxyServers=(xl1 xl2) gtmProxyPorts=(6666 6666) gtmProxyDirs=($gtmProxyDir $gtmProxyDir) ---- Coordinators ---------coordMasterDir=$pgxlDATA/nodes/coordcoordNames=(coord1 coord2) coordPorts=(5432 5432) poolerPorts=(6667 6667) coordPgHbaEntries=(0.0.0.0/0)coordMasterServers=(xl1 xl2) coordMasterDirs=($coordMasterDir $coordMasterDir)coordMaxWALsernder=0 没设置备份节点,设置为0coordMaxWALSenders=($coordMaxWALsernder $coordMaxWALsernder) 数量保持和coordMasterServers一致coordSlave=n---- Datanodes ----------datanodeMasterDir=$pgxlDATA/nodes/dn_masterprimaryDatanode=xl1 主数据节点datanodeNames=(node1 node2)datanodePorts=(5433 5433) datanodePoolerPorts=(6668 6668) datanodePgHbaEntries=(0.0.0.0/0)datanodeMasterServers=(xl1 xl2)datanodeMasterDirs=($datanodeMasterDir $datanodeMasterDir)datanodeMaxWalSender=4datanodeMaxWALSenders=($datanodeMaxWalSender $datanodeMaxWalSender) 集群初始化,启动,停止 初始化 pgxc_ctl -c /home/postgres/pgxc_ctl/pgxc_ctl.conf init all 输出结果: /bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.conf/home/postgres/pgxc_ctl/pgxc_ctl.conf: line 189: $coordExtraConfig: ambiguous redirectFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlStopping all the coordinator masters.Stopping coordinator master coord1.Stopping coordinator master coord2.pg_ctl: directory "/home/postgres/pgxc/nodes/coord/coord1" does not existpg_ctl: directory "/home/postgres/pgxc/nodes/coord/coord2" does not existDone.Stopping all the datanode masters.Stopping datanode master datanode1.Stopping datanode master datanode2.pg_ctl: PID file "/home/postgres/pgxc/nodes/datanode/datanode1/postmaster.pid" does not existIs server running?Done.Stop GTM masterwaiting for server to shut down.... doneserver stopped[postgres@gtm ~]$ echo $PGHOME/home/postgres/pgxl[postgres@gtm ~]$ ll /home/postgres/pgxl/pgxc/nodes/gtm/gtm.^C[postgres@gtm ~]$ pgxc_ctl -c /home/postgres/pgxc_ctl/pgxc_ctl.conf init all/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.conf/home/postgres/pgxc_ctl/pgxc_ctl.conf: line 189: $coordExtraConfig: ambiguous redirectFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlInitialize GTM masterERROR: target directory (/home/postgres/pgxc/nodes/gtm) exists and not empty. Skip GTM initilializationDone.Start GTM masterserver startingInitialize all the coordinator masters.Initialize coordinator master coord1.ERROR: target coordinator master coord1 is running now. Skip initilialization.Initialize coordinator master coord2.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/coord/coord2 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.Done.Starting coordinator master.Starting coordinator master coord1ERROR: target coordinator master coord1 is already running now. Skip initialization.Starting coordinator master coord22019-05-30 21:09:25.562 EDT [2148] LOG: listening on IPv4 address "0.0.0.0", port 54322019-05-30 21:09:25.562 EDT [2148] LOG: listening on IPv6 address "::", port 54322019-05-30 21:09:25.563 EDT [2148] LOG: listening on Unix socket "/tmp/.s.PGSQL.5432"2019-05-30 21:09:25.601 EDT [2149] LOG: database system was shut down at 2019-05-30 21:09:22 EDT2019-05-30 21:09:25.605 EDT [2148] LOG: database system is ready to accept connections2019-05-30 21:09:25.612 EDT [2156] LOG: cluster monitor startedDone.Initialize all the datanode masters.Initialize the datanode master datanode1.Initialize the datanode master datanode2.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/datanode/datanode1 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/datanode/datanode2 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.Done.Starting all the datanode masters.Starting datanode master datanode1.WARNING: datanode master datanode1 is running now. Skipping.Starting datanode master datanode2.2019-05-30 21:09:33.352 EDT [2404] LOG: listening on IPv4 address "0.0.0.0", port 154322019-05-30 21:09:33.352 EDT [2404] LOG: listening on IPv6 address "::", port 154322019-05-30 21:09:33.355 EDT [2404] LOG: listening on Unix socket "/tmp/.s.PGSQL.15432"2019-05-30 21:09:33.392 EDT [2404] LOG: redirecting log output to logging collector process2019-05-30 21:09:33.392 EDT [2404] HINT: Future log output will appear in directory "pg_log".Done.psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"Done.psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"Done.[postgres@gtm ~]$ pgxc_ctl -c /home/postgres/pgxc_ctl/pgxc_ctl.conf stop all/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.conf/home/postgres/pgxc_ctl/pgxc_ctl.conf: line 189: $coordExtraConfig: ambiguous redirectFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlStopping all the coordinator masters.Stopping coordinator master coord1.Stopping coordinator master coord2.pg_ctl: directory "/home/postgres/pgxc/nodes/coord/coord1" does not existDone.Stopping all the datanode masters.Stopping datanode master datanode1.Stopping datanode master datanode2.pg_ctl: PID file "/home/postgres/pgxc/nodes/datanode/datanode1/postmaster.pid" does not existIs server running?Done.Stop GTM masterwaiting for server to shut down.... doneserver stopped[postgres@gtm ~]$ pgxc_ctl/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.conf/home/postgres/pgxc_ctl/pgxc_ctl.conf: line 189: $coordExtraConfig: ambiguous redirectFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlPGXC monitor allNot running: gtm masterRunning: coordinator master coord1Not running: coordinator master coord2Running: datanode master datanode1Not running: datanode master datanode2PGXC stop coordinator master coord1Stopping coordinator master coord1.pg_ctl: directory "/home/postgres/pgxc/nodes/coord/coord1" does not existDone.PGXC stop datanode master datanode1Stopping datanode master datanode1.pg_ctl: PID file "/home/postgres/pgxc/nodes/datanode/datanode1/postmaster.pid" does not existIs server running?Done.PGXC monitor allNot running: gtm masterRunning: coordinator master coord1Not running: coordinator master coord2Running: datanode master datanode1Not running: datanode master datanode2PGXC monitor allNot running: gtm masterNot running: coordinator master coord1Not running: coordinator master coord2Not running: datanode master datanode1Not running: datanode master datanode2PGXC exit[postgres@gtm ~]$ pgxc_ctl -c /home/postgres/pgxc_ctl/pgxc_ctl.conf init all/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.conf/home/postgres/pgxc_ctl/pgxc_ctl.conf: line 189: $coordExtraConfig: ambiguous redirectFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlInitialize GTM masterERROR: target directory (/home/postgres/pgxc/nodes/gtm) exists and not empty. Skip GTM initilializationDone.Start GTM masterserver startingInitialize all the coordinator masters.Initialize coordinator master coord1.Initialize coordinator master coord2.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/coord/coord1 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/coord/coord2 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.Done.Starting coordinator master.Starting coordinator master coord1Starting coordinator master coord22019-05-30 21:13:03.998 EDT [25137] LOG: listening on IPv4 address "0.0.0.0", port 54322019-05-30 21:13:03.998 EDT [25137] LOG: listening on IPv6 address "::", port 54322019-05-30 21:13:04.000 EDT [25137] LOG: listening on Unix socket "/tmp/.s.PGSQL.5432"2019-05-30 21:13:04.038 EDT [25138] LOG: database system was shut down at 2019-05-30 21:13:00 EDT2019-05-30 21:13:04.042 EDT [25137] LOG: database system is ready to accept connections2019-05-30 21:13:04.049 EDT [25145] LOG: cluster monitor started2019-05-30 21:13:04.020 EDT [2730] LOG: listening on IPv4 address "0.0.0.0", port 54322019-05-30 21:13:04.020 EDT [2730] LOG: listening on IPv6 address "::", port 54322019-05-30 21:13:04.021 EDT [2730] LOG: listening on Unix socket "/tmp/.s.PGSQL.5432"2019-05-30 21:13:04.057 EDT [2731] LOG: database system was shut down at 2019-05-30 21:13:00 EDT2019-05-30 21:13:04.061 EDT [2730] LOG: database system is ready to accept connections2019-05-30 21:13:04.062 EDT [2738] LOG: cluster monitor startedDone.Initialize all the datanode masters.Initialize the datanode master datanode1.Initialize the datanode master datanode2.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/datanode/datanode1 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.The files belonging to this database system will be owned by user "postgres".This user must also own the server process.The database cluster will be initialized with locale "en_US.UTF-8".The default database encoding has accordingly been set to "UTF8".The default text search configuration will be set to "english".Data page checksums are disabled.fixing permissions on existing directory /home/postgres/pgxc/nodes/datanode/datanode2 ... okcreating subdirectories ... okselecting default max_connections ... 100selecting default shared_buffers ... 128MBselecting dynamic shared memory implementation ... posixcreating configuration files ... okrunning bootstrap script ... okperforming post-bootstrap initialization ... creating cluster information ... oksyncing data to disk ... okfreezing database template0 ... okfreezing database template1 ... okfreezing database postgres ... okWARNING: enabling "trust" authentication for local connectionsYou can change this by editing pg_hba.conf or using the option -A, or--auth-local and --auth-host, the next time you run initdb.Success.Done.Starting all the datanode masters.Starting datanode master datanode1.Starting datanode master datanode2.2019-05-30 21:13:12.077 EDT [25392] LOG: listening on IPv4 address "0.0.0.0", port 154322019-05-30 21:13:12.077 EDT [25392] LOG: listening on IPv6 address "::", port 154322019-05-30 21:13:12.079 EDT [25392] LOG: listening on Unix socket "/tmp/.s.PGSQL.15432"2019-05-30 21:13:12.114 EDT [25392] LOG: redirecting log output to logging collector process2019-05-30 21:13:12.114 EDT [25392] HINT: Future log output will appear in directory "pg_log".2019-05-30 21:13:12.079 EDT [2985] LOG: listening on IPv4 address "0.0.0.0", port 154322019-05-30 21:13:12.079 EDT [2985] LOG: listening on IPv6 address "::", port 154322019-05-30 21:13:12.081 EDT [2985] LOG: listening on Unix socket "/tmp/.s.PGSQL.15432"2019-05-30 21:13:12.117 EDT [2985] LOG: redirecting log output to logging collector process2019-05-30 21:13:12.117 EDT [2985] HINT: Future log output will appear in directory "pg_log".Done.psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"Done.psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"psql: FATAL: no pg_hba.conf entry for host "192.168.20.132", user "postgres", database "postgres"Done. 启动 pgxc_ctl -c /home/postgres/pgxc_ctl/pgxc_ctl.conf start all 关闭 pgxc_ctl -c /home/postgres/pgxc_ctl/pgxc_ctl.conf stop all 查看集群状态 [postgres@gtm ~]$ pgxc_ctl monitor all/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.conf/home/postgres/pgxc_ctl/pgxc_ctl.conf: line 189: $coordExtraConfig: ambiguous redirectFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlRunning: gtm masterRunning: coordinator master coord1Running: coordinator master coord2Running: datanode master datanode1Running: datanode master datanode2 配置集群信息 分别在数据节点、协调器节点上分别执行以下命令: 注:本节点只执行修改操作即可(alert node),其他节点执行创建命令(create node)。因为本节点已经包含本节点的信息。 create node coord1 with (type=coordinator,host=xl1, port=5432);create node coord2 with (type=coordinator,host=xl2, port=5432);alter node coord1 with (type=coordinator,host=xl1, port=5432);alter node coord2 with (type=coordinator,host=xl2, port=5432);create node datanode1 with (type=datanode, host=xl1,port=15432,primary=true,PREFERRED);create node datanode2 with (type=datanode, host=xl2,port=15432);alter node datanode1 with (type=datanode, host=xl1,port=15432,primary=true,PREFERRED);alter node datanode2 with (type=datanode, host=xl2,port=15432);select pgxc_pool_reload(); 分别登陆数据节点、协调器节点验证 postgres= select from pgxc_node;node_name | node_type | node_port | node_host | nodeis_primary | nodeis_preferred | node_id-----------+-----------+-----------+-----------+----------------+------------------+-------------coord1 | C | 5432 | xl1 | f | f | 1885696643coord2 | C | 5432 | xl2 | f | f | -1197102633datanode2 | D | 15432 | xl2 | f | f | -905831925datanode1 | D | 15432 | xl1 | t | f | 888802358(4 rows) 测试 插入数据 在数据节点1,执行相关操作。 通过协调器端口登录PG [postgres@xl1 ~]$ psql -p 5432psql (PGXL 10r1.1, based on PG 10.6 (Postgres-XL 10r1.1))Type "help" for help.postgres= create database lei;CREATE DATABASEpostgres= \c lei;You are now connected to database "lei" as user "postgres".lei= create table test1(id int,name text);CREATE TABLElei= insert into test1(id,name) select generate_series(1,8),'测试';INSERT 0 8lei= select from test1;id | name----+------1 | 测试2 | 测试5 | 测试6 | 测试8 | 测试3 | 测试4 | 测试7 | 测试(8 rows) 注:默认创建的表为分布式表,也就是每个数据节点值存储表的部分数据。关于表类型具体说明,下面有说明。 通过15432端口登录数据节点,查看数据 有5条数据 [postgres@xl1 ~]$ psql -p 15432psql (PGXL 10r1.1, based on PG 10.6 (Postgres-XL 10r1.1))Type "help" for help.postgres= \c lei;You are now connected to database "lei" as user "postgres".lei= select from test1;id | name----+------1 | 测试2 | 测试5 | 测试6 | 测试8 | 测试(5 rows) 登录到节点2,查看数据 有3条数据 [postgres@xl2 ~]$ psql -p15432psql (PGXL 10r1.1, based on PG 10.6 (Postgres-XL 10r1.1))Type "help" for help.postgres= \c lei;You are now connected to database "lei" as user "postgres".lei= select from test1;id | name----+------3 | 测试4 | 测试7 | 测试(3 rows) 两个节点的数据加起来整个8条,没有问题。 至此Postgre-XL集群搭建完成。 创建数据库、表时可能会出现以下错误: ERROR: Failed to get pooled connections 是因为pg_hba.conf配置不对,所有节点加上host all all 192.168.20.0/0 trust并重启集群即可。 ERROR: No Datanode defined in cluster 首先确认是否创建了数据节点,也就是create node相关的命令。如果创建了则执行select pgxc_pool_reload();使其生效即可。 集群管理与应用 表类型说明 REPLICATION表:各个datanode节点中,表的数据完全相同,也就是说,插入数据时,会分别在每个datanode节点插入相同数据。读数据时,只需要读任意一个datanode节点上的数据。 建表语法: CREATE TABLE repltab (col1 int, col2 int) DISTRIBUTE BY REPLICATION; DISTRIBUTE :会将插入的数据,按照拆分规则,分配到不同的datanode节点中存储,也就是sharding技术。每个datanode节点只保存了部分数据,通过coordinate节点可以查询完整的数据视图。 CREATE TABLE disttab(col1 int, col2 int, col3 text) DISTRIBUTE BY HASH(col1); 模拟数据插入 任意登录一个coordinate节点进行建表操作 [postgres@gtm ~]$ psql -h xl1 -p 5432 -U postgrespostgres= INSERT INTO disttab SELECT generate_series(1,100), generate_series(101, 200), 'foo';INSERT 0 100postgres= INSERT INTO repltab SELECT generate_series(1,100), generate_series(101, 200);INSERT 0 100 查看数据分布结果: DISTRIBUTE表分布结果 postgres= SELECT xc_node_id, count() FROM disttab GROUP BY xc_node_id;xc_node_id | count ------------+-------1148549230 | 42-927910690 | 58(2 rows) REPLICATION表分布结果 postgres= SELECT count() FROM repltab;count -------100(1 row) 查看另一个datanode2中repltab表结果 [postgres@datanode2 pgxl9.5]$ psql -p 15432psql (PGXL 10r1.1, based on PG 10.6 (Postgres-XL 10r1.1))Type "help" for help.postgres= SELECT count() FROM repltab;count -------100(1 row) 结论:REPLICATION表中,datanode1,datanode2中表是全部数据,一模一样。而DISTRIBUTE表,数据散落近乎平均分配到了datanode1,datanode2节点中。 新增数据节点与数据重分布 在线新增节点、并重新分布数据。 新增datanode节点 在gtm集群管理节点上执行pgxc_ctl命令 [postgres@gtm ~]$ pgxc_ctl/bin/bashInstalling pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Installing pgxc_ctl_bash script as /home/postgres/pgxc_ctl/pgxc_ctl_bash.Reading configuration using /home/postgres/pgxc_ctl/pgxc_ctl_bash --home /home/postgres/pgxc_ctl --configuration /home/postgres/pgxc_ctl/pgxc_ctl.confFinished reading configuration. PGXC_CTL START Current directory: /home/postgres/pgxc_ctlPGXC 在服务器xl3上,新增一个master角色的datanode节点,名称是datanode3 端口号暂定5430,pool master暂定6669 ,指定好数据目录位置,从两个节点升级到3个节点,之后要写3个none none应该是datanodeSpecificExtraConfig或者datanodeSpecificExtraPgHba配置PGXC add datanode master datanode3 xl3 15432 6671 /home/postgres/pgxc/nodes/datanode/datanode3 none none none 等待新增完成后,查询集群节点状态: postgres= select from pgxc_node;node_name | node_type | node_port | node_host | nodeis_primary | nodeis_preferred | node_id-----------+-----------+-----------+-----------+----------------+------------------+-------------datanode1 | D | 15432 | xl1 | t | f | 888802358datanode2 | D | 15432 | xl2 | f | f | -905831925datanode3 | D | 15432 | xl3 | f | f | -705831925coord1 | C | 5432 | xl1 | f | f | 1885696643coord2 | C | 5432 | xl2 | f | f | -1197102633(4 rows) 节点新增完毕 数据重新分布 由于新增节点后无法自动完成数据重新分布,需要手动操作。 DISTRIBUTE表分布在了node1,node2节点上,如下: postgres= SELECT xc_node_id, count() FROM disttab GROUP BY xc_node_id;xc_node_id | count ------------+-------1148549230 | 42-927910690 | 58(2 rows) 新增一个节点后,将sharding表数据重新分配到三个节点上,将repl表复制到新节点 重分布sharding表postgres= ALTER TABLE disttab ADD NODE (datanode3);ALTER TABLE 复制数据到新节点postgres= ALTER TABLE repltab ADD NODE (datanode3);ALTER TABLE 查看新的数据分布: postgres= SELECT xc_node_id, count() FROM disttab GROUP BY xc_node_id;xc_node_id | count ------------+--------700122826 | 36-927910690 | 321148549230 | 32(3 rows) 登录datanode3(新增的时候,放在了xl3服务器上,端口15432)节点查看数据: [postgres@gtm ~]$ psql -h xl3 -p 15432 -U postgrespsql (PGXL 10r1.1, based on PG 10.6 (Postgres-XL 10r1.1))Type "help" for help.postgres= select count() from repltab;count -------100(1 row) 很明显,通过 ALTER TABLE tt ADD NODE (dn)命令,可以将DISTRIBUTE表数据重新分布到新节点,重分布过程中会中断所有事务。可以将REPLICATION表数据复制到新节点。 从datanode节点中回收数据 postgres= ALTER TABLE disttab DELETE NODE (datanode3);ALTER TABLEpostgres= ALTER TABLE repltab DELETE NODE (datanode3);ALTER TABLE 删除数据节点 Postgresql-XL并没有检查将被删除的datanode节点是否有replicated/distributed表的数据,为了数据安全,在删除之前需要检查下被删除节点上的数据,有数据的话,要回收掉分配到其他节点,然后才能安全删除。删除数据节点分为四步骤: 1.查询要删除节点dn3的oid postgres= SELECT oid, FROM pgxc_node;oid | node_name | node_type | node_port | node_host | nodeis_primary | nodeis_preferred | node_id -------+-----------+-----------+-----------+-----------+----------------+------------------+-------------11819 | coord1 | C | 5432 | datanode1 | f | f | 188569664316384 | coord2 | C | 5432 | datanode2 | f | f | -119710263316385 | node1 | D | 5433 | datanode1 | f | t | 114854923016386 | node2 | D | 5433 | datanode2 | f | f | -92791069016397 | dn3 | D | 5430 | datanode1 | f | f | -700122826(5 rows) 2.查询dn3对应的oid中是否有数据 testdb= SELECT FROM pgxc_class WHERE nodeoids::integer[] @> ARRAY[16397];pcrelid | pclocatortype | pcattnum | pchashalgorithm | pchashbuckets | nodeoids ---------+---------------+----------+-----------------+---------------+-------------------16388 | H | 1 | 1 | 4096 | 16397 16385 1638616394 | R | 0 | 0 | 0 | 16397 16385 16386(2 rows) 3.有数据的先回收数据 postgres= ALTER TABLE disttab DELETE NODE (dn3);ALTER TABLEpostgres= ALTER TABLE repltab DELETE NODE (dn3);ALTER TABLEpostgres= SELECT FROM pgxc_class WHERE nodeoids::integer[] @> ARRAY[16397];pcrelid | pclocatortype | pcattnum | pchashalgorithm | pchashbuckets | nodeoids ---------+---------------+----------+-----------------+---------------+----------(0 rows) 4.安全删除dn3 PGXC$ remove datanode master dn3 clean 故障节点FAILOVER 1.查看当前集群状态 [postgres@gtm ~]$ psql -h xl1 -p 5432psql (PGXL 10r1.1, based on PG 10.6 (Postgres-XL 10r1.1))Type "help" for help.postgres= SELECT oid, FROM pgxc_node;oid | node_name | node_type | node_port | node_host | nodeis_primary | nodeis_preferred | node_id-------+-----------+-----------+-----------+-----------+----------------+------------------+-------------11739 | coord1 | C | 5432 | xl1 | f | f | 188569664316384 | coord2 | C | 5432 | xl2 | f | f | -119710263316387 | datanode2 | D | 15432 | xl2 | f | f | -90583192516388 | datanode1 | D | 15432 | xl1 | t | t | 888802358(4 rows) 2.模拟datanode1节点故障 直接关闭即可 PGXC stop -m immediate datanode master datanode1Stopping datanode master datanode1.Done. 3.测试查询 只要查询涉及到datanode1上的数据,那么该查询就会报错 postgres= SELECT xc_node_id, count() FROM disttab GROUP BY xc_node_id;WARNING: failed to receive file descriptors for connectionsERROR: Failed to get pooled connectionsHINT: This may happen because one or more nodes are currently unreachable, either because of node or network failure.Its also possible that the target node may have hit the connection limit or the pooler is configured with low connections.Please check if all nodes are running fine and also review max_connections and max_pool_size configuration parameterspostgres= SELECT xc_node_id, FROM disttab WHERE col1 = 3;xc_node_id | col1 | col2 | col3------------+------+------+-------905831925 | 3 | 103 | foo(1 row) 测试发现,查询范围如果涉及到故障的node1节点,会报错,而查询的数据范围不在node1上的话,仍然可以查询。 4.手动切换 要想切换,必须要提前配置slave节点。 PGXC$ failover datanode node1 切换完成后,查询集群 postgres= SELECT oid, FROM pgxc_node;oid | node_name | node_type | node_port | node_host | nodeis_primary | nodeis_preferred | node_id -------+-----------+-----------+-----------+-----------+----------------+------------------+-------------11819 | coord1 | C | 5432 | datanode1 | f | f | 188569664316384 | coord2 | C | 5432 | datanode2 | f | f | -119710263316386 | node2 | D | 15432 | datanode2 | f | f | -92791069016385 | node1 | D | 15433 | datanode2 | f | t | 1148549230(4 rows) 发现datanode1节点的ip和端口都已经替换为配置的slave了。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qianglei6077/article/details/94379331。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-30 11:09:03
94
转载
转载文章
...S 的一种,虽然现在开发 ActionScript 的产品线几乎没有了,但还是提一句吧,AS 脚本可以接受用户输入并操作 cookie,攻击者可以配合其他 XSS(持久型或者非持久型)方法将恶意 swf 文件嵌入页面中。主要是因为 AS 有时候需要和 JS 传参交互,攻击者会通过恶意的 XSS 注入篡改参数,窃取并操作cookie。 避免方法: 严格管理 cookie 的读写权限 对 Flash 能接受用户输入的参数进行过滤 escape 转义处理 未经验证的跳转 XSS 有一些场景是后端需要对一个传进来的待跳转的 URL 参数进行一个 302 跳转,可能其中会带有一些用户的敏感(cookie)信息。如果服务器端做302 跳转,跳转的地址来自用户的输入,攻击者可以输入一个恶意的跳转地址来执行脚本。 这时候需要通过以下方式来防止这类漏洞: 对待跳转的 URL 参数做白名单或者某种规则过滤 后端注意对敏感信息的保护, 比如 cookie 使用来源验证。 CSRF CSRF(Cross-Site Request Forgery),中文名称:跨站请求伪造攻击 那么 CSRF 到底能够干嘛呢?你可以这样简单的理解:攻击者可以盗用你的登陆信息,以你的身份模拟发送各种请求。攻击者只要借助少许的社会工程学的诡计,例如通过 QQ 等聊天软件发送的链接(有些还伪装成短域名,用户无法分辨),攻击者就能迫使 Web 应用的用户去执行攻击者预设的操作。例如,当用户登录网络银行去查看其存款余额,在他没有退出时,就点击了一个 QQ 好友发来的链接,那么该用户银行帐户中的资金就有可能被转移到攻击者指定的帐户中。 所以遇到 CSRF 攻击时,将对终端用户的数据和操作指令构成严重的威胁。当受攻击的终端用户具有管理员帐户的时候,CSRF 攻击将危及整个 Web 应用程序。 CSRF 原理 下图大概描述了 CSRF 攻击的原理,可以理解为有一个小偷在你配钥匙的地方得到了你家的钥匙,然后拿着要是去你家想偷什么偷什么。 csrf原理 完成 CSRF 攻击必须要有三个条件: 用户已经登录了站点 A,并在本地记录了 cookie 在用户没有登出站点 A 的情况下(也就是 cookie 生效的情况下),访问了恶意攻击者提供的引诱危险站点 B (B 站点要求访问站点A)。 站点 A 没有做任何 CSRF 防御 你也许会问:「如果我不满足以上三个条件中的任意一个,就不会受到 CSRF 的攻击」。其实可以这么说的,但你不能保证以下情况不会发生: 你不能保证你登录了一个网站后,不再打开一个 tab 页面并访问另外的网站,特别现在浏览器都是支持多 tab 的。 你不能保证你关闭浏览器了后,你本地的 cookie 立刻过期,你上次的会话已经结束。 上图中所谓的攻击网站 B,可能是一个存在其他漏洞的可信任的经常被人访问的网站。 预防 CSRF CSRF 的防御可以从服务端和客户端两方面着手,防御效果是从服务端着手效果比较好,现在一般的 CSRF 防御也都在服务端进行。服务端的预防 CSRF 攻击的方式方法有多种,但思路上都是差不多的,主要从以下两个方面入手: 正确使用 GET,POST 请求和 cookie 在非 GET 请求中增加 token 一般而言,普通的 Web 应用都是以 GET、POST 请求为主,还有一种请求是 cookie 方式。我们一般都是按照如下规则设计应用的请求: GET 请求常用在查看,列举,展示等不需要改变资源属性的时候(数据库 query 查询的时候) POST 请求常用在 From 表单提交,改变一个资源的属性或者做其他一些事情的时候(数据库有 insert、update、delete 的时候) 当正确的使用了 GET 和 POST 请求之后,剩下的就是在非 GET 方式的请求中增加随机数,这个大概有三种方式来进行: 为每个用户生成一个唯一的 cookie token,所有表单都包含同一个伪随机值,这种方案最简单,因为攻击者不能获得第三方的 cookie(理论上),所以表单中的数据也就构造失败,但是由于用户的 cookie 很容易由于网站的 XSS 漏洞而被盗取,所以这个方案必须要在没有 XSS 的情况下才安全。 每个 POST 请求使用验证码,这个方案算是比较完美的,但是需要用户多次输入验证码,用户体验比较差,所以不适合在业务中大量运用。 渲染表单的时候,为每一个表单包含一个 csrfToken,提交表单的时候,带上 csrfToken,然后在后端做 csrfToken 验证。 CSRF 的防御可以根据应用场景的不同自行选择。CSRF 的防御工作确实会在正常业务逻辑的基础上带来很多额外的开发量,但是这种工作量是值得的,毕竟用户隐私以及财产安全是产品最基础的根本。 SQL 注入 SQL 注入漏洞(SQL Injection)是 Web 开发中最常见的一种安全漏洞。可以用它来从数据库获取敏感信息,或者利用数据库的特性执行添加用户,导出文件等一系列恶意操作,甚至有可能获取数据库乃至系统用户最高权限。 而造成 SQL 注入的原因是因为程序没有有效的转义过滤用户的输入,使攻击者成功的向服务器提交恶意的 SQL 查询代码,程序在接收后错误的将攻击者的输入作为查询语句的一部分执行,导致原始的查询逻辑被改变,额外的执行了攻击者精心构造的恶意代码。 很多 Web 开发者没有意识到 SQL 查询是可以被篡改的,从而把 SQL 查询当作可信任的命令。殊不知,SQL 查询是可以绕开访问控制,从而绕过身份验证和权限检查的。更有甚者,有可能通过 SQL 查询去运行主机系统级的命令。 SQL 注入原理 下面将通过一些真实的例子来详细讲解 SQL 注入的方式的原理。 考虑以下简单的管理员登录表单: <form action="/login" method="POST"><p>Username: <input type="text" name="username" /></p><p>Password: <input type="password" name="password" /></p><p><input type="submit" value="登陆" /></p></form> 后端的 SQL 语句可能是如下这样的: let querySQL = SELECT FROM userWHERE username='${username}'AND psw='${password}'; // 接下来就是执行 sql 语句… 目的就是来验证用户名和密码是不是正确,按理说乍一看上面的 SQL 语句也没什么毛病,确实是能够达到我们的目的,可是你只是站在用户会老老实实按照你的设计来输入的角度来看问题,如果有一个恶意攻击者输入的用户名是 zoumiaojiang’ OR 1 = 1 --,密码随意输入,就可以直接登入系统了。WFT! 冷静下来思考一下,我们之前预想的真实 SQL 语句是: SELECT FROM user WHERE username='zoumiaojiang' AND psw='mypassword' 可以恶意攻击者的奇怪用户名将你的 SQL 语句变成了如下形式: SELECT FROM user WHERE username='zoumiaojiang' OR 1 = 1 --' AND psw='xxxx' 在 SQL 中,-- 是注释后面的内容的意思,所以查询语句就变成了: SELECT FROM user WHERE username='zoumiaojiang' OR 1 = 1 这条 SQL 语句的查询条件永远为真,所以意思就是恶意攻击者不用我的密码,就可以登录进我的账号,然后可以在里面为所欲为,然而这还只是最简单的注入,牛逼的 SQL 注入高手甚至可以通过 SQL 查询去运行主机系统级的命令,将你主机里的内容一览无余,这里我也没有这个能力讲解的太深入,毕竟不是专业研究这类攻击的,但是通过以上的例子,已经了解了 SQL 注入的原理,我们基本已经能找到防御 SQL 注入的方案了。 如何预防 SQL 注入 防止 SQL 注入主要是不能允许用户输入的内容影响正常的 SQL 语句的逻辑,当用户的输入的信息将要用来拼接 SQL 语句的话,我们应该永远选择不相信,任何内容都必须进行转义过滤,当然做到这个还是不够的,下面列出防御 SQL 注入的几点注意事项: 严格限制Web应用的数据库的操作权限,给此用户提供仅仅能够满足其工作的最低权限,从而最大限度的减少注入攻击对数据库的危害 后端代码检查输入的数据是否符合预期,严格限制变量的类型,例如使用正则表达式进行一些匹配处理。 对进入数据库的特殊字符(’,",\,<,>,&,,; 等)进行转义处理,或编码转换。基本上所有的后端语言都有对字符串进行转义处理的方法,比如 lodash 的 lodash._escapehtmlchar 库。 所有的查询语句建议使用数据库提供的参数化查询接口,参数化的语句使用参数而不是将用户输入变量嵌入到 SQL 语句中,即不要直接拼接 SQL 语句。例如 Node.js 中的 mysqljs 库的 query 方法中的 ? 占位参数。 mysql.query(SELECT FROM user WHERE username = ? AND psw = ?, [username, psw]); 在应用发布之前建议使用专业的 SQL 注入检测工具进行检测,以及时修补被发现的 SQL 注入漏洞。网上有很多这方面的开源工具,例如 sqlmap、SQLninja 等。 避免网站打印出 SQL 错误信息,比如类型错误、字段不匹配等,把代码里的 SQL 语句暴露出来,以防止攻击者利用这些错误信息进行 SQL 注入。 不要过于细化返回的错误信息,如果目的是方便调试,就去使用后端日志,不要在接口上过多的暴露出错信息,毕竟真正的用户不关心太多的技术细节,只要话术合理就行。 碰到要操作的数据库的代码,一定要慎重,小心使得万年船,多找几个人多来几次 code review,将问题都暴露出来,而且要善于利用工具,操作数据库相关的代码属于机密,没事不要去各种论坛晒自家站点的 SQL 语句,万一被人盯上了呢? 命令行注入 命令行注入漏洞,指的是攻击者能够通过 HTTP 请求直接侵入主机,执行攻击者预设的 shell 命令,听起来好像匪夷所思,这往往是 Web 开发者最容易忽视但是却是最危险的一个漏洞之一,看一个实例: 假如现在需要实现一个需求:用户提交一些内容到服务器,然后在服务器执行一些系统命令去产出一个结果返回给用户,接口的部分实现如下: // 以 Node.js 为例,假如在接口中需要从 github 下载用户指定的 repoconst exec = require('mz/child_process').exec;let params = {/ 用户输入的参数 /};exec(git clone ${params.repo} /some/path); 这段代码确实能够满足业务需求,正常的用户也确实能从指定的 git repo 上下载到想要的代码,可是和 SQL 注入一样,这段代码在恶意攻击者眼中,简直就是香饽饽。 如果 params.repo 传入的是 https://github.com/zoumiaojiang/zoumiaojiang.github.io.git 当然没问题了。 可是如果 params.repo 传入的是 https://github.com/xx/xx.git && rm -rf / && 恰好你的服务是用 root 权限起的就惨了。 具体恶意攻击者能用命令行注入干什么也像 SQL 注入一样,手法是千变万化的,比如「反弹 shell 注入」等,但原理都是一样的,我们绝对有能力防止命令行注入发生。防止命令行注入需要做到以下几件事情: 后端对前端提交内容需要完全选择不相信,并且对其进行规则限制(比如正则表达式)。 在调用系统命令前对所有传入参数进行命令行参数转义过滤。 不要直接拼接命令语句,借助一些工具做拼接、转义预处理,例如 Node.js 的 shell-escape npm 包。 还是前面的例子,我们可以做到如下: const exec = require('mz/child_process').exec;// 借助 shell-escape npm 包解决参数转义过滤问题const shellescape = require('shell-escape');let params = {/ 用户输入的参数 /};// 先过滤一下参数,让参数符合预期if (!/正确的表达式/.test(params.repo)) {return;}let cmd = shellescape(['git','clone',params.repo,'/some/path']);// cmd 的值: git clone 'https://github.com/xx/xx.git && rm -rf / &&' /some/path// 这样就不会被注入成功了。exec(cmd); DDoS 攻击 DDoS 又叫分布式拒绝服务,全称 Distributed Denial of Service,其原理就是利用大量的请求造成资源过载,导致服务不可用,这个攻击应该不能算是安全问题,这应该算是一个另类的存在,因为这种攻击根本就是耍流氓的存在,「伤敌一千,自损八百」的行为。出于保护 Web App 不受攻击的攻防角度,还是介绍一下 DDoS 攻击吧,毕竟也是挺常见的。 DDoS 攻击可以理解为:「你开了一家店,隔壁家点看不惯,就雇了一大堆黑社会人员进你店里干坐着,也不消费,其他客人也进不来,导致你营业惨淡」。为啥说 DDoS 是个「伤敌一千,自损八百」的行为呢?毕竟隔壁店还是花了不少钱雇黑社会但是啥也没得到不是?DDoS 攻击的目的基本上就以下几个: 深仇大恨,就是要干死你 敲诈你,不给钱就干你 忽悠你,不买我防火墙服务就会有“人”继续干你 也许你的站点遭受过 DDoS 攻击,具体什么原因怎么解读见仁见智。DDos 攻击从层次上可分为网络层攻击与应用层攻击,从攻击手法上可分为快型流量攻击与慢型流量攻击,但其原理都是造成资源过载,导致服务不可用。 网络层 DDoS 网络层 DDos 攻击包括 SYN Flood、ACK Flood、UDP Flood、ICMP Flood 等。 SYN Flood 攻击 SYN flood 攻击主要利用了 TCP 三次握手过程中的 Bug,我们都知道 TCP 三次握手过程是要建立连接的双方发送 SYN,SYN + ACK,ACK 数据包,而当攻击方随意构造源 IP 去发送 SYN 包时,服务器返回的 SYN + ACK 就不能得到应答(因为 IP 是随意构造的),此时服务器就会尝试重新发送,并且会有至少 30s 的等待时间,导致资源饱和服务不可用,此攻击属于慢型 DDoS 攻击。 ACK Flood 攻击 ACK Flood 攻击是在 TCP 连接建立之后,所有的数据传输 TCP 报文都是带有 ACK 标志位的,主机在接收到一个带有 ACK 标志位的数据包的时候,需要检查该数据包所表示的连接四元组是否存在,如果存在则检查该数据包所表示的状态是否合法,然后再向应用层传递该数据包。如果在检查中发现该数据包不合法,例如该数据包所指向的目的端口在本机并未开放,则主机操作系统协议栈会回应 RST 包告诉对方此端口不存在。 UDP Flood 攻击 UDP flood 攻击是由于 UDP 是一种无连接的协议,因此攻击者可以伪造大量的源 IP 地址去发送 UDP 包,此种攻击属于大流量攻击。正常应用情况下,UDP 包双向流量会基本相等,因此发起这种攻击的攻击者在消耗对方资源的时候也在消耗自己的资源。 ICMP Flood 攻击 ICMP Flood 攻击属于大流量攻击,其原理就是不断发送不正常的 ICMP 包(所谓不正常就是 ICMP 包内容很大),导致目标带宽被占用,但其本身资源也会被消耗。目前很多服务器都是禁 ping 的(在防火墙在可以屏蔽 ICMP 包),因此这种攻击方式已经落伍。 网络层 DDoS 防御 网络层的 DDoS 攻击究其本质其实是无法防御的,我们能做得就是不断优化服务本身部署的网络架构,以及提升网络带宽。当然,还是做好以下几件事也是有助于缓解网络层 DDoS 攻击的冲击: 网络架构上做好优化,采用负载均衡分流。 确保服务器的系统文件是最新的版本,并及时更新系统补丁。 添加抗 DDos 设备,进行流量清洗。 限制同时打开的 SYN 半连接数目,缩短 SYN 半连接的 Timeout 时间。 限制单 IP 请求频率。 防火墙等防护设置禁止 ICMP 包等。 严格限制对外开放的服务器的向外访问。 运行端口映射程序或端口扫描程序,要认真检查特权端口和非特权端口。 关闭不必要的服务。 认真检查网络设备和主机/服务器系统的日志。只要日志出现漏洞或是时间变更,那这台机器就可能遭到了攻击。 限制在防火墙外与网络文件共享。这样会给黑客截取系统文件的机会,主机的信息暴露给黑客,无疑是给了对方入侵的机会。 加钱堆机器。。 报警。。 应用层 DDoS 应用层 DDoS 攻击不是发生在网络层,是发生在 TCP 建立握手成功之后,应用程序处理请求的时候,现在很多常见的 DDoS 攻击都是应用层攻击。应用层攻击千变万化,目的就是在网络应用层耗尽你的带宽,下面列出集中典型的攻击类型。 CC 攻击 当时绿盟为了防御 DDoS 攻击研发了一款叫做 Collapasar 的产品,能够有效的防御 SYN Flood 攻击。黑客为了挑衅,研发了一款 Challenge Collapasar 攻击工具(简称 CC)。 CC 攻击的原理,就是针对消耗资源比较大的页面不断发起不正常的请求,导致资源耗尽。因此在发送 CC 攻击前,我们需要寻找加载比较慢,消耗资源比较多的网页,比如需要查询数据库的页面、读写硬盘文件的等。通过 CC 攻击,使用爬虫对某些加载需要消耗大量资源的页面发起 HTTP 请求。 DNS Flood DNS Flood 攻击采用的方法是向被攻击的服务器发送大量的域名解析请求,通常请求解析的域名是随机生成或者是网络世界上根本不存在的域名,被攻击的DNS 服务器在接收到域名解析请求的时候首先会在服务器上查找是否有对应的缓存,如果查找不到并且该域名无法直接由服务器解析的时候,DNS 服务器会向其上层 DNS 服务器递归查询域名信息。域名解析的过程给服务器带来了很大的负载,每秒钟域名解析请求超过一定的数量就会造成 DNS 服务器解析域名超时。 根据微软的统计数据,一台 DNS 服务器所能承受的动态域名查询的上限是每秒钟 9000 个请求。而我们知道,在一台 P3 的 PC 机上可以轻易地构造出每秒钟几万个域名解析请求,足以使一台硬件配置极高的 DNS 服务器瘫痪,由此可见 DNS 服务器的脆弱性。 HTTP 慢速连接攻击 针对 HTTP 协议,先建立起 HTTP 连接,设置一个较大的 Conetnt-Length,每次只发送很少的字节,让服务器一直以为 HTTP 头部没有传输完成,这样连接一多就很快会出现连接耗尽。 应用层 DDoS 防御 判断 User-Agent 字段(不可靠,因为可以随意构造) 针对 IP + cookie,限制访问频率(由于 cookie 可以更改,IP 可以使用代理,或者肉鸡,也不可靠) 关闭服务器最大连接数等,合理配置中间件,缓解 DDoS 攻击。 请求中添加验证码,比如请求中有数据库操作的时候。 编写代码时,尽量实现优化,并合理使用缓存技术,减少数据库的读取操作。 加钱堆机器。。 报警。。 应用层的防御有时比网络层的更难,因为导致应用层被 DDoS 攻击的因素非常多,有时往往是因为程序员的失误,导致某个页面加载需要消耗大量资源,有时是因为中间件配置不当等等。而应用层 DDoS 防御的核心就是区分人与机器(爬虫),因为大量的请求不可能是人为的,肯定是机器构造的。因此如果能有效的区分人与爬虫行为,则可以很好地防御此攻击。 其他 DDoS 攻击 发起 DDoS 也是需要大量的带宽资源的,但是互联网就像森林,林子大了什么鸟都有,DDoS 攻击者也能找到其他的方式发起廉价并且极具杀伤力的 DDoS 攻击。 利用 XSS 举个例子,如果 12306 页面有一个 XSS 持久型漏洞被恶意攻击者发现,只需在春节抢票期间在这个漏洞中执行脚本使得往某一个小站点随便发点什么请求,然后随着用户访问的增多,感染用户增多,被攻击的站点自然就会迅速瘫痪了。这种 DDoS 简直就是无本万利,不用惊讶,现在大站有 XSS 漏洞的不要太多。 来自 P2P 网络攻击 大家都知道,互联网上的 P2P 用户和流量都是一个极为庞大的数字。如果他们都去一个指定的地方下载数据,成千上万的真实 IP 地址连接过来,没有哪个设备能够支撑住。拿 BT 下载来说,伪造一些热门视频的种子,发布到搜索引擎,就足以骗到许多用户和流量了,但是这只是基础攻击。 高级的 P2P 攻击,是直接欺骗资源管理服务器。如迅雷客户端会把自己发现的资源上传到资源管理服务器,然后推送给其它需要下载相同资源的用户,这样,一个链接就发布出去。通过协议逆向,攻击者伪造出大批量的热门资源信息通过资源管理中心分发出去,瞬间就可以传遍整个 P2P 网络。更为恐怖的是,这种攻击是无法停止的,即使是攻击者自身也无法停止,攻击一直持续到 P2P 官方发现问题更新服务器且下载用户重启下载软件为止。 最后总结下,DDoS 不可能防的住,就好比你的店只能容纳 50 人,黑社会有 100 人,你就换一家大店,能容纳 500 人,然后黑社会又找来了 1000 人,这种堆人头的做法就是 DDoS 本质上的攻防之道,「道高一尺,魔高一丈,魔高一尺,道高一丈」,讲真,必要的时候就答应勒索你的人的条件吧,实在不行就报警吧。 流量劫持 流量劫持应该算是黑产行业的一大经济支柱了吧?简直是让人恶心到吐,不吐槽了,还是继续谈干货吧,流量劫持基本分两种:DNS 劫持 和 HTTP 劫持,目的都是一样的,就是当用户访问 zoumiaojiang.com 的时候,给你展示的并不是或者不完全是 zoumiaojiang.com 提供的 “内容”。 DNS 劫持 DNS 劫持,也叫做域名劫持,可以这么理解,「你打了一辆车想去商场吃饭,结果你打的车是小作坊派来的,直接给你拉到小作坊去了」,DNS 的作用是把网络地址域名对应到真实的计算机能够识别的 IP 地址,以便计算机能够进一步通信,传递网址和内容等。如果当用户通过某一个域名访问一个站点的时候,被篡改的 DNS 服务器返回的是一个恶意的钓鱼站点的 IP,用户就被劫持到了恶意钓鱼站点,然后继而会被钓鱼输入各种账号密码信息,泄漏隐私。 dns劫持 这类劫持,要不就是网络运营商搞的鬼,一般小的网络运营商与黑产勾结会劫持 DNS,要不就是电脑中毒,被恶意篡改了路由器的 DNS 配置,基本上做为开发者或站长却是很难察觉的,除非有用户反馈,现在升级版的 DNS 劫持还可以对特定用户、特定区域等使用了用户画像进行筛选用户劫持的办法,另外这类广告显示更加随机更小,一般站长除非用户投诉否则很难觉察到,就算觉察到了取证举报更难。无论如何,如果接到有 DNS 劫持的反馈,一定要做好以下几件事: 取证很重要,时间、地点、IP、拨号账户、截屏、URL 地址等一定要有。 可以跟劫持区域的电信运营商进行投诉反馈。 如果投诉反馈无效,直接去工信部投诉,一般来说会加白你的域名。 HTTP 劫持 HTTP 劫持您可以这么理解,「你打了一辆车想去商场吃饭,结果司机跟你一路给你递小作坊的广告」,HTTP 劫持主要是当用户访问某个站点的时候会经过运营商网络,而不法运营商和黑产勾结能够截获 HTTP 请求返回内容,并且能够篡改内容,然后再返回给用户,从而实现劫持页面,轻则插入小广告,重则直接篡改成钓鱼网站页面骗用户隐私。能够实施流量劫持的根本原因,是 HTTP 协议没有办法对通信对方的身份进行校验以及对数据完整性进行校验。如果能解决这个问题,则流量劫持将无法轻易发生。所以防止 HTTP 劫持的方法只有将内容加密,让劫持者无法破解篡改,这样就可以防止 HTTP 劫持了。 HTTPS 协议就是一种基于 SSL 协议的安全加密网络应用层协议,可以很好的防止 HTTP 劫持。这里有篇 文章 讲的不错。HTTPS 在这就不深讲了,后面有机会我会单独好好讲讲 HTTPS。如果不想站点被 HTTP 劫持,赶紧将你的站点全站改造成 HTTPS 吧。 服务器漏洞 服务器除了以上提到的那些大名鼎鼎的漏洞和臭名昭著的攻击以外,其实还有很多其他的漏洞,往往也很容易被忽视,在这个小节也稍微介绍几种。 越权操作漏洞 如果你的系统是有登录控制的,那就要格外小心了,因为很有可能你的系统越权操作漏洞,越权操作漏洞可以简单的总结为 「A 用户能看到或者操作 B 用户的隐私内容」,如果你的系统中还有权限控制就更加需要小心了。所以每一个请求都需要做 userid 的判断 以下是一段有漏洞的后端示意代码: // ctx 为请求的 context 上下文let msgId = ctx.params.msgId;mysql.query('SELECT FROM msg_table WHERE msg_id = ?',[msgId]); 以上代码是任何人都可以查询到任何用户的消息,只要有 msg_id 就可以,这就是比较典型的越权漏洞,需要如下这么改进一下: // ctx 为请求的 context 上下文let msgId = ctx.params.msgId;let userId = ctx.session.userId; // 从会话中取出当前登陆的 userIdmysql.query('SELECT FROM msg_table WHERE msg_id = ? AND user_id = ?',[msgId, userId]); 嗯,大概就是这个意思,如果有更严格的权限控制,那在每个请求中凡是涉及到数据库的操作都需要先进行严格的验证,并且在设计数据库表的时候需要考虑进 userId 的账号关联以及权限关联。 目录遍历漏洞 目录遍历漏洞指通过在 URL 或参数中构造 …/,./ 和类似的跨父目录字符串的 ASCII 编码、unicode 编码等,完成目录跳转,读取操作系统各个目录下的敏感文件,也可以称作「任意文件读取漏洞」。 目录遍历漏洞原理:程序没有充分过滤用户输入的 …/ 之类的目录跳转符,导致用户可以通过提交目录跳转来遍历服务器上的任意文件。使用多个… 符号,不断向上跳转,最终停留在根 /,通过绝对路径去读取任意文件。 目录遍历漏洞几个示例和测试,一般构造 URL 然后使用浏览器直接访问,或者使用 Web 漏洞扫描工具检测,当然也可以自写程序测试。 http://somehost.com/../../../../../../../../../etc/passwdhttp://somehost.com/some/path?file=../../Windows/system.ini 借助 %00 空字符截断是一个比较经典的攻击手法http://somehost.com/some/path?file=../../Windows/system.ini%00.js 使用了 IIS 的脚本目录来移动目录并执行指令http://somehost.com/scripts/..%5c../Windows/System32/cmd.exe?/c+dir+c:\ 防御 方法就是需要对 URL 或者参数进行 …/,./ 等字符的转义过滤。 物理路径泄漏 物理路径泄露属于低风险等级缺陷,它的危害一般被描述为「攻击者可以利用此漏洞得到信息,来对系统进一步地攻击」,通常都是系统报错 500 的错误信息直接返回到页面可见导致的漏洞。得到物理路径有些时候它能给攻击者带来一些有用的信息,比如说:可以大致了解系统的文件目录结构;可以看出系统所使用的第三方软件;也说不定会得到一个合法的用户名(因为很多人把自己的用户名作为网站的目录名)。 防止这种泄漏的方法就是做好后端程序的出错处理,定制特殊的 500 报错页面。 源码暴露漏洞 和物理路径泄露类似,就是攻击者可以通过请求直接获取到你站点的后端源代码,然后就可以对系统进一步研究攻击。那么导致源代码暴露的原因是什么呢?基本上就是发生在服务器配置上了,服务器可以设置哪些路径的文件才可以被直接访问的,这里给一个 koa 服务起的例子,正常的 koa 服务器可以通过 koa-static 中间件去指定静态资源的目录,好让静态资源可以通过路径的路由访问。比如你的系统源代码目录是这样的: |- project|- src|- static|- ...|- server.js 你想要将 static 的文件夹配成静态资源目录,你应该会在 server.js 做如下配置: const Koa = require('koa');const serve = require('koa-static');const app = new Koa();app.use(serve(__dirname + '/project/static')); 但是如果配错了静态资源的目录,可能就出大事了,比如: // ...app.use(serve(__dirname + '/project')); 这样所有的源代码都可以通过路由访问到了,所有的服务器都提供了静态资源机制,所以在通过服务器配置静态资源目录和路径的时候,一定要注意检验,不然很可能产生漏洞。 最后,希望 Web 开发者们能够管理好自己的代码隐私,注意代码安全问题,比如不要将产品的含有敏感信息的代码放到第三方外部站点或者暴露给外部用户,尤其是前端代码,私钥类似的保密性的东西不要直接输出在代码里或者页面中。也许还有很多值得注意的点,但是归根结底还是绷住安全那根弦,对待每一行代码都要多多推敲。 请关注我的订阅号 本篇文章为转载内容。原文链接:https://blog.csdn.net/MrCoderStack/article/details/88547919。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-01-03 14:51:12
493
转载
转载文章
...dentity是微软开发的一个用于ASP.NET框架的身份验证和授权系统,它提供了一种灵活的方式来实现用户注册、登录、密码重置、角色管理等功能,并且支持多种数据存储选项(如SQL Server、Azure Table Storage等)。在本文中,作者详细介绍了如何利用ASP.NET Identity进行自定义用户属性扩展、数据库迁移以及通过声明(Claims)进行细粒度的授权访问控制。 Entity Framework Code First , Entity Framework Code First 是一种ORM(对象关系映射)设计模式,允许开发者通过编写C代码来定义数据库模型,随后由Entity Framework自动创建对应的数据库架构。在ASP.NET Identity应用中,通过Code First技术可以方便地为用户类添加自定义属性,并根据这些属性的变化自动更新数据库结构,而无需手动编辑数据库脚本或删除已有数据。 声明(Claims) , 在ASP.NET Identity框架中,声明(Claims)是一种用于表示用户特定信息的数据结构,它可以包含用户的任意属性或特性,例如姓名、年龄、角色或者权限等。声明被用来实现细粒度的授权机制,应用程序可以根据用户携带的声明值灵活地决定其对资源的访问权限。在本文中,作者演示了如何使用声明来进行动作方法的授权访问控制,使得身份验证和授权过程更为灵活与精准。
2023-10-28 08:49:21
283
转载
转载文章
...同时涵盖游戏引擎软件开发的理论及实践,并对多方面的题目进行探讨。本书讨论到的概念及技巧实际应用于现实中的游戏工作室,如艺电及顽皮狗。虽然书中采用的例子通常依据一些专门的技术,但是讨论范围远超于某个引擎或API。文中的参考及引用也非常有用,可让读者继续深入游戏开发过程的任何特定方向。 《游戏引擎架构》为一个大学程度的游戏编程课程而编写,但也适合软件工程师、业余爱好者、自学游戏程序员,以及游戏产业的从业人员。通过阅读《游戏引擎架构》,资历较浅的游戏工程师可以巩固他们所学的游戏技术及引擎架构的知识,专注某一领域的资深程序员也能从本书更为全面的介绍中获益。 內容包括: 游戏开发中的大规模C++软件架构 游戏编程所需的数学 供调试、源代码控制及性能剖析的游戏开发工具 引擎基础系统、渲染、碰撞、物理、角色动画、游戏世界对象模型等引擎子系统 多平台游戏引擎 多处理器环境下的游戏编程 工作管道及游戏资产数据库 作者/译者简介 作者介绍:Jason Gregory在1994年开始任职专业软件工程师,自1999年3月开始在游戏产业中任职软件工程师。在圣迭哥Midway Home Entertainment公司开始游戏编程的他,为《疯狂飞行员(Freaky Flyers)》及《Crank the Weasel》开发PlayStation 2/Xbox上的动画系统。在2003年,他转到洛杉矶艺电,为《荣誉勋章:血战太平洋(Medal of Honor: Pacific Assault)》开发游戏引擎及游戏性技术,并在《荣誉勋章:空降神兵(Medal of Honor: Airborne)》中担任首席工程师。他现时是顽皮狗公司的通才程序员,为《神秘海域:德雷克船长的宝藏(Uncharted: Drake's Fortune)》及《神秘海域:纵横四海(Uncharted: Among Thieves)》开发引擎及游戏性软件。他也在南加州大学教授游戏技术的课程。 译者简介:叶劲峰(Milo Yip)从小自习编程,并爱好计算机图形学。上中学时兼职开发策略RPG《王子传奇》,该游戏在1995年于台湾发行。其后他获取了香港大学认知科学学士、香港中文大学系统工程及工程管理哲学硕士。毕业后在香港理工大学设计学院从事游戏引擎及相关技术的研发,职至项目主任。除发表学术文章外,也曾合著《DirectX9游戏编程实务》。2008年往上海育碧担任引擎工程师开发《美食从天而降(Cloudy with a Chance of Meatballs)》Xbox360/PS3/Wii/PC,2009年起于麻辣马开发《爱丽丝:疯狂回归(Alice: Madness Returns)》Xbox360/PS3/PC,2011年加入腾讯互动娱乐引擎技术中心担任专家工程师,所研发的技术已用于《斗战神》、《天涯明月刀》、《众神争霸》等项目中。 推荐序1 最初拿到《Game Engine Architecture》一书的英文版,是编辑侠少邮寄给我的打印版。他建议我接下翻译此书的合同。当时我正在杭州带领一个团队开发3D游戏引擎,我和我的同事都对这本书的内容颇有兴趣,两大本打印的英文书立刻在同事间传开。可惜那段时间个人精力顾及不来,把近千页的英文读物精读而后翻译成中文对个人的业余时间是个极大的挑战,不能担此翻译任务颇为遗憾。 不久以后听说Milo Yip(叶劲峰)已开始着手翻译,甚为欣喜。翻译此巨著,他一定是比我更合适的人选。我和Milo虽未曾蒙面,但神交已久。在网络上读过一些他的成长经历,和我颇为相似,心有戚戚。他对游戏3D实时渲染技术研究精深为我所不及,我们曾通过Google Talk讨论过许多技术问题,他都有独到的见解。翻译工作开始后,Milo是香港人,英文技术术语在香港的中文译法和大陆的有许多不同。但此书由大陆出版社出版,考虑到面对的读者主要是大陆程序员,Milo希望能更符合大陆程序员的用词习惯,所以在翻译一开始就通过Google Docs创建了协作页面,邀请大家共同探讨书中技术名词的中译名。从中我们可以一窥他作为译者的慎重。 三年之后,有幸在出版之前就拿到了完整的译本。这是一本用LaTeX精心排版的800页的电子书,我只花了一周时间,几乎是一口气读完。流畅的阅读享受,绝对不仅仅是因为原著精彩的内容,精美的版面和翔实的译注也加了不少分。 在阅读本书的过程中,我不只一次地获得共鸣。例如在第5章的内存管理系统的介绍中,作者介绍的几种游戏特有的内存管理方法我都曾在项目中用过,而这是第一次有书籍专门将这些方法详尽记录;又如第11章动画系统的介绍,我们也同样在3D引擎开发过程中改进原有动画片段混合方法的经历。虽然书中介绍的每个技术点,都可能可以在某篇论文,某本其他的书的章节,某篇网络blog上见过,但之前却无一本书可以把这些东西放在一起相互参照。对于从事游戏引擎开发的程序员来说,了解各种引擎在处理每个具体问题时的方案是相当重要的。而每种方案又各有利弊,即使不做引擎开发工作而是在某一特定游戏引擎上做游戏开发,从中也可以理解引擎的局限性以及可能的改进方法。尤其是第14章介绍的对游戏性相关系统的设计,各个开发人员几乎都是凭经验设计,很少见有书籍对这些做总结。对于基于渲染引擎做开发的游戏程序员,这是必须面对的工作,这一章会有很大的借鉴意义。 本书作者是业内资深的游戏引擎开发人,他所参于的《神秘海域》和《最后生还者》都是我的个人最爱。在玩游戏的过程中,作为游戏程序员的天性,自然会不断地猜想各个技术点是如何实现的,背后需要怎样的工具支持。能在书中一一得到印证是件特别开心的事情。作者反复强调代码实践的重要性,在书中遍布着C++代码。我不认为这些代码有直接取来使用的价值,但它们极大地帮助了读者理解书中的技术点。书中列出的顽皮狗工作室用lisp方言作为游戏配置脚本的范例也给我很大的启发,有了这些具体的代码示例以及作者本身的一线工程师背景,也让我确信书中那些关于主机游戏开发相关等,我所没有接触过的内容都也绝非泛泛而谈。 国内的游戏开发社区的壮大,主要是随最近十年的MMO风潮而生。而就在大型网络游戏在中国有些畸形发展,让这类游戏偏离电子游戏游戏性的趋势时,我们有幸迎来了为移动设备开发游戏的大潮。游戏开发的重心重新回到游戏性本身。我们更需要去借鉴单机游戏是如何为玩家带来更纯粹的游戏体验,我相信书中记录的各种技术点会变的更有帮助。 资深游戏开发及创业者 云风 @简悦云风 推荐序2 在我认识的许多游戏业开发同仁中,只有少数香港同胞,Milo Yip(叶劲峰)却正是这样一位给我印象非常深刻的优秀香港游戏开发者。我俩认识,是在Milo加入腾讯互动娱乐研发部引擎技术中心后,说来到现在也只是两年多时间。其间,他为人的谦逊务实,对待技术问题的严谨求真态度,对算法设计和性能优化的娴熟技术,都为人所称道。Milo一丝不苟的工作风格,甚至表现在对待技术文档排版这类事情上(Milo常执著地用LaTeX将技术文档排到完美),我想这一定是他在香港读大学、硕士及在香港理工大学的多媒体创新中心从事研究员,一贯沿袭至今的好作风。 我很高兴腾讯游戏有实力吸引到这样优秀的技术专家;即使在其已从上海迁回香港家中,依然选择到深圳腾讯互动娱乐总部工作。叶兄从此工作日每天早晚过关,来往香港和深圳两地,虽有舟车劳顿,但是兼顾了对家庭的照顾和在游戏引擎方面的专业研究,希望这样的状况是令他满意的。 认识叶兄当时,我便知道他在进行Jason Gregory所著《游戏引擎架构》一书的中译工作。因为自己从前也有业余翻译游戏开发有关书籍的经历,所以我能理解其中的辛苦和责任重大,对叶兄也更多一分钦佩。我以为,本书以及本书的中文读者最大的幸运便是,遇到叶兄这位对游戏有着如同对家对国般强烈责任感,犹如“游戏科学工作者”般的专业译者! 现在(2013年年末)无疑是游戏史上对独立游戏制作者最友好的年代。开发设备方便获得(相对过往仅由主机厂商授权才能获得专利开发设备,现在有一台智能手机和一台个人电脑就可以开发)、技术工具友好、调试过程简单方便,且互联网上有丰富的例程和开源代码参考,也有网上社区便于交流。很多爱好者能够很快地制作出可运行的游戏原型,其中一些也能发布到应用商店。 但是不全面掌握各方面知识,尤其是游戏引擎架构知识,往往只能停留在勉强修改、凑合重用别人提供的资源的应用程度上,难以做极限的性能改进,更妄谈革命式的架构创新。这样的程度是很难在成千上万的游戏中脱颖而出的。我们所认可的真正的游戏大作,必定是在某方面大幅超越用户期待的产品。为了打造这样的产品,游戏内容创作者(策划、美术等)需要“戴着镣铐跳舞”(在当前的机能下争取更多的创作自由度),而引擎架构合理的游戏可以经得起──也值得进行──反复优化,最终可以提供更多的自由度,这是大作出现的技术前提。 书的作者、译者、出版社的编者,加上读者,大家是因书而结缘的有缘人。因叶兄这本《游戏引擎架构》译著而在线上线下相识的读者们,你们是不是因“了解游戏引擎架构,从而制作/优化好游戏”这样的理想而结了缘呢? 亲爱的读者,愿你的游戏有一天因谜题巧妙绝伦、趣味超凡、虚拟世界气势磅礴、视觉效果逼真精美等专业因素取得业界褒奖,并得到玩家真诚的赞美。希望届时曾读叶兄这本《游戏引擎架构》译作的你,也可以回馈社会,回馈游戏开发的学习社区,帮助新人。希望你也可以建立微信公众号、博客等,或翻译游戏开发书籍,造福外语不好的读者,所以如果你的外语(英语、日语、韩语之于游戏行业比较重要)水平仍需精进,现在也可以同步加油了! 腾讯《天天爱消除》游戏团队Leader 沙鹰 @也是沙鹰 译序 数千年以来,艺术家们通过文学、绘画、雕塑、建筑、音乐、舞蹈、戏剧等传统艺术形式充实人类的精神层面。自20世纪中叶,计算机的普及派生出另一种艺术形式──电子游戏。游戏结合了上述传统艺术以及近代科技派生的其他艺术(如摄影、电影、动画),并且完全脱离了艺术欣赏这种单向传递的方式──游戏必然是互动的,“玩家”并不是“读者”、“观众”或“听众”,而是进入游戏世界、感知并对世界做出反应的参与者。 基于游戏的互动本质,游戏的制作通常比其他大众艺术复杂。商业游戏的制作通常需要各种人才的参与,而他们则需要依赖各种工具及科技。游戏引擎便是专门为游戏而设计的工具及科技集成。之所以称为引擎,如同交通工具中的引擎,提供了最核心的技术部分。因为复杂,研发成本高,人们不希望制作每款游戏(或车款)时都重新设计引擎,重用性是游戏引擎的一个重要设计目标。 然而,各游戏本身的性质以及平台的差异,使研发完全通用的游戏引擎变得极困难,甚至不可能。市面上出售的游戏引擎,有一些虽然已经达到很高的技术水平,但在商业应用中,很多时候还是需要因应个别游戏项目对引擎改造、整合、扩展及优化。因此,即使能使用市面上最好的商用引擎或自研引擎,我们仍需要理解当中的架构、各种机制和技术,并且分析及解决在制作中遇到的问题。这些也是译者曾任于上海两家工作室时的主要工作范畴。 选择翻译此著作,主要原因是在阅读中得到共鸣,并且能知悉一些知名游戏作品实际上所采用的方案。有感坊间大部分游戏开发书籍并不是由业内人士执笔,内容只足够应付一些最简单的游戏开发,欠缺宏观比较各种方案,技术与当今实际情况也有很大差距。而一些Gems类丛书虽然偶有好文章,但受形式所限欠缺系统性、全面性。难得本书原作者身为世界一流游戏工作室的资深游戏开发者(注1),在繁重的游戏开发工作外,还在大学教授游戏开发课程以至编写本著作。此外,从与内地同事的交流中,了解到许多从业者不愿意阅读外文书籍。为了普及知识及反馈业界社会,希望能尽绵力。 或许有些人以为本著作是针对单机/游戏机游戏的,并不适合国内以网游为主的环境。但译者认为这是一种误解,许多游戏本身所涉及的技术是具通用性的。例如游戏性相关的游戏性系统、场景管理、人工智能、物理模拟等部分,许多时候也会同时用于网游的前台和后台。现时,一些动作为主、非MMO的国内端游甚至会直接在后台运行传统意义上的游戏引擎。至于前台相关的技术,单机和端游的区别更少。此外,随着近年移动终端的兴起,其硬件性能已超越传统掌上游戏机,开发手游所需的技术与传统掌上游戏机并无太大差异。还可预料,现时单机/游戏机的一些较高级的架构及技术,将在不远的未来着陆移动终端平台。 译者认为,本书涵括游戏开发技术的方方面面,同时适合入门及经验丰富的游戏程序员。书名中的架构二字,并不单是给出一个系统结构图,而是描述每个子系统的需求、相关技术及与其他子系统的关系。对译者本人而言,本书的第11章(动画系统)及第14章(运行时游戏性基础系统)是本书特別精彩之处,含有许多少见于其他书籍的内容。而第10章(渲染引擎)由于是游戏引擎中的一个极大的部分,有限的篇幅可能未能覆盖广度及深度,推荐读者参考[1](注2),人工智能方面也需参考其他专著。 本译作采用LaTeX排版(注3),以Inkscape编译矢量图片。为了令阅读更流畅,内文中的网址都统一改以脚注标示。另外,由于现时游戏开发相关的文献以英文为主,而且游戏开发涉及的知识面很广,本译作尽量以括号形式保留英文术语。为了方便读者查找内容,在附录中增设中英文双向索引(索引条目与原著的不同)。 本人在香港成长学习及工作,至2008年才赴内地游戏工作室工作,不黯内地的中文写作及用字习惯,翻译中曾遇到不少困难。有幸得到出版社人员以及良师益友的帮助,才能完成本译作。特别感谢周筠老师支持本作的提案,并耐心地给予协助及鼓励。编辑张春雨老师和卢鸫翔老师,以及好友余晟给予了大量翻译上的知识及指导。也感谢游戏业界专家云风、大宝和Dave给予了许多宝贵意见。此书的翻译及排版工作比预期更花时间,感谢妻子及儿女们的体谅。此次翻译工作历时三年半,因工作及家庭事宜导致严重延误,唯有在翻译及排版工作上更尽心尽力,希望求得等待此译作的读者们谅解。无论是批评或建议,诚希阁下通过电邮miloyip@gmail.com、新浪微博、豆瓣等渠道不吝赐教。 叶劲峰(Milo Yip) 2013年10月 原作者是顽皮狗(Naughty Dog)《神秘海域(Uncharted)》系列的通才程序员、《最后生还者(The Last of Us)》的首席程序员,之前还曾在EA和Midway工作。 中括号表示引用附录中的参考文献。一些参考条目加入了其中译本的信息。 具体是使用CTEX套装,它是在MiKTeX的基础上增加中文的支持。 前言 最早的电子游戏完全由硬件构成,但微处理器(microprocessor)的高速发展完全改变了游戏的面貌。现在的游戏是在多用途的PC和专门的电子游戏主机(video game console)上玩的,凭借软件带来绝妙的游戏体验。从最初的游戏诞生至今已有半个世纪,但很多人仍然认为游戏是一个未成熟的产业。即使游戏可能是个年轻的产业,若仔细观察,也会发现它正在高速发展。 现时游戏已成为一个上百亿美元的产业,覆盖不同年龄、性别的广泛受众。 千变万化的游戏,可以分为从纸牌游戏到大型多人在线游戏(massively multiplayer online game,MMOG)等多个种类(category)和“类型(genre)”(注1),也可以运行在任何装有微芯片(microchip)的设备上 。你现在可以在PC、手机及多种特别为游戏而设计的手持/电视游戏主机上玩游戏。家用电视游戏通常代表最尖端的游戏科技,又由于它们是周期性地推出新版本,因此有游戏机“世代”(generation)的说法。最新一代(注2)的游戏机包括微软的Xbox 360和索尼的PlayStation 3,但一定不可忽视长盛不衰的PC,以及最近非常流行的任天堂Wii。 最近,剧增的下载式休闲游戏,使这个多样化的商业游戏世界变得更复杂。虽然如此,大型游戏仍然是一门大生意。今天的游戏平台非常复杂,有难以置信的运算能力,这使软件的复杂度得以进一步提升。所有这些先进的软件都需要由人创造出来,这导致团队人数增加,开发成本上涨。随着产业变得成熟,开发团队要寻求更好、更高效的方式去制作产品,可复用软件(reusable software)和中间件(middleware)便应运而生,以补偿软件复杂度的提升。 由于有这么多风格迥异的游戏及多种游戏平台,因此不可能存在单一理想的软件方案。然而,业界已经发展出一些模式 ,也有大量的潜在方案可供选择。现今的问题是如何找到一个合适的方案去迎合某个项目的需要。再进一步,开发团队必须考虑项目的方方面面,以及如何把各方面集成。对于一个崭新的游戏设计,鲜有可能找到一个完美搭配游戏设计各方面的软件包。 现时业界内的老手,入行时都是“开荒牛”。我们这代人很少是计算机科学专业出身(Matt的专业是航空工程、Jason的专业是系统设计工程),但现时很多学院已设有游戏开发的课程和学位。时至今日,为了获取有用的游戏开发信息,学生和开发者必须找到好的途径。对于高端的图形技术,从研究到实践都有大量高质量的信息。可是,这些信息经常不能直接应用到游戏的生产环境,或者没有一个生产级质量的实现。对于图形以外的游戏开发技术,市面上有一些所谓的入门书籍,没提及参考文献就描述很多内容细节,像自己发明的一样。这种做法根本没有用处,甚至经常带有不准确的内容。另一方面,市场上有一些高端的专门领域书籍,例如物理、碰撞、人工智能等。可是,这类书或者啰嗦到让你难以忍受,或者高深到让部分读者无法理解,又或者内容过于零散而难于融会贯通。有一些甚至会直接和某项技术挂钩,软硬件一旦改动,其内容就会迅速过时。 此外,互联网也是收集相关知识的绝佳工具。可是,除非你确实知道要找些什么,否则断链、不准确的资料、质量差的内容也会成为学习障碍。 好在,我们有Jason Gregory,他是一位拥有在顽皮狗(Naughty Dog)工作经验的业界老手,而顽皮狗是全球高度瞩目的游戏工作室之一。Jason在南加州大学教授游戏编程课程时,找不到概括游戏架构的教科书。值得庆幸的是,他承担了这个任务,填补了这个空白。 Jason把应用到实际发行游戏的生产级别知识,以及整个游戏开发的大局编集于本书。他凭经验,不仅融汇了游戏开发的概念和技巧,还用实际的代码示例及实现例子去说明怎样贯通知识来制作游戏。本书的引用及参考文献可以让读者更深入探索游戏开发过程的各方面。虽然例子经常是基于某些技术的,但是概念和技巧是用来实际创作游戏的,它们可以超越个别引擎或API的束缚。 本书是一本我们入行做游戏时想要的书。我们认为本书能让入门者增长知识,也能为有经验者开拓更大的视野。 Jeff Lander(注3) Matthew Whiting(注4) 译注:Genre一词在文学中为体裁。电影和游戏里通常译作类型。不同的游戏类型可见1.2节。 译注:按一般说法,2005年至今属于第7个游戏机世代。这3款游戏机的发行年份为Xbox 360(2005)、PlayStation 3(2006)、Wii(2006)。有关游戏机世代可参考维基百科。 译注:Jeff Lander现时为Darwin 3D公司的首席技术总监、Game Tech公司创始人,曾为艺电首席程序员、Luxoflux公司游戏性及动画技术程序员。 译注:Matthew Whiting现时为Wholesale Algorithms公司程序员,曾为Luxoflux公司首席软件工程师、Insomniac Games公司程序员。 序言 欢迎来到《游戏引擎架构》世界。本书旨在全面探讨典型商业游戏引擎的主要组件。游戏编程是一个庞大的主题,有许多内容需要讨论。不过相信你会发现,我们讨论的深度将足以使你充分理解本书所涵盖的工程理论及常用实践的方方面面。话虽如此,令人着迷的漫长游戏编程之旅其实才刚刚启程。与此相关的每项技术都包含丰富内容,本书将为你打下基础,并引领你进入更广阔的学习空间。 本书焦点在于游戏引擎的技术及架构。我们会探讨商业游戏引擎中,各个子系统的相关理论,以及实现这些理论所需要的典型数据结构、算法和软件接口。游戏引擎与游戏的界限颇为模糊。我们将把注意力集中在引擎本身,包括多个低阶基础系统(low-level foundation system)、渲染引擎(rendering engine)、碰撞系统(collision system)、物理模拟(physics simulation)、人物动画(character animation),及一个我称为游戏性基础层(gameplay foundation layer)的深入讨论。此层包括游戏对象模型(game object model)、世界编辑器(world editor)、事件系统(event system)及脚本系统(scripting system)。我们也将会接触游戏性编程(gameplay programming)的多个方面,包括玩家机制(player mechanics)、摄像机(camera)及人工智能(artificial intelligence,AI)。然而,这类讨论会被限制在游戏性系统和引擎接口范围。 本书可以作为大学中等级游戏程序设计中两到三门课程的教材。当然,本书也适合软件工程师、业余爱好者、自学的游戏程序员,以及游戏行业从业人员。通过阅读本书,资历较浅的游戏程序员可以巩固他们所学的游戏数学、引擎架构及游戏科技方面的知识。专注某一领域的资深程序员也能从本书更为全面的介绍中获益。 为了更好地学习本书内容,你需要掌握基本的面向对象编程概念并至少拥有一些C++编程经验。尽管游戏行业已经开始尝试使用一些新的、令人兴奋的编程语言,然而工业级的3D游戏引擎仍然是用C或C++编写的,任何认真的游戏程序员都应该掌握C++。我们将在第3章重温一些面向对象编程的基本原则,毫无疑问,你还会从本书学到一些C++的小技巧,不过C++的基础最好还是通过阅读[39]、[31]及[32]来获得。如果你对C++已经有点生疏,建议你在阅读本书的同时,最好能重温这几本或者类似书籍。如果你完全没有C++经验,在看本书之前,可以考虑先阅读[39]的前几章,或者尝试学习一些C++的在线教程。 学习编程技能最好的方法就是写代码。在阅读本书时,强烈建议你选择一些特别感兴趣的主题付诸实践。举例来说,如果你觉得人物动画很有趣,那么可以首先安装OGRE,并测试一下它的蒙皮动画示范。接着还可以尝试用OGRE实现本书谈及的一些动画混合技巧。下一步你可能会打算用游戏手柄控制人物在平面上行走。等你能玩转一些简单的东西了,就应该以此为基础,继续前进!之后可以转移到另一个游戏技术范畴,周而复始。这些项目是什么并不重要,重要的是你在实践游戏编程的艺术,而不是纸上谈兵。 游戏科技是一个活生生、会呼吸的家伙 ,永远不可能将之束缚于书本之上 。因此,附加的资源、勘误、更新、示例代码、项目构思等已经发到本书的网站。 目录 推荐序1 iii推荐序2 v译序 vii序言 xvii前言 xix致谢 xxi第一部分 基础 1第1章 导论 31.1 典型游戏团队的结构 41.2 游戏是什么 71.3 游戏引擎是什么 101.4 不同游戏类型中的引擎差异 111.5 游戏引擎概观 221.6 运行时引擎架构 271.7 工具及资产管道 46第2章 专业工具 532.1 版本控制 532.2 微软Visual Studio 612.3 剖析工具 782.4 内存泄漏和损坏检测 792.5 其他工具 80第3章 游戏软件工程基础 833.1 重温C++及最佳实践 833.2 C/C++的数据、代码及内存 903.3 捕捉及处理错误 118第4章 游戏所需的三维数学 1254.1 在二维中解决三维问题 1254.2 点和矢量 1254.3 矩阵 1394.4 四元数 1564.5 比较各种旋转表达方式 1644.6 其他数学对象 1684.7 硬件加速的SIMD运算 1734.8 产生随机数 180第二部分 低阶引擎系统 183第5章 游戏支持系统 1855.1 子系统的启动和终止 1855.2 内存管理 1935.3 容器 2085.4 字符串 2255.5 引擎配置 234第6章 资源及文件系统 2416.1 文件系统 2416.2 资源管理器 251第7章 游戏循环及实时模拟 2777.1 渲染循环 2777.2 游戏循环 2787.3 游戏循环的架构风格 2807.4 抽象时间线 2837.5 测量及处理时间 2857.6 多处理器的游戏循环 2967.7 网络多人游戏循环 304第8章 人体学接口设备(HID) 3098.1 各种人体学接口设备 3098.2 人体学接口设备的接口技术 3118.3 输入类型 3128.4 输出类型 3168.5 游戏引擎的人体学接口设备系统 3188.6 人体学接口设备使用实践 332第9章 调试及开发工具 3339.1 日志及跟踪 3339.2 调试用的绘图功能 3379.3 游戏内置菜单 3449.4 游戏内置主控台 3479.5 调试用摄像机和游戏暂停 3489.6 作弊 3489.7 屏幕截图及录像 3499.8 游戏内置性能剖析 3499.9 游戏内置的内存统计和泄漏检测 356第三部分 图形及动画 359第10章 渲染引擎 36110.1 采用深度缓冲的三角形光栅化基础 36110.2 渲染管道 40410.3 高级光照及全局光照 42610.4 视觉效果和覆盖层 43810.5 延伸阅读 446第11章 动画系统 44711.1 角色动画的类型 44711.2 骨骼 45211.3 姿势 45411.4 动画片段 45911.5 蒙皮及生成矩阵调色板 47111.6 动画混合 47611.7 后期处理 49311.8 压缩技术 49611.9 动画系统架构 50111.10 动画管道 50211.11 动作状态机 51511.12 动画控制器 535第12章 碰撞及刚体动力学 53712.1 你想在游戏中加入物理吗 53712.2 碰撞/物理中间件 54212.3 碰撞检测系统 54412.4 刚体动力学 56912.5 整合物理引擎至游戏 60112.6 展望:高级物理功能 616第四部分 游戏性 617第13章 游戏性系统简介 61913.1 剖析游戏世界 61913.2 实现动态元素:游戏对象 62313.3 数据驱动游戏引擎 62613.4 游戏世界编辑器 627第14章 运行时游戏性基础系统 63714.1 游戏性基础系统的组件 63714.2 各种运行时对象模型架构 64014.3 世界组块的数据格式 65714.4 游戏世界的加载和串流 66314.5 对象引用与世界查询 67014.6 实时更新游戏对象 67614.7 事件与消息泵 69014.8 脚本 70714.9 高层次的游戏流程 726第五部分 总结 727第15章 还有更多内容吗 72915.1 一些未谈及的引擎系统 72915.2 游戏性系统 730参考文献 733中文索引 737英文索引 755 参考文献 Tomas Akenine-Moller, Eric Haines, and Naty Hoffman. Real-Time Rendering (3rd Edition). Wellesley, MA: A K Peters, 2008. 中译本:《实时计算机图形学(第2版)》,普建涛译,北京大学出版社,2004. Andrei Alexandrescu. Modern C++ Design: Generic Programming and Design Patterns Applied. Resding, MA: Addison-Wesley, 2001. 中译本:《C++设计新思维:泛型编程与设计模式之应用》,侯捷/於春景译,华中科技大学出版社,2003. Grenville Armitage, Mark Claypool and Philip Branch. Networking and Online Games: Understanding and Engineering Multiplayer Internet Games. New York, NY: John Wiley and Sons, 2006. James Arvo (editor). Graphics Gems II. San Diego, CA: Academic Press, 1991. Grady Booch, Robert A. Maksimchuk, Michael W. Engel, Bobbi J. Young, Jim Conallen, and Kelli A. Houston. Object-Oriented Analysis and Design with Applications (3rd Edition). Reading, MA: Addison-Wesley, 2007. 中译本:《面向对象分析与设计(第3版)》,王海鹏/潘加宇译,电子工业出版社,2012. Mark DeLoura (editor). Game Programming Gems. Hingham, MA: Charles River Media, 2000. 中译本:《游戏编程精粹 1》, 王淑礼译,人民邮电出版社,2004. Mark DeLoura (editor). Game Programming Gems 2. Hingham, MA: Charles River Media, 2001. 中译本:《游戏编程精粹 2》,袁国忠译,人民邮电出版社,2003. Philip Dutré, Kavita Bala and Philippe Bekaert. Advanced Global Illumination (2nd Edition). Wellesley, MA: A K Peters, 2006. David H. Eberly. 3D Game Engine Design: A Practical Approach to Real-Time Computer Graphics. San Francisco, CA: Morgan Kaufmann, 2001. 国内英文版:《3D游戏引擎设计:实时计算机图形学的应用方法(第2版)》,人民邮电出版社,2009. David H. Eberly. 3D Game Engine Architecture: Engineering Real-Time Applications with Wild Magic. San Francisco, CA: Morgan Kaufmann, 2005. David H. Eberly. Game Physics. San Francisco, CA: Morgan Kaufmann, 2003. Christer Ericson. Real-Time Collision Detection. San Francisco, CA: Morgan Kaufmann, 2005. 中译本:《实时碰撞检测算法技术》,刘天慧译,清华大学出版社,2010. Randima Fernando (editor). GPU Gems: Programming Techniques, Tips and Tricks for Real-Time Graphics. Reading, MA: Addison-Wesley, 2004. 中译本:《GPU精粹:实时图形编程的技术、技巧和技艺》,姚勇译,人民邮电出版社,2006. James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Computer Graphics: Principles and Practice in C (2nd Edition). Reading, MA: Addison-Wesley, 1995. 中译本:《计算机图形学原理及实践──C语言描述》,唐泽圣/董士海/李华/吴恩华/汪国平译,机械工业出版社,2004. Grant R. Fowles and George L. Cassiday. Analytical Mechanics (7th Edition). Pacific Grove, CA: Brooks Cole, 2005. John David Funge. AI for Games and Animation: A Cognitive Modeling Approach. Wellesley, MA: A K Peters, 1999. Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissiddes. Design Patterns: Elements of Reusable Object-Oriented Software. Reading, MA: Addison-Wesley, 1994. 中译本:《设计模式:可复用面向对象软件的基础》,李英军/马晓星/蔡敏/刘建中译,机械工业出版社,2005. Andrew S. Glassner (editor). Graphics Gems I. San Francisco, CA: Morgan Kaufmann, 1990. Paul S. Heckbert (editor). Graphics Gems IV. San Diego, CA: Academic Press, 1994. Maurice Herlihy, Nir Shavit. The Art of Multiprocessor Programming. San Francisco, CA: Morgan Kaufmann, 2008. 中译本:《多处理器编程的艺术》,金海/胡侃译,机械工业出版社,2009. Roberto Ierusalimschy, Luiz Henrique de Figueiredo and Waldemar Celes. Lua 5.1 Reference Manual. Lua.org, 2006. Roberto Ierusalimschy. Programming in Lua, 2nd Edition. Lua.org, 2006. 中译本:《Lua程序设计(第2版)》,周惟迪译,电子工业出版社,2008. Isaac Victor Kerlow. The Art of 3-D Computer Animation and Imaging (2nd Edition). New York, NY: John Wiley and Sons, 2000. David Kirk (editor). Graphics Gems III. San Francisco, CA: Morgan Kaufmann, 1994. Danny Kodicek. Mathematics and Physics for Game Programmers. Hingham, MA: Charles River Media, 2005. Raph Koster. A Theory of Fun for Game Design. Phoenix, AZ: Paraglyph, 2004. 中译本:《快乐之道:游戏设计的黄金法则》,姜文斌等译,百家出版社,2005. John Lakos. Large-Scale C++ Software Design. Reading, MA: Addison-Wesley, 1995. 中译本:《大规模C++程序设计》,李师贤/明仲/曾新红/刘显明译,中国电力出版社,2003. Eric Lengyel. Mathematics for 3D Game Programming and Computer Graphics (2nd Edition). Hingham, MA: Charles River Media, 2003. Tuoc V. Luong, James S. H. Lok, David J. Taylor and Kevin Driscoll. Internationalization: Developing Software for Global Markets. New York, NY: John Wiley & Sons, 1995. Steve Maguire. Writing Solid Code: Microsoft's Techniques for Developing Bug Free C Programs. Bellevue, WA: Microsoft Press, 1993. 国内英文版:《编程精粹:编写高质量C语言代码》,人民邮电出版社,2009. Scott Meyers. Effective C++: 55 Specific Ways to Improve Your Programs and Designs (3rd Edition). Reading, MA: Addison-Wesley, 2005. 中译本:《Effective C++:改善程序与设计的55个具体做法(第3版)》,侯捷译,电子工业出版社,2011. Scott Meyers. More Effective C++: 35 New Ways to Improve Your Programs and Designs. Reading, MA: Addison-Wesley, 1996. 中译本:《More Effective C++:35个改善编程与设计的有效方法(中文版)》,侯捷译,电子工业出版社,2011. Scott Meyers. Effective STL: 50 Specific Ways to Improve Your Use of the Standard Template Library. Reading, MA: Addison-Wesley, 2001. 中译本:《Effective STL:50条有效使用STL的经验》,潘爱民/陈铭/邹开红译,电子工业出版社,2013. Ian Millington. Game Physics Engine Development. San Francisco, CA: Morgan Kaufmann, 2007. Hubert Nguyen (editor). GPU Gems 3. Reading, MA: Addison-Wesley, 2007. 中译本:《GPU精粹3》,杨柏林/陈根浪/王聪译,清华大学出版社,2010. Alan W. Paeth (editor). Graphics Gems V. San Francisco, CA: Morgan Kaufmann, 1995. C. Michael Pilato, Ben Collins-Sussman, and Brian W. Fitzpatrick. Version Control with Subversion (2nd Edition). Sebastopol , CA: O'Reilly Media, 2008. (常被称作“The Subversion Book”,线上版本.) 国内英文版:《使用Subversion进行版本控制》,开明出版社,2009. Matt Pharr (editor). GPU Gems 2: Programming Techniques for High-Performance Graphics and General-Purpose Computation. Reading, MA: Addison-Wesley, 2005. 中译本:《GPU精粹2:高性能图形芯片和通用计算编程技巧》,龚敏敏译,清华大学出版社,2007. Bjarne Stroustrup. The C++ Programming Language, Special Edition (3rd Edition). Reading, MA: Addison-Wesley, 2000. 中译本《C++程序设计语言(特别版)》,裘宗燕译,机械工业出版社,2010. Dante Treglia (editor). Game Programming Gems 3. Hingham, MA: Charles River Media, 2002. 中译本:《游戏编程精粹3》,张磊译,人民邮电出版社,2003. Gino van den Bergen. Collision Detection in Interactive 3D Environments. San Francisco, CA: Morgan Kaufmann, 2003. Alan Watt. 3D Computer Graphics (3rd Edition). Reading, MA: Addison Wesley, 1999. James Whitehead II, Bryan McLemore and Matthew Orlando. World of Warcraft Programming: A Guide and Reference for Creating WoW Addons. New York, NY: John Wiley & Sons, 2008. 中译本:《魔兽世界编程宝典:World of Warcraft Addons完全参考手册》,杨柏林/张卫星/王聪译,清华大学出版社,2010. Richard Williams. The Animator's Survival Kit. London, England: Faber & Faber, 2002. 中译本:《原动画基础教程:动画人的生存手册》,邓晓娥译,中国青年出版社,2006. 勘误 第1次印册(2014年2月) P.xviii: 译注中 Wholesale Algoithms -> Wholesale Algorithms P.10: 最后一段第一行 微软的媒体播放器 -> 微软的Windows Media Player (多谢读者OpenGPU来函指正) P.15: 1.4.3节第三点 按妞 -> 按钮 (多谢读者一个小小凡人来函指正) P.40: 正文最后一行 按扭 -> 按钮 P.50: 1.7.8节第二节第一行 同是 -> 同时 (多谢读者czfdd来函指正) P.98: 代码 writeExampleStruct(Example& ex, Stream& ex) 中 Stream& ex -> Stream& stream (多谢读者Snow来函指正) P.106: 第一段中有六处 BBS -> BSS,最后一段代码的注释也有同样错误 (多谢读者trout来函指正) P.119: 译注中 软体工程 -> 软件工程 (多谢读者Snow来函指正) P.214: 正文第一段有两处 虚内存 -> 虚拟内存 (多谢读者Snow来函指正) P.216: 脚注24应标明为译注 (多谢读者Snow来函指正) P.221: 第一段代码的第二个断言应为 ASSERT(link.m_pPrev != NULL); (多谢读者Snow来函指正) P.230: 5.4.4.1节 第二段 软体 -> 软件 P.286: 脚注4应标明为译注 (多谢读者Snow来函指正) P.322: 第二段 按扭事件字 -> 按钮事件 P.349: 9.8节第二段第二行两处 部析器 -> 剖析器 (多谢读者Snow来函指正) P.738-572: 双数页页眉 参考文献 -> 中文索引 P.755-772: 双数页页眉 参考文献 -> 英文索引 P.755: kd tree项应归入K而不是Symbols 以上的错误已于第2次印册中修正。 第2次印册及之前 P.11: 第四行 细致程度 -> 层次细节 (这是level-of-detail/LOD的内地通译,多谢读者OpenGPU来函指正) P.12: 正文第一段及图1.2标题 使命之唤 -> 使命召唤 (多谢读者OpenGPU来函指正) P.12: 正文第一段 战栗时空 -> 半条命 (多谢读者OpenGPU来函指正) P.16: 第一点 表面下散射 -> 次表面散射 (多谢读者OpenGPU来函指正) P.17: 1.4.4节第五行 次文化 -> 亚文化 (此译法在内地更常用。多谢读者OpenGPU来函提示) P.22: 战栗时空 -> 半条命 P.24: 战栗时空2 -> 半条命2 P.34: 1.6.8.2节第一行 提呈 -> 提交 (这术语在本书其他地方都写作提交。多谢读者OpenGPU来函提示) P.35: 第七行 提呈 -> 提交 (这术语在本书其他地方都写作提交。多谢读者OpenGPU来函提示) P.50: 战栗时空2 -> 半条命2 P.365: 第四段第二行: 细致程度 -> 层次细节 P.441: 10.4.3.2节第三行 细致程度 -> 层次细节 P.494: sinusiod -> sinusoid (多谢读者OpenGPU来函指正) P.511: 11.10.4节第一行 谈入 -> 淡入 (多谢读者Snow来函指正) P.541: 战栗时空2 -> 半条命2 P.627: 战栗时空2 -> 半条命2 P.654: 第二行 建康值 -> 血量 (原来是改正错别字,但译者发现应改作前后统一使用的“血量”。多谢读者Snow来函指正) P.692: 第二行 内部分式 -> 内部方式 (多谢读者Snow来函指正) P.696: 14.7.6节第四行 不设实际 -> 不切实际 (多谢读者Snow来函指正) 以上的错误已于第3次印册中修正。 其他意见 P.220: 正文第一段 m_root.m_pElement 和 P.218 第一段代码中的 m_pElem 不统一。原文有此问题,但因为它们是不同的struct,暂不列作错误。 (多谢读者Snow来函提示) P.331: 8.5.8节第二段中 “反覆”较常见的写法为“反复”,但前者也是正确的,暂不列作错误。 (多谢读者Snow来函提示) P.390: 10.1.3.3节静态光照第二段中“取而代之,我们会使用一张光照纹理贴到所有受光源影响范围内的物体上。这样做能令动态物体经过光源时得到正确的光照。” 后面的一句与前句好像难以一起理解。译者认为,作者应该是指,使用同一静态光源去为静态物件生成光照纹理,以及用于动态对象的光照,能使两者的效果维持一致性。译者会考虑对译文作出改善或加入译注解译。(多谢读者店残来函查询) P.689: 第五行 并行处理世代 -> 并行处理时代 是对era较准确的翻译。 (多谢读者Snow来函提示) 本篇文章为转载内容。原文链接:https://blog.csdn.net/mypongo/article/details/38388381。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-12 23:04:05
327
转载
Spark
Spark Executor进程被YARN ResourceManager提前杀死:原因、影响与对策 在大数据处理领域,Apache Spark以其高效、易用的特点广受青睐。嘿,你知道吗?当我们用Spark在YARN集群模式上跑任务的时候,有时候会遇到个挺让人头疼的小插曲。就是那个Executor进程,它会被YARN ResourceManager这个家伙给提前“咔嚓”掉,真是让人有点小郁闷呢!这篇文章,咱们要深入地“扒一扒”这个现象背后的真正原因,琢磨琢磨它对咱做作业的影响有多大,并且还会分享一些超实用的应对小妙招~ 1. 现象描述 在Spark应用运行过程中,YARN ResourceManager作为集群资源的管理者,可能会出现异常终止某个或多个Executor进程的情况。此时,您可能会在日志中看到类似“Container killed by YARN for exceeding memory limits”这样的错误提示。这就意味着,由于某些状况,ResourceManager觉着你的Executor吃掉的资源有点超出了给它的额度限制,所以呢,它就决定出手,采取了强制关闭这招来应对。 2. 原因分析 2.1 资源超限 最常见的原因是Executor占用的内存超出预设限制。例如,当我们的Spark应用程序进行大规模数据处理或者计算密集型任务时,如果未合理设置executor-memory参数,可能会导致内存溢出: scala val conf = new SparkConf() .setAppName("MyApp") .setMaster("yarn") .set("spark.executor.memory", "4g") // 如果实际需求大于4G,则可能出现问题 val sc = new SparkContext(conf) 2.2 心跳丢失 另一种可能是Executor与ResourceManager之间的心跳信号中断,导致ResourceManager误判Executor已经失效并将其杀掉。这可能与网络状况、系统负载等因素有关。 2.3 其他因素 此外,还有诸如垃圾回收(GC)频繁,长时间阻塞等其他情况,都可能导致Executor表现异常,进而被YARN ResourceManager提前结束。 3. 影响与后果 当Executor被提前杀死时,不仅会影响正在进行的任务,造成任务失败或重启,还会降低整个作业的执行效率。比如,如果你老是让任务重试,这就相当于在延迟上添砖加瓦。再者,要是Executor频繁地启动、关闭,这无疑就是在额外开销上雪上加霜啊。 4. 应对策略 4.1 合理配置资源 根据实际业务需求,合理设置Executor的内存、CPU核心数等参数,避免资源过载: scala conf.set("spark.executor.memory", "8g") // 根据实际情况调整 conf.set("spark.executor.cores", "4") // 同理 4.2 监控与调优 通过监控工具密切关注Executor的运行状态,包括内存使用情况、GC频率等,及时进行调优。例如,可以通过调节spark.memory.fraction和spark.memory.storageFraction来优化内存管理策略。 4.3 网络与稳定性优化 确保集群网络稳定,避免因为网络抖动导致的心跳丢失问题。对于那些需要长时间跑的任务,咱们可以琢磨琢磨采用更为结实牢靠的消息处理机制,这样一来,就能有效避免因为心跳问题引发的误操作,让任务运行更稳当、更皮实。 5. 总结与思考 面对Spark Executor在YARN上被提前杀死的问题,我们需要从源头入手,深入理解问题背后的原理,结合实际应用场景细致调整资源配置,并辅以严谨的监控与调优手段。这样不仅能一举摆脱当前的困境,还能让Spark应用在复杂环境下的表现更上一层楼,既稳如磐石又快如闪电。在整个探索和解决问题的过程中,我们的人类智慧和技术实践得到了充分融合,这也正是技术的魅力所在!
2023-07-08 15:42:34
190
断桥残雪
转载文章
...删除相应内容。 mysqldump 导出要用到MySQL的mysqldump工具,基本用法是: shell> mysqldump [OPTIONS] database [tables] 如果你不给定任何表,整个数据库将被导出。 通过执行mysqldump --help,你能得到你mysqldump的版本支持的选项表。 注意,如果你运行mysqldump没有--quick或--opt选项,mysqldump将在导出结果前装载整个结果集到内存中,如果你正在导出一个大的数据库,这将可能是一个问题。 mysqldump支持下列选项: --add-locks 在每个表导出之前增加LOCK TABLES并且之后UNLOCK TABLE。(为了使得更快地插入到MySQL)。 --add-drop-table 在每个create语句之前增加一个drop table。 --allow-keywords 允许创建是关键词的列名字。这由表名前缀于每个列名做到。 -c, --complete-insert 使用完整的insert语句(用列名字)。 -C, --compress 如果客户和服务器均支持压缩,压缩两者间所有的信息。 --delayed 用INSERT DELAYED命令插入行。 -e, --extended-insert 使用全新多行INSERT语法。(给出更紧缩并且更快的插入语句) -, --debug[=option_string] 跟踪程序的使用(为了调试)。 --help 显示一条帮助消息并且退出。 --fields-terminated-by=... --fields-enclosed-by=... --fields-optionally-enclosed-by=... --fields-escaped-by=... --fields-terminated-by=... 这些选择与-T选择一起使用,并且有相应的LOAD DATA INFILE子句相同的含义。 LOAD DATA INFILE语法。 -F, --flush-logs 在开始导出前,洗掉在MySQL服务器中的日志文件。 -f, --force, 即使我们在一个表导出期间得到一个SQL错误,继续。 -h, --host=.. 从命名的主机上的MySQL服务器导出数据。缺省主机是localhost。 -l, --lock-tables. 为开始导出锁定所有表。 -t, --no-create-info 不写入表创建信息(CREATE TABLE语句) -d, --no-data 不写入表的任何行信息。如果你只想得到一个表的结构的导出,这是很有用的! --opt 同--quick --add-drop-table --add-locks --extended-insert --lock-tables。 应该给你为读入一个MySQL服务器的尽可能最快的导出。 -pyour_pass, --password[=your_pass] 与服务器连接时使用的口令。如果你不指定“=your_pass”部分,mysqldump需要来自终端的口令。 -P port_num, --port=port_num 与一台主机连接时使用的TCP/IP端口号。(这用于连接到localhost以外的主机,因为它使用 Unix套接字。) -q, --quick 不缓冲查询,直接导出至stdout;使用mysql_use_result()做它。 -S /path/to/socket, --socket=/path/to/socket 与localhost连接时(它是缺省主机)使用的套接字文件。 -T, --tab=path-to-some-directory 对于每个给定的表,创建一个table_name.sql文件,它包含SQL CREATE 命令,和一个table_name.txt文件,它包含数据。 注意:这只有在mysqldump运行在mysqld守护进程运行的同一台机器上的时候才工作。.txt文件的格式根据--fields-xxx和--lines--xxx选项来定。 -u user_name, --user=user_name 与服务器连接时,MySQL使用的用户名。缺省值是你的Unix登录名。 -O var=option, --set-variable var=option设置一个变量的值。可能的变量被列在下面。 -v, --verbose 冗长模式。打印出程序所做的更多的信息。 -V, --version 打印版本信息并且退出。 -w, --where=@where-condition@ 只导出被选择了的记录;注意引号是强制的! "--where=user=@jimf@" "-wuserid>1" "-wuserid<1" 最常见的mysqldump使用可能制作整个数据库的一个备份: mysqldump --opt database > backup-file.sql 但是它对用来自于一个数据库的信息充实另外一个MySQL数据库也是有用的: mysqldump --opt database | mysql --host=remote-host -C database 由于mysqldump导出的是完整的SQL语句,所以用mysql客户程序很容易就能把数据导入了: shell> mysqladmin create target_db_name shell> mysql target_db_name < backup-file.sql 就是 shell> mysql 库名 < 文件名 相关标签:工具 本文原创发布php中文网,转载请注明出处,感谢您的尊重! 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_28851659/article/details/114329359。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-01 23:51:06
265
转载
Datax
...nel)。源通道通过SQL查询获取所有的订单,然后目标通道通过IF判断语句筛选出状态为"已完成"的订单,并将其插入到新的表filtered_orders中。 五、总结 以上就是在Datax中实现数据过滤处理的一个简单例子。瞧瞧这个例子,咱们就能明白,在Datax这玩意儿里头,咱能够超级轻松地用IF判断语句给数据做个筛选处理,简直不要太方便!如果你也想在你的项目中实现数据过滤处理,不妨试试看Datax吧!
2023-01-03 10:03:02
435
灵动之光-t
转载文章
...删除相应内容。 一、SQLPlus查询的结果,可以根据自己的屏幕情况进行调节,设置如下: 1.设置一页面显示多少行数 show pagesize; //首先查看目前的pagesize,默认是14 set pagesize 100; //将pagesize设置好100,则可以一次显示够多行记录了 2.设置行的宽度 show linesize; //查看目前的linesize,默认是80 set linesize 150; //设置成150或者更宽都可 注:以上的方法是临时有效的方法 二、永久设置sqlplus的环境变量(glogin.sql的设置) 用户每次登录sqlplus的时候都会调用$ORACLE_HOME/sqlplus/admin/glogin.sql文件。我们可以修改这个文件,使得每次登录时都设置好一些sqlplus的环境变量,并将默认显示的SQL>改为显示登录的用户名和登录的数据库实例名 在glogin.sql文件末尾加如下几行 1 2 3 4 vi /opt/oracle/product/10.2.0/db_1/sqlplus/admin/glogin.sql set linesize 150 set pagesize 30 set sqlprompt "_user'@'_connect_identifier>" 参数说明: set linesize 150 //设置一行可以容纳的字符数 set pagesize 30 //设置一页面显示多少行数 set sqlprompt "_user'@'_connect_identifier>" //修改sqlplus提示符,可以提醒你所在的用户模式,减少误操作 本文转自ling118 51CTO博客,原文链接:http://blog.51cto.com/meiling/1775065,如需转载请自行联系原作者 本篇文章为转载内容。原文链接:https://blog.csdn.net/weixin_34349320/article/details/89831921。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-07-30 12:31:19
303
转载
Spark
...引言 Apache Spark是一个强大的大数据处理框架,以其高性能、容错性和易用性闻名于世。在Spark这个大家伙里,RDD(也就是那个超级耐用的分布式数据集)可是扮演着核心角色的大咖。而Partitioner呢,就像是决定这个大咖如何在集群这群小弟之间排兵布阵、分配任务的关键指挥官,它的存在直接决定了RDD数据在集群上的分布布局。一般情况下,Spark会按照键值对的哈希值自动进行分区分配,不过呢,这并不是每次都能满足咱们所有的要求。本文将带您深入了解Spark中的Partitioner机制,并演示如何实现一个自定义的Partitioner。 二、Spark Partitioner基础 首先,我们需要明白Partitioner的基本工作原理。当创建一个新的RDD时,我们可以指定一个Partitioner来决定RDD的各个分区是如何划分的。一般来说,Spark默认会选择Hash分区器这个小家伙来干活儿,它会把输入的那些键值对,按照一个哈希函数算出来的结果,给分门别类地安排到不同的分区里去。例如: scala val data = Array(("key1", 1), ("key2", 2), ("key3", 3)) val rdd = spark.sparkContext.parallelize(data).partitionBy(2, new HashPartitioner(2)) 在这个例子中,我们将数据集划分为2个分区,HashPartitioner(2)表示我们将利用一个取模为2的哈希函数来确定键值对应被分配到哪个分区。 三、自定义Partitioner实现 然而,当我们需要更精细地控制数据分布或者基于某种特定逻辑进行分区时,就需要实现自定义Partitioner。以下是一个简单的自定义Partitioner示例,该Partitioner将根据整数值将其对应的键值对均匀地分布在3个分区中: scala class CustomPartitioner extends Partitioner { override def numPartitions: Int = 3 override def getPartition(key: Any): Int = { key match { case _: Int => (key.toInt % numPartitions) // 假设key是个整数,取余操作确保均匀分布 case _ => throw new IllegalArgumentException(s"Key must be an integer for CustomPartitioner") } } override def isGlobalPartition(index: Int): Boolean = false } val customData = Array((1, "value1"), (2, "value2"), (3, "value3"), (4, "value4")) val customRdd = spark.sparkContext.parallelize(customData).partitionBy(3, new CustomPartitioner) 四、应用与优化 自定义Partitioner的应用场景非常广泛。比如,当我们做关联查询这事儿的时候,就像两个大表格要相互配对找信息一样,如果找到这两表格在某一列上有紧密的联系,那咱们就可以利用这个“共同点”来定制分区方案。这样一来,关联查询就像分成了很多小任务,在特定的机器上并行处理,大大加快了配对的速度,提升整体性能。 此外,还可以根据业务需求动态调整分区数量。当数据量蹭蹭往上涨的时候,咱们可以灵活调整Partitioner这个家伙的numPartitions属性,让它帮忙重新分配一下数据,确保所有任务都能“雨露均沾”,避免出现谁干得多、谁干得少的情况,保持大家的工作量均衡。 五、结论 总之,理解和掌握Spark中的Partitioner设计模式是高效利用Spark的重要环节。自定义Partitioner这个功能,那可是超级灵活的家伙,它让我们能够根据实际场景的需要,亲手安排数据分布,确保每个数据都落脚到最合适的位置。这样一来,不仅能让处理速度嗖嗖提升,还能让任务表现得更加出色,就像给机器装上了智能导航,让数据处理的旅程更加高效顺畅。希望通过这篇接地气的文章,您能像老司机一样熟练掌握Spark的Partitioner功能,从而更上一层楼,把Spark在大数据处理领域的威力发挥得淋漓尽致。
2024-02-26 11:01:20
71
春暖花开-t
Greenplum
...种基于PostgreSQL开源数据库构建的并行、分布式的大型数据存储与分析系统。在本文的语境中,它被用于处理大数据环境下的大规模关系型数据查询与分析任务。由于其高度可扩展性,Greenplum能够通过在多台机器上分布式存储和并行处理数据,有效应对海量数据处理需求。 数据文件完整性检查 , 在数据库管理中,数据文件完整性检查是一项确保数据正确无误的重要措施。文中提到的数据文件完整性校验失败,指的是在Greenplum数据库中进行数据完整性验证时,发现数据文件的内容与预期不符或者存在缺失、损坏等情况,这可能影响到数据查询的准确性以及业务系统的正常运行。 pg_dumpall , pg_dumpall是PostgreSQL(包括Greenplum)数据库自带的一种用于备份整个数据库集群的实用工具。在文章给出的例子中,pg_dumpall > backup.sql命令将所有数据库定义和数据导出为一个SQL脚本文件(backup.sql),这样可以在数据文件完整性出现问题时,利用此备份文件恢复数据库至一个已知完好的状态,确保数据的一致性和可用性。
2023-12-13 10:06:36
529
风中飘零-t
Hive
...仓库工具,因其强大的SQL查询能力和易用性而广受欢迎。嘿嘿,你知道吗,在Hive SQL里有个特厉害的功能叫做窗口函数。这个功能可神了,它不是对整个大表进行全局性的计算,而是允许我们在一组相关的行,我们可以把这组行想象成一个小窗口,在这个“窗口”里面进行各种灵活的计算操作,是不是很酷?这篇内容,我将手把手带你潜入Hive的神秘世界,探索如何灵活玩转窗口函数这个神器,搞定多列数据排序和那些让人挠头的复杂聚合运算,让你的数据处理技能蹭蹭上涨。 1. 窗口函数的基本概念与语法 窗口函数的独特之处在于其能够定义一个“窗口”,在这个窗口内进行数据处理。这个窗口功能挺灵活的,它能够按照行数或者特定的分区进行划分,并且如果你想对窗口内部的数据做个排序什么的,也是完全可以按需操作的!基本语法如下: sql [aggregate_function() | rank() | dense_rank() | row_number() OVER ( [PARTITION BY column1, column2,...] [ORDER BY column3, column4,...] )] - PARTITION BY:用于将数据分割成多个分区,每个分区内部独立应用窗口函数。 - ORDER BY:在每个分区内部按照指定列进行排序。 2. 多列排序的窗口函数示例 假设我们有一个销售记录表sales_data,包含以下字段:order_id、product_id、customer_id、sale_date 和 amount_sold。现在,我们想按customer_id分组并根据sale_date和amount_sold降序排列,然后获取每个客户的最新销售记录。 sql SELECT customer_id, order_id, product_id, sale_date, amount_sold FROM ( SELECT customer_id, order_id, product_id, sale_date, amount_sold, ROW_NUMBER() OVER ( PARTITION BY customer_id ORDER BY sale_date DESC, amount_sold DESC ) as row_num FROM sales_data ) t WHERE row_num = 1; 上述代码首先通过ROW_NUMBER()窗口函数为每个客户的所有订单生成了一个行号,行号的顺序由sale_date和amount_sold共同决定。最后,我们筛选出每个客户行号为1的记录,也就是每个客户最新的销售记录。 3. 聚合操作的窗口函数示例 窗口函数不仅支持排序,还可以结合聚合函数,例如求某段时间窗口内的累计销售额: sql SELECT customer_id, sale_date, amount_sold, SUM(amount_sold) OVER ( PARTITION BY customer_id ORDER BY sale_date ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW ) as cumulative_sales FROM sales_data; 在这段代码中,我们使用了SUM窗口函数来计算每个客户的累计销售额。"ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW"这个表达,简单来说就是指从第一个订单开始,一直到现在处理到的订单为止,包括这一整个时间段内每个客户的累积销售额。换句话说,它涵盖了当前行以及它前边所有的行,相当于在跟你说:“嘿,从这个客户下单的第一笔开始算起,直到现在这笔订单的销售额,统统给我加起来!” 4. 结语 深入理解与灵活运用 理解并掌握窗口函数的使用方式,无疑会极大地提升我们在Hive中处理复杂业务场景的能力。在实际工作中,当你遇到要对多列进行排序或者需要做聚合处理的时候,完全可以按照业务的具体情况,像变魔术一样灵活调整窗口函数的参数。这样一来,数据就像听话的小兵,整齐有序地流动起来,进而让我们的数据分析工作更加精准,更有力度,也更贴近实际情况。所以,请带着这份探索的热情,在实践中不断尝试、优化,你会发现窗口函数就像一把神奇的钥匙,能帮你打开数据洞察的大门!
2023-10-19 10:52:50
472
醉卧沙场
Hive
...统中的重要组件,以其SQL-like查询语言和对大规模数据集的高效管理能力赢得了广泛的认可。然而,在我们日常运维的过程中,有时候会遇到个让人超级头疼的状况——Hive表的数据竟然出岔子了,或者干脆是损坏了。这篇东西咱们要实实在在地把这个难题掰开了、揉碎了讲明白,从它可能的“病因”一路聊到会带来哪些影响,再到解决这个问题的具体步骤和策略,还会手把手地带你瞅瞅实例代码是怎么操作演示的。 2. 数据损坏的原因剖析 (1)元数据错误 在Hive中,元数据存储在如MySQL或Derby等数据库中,若这部分信息出现丢失或损坏,可能导致Hive无法正确解析和定位数据块。例如,分区信息错误、表结构定义丢失等情况。 sql -- 假设某个分区信息在元数据库中被误删除 ALTER TABLE my_table DROP PARTITION (dt='2022-01-01'); (2)HDFS文件系统问题 Hive底层依赖于HDFS存储实际数据,若HDFS发生节点故障、网络中断导致数据复制因子不足或者数据块损坏,都可能导致Hive表数据不可用。 (3)并发写入冲突 多线程并发写入Hive表时,如果未做好事务隔离和并发控制,可能导致数据覆盖或损坏。 3. 数据损坏的影响及应对思考 数据损坏直接影响业务的正常运行,可能导致数据分析结果错误、报表异常、甚至业务决策失误。因此,发现数据损坏后,首要任务是尽快定位问题根源,并采取相应措施: - 立即停止受影响的服务,防止进一步的数据写入和错误传播。 - 备份当前状态,为后续分析和恢复提供依据。 - 根据日志排查,查找是否有异常操作记录或其他相关线索。 4. 数据恢复实战 (1)元数据恢复 对于元数据损坏,通常需要从备份中恢复,或重新执行DDL语句以重建表结构和分区信息。 sql -- 重新创建分区(假设已知分区详情) ALTER TABLE my_table ADD PARTITION (dt='2022-01-01') LOCATION '/path/to/backup/data'; (2)HDFS数据恢复 对于HDFS层的数据损坏,可利用Hadoop自带的hdfs fsck命令检测并修复损坏的文件块。 bash hdfs fsck /path/to/hive/table -blocks -locations -files -delete 此外,如果存在完整的数据备份,也可直接替换损坏的数据文件。 (3)并发控制优化 对于因并发写入引发的数据损坏,应在设计阶段就充分考虑并发控制策略,例如使用Hive的Transactional Tables(ACID特性),确保数据的一致性和完整性。 sql -- 开启Hive ACID支持 SET hive.support.concurrency=true; SET hive.txn.manager=org.apache.hadoop.hive.ql.lockmgr.DbTxnManager; 5. 结语 面对Hive表数据损坏的挑战,我们需要具备敏锐的问题洞察力和快速的应急响应能力。同时,别忘了在日常运维中做好预防工作,这就像给你的数据湖定期打个“小强针”,比如按时备份数据、设立警戒线进行监控告警、灵活配置并发策略等等,这样一来,咱们的数据湖就能健健康康,稳稳当当地运行啦。说实在的,对任何一个大数据平台来讲,数据安全和完整性可是咱们绝对不能马虎、时刻得捏在手心里的“命根子”啊!
2023-09-09 20:58:28
642
月影清风
Hive
...,超级像咱们平时玩的SQL,简单易懂,方便操作。这玩意儿一出,分析海量数据就跟翻书一样轻松,简直是数据分析师们的福音啊!哎呀,你知道的,现在数据就像雨后春笋一样,长得飞快,复杂程度也跟上去了。在这大背景下,怎么在Hive里用好并行计算这个神器,就成了咱们提高数据处理速度的大秘密武器了。就像是在厨房里,你得知道怎么合理安排人力物力,让每个步骤都能高效进行,这样才能做出最美味的佳肴。在大数据的世界里,这不就是个道理嘛! 二、理解并行计算在Hive中的应用 并行计算,即通过多个处理器或计算机同时执行任务,可以极大地缩短数据处理时间。在Hive中,这种并行能力主要体现在以下两个方面: 1. 分布式文件系统(DFS)支持 Hive能够将数据存储在分布式文件系统如HDFS上,这样数据的读取和写入就可以被多个节点同时处理,大大提高了数据访问速度。 2. MapReduce执行引擎 Hive的核心执行引擎是MapReduce,它允许任务被拆分成多个小任务并行执行,从而加速了数据处理流程。 三、案例分析 优化Hive查询性能的策略 为了更好地利用Hive的并行计算能力,我们可以采取以下几种策略来优化查询性能: 1. 合理使用分区和表结构 sql CREATE TABLE sales ( date STRING, product STRING, quantity INT ) PARTITIONED BY (year INT, month INT); 分区操作能帮助Hive在执行查询时快速定位到特定的数据集,从而减少扫描的文件数量,提高查询效率。 2. 利用索引增强查询性能 sql CREATE INDEX idx_sales_date ON sales (date); 索引可以显著加快基于某些列的查询速度,特别是在进行过滤和排序操作时。 3. 优化查询语句 - 避免使用昂贵的函数和复杂的子查询。 - 使用EXPLAIN命令预览查询计划,识别瓶颈并进行调整。 sql EXPLAIN SELECT FROM sales WHERE year = 2023 AND month = 5; 4. 批处理与实时查询分离 对于频繁执行的查询,考虑将其转换为更高效的批处理作业,而非实时查询。 四、实践与经验分享 在实际操作中,我们发现以下几点经验尤为重要: - 数据预处理:确保数据在导入Hive前已经进行了清洗和格式化,减少无效数据的处理时间。 - 定期维护:定期清理不再使用的数据和表,以及更新索引,保持系统的高效运行。 - 监控与调优:利用Hive Metastore提供的监控工具,持续关注查询性能,并根据实际情况调整配置参数。 五、结论 并行计算与Hive的未来展望 随着大数据技术的不断发展,Hive在并行计算领域的潜力将进一步释放。哎呀,兄弟!咱们得好好调整数据存档的布局,还有那些查询命令和系统的设定,这样才能让咱们的数据处理快如闪电,用户体验棒棒哒!到时候,用咱们的服务就跟喝着冰镇可乐一样爽,那叫一个舒坦啊!哎呀,你知道不?就像咱们平时用的工具箱里又添了把更厉害的瑞士军刀,那就是Apache Drill这样的新技术。这玩意儿一出现,Hive这个大数据分析的家伙就更牛了,能干的事情更多,效率也更高,就像开挂了一样。它现在不仅能快如闪电地处理数据,还能像变魔术一样,根据我们的需求变出各种各样的分析结果。这下子,咱们做数据分析的时候,可就轻松多了! --- 本文旨在探讨Hive如何通过并行计算能力提升数据处理效率,通过具体实例展示了如何优化Hive查询性能,并分享了实践经验。希望这些内容能对您在大数据分析领域的工作提供一定的启发和帮助。
2024-09-13 15:49:02
35
秋水共长天一色
Kylin
... - 多维分析:提供SQL-like查询接口,易于理解和使用。 - 实时性:提供实时更新和历史数据的分析能力。 三、构建多模型分析框架 在Kylin中实现多模型分析,主要步骤包括数据加载、模型训练、预测结果生成以及结果展示。以下是一个简单的示例流程: 1. 数据加载 将原始数据导入Kylin,创建Cube(多维数据集)。 python from pykylin.client import KylinClient client = KylinClient('http://your_kylin_server', 'username', 'password') cube_name = 'my_cube' model = client.get_cube(cube_name) 2. 模型训练 Kylin支持多种预测模型,如线性回归、决策树等。哎呀,咱们就拿线性回归做个例子,就像用个魔法棒一样,这魔法棒就是Python里的Scikit-learn库。咱们得先找个好点的地方,比如说数据集,然后咱们就拿着这个魔法棒在数据集上挥一挥,让它学习一下规律,最后啊,咱们就能得到一个模型了。这模型就好比是咱们的助手,能帮咱们预测或者解释一些事情。怎么样,听起来是不是有点像在玩游戏? python from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split 假设df是包含特征和目标变量的数据框 X = df.drop('target', axis=1) y = df['target'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = LinearRegression() model.fit(X_train, y_train) 3. 预测结果生成 将训练好的模型应用于Kylin Cube中的数据,生成预测结果。 python 生成预测值 predictions = model.predict(X_test) 将预测结果存储回Kylin Cube model.save_predictions(predictions) 4. 结果展示 通过Kylin的Web界面查看和分析预测结果。 四、案例分析 假设我们正在对一个电商平台的数据进行分析,目标是预测用户的购买行为。嘿!你听说过Kylin这个家伙吗?这家伙可是个数据分析的大拿!我们能用它来玩转各种模型,就像是线性回归、决策树和随机森林这些小伙伴。咱们一起看看,它们在预测用户会不会买东西这件事上,谁的本领最厉害!这可是一场精彩绝伦的模型大比拼呢! python 创建多个模型实例 models = [LinearRegression(), DecisionTreeClassifier(), RandomForestClassifier()] 训练模型并比较性能 for model in models: model.fit(X_train, y_train) score = model.score(X_test, y_test) print(f"Model: {model.__class__.__name__}, Score: {score}") 五、结论 通过上述步骤,我们不仅能够在Kylin中实现多模型的数据分析和预测,还能根据实际业务需求灵活选择和优化模型。哎呀,Kylin这玩意儿可真牛!它在处理大数据分析这块儿,简直就是得心应手的利器,灵活又强大,用起来那叫一个顺手,简直就是数据分析界的扛把子啊!哎呀,随着咱手里的数据越来越多,做事儿也越来越复杂了,这时候,学会在Kylin这个工具里搭建和优化各种数据分析模型,就变得超级关键啦!就像是厨房里,你会做各种菜,每道菜的配料和做法都不一样,对吧?在Kylin这里也是一样,得会根据不同的需求,灵活地组合和优化模型,让数据分析既快又准,效率爆棚!这不仅能让咱们的工作事半功倍,还能解锁更多创新的分析思路,是不是想想都觉得挺酷的呢? --- 请注意,上述代码示例为简化版本,实际应用时可能需要根据具体数据集和业务需求进行调整。
2024-10-01 16:11:58
130
星辰大海
转载文章
...默认调优值 MySQL Server Instance Configuration File MySQL服务器实例配置文件 ---------------------------------------------------------------------- Generated by the MySQL Server Instance Configuration Wizard 由MySQL服务器实例配置向导生成 Installation Instructions 安装说明 ---------------------------------------------------------------------- On Linux you can copy this file to /etc/my.cnf to set global options, mysql-data-dir/my.cnf to set server-specific options (@localstatedir@ for this installation) or to ~/.my.cnf to set user-specific options. 在Linux上,您可以将该文件复制到/etc/my.cnf来设置全局选项,mysql-data-dir/my.cnf来设置特定于服务器的选项(此安装的@localstatedir@),或者~/.my.cnf来设置特定于用户的选项。 On Windows you should keep this file in the installation directory of your server (e.g. C:\Program Files\MySQL\MySQL Server X.Y). To make sure the server reads the config file use the startup option "--defaults-file". 在Windows上你应该保持这个文件在服务器的安装目录(例如C:\Program Files\MySQL\MySQL服务器X.Y)。要确保服务器读取配置文件,请使用启动选项“——default -file”。 To run the server from the command line, execute this in a command line shell, e.g. mysqld --defaults-file="C:\Program Files\MySQL\MySQL Server X.Y\my.ini" 要从命令行运行服务器,请在命令行shell中执行,例如mysqld——default -file="C:\Program Files\MySQL\MySQL server X.Y\my.ini" To install the server as a Windows service manually, execute this in a command line shell, e.g. mysqld --install MySQLXY --defaults-file="C:\Program Files\MySQL\MySQL Server X.Y\my.ini" 要手动将服务器安装为Windows服务,请在命令行shell中执行此操作,例如mysqld——install MySQLXY——default -file="C:\Program Files\MySQL\MySQL server X.Y\my.ini" And then execute this in a command line shell to start the server, e.g. net start MySQLXY 然后在命令行shell中执行这个命令来启动服务器,例如net start MySQLXY Guidelines for editing this file编辑此文件的指南 ---------------------------------------------------------------------- In this file, you can use all long options that the program supports. If you want to know the options a program supports, start the program with the "--help" option. 在这个文件中,您可以使用程序支持的所有长选项。如果您想知道程序支持的选项,请使用“——help”选项启动程序。 More detailed information about the individual options can also be found in the manual. For advice on how to change settings please see https://dev.mysql.com/doc/refman/8.0/en/server-configuration-defaults.html 有关各个选项的更详细信息也可以在手册中找到。有关如何更改设置的建议,请参见https://dev.mysql.com/doc/refman/8.0/en/server-configuration-defaults.html CLIENT SECTION 客户端部分 ---------------------------------------------------------------------- The following options will be read by MySQL client applications. Note that only client applications shipped by MySQL are guaranteed to read this section. If you want your own MySQL client program to honor these values, you need to specify it as an option during the MySQL client library initialization. MySQL客户机应用程序将读取以下选项。注意,只有MySQL提供的客户端应用程序才能阅读本节。如果您希望自己的MySQL客户机程序遵守这些值,您需要在初始化MySQL客户机库时将其指定为一个选项。 [client] pipe= socket=MYSQL port=3306 [mysql] no-beep default-character-set= SERVER SECTION 服务器部分 ---------------------------------------------------------------------- The following options will be read by the MySQL Server. Make sure that you have installed the server correctly (see above) so it reads this file. MySQL服务器将读取以下选项。确保您已经正确安装了服务器(参见上面),以便它读取这个文件。 server_type=3 [mysqld] The next three options are mutually exclusive to SERVER_PORT below. 下面的三个选项对SERVER_PORT是互斥的。skip-networking enable-named-pipe 共享内存 skip-networking enable-named-pipe shared-memory shared-memory-base-name=MYSQL The Pipe the MySQL Server will use socket=MYSQL The TCP/IP Port the MySQL Server will listen on port=3306 Path to installation directory. All paths are usually resolved relative to this. basedir="C:/Program Files/MySQL/MySQL Server 8.0/" Path to the database root datadir=C:/ProgramData/MySQL/MySQL Server 8.0/Data The default character set that will be used when a new schema or table is created and no character set is defined 创建新模式或表时使用的默认字符集,并且没有定义字符集 character-set-server= The default authentication plugin to be used when connecting to the server 连接到服务器时使用的默认身份验证插件 default_authentication_plugin=caching_sha2_password The default storage engine that will be used when create new tables when 当创建新表时将使用的默认存储引擎 default-storage-engine=INNODB Set the SQL mode to strict 将SQL模式设置为strict sql-mode="STRICT_TRANS_TABLES,NO_ENGINE_SUBSTITUTION" General and Slow logging. 一般和缓慢的日志。 log-output=NONE general-log=0 general_log_file="DESKTOP-NF9QETB.log" slow-query-log=0 slow_query_log_file="DESKTOP-NF9QETB-slow.log" long_query_time=10 Binary Logging. 二进制日志。 log-bin Error Logging. 错误日志记录。 log-error="DESKTOP-NF9QETB.err" Server Id. server-id=1 Indicates how table and database names are stored on disk and used in MySQL. 指示表名和数据库名如何存储在磁盘上并在MySQL中使用。 Value = 0: Table and database names are stored on disk using the lettercase specified in the CREATE TABLE or CREATE DATABASE statement. Name comparisons are case sensitive. You should not set this variable to 0 if you are running MySQL on a system that has case-insensitive file names (such as Windows or macOS). Value = 0:表名和数据库名使用CREATE Table或CREATE database语句中指定的lettercase存储在磁盘上。名称比较区分大小写。如果您在一个具有不区分大小写文件名(如Windows或macOS)的系统上运行MySQL,则不应将该变量设置为0。 Value = 1: Table names are stored in lowercase on disk and name comparisons are not case-sensitive. MySQL converts all table names to lowercase on storage and lookup. This behavior also applies to database names and table aliases. 表名以小写存储在磁盘上,并且名称比较不区分大小写。MySQL在存储和查找时将所有表名转换为小写。此行为也适用于数据库名称和表别名。 Value = 3, Table and database names are stored on disk using the lettercase specified in the CREATE TABLE or CREATE DATABASE statement, but MySQL converts them to lowercase on lookup. Name comparisons are not case sensitive. This works only on file systems that are not case-sensitive! InnoDB table names and view names are stored in lowercase, as for Value = 1.表名和数据库名使用CREATE Table或CREATE database语句中指定的lettercase存储在磁盘上,但是MySQL在查找时将它们转换为小写。名称比较不区分大小写。这只适用于不区分大小写的文件系统!InnoDB表名和视图名以小写存储,Value = 1。 NOTE: lower_case_table_names can only be configured when initializing the server. Changing the lower_case_table_names setting after the server is initialized is prohibited. lower_case_table_names=1 Secure File Priv. 权限安全文件 secure-file-priv="C:/ProgramData/MySQL/MySQL Server 8.0/Uploads" The maximum amount of concurrent sessions the MySQL server will allow. One of these connections will be reserved for a user with SUPER privileges to allow the administrator to login even if the connection limit has been reached. MySQL服务器允许的最大并发会话量。这些连接中的一个将保留给具有超级特权的用户,以便允许管理员登录,即使已经达到连接限制。 max_connections=151 The number of open tables for all threads. Increasing this value increases the number of file descriptors that mysqld requires. Therefore you have to make sure to set the amount of open files allowed to at least 4096 in the variable "open-files-limit" in 为所有线程打开的表的数量。增加这个值会增加mysqld需要的文件描述符的数量。因此,您必须确保在[mysqld_safe]节中的变量“open-files-limit”中将允许打开的文件数量至少设置为4096 section [mysqld_safe] table_open_cache=2000 Maximum size for internal (in-memory) temporary tables. If a table grows larger than this value, it is automatically converted to disk based table This limitation is for a single table. There can be many of them. 内部(内存)临时表的最大大小。如果一个表比这个值大,那么它将自动转换为基于磁盘的表。可以有很多。 tmp_table_size=94M How many threads we should keep in a cache for reuse. When a client disconnects, the client's threads are put in the cache if there aren't more than thread_cache_size threads from before. This greatly reduces the amount of thread creations needed if you have a lot of new connections. (Normally this doesn't give a notable performance improvement if you have a good thread implementation.) 我们应该在缓存中保留多少线程以供重用。当客户机断开连接时,如果之前的线程数不超过thread_cache_size,则将客户机的线程放入缓存。如果您有很多新连接,这将大大减少所需的线程创建量(通常,如果您有一个良好的线程实现,这不会带来显著的性能改进)。 thread_cache_size=10 MyISAM Specific options The maximum size of the temporary file MySQL is allowed to use while recreating the index (during REPAIR, ALTER TABLE or LOAD DATA INFILE. If the file-size would be bigger than this, the index will be created through the key cache (which is slower). MySQL允许在重新创建索引时(在修复、修改表或加载数据时)使用临时文件的最大大小。如果文件大小大于这个值,那么索引将通过键缓存创建(这比较慢)。 myisam_max_sort_file_size=100G If the temporary file used for fast index creation would be bigger than using the key cache by the amount specified here, then prefer the key cache method. This is mainly used to force long character keys in large tables to use the slower key cache method to create the index. myisam_sort_buffer_size=179M Size of the Key Buffer, used to cache index blocks for MyISAM tables. Do not set it larger than 30% of your available memory, as some memory is also required by the OS to cache rows. Even if you're not using MyISAM tables, you should still set it to 8-64M as it will also be used for internal temporary disk tables. 如果用于快速创建索引的临时文件比这里指定的使用键缓存的文件大,则首选键缓存方法。这主要用于强制大型表中的长字符键使用较慢的键缓存方法来创建索引。 key_buffer_size=8M Size of the buffer used for doing full table scans of MyISAM tables. Allocated per thread, if a full scan is needed. 用于对MyISAM表执行全表扫描的缓冲区的大小。如果需要完整的扫描,则为每个线程分配。 read_buffer_size=256K read_rnd_buffer_size=512K INNODB Specific options INNODB特定选项 innodb_data_home_dir= Use this option if you have a MySQL server with InnoDB support enabled but you do not plan to use it. This will save memory and disk space and speed up some things. 如果您启用了一个支持InnoDB的MySQL服务器,但是您不打算使用它,那么可以使用这个选项。这将节省内存和磁盘空间,并加快一些事情。skip-innodb skip-innodb If set to 1, InnoDB will flush (fsync) the transaction logs to the disk at each commit, which offers full ACID behavior. If you are willing to compromise this safety, and you are running small transactions, you may set this to 0 or 2 to reduce disk I/O to the logs. Value 0 means that the log is only written to the log file and the log file flushed to disk approximately once per second. Value 2 means the log is written to the log file at each commit, but the log file is only flushed to disk approximately once per second. 如果设置为1,InnoDB将在每次提交时将事务日志刷新(fsync)到磁盘,这将提供完整的ACID行为。如果您愿意牺牲这种安全性,并且正在运行小型事务,您可以将其设置为0或2,以将磁盘I/O减少到日志。值0表示日志仅写入日志文件,日志文件大约每秒刷新一次磁盘。值2表示日志在每次提交时写入日志文件,但是日志文件大约每秒只刷新一次磁盘。 innodb_flush_log_at_trx_commit=1 The size of the buffer InnoDB uses for buffering log data. As soon as it is full, InnoDB will have to flush it to disk. As it is flushed once per second anyway, it does not make sense to have it very large (even with long transactions).InnoDB用于缓冲日志数据的缓冲区大小。一旦它满了,InnoDB就必须将它刷新到磁盘。由于它无论如何每秒刷新一次,所以将它设置为非常大的值是没有意义的(即使是长事务)。 innodb_log_buffer_size=5M InnoDB, unlike MyISAM, uses a buffer pool to cache both indexes and row data. The bigger you set this the less disk I/O is needed to access data in tables. On a dedicated database server you may set this parameter up to 80% of the machine physical memory size. Do not set it too large, though, because competition of the physical memory may cause paging in the operating system. Note that on 32bit systems you might be limited to 2-3.5G of user level memory per process, so do not set it too high. 与MyISAM不同,InnoDB使用缓冲池来缓存索引和行数据。设置的值越大,访问表中的数据所需的磁盘I/O就越少。在专用数据库服务器上,可以将该参数设置为机器物理内存大小的80%。但是,不要将它设置得太大,因为物理内存的竞争可能会导致操作系统中的分页。注意,在32位系统上,每个进程的用户级内存可能被限制在2-3.5G,所以不要设置得太高。 innodb_buffer_pool_size=20M Size of each log file in a log group. You should set the combined size of log files to about 25%-100% of your buffer pool size to avoid unneeded buffer pool flush activity on log file overwrite. However, note that a larger logfile size will increase the time needed for the recovery process. 日志组中每个日志文件的大小。您应该将日志文件的合并大小设置为缓冲池大小的25%-100%,以避免在覆盖日志文件时出现不必要的缓冲池刷新活动。但是,请注意,较大的日志文件大小将增加恢复过程所需的时间。 innodb_log_file_size=48M Number of threads allowed inside the InnoDB kernel. The optimal value depends highly on the application, hardware as well as the OS scheduler properties. A too high value may lead to thread thrashing. InnoDB内核中允许的线程数。最优值在很大程度上取决于应用程序、硬件以及OS调度程序属性。过高的值可能导致线程抖动。 innodb_thread_concurrency=9 The increment size (in MB) for extending the size of an auto-extend InnoDB system tablespace file when it becomes full. 增量大小(以MB为单位),用于在表空间满时扩展自动扩展的InnoDB系统表空间文件的大小。 innodb_autoextend_increment=128 The number of regions that the InnoDB buffer pool is divided into. For systems with buffer pools in the multi-gigabyte range, dividing the buffer pool into separate instances can improve concurrency, by reducing contention as different threads read and write to cached pages. InnoDB缓冲池划分的区域数。对于具有多gb缓冲池的系统,将缓冲池划分为单独的实例可以提高并发性,因为不同的线程对缓存页面的读写会减少争用。 innodb_buffer_pool_instances=8 Determines the number of threads that can enter InnoDB concurrently. 确定可以同时进入InnoDB的线程数 innodb_concurrency_tickets=5000 Specifies how long in milliseconds (ms) a block inserted into the old sublist must stay there after its first access before it can be moved to the new sublist. 指定插入到旧子列表中的块必须在第一次访问之后停留多长时间(毫秒),然后才能移动到新子列表。 innodb_old_blocks_time=1000 It specifies the maximum number of .ibd files that MySQL can keep open at one time. The minimum value is 10. 它指定MySQL一次可以打开的.ibd文件的最大数量。最小值是10。 innodb_open_files=300 When this variable is enabled, InnoDB updates statistics during metadata statements. 当启用此变量时,InnoDB会在元数据语句期间更新统计信息。 innodb_stats_on_metadata=0 When innodb_file_per_table is enabled (the default in 5.6.6 and higher), InnoDB stores the data and indexes for each newly created table in a separate .ibd file, rather than in the system tablespace. 当启用innodb_file_per_table(5.6.6或更高版本的默认值)时,InnoDB将每个新创建的表的数据和索引存储在单独的.ibd文件中,而不是系统表空间中。 innodb_file_per_table=1 Use the following list of values: 0 for crc32, 1 for strict_crc32, 2 for innodb, 3 for strict_innodb, 4 for none, 5 for strict_none. 使用以下值列表:0表示crc32, 1表示strict_crc32, 2表示innodb, 3表示strict_innodb, 4表示none, 5表示strict_none。 innodb_checksum_algorithm=0 The number of outstanding connection requests MySQL can have. This option is useful when the main MySQL thread gets many connection requests in a very short time. It then takes some time (although very little) for the main thread to check the connection and start a new thread. The back_log value indicates how many requests can be stacked during this short time before MySQL momentarily stops answering new requests. You need to increase this only if you expect a large number of connections in a short period of time. MySQL可以有多少未完成连接请求。当MySQL主线程在很短的时间内收到许多连接请求时,这个选项非常有用。然后,主线程需要一些时间(尽管很少)来检查连接并启动一个新线程。back_log值表示在MySQL暂时停止响应新请求之前的短时间内可以堆多少个请求。只有当您预期在短时间内会有大量连接时,才需要增加这个值。 back_log=80 If this is set to a nonzero value, all tables are closed every flush_time seconds to free up resources and synchronize unflushed data to disk. This option is best used only on systems with minimal resources. 如果将该值设置为非零值,则每隔flush_time秒关闭所有表,以释放资源并将未刷新的数据同步到磁盘。这个选项最好只在资源最少的系统上使用。 flush_time=0 The minimum size of the buffer that is used for plain index scans, range index scans, and joins that do not use 用于普通索引扫描、范围索引扫描和不使用索引执行全表扫描的连接的缓冲区的最小大小。 indexes and thus perform full table scans. join_buffer_size=200M The maximum size of one packet or any generated or intermediate string, or any parameter sent by the mysql_stmt_send_long_data() C API function. 由mysql_stmt_send_long_data() C API函数发送的一个包或任何生成的或中间字符串或任何参数的最大大小 max_allowed_packet=500M If more than this many successive connection requests from a host are interrupted without a successful connection, the server blocks that host from performing further connections. 如果在没有成功连接的情况下中断了来自主机的多个连续连接请求,则服务器将阻止主机执行进一步的连接。 max_connect_errors=100 Changes the number of file descriptors available to mysqld. You should try increasing the value of this option if mysqld gives you the error "Too many open files". 更改mysqld可用的文件描述符的数量。如果mysqld给您的错误是“打开的文件太多”,您应该尝试增加这个选项的值。 open_files_limit=4161 If you see many sort_merge_passes per second in SHOW GLOBAL STATUS output, you can consider increasing the sort_buffer_size value to speed up ORDER BY or GROUP BY operations that cannot be improved with query optimization or improved indexing. 如果在SHOW GLOBAL STATUS输出中每秒看到许多sort_merge_passes,可以考虑增加sort_buffer_size值,以加快ORDER BY或GROUP BY操作的速度,这些操作无法通过查询优化或改进索引来改进。 sort_buffer_size=1M The number of table definitions (from .frm files) that can be stored in the definition cache. If you use a large number of tables, you can create a large table definition cache to speed up opening of tables. The table definition cache takes less space and does not use file descriptors, unlike the normal table cache. The minimum and default values are both 400. 可以存储在定义缓存中的表定义的数量(来自.frm文件)。如果使用大量表,可以创建一个大型表定义缓存来加速表的打开。与普通的表缓存不同,表定义缓存占用更少的空间,并且不使用文件描述符。最小值和默认值都是400。 table_definition_cache=1400 Specify the maximum size of a row-based binary log event, in bytes. Rows are grouped into events smaller than this size if possible. The value should be a multiple of 256. 指定基于行的二进制日志事件的最大大小,单位为字节。如果可能,将行分组为小于此大小的事件。这个值应该是256的倍数。 binlog_row_event_max_size=8K If the value of this variable is greater than 0, a replication slave synchronizes its master.info file to disk. (using fdatasync()) after every sync_master_info events. 如果该变量的值大于0,则复制奴隶将其主.info文件同步到磁盘。(在每个sync_master_info事件之后使用fdatasync())。 sync_master_info=10000 If the value of this variable is greater than 0, the MySQL server synchronizes its relay log to disk. (using fdatasync()) after every sync_relay_log writes to the relay log. 如果这个变量的值大于0,MySQL服务器将其中继日志同步到磁盘。(在每个sync_relay_log写入到中继日志之后使用fdatasync())。 sync_relay_log=10000 If the value of this variable is greater than 0, a replication slave synchronizes its relay-log.info file to disk. (using fdatasync()) after every sync_relay_log_info transactions. 如果该变量的值大于0,则复制奴隶将其中继日志.info文件同步到磁盘。(在每个sync_relay_log_info事务之后使用fdatasync())。 sync_relay_log_info=10000 Load mysql plugins at start."plugin_x ; plugin_y". 开始时加载mysql插件。“plugin_x;plugin_y” plugin_load The TCP/IP Port the MySQL Server X Protocol will listen on. MySQL服务器X协议将监听TCP/IP端口。 loose_mysqlx_port=33060 本篇文章为转载内容。原文链接:https://blog.csdn.net/mywpython/article/details/89499852。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-10-08 09:56:02
129
转载
转载文章
...重要的位置。 这正是SQL SERVER等数据库管理系统和dBASEX、ACCESS等数据库文件系统的本质区别,所以,对数据库管理系统操作能力的强弱在某种程度上也折射出了网管的水平——个人认为,称得上优秀的Admin,至少应该是一个称职的DBA(数据库管理员)。 下面以SQL SERVER(下称 SQLS)为例,将数据库管理中难于理解的“索引原理”问题给各位朋友作一个深入浅出的介绍。其他的数据库管理系统如Oracle、Sybase等,朋友们可以融会贯通,举一反三。 一、数据表的基本结构 建立数据库的目的是管理大量数据,而建立索引的目的就是提高数据检索效率,改善数据库工作性能,提高数据访问速度。对于索引,我们要知其然,更要知其所以然,关键在于认识索引的工作原理,才能更好的管理索引。 为认识索引工作原理,首先有必要对数据表的基本结构作一次全面的复习。 SQLS当一个新表被创建之时,系统将在磁盘中分配一段以8K为单位的连续空间,当字段的值从内存写入磁盘时,就在这一既定空间随机保存,当一个8K用完的时候,SQLS指针会自动分配一个8K的空间。这里,每个8K空间被称为一个数据页(Page),又名页面或数据页面,并分配从0-7的页号,每个文件的第0页记录引导信息,叫文件头(File header);每8个数据页(64K)的组合形成扩展区(Extent),称为扩展。全部数据页的组合形成堆(Heap)。 SQLS规定行不能跨越数据页,所以,每行记录的最大数据量只能为8K。这就是char和varchar这两种字符串类型容量要限制在8K以内的原因,存储超过8K的数据应使用text类型,实际上,text类型的字段值不能直接录入和保存,它只是存储一个指针,指向由若干8K的文本数据页所组成的扩展区,真正的数据正是放在这些数据页中。 页面有空间页面和数据页面之分。 当一个扩展区的8个数据页中既包含了空间页面又包括了数据或索引页面时,称为混合扩展(Mixed Extent),每张表都以混合扩展开始;反之,称为一致扩展(Uniform Extent),专门保存数据及索引信息。 表被创建之时,SQLS在混合扩展中为其分配至少一个数据页面,随着数据量的增长,SQLS可即时在混合扩展中分配出7个页面,当数据超过8个页面时,则从一致扩展中分配数据页面。 空间页面专门负责数据空间的分配和管理,包括:PFS页面(Page free space):记录一个页面是否已分配、位于混合扩展还是一致扩展以及页面上还有多少可用空间等信息;GAM页面(Global allocation map)和SGAM页面(Secodary global allocation map):用来记录空闲的扩展或含有空闲页面的混合扩展的位置。SQLS综合利用这三种类型的页面文件在必要时为数据表创建新空间; 数据页或索引页则专门保存数据及索引信息,SQLS使用4种类型的数据页面来管理表或索引:它们是IAM页、数据页、文本/图像页和索引页。 在WINDOWS中,我们对文件执行的每一步操作,在磁盘上的物理位置只有系统(system)才知道;SQL SERVER沿袭了这种工作方式,在插入数据的过程中,不但每个字段值在数据页面中的保存位置是随机的,而且每个数据页面在“堆”中的排列位置也只有系统(system)才知道。 这是为什么呢?众所周知,OS之所以能管理DISK,是因为在系统启动时首先加载了文件分配表:FAT(File Allocation Table),正是由它管理文件系统并记录对文件的一切操作,系统才得以正常运行;同理,作为管理系统级的SQL SERVER,也有这样一张类似FAT的表存在,它就是索引分布映像页:IAM(Index Allocation Map)。 IAM的存在,使SQLS对数据表的物理管理有了可能。 IAM页从混合扩展中分配,记录了8个初始页面的位置和该扩展区的位置,每个IAM页面能管理512,000个数据页面,如果数据量太大,SQLS也可以增加更多的IAM页,可以位于文件的任何位置。第一个IAM页被称为FirstIAM,其中记录了以后的IAM页的位置。 数据页和文本/图像页互反,前者保存非文本/图像类型的数据,因为它们都不超过8K的容量,后者则只保存超过8K容量的文本或图像类型数据。而索引页顾名思义,保存的是与索引结构相关的数据信息。了解页面的问题有助我们下一步准确理解SQLS维护索引的方式,如页拆分、填充因子等。 二、索引的基本概念 索引是一种特殊类型的数据库对象,它与表有着密切的联系。 索引是为检索而存在的。如一些书籍的末尾就专门附有索引,指明了某个关键字在正文中的出现的页码位置,方便我们查找,但大多数的书籍只有目录,目录不是索引,只是书中内容的排序,并不提供真正的检索功能。可见建立索引要单独占用空间;索引也并不是必须要建立的,它们只是为更好、更快的检索和定位关键字而存在。 再进一步说,我们要在图书馆中查阅图书,该怎么办呢?图书馆的前台有很多叫做索引卡片柜的小柜子,里面分了若干的类别供我们检索图书,比如你可以用书名的笔画顺序或者拼音顺序作为查找的依据,你还可以从作者名的笔画顺序或拼音顺序去查询想要的图书,反正有许多检索方式,但有一点很明白,书库中的书并没有按照这些卡片柜中的顺序排列——虽然理论上可以这样做,事实上,所有图书的脊背上都人工的粘贴了一个特定的编号①,它们是以这个顺序在排列。索引卡片中并没有指明这本书摆放在书库中的第几个书架的第几本,仅仅指明了这个特定的编号。管理员则根据这一编号将请求的图书返回到读者手中。这是很形象的例子,以下的讲解将会反复用到它。 SQLS在安装完成之后,安装程序会自动创建master、model、tempdb等几个特殊的系统数据库,其中master是SQLS的主数据库,用于保存和管理其它系统数据库、用户数据库以及SQLS的系统信息,它在SQLS中的地位与WINDOWS下的注册表相当。 master中有一个名为sysindexes的系统表,专门管理索引。SQLS查询数据表的操作都必须用到它,毫无疑义,它是本文主角之一。 查看一张表的索引属性,可以在查询分析器中使用以下命令:select from sysindexes where id=object_id(‘tablename’) ;而要查看表的索引所占空间的大小,可以使用系统存储过程命令:sp_spaceused tablename,其中参数tablename为被索引的表名。 三、平衡树 如果你通过书后的索引知道了一个关键字所在的页码,你有可能通过随机的翻寻,最终到达正确的页码。但更科学更快捷的方法是:首先把书翻到大概二分之一的位置,如果要找的页码比该页的页码小,就把书向前翻到四分之一处,否则,就把书向后翻到四分之三的地方,依此类推,把书页续分成更小的部分,直至正确的页码。这叫“两分法”,微软在官方教程MOC里另有一种说法:叫B树(B-Tree,Balance Tree),即平衡树。 一个表索引由若干页面组成,这些页面构成了一个树形结构。B树由“根”(root)开始,称为根级节点,它通过指向另外两个页,把一个表的记录从逻辑上分成两个部分:“枝”—--非叶级节点(Non-Leaf Level);而非叶级节点又分别指向更小的部分:“叶”——叶级节点(Leaf Level)。根节点、非叶级节点和叶级节点都位于索引页中,统称为索引节点,属于索引页的范筹。这些“枝”、“叶”最终指向了具体的数据页(Page)。在根级节点和叶级节点之间的叶又叫数据中间页。 “根”(root)对应了sysindexes表的Root字段,其中记载了非叶级节点的物理位置(即指针);非叶级节点位于根节点和叶节点之间,记载了指向叶级节点的指针;而叶级节点则最终指向数据页。这就是“平衡树”。 四、聚集索引和非聚集索引 从形式上而言,索引分为聚集索引(Clustered Indexes)和非聚集索引(NonClustered Indexes)。 聚集索引相当于书籍脊背上那个特定的编号。如果对一张表建立了聚集索引,其索引页中就包含着建立索引的列的值(下称索引键值),那么表中的记录将按照该索引键值进行排序。比如,我们如果在“姓名”这一字段上建立了聚集索引,则表中的记录将按照姓名进行排列;如果建立了聚集索引的列是数值类型的,那么记录将按照该键值的数值大小来进行排列。 非聚集索引用于指定数据的逻辑顺序,也就是说,表中的数据并没有按照索引键值指定的顺序排列,而仍然按照插入记录时的顺序存放。其索引页中包含着索引键值和它所指向该行记录在数据页中的物理位置,叫做行定位符(RID:Row ID)。好似书后面的的索引表,索引表中的顺序与实际的页码顺序也是不一致的。而且一本书也许有多个索引。比如主题索引和作者索引。 SQL Server在默认的情况下建立的索引是非聚集索引,由于非聚集索引不对表中的数据进行重组,而只是存储索引键值并用一个指针指向数据所在的页面。一个表如果没有聚集索引时,理论上可以建立249个非聚集索引。每个非聚集索引提供访问数据的不同排序顺序。 五、数据是怎样被访问的 若能真正理解了以上索引的基础知识,那么再回头来看索引的工作原理就简单和轻松多了。 (一)SQLS怎样访问没有建立任何索引数据表: Heap译成汉语叫做“堆”,其本义暗含杂乱无章、无序的意思,前面提到数据值被写进数据页时,由于每一行记录之间并没地有特定的排列顺序,所以行与行的顺序就是随机无序的,当然表中的数据页也就是无序的了,而表中所有数据页就形成了“堆”,可以说,一张没有索引的数据表,就像一个只有书柜而没有索引卡片柜的图书馆,书库里面塞满了一堆乱七八糟的图书。当读者对管理员提交查询请求后,管理员就一头钻进书库,对照查找内容从头开始一架一柜的逐本查找,运气好的话,在第一个书架的第一本书就找到了,运气不好的话,要到最后一个书架的最后一本书才找到。 SQLS在接到查询请求的时候,首先会分析sysindexes表中一个叫做索引标志符(INDID: Index ID)的字段的值,如果该值为0,表示这是一张数据表而不是索引表,SQLS就会使用sysindexes表的另一个字段——也就是在前面提到过的FirstIAM值中找到该表的IAM页链——也就是所有数据页集合。 这就是对一个没有建立索引的数据表进行数据查找的方式,是不是很没效率?对于没有索引的表,对于一“堆”这样的记录,SQLS也只能这样做,而且更没劲的是,即使在第一行就找到了被查询的记录,SQLS仍然要从头到尾的将表扫描一次。这种查询称为“遍历”,又叫“表扫描”。 可见没有建立索引的数据表照样可以运行,不过这种方法对于小规模的表来说没有什么太大的问题,但要查询海量的数据效率就太低了。 (二)SQLS怎样访问建立了非聚集索引的数据表: 如前所述,非聚集索引可以建多个,具有B树结构,其叶级节点不包含数据页,只包含索引行。假定一个表中只有非聚集索引,则每个索引行包含了非聚集索引键值以及行定位符(ROW ID,RID),他们指向具有该键值的数据行。每一个RID由文件ID、页编号和在页中行的编号组成。 当INDID的值在2-250之间时,意味着表中存在非聚集索引页。此时,SQLS调用ROOT字段的值指向非聚集索引B树的ROOT,在其中查找与被查询最相近的值,根据这个值找到在非叶级节点中的页号,然后顺藤摸瓜,在叶级节点相应的页面中找到该值的RID,最后根据这个RID在Heap中定位所在的页和行并返回到查询端。 例如:假定在Lastname上建立了非聚集索引,则执行Select From Member Where Lastname=’Ota’时,查询过程是:①SQLS查询INDID值为2;②立即从根出发,在非叶级节点中定位最接近Ota的值“Martin”,并查到其位于叶级页面的第61页;③仅在叶级页面的第61页的Martin下搜寻Ota的RID,其RID显示为N∶706∶4,表示Lastname字段中名为Ota的记录位于堆的第707页的第4行,N表示文件的ID值,与数据无关;④根据上述信息,SQLS立马在堆的第 707页第4行将该记录“揪”出来并显示于前台(客户端)。视表的数据量大小,整个查询过程费时从百分之几毫秒到数毫秒不等。 在谈到索引基本概念的时候,我们就提到了这种方式: 图书馆的前台有很多索引卡片柜,里面分了若干的类别,诸如按照书名笔画或拼音顺序、作者笔画或拼音顺序等等,但不同之处有二:① 索引卡片上记录了每本书摆放的具体位置——位于某柜某架的第几本——而不是“特殊编号”;② 书脊上并没有那个“特殊编号”。管理员在索引柜中查到所需图书的具体位置(RID)后,根据RID直接在书库中的具体位置将书提出来。 显然,这种查询方式效率很高,但资源占用极大,因为书库中书的位置随时在发生变化,必然要求管理员花费额外的精力和时间随时做好索引更新。 (三)SQLS怎样访问建立了聚集索引的数据表: 在聚集索引中,数据所在的数据页是叶级,索引数据所在的索引页是非叶级。 查询原理和上述对非聚集索引的查询相似,但由于记录是按照聚集索引中索引键值进行排序,换句话说,聚集索引的索引键值也就是具体的数据页。 这就好比书库中的书就是按照书名的拼音在排序,而且也只按照这一种排序方式建立相应的索引卡片,于是查询起来要比上述只建立非聚集索引的方式要简单得多。仍以上面的查询为例: 假定在Lastname字段上建立了聚集索引,则执行Select From Member Where Lastname=’Ota’时,查询过程是:①SQLS查询INDID值为1,这是在系统中只建立了聚集索引的标志;②立即从根出发,在非叶级节点中定位最接近Ota的值“Martin”,并查到其位于叶级页面的第120页;③在位于叶级页面第120页的Martin下搜寻到Ota条目,而这一条目已是数据记录本身;④将该记录返回客户端。 这一次的效率比第二种方法更高,以致于看起来更美,然而它最大的优点也恰好是它最大的缺点——由于同一张表中同时只能按照一种顺序排列,所以在任何一种数据表中的聚集索引只能建立一个;并且建立聚集索引需要至少相当于源表120%的附加空间,以存放源表的副本和索引中间页! 难道鱼和熊掌就不能兼顾了吗?办法是有的。 (四)SQLS怎样访问既有聚集索引、又有非聚集索引的数据表: 如果我们在建立非聚集索引之前先建立了聚集索引的话,那么非聚集索引就可以使用聚集索引的关键字进行检索,就像在图书馆中,前台卡片柜中的可以有不同类别的图书索引卡,然而每张卡片上都载明了那个特殊编号——并不是书籍存放的具体位置。这样在最大程度上既照顾了数据检索的快捷性,又使索引的日常维护变得更加可行,这是最为科学的检索方法。 也就是说,在只建立了非聚集索引的情况下,每个叶级节点指明了记录的行定位符(RID);而在既有聚集索引又有非聚集索引的情况下,每个叶级节点所指向的是该聚集索引的索引键值,即数据记录本身。 假设聚集索引建立在Lastname上,而非聚集索引建立在Firstname上,当执行Select From Member Where Firstname=’Mike’时,查询过程是:①SQLS查询INDID值为2;②立即从根出发,在Firstname的非聚集索引的非叶级节点中定位最接近Mike的值“Jose”条目;③从Jose条目下的叶级页面中查到Mike逻辑位置——不是RID而是聚集索引的指针;④根据这一指针所指示位置,直接进入位于Lastname的聚集索引中的叶级页面中到达Mike数据记录本身;⑤将该记录返回客户端。 这就完全和我们在“索引的基本概念”中讲到的现实场景完全一样了,当数据发生更新的时候,SQLS只负责对聚集索引的健值驾以维护,而不必考虑非聚集索引,只要我们在ID类的字段上建立聚集索引,而在其它经常需要查询的字段上建立非聚集索引,通过这种科学的、有针对性的在一张表上分别建立聚集索引和非聚集索引的方法,我们既享受了索引带来的灵活与快捷,又相对规避了维护索引所导致的大量的额外资源消耗。 六、索引的优点和不足 索引有一些先天不足:1:建立索引,系统要占用大约为表的1.2倍的硬盘和内存空间来保存索引。2:更新数据的时候,系统必须要有额外的时间来同时对索引进行更新,以维持数据和索引的一致性——这就如同图书馆要有专门的位置来摆放索引柜,并且每当库存图书发生变化时都需要有人将索引卡片重整以保持索引与库存的一致。 当然建立索引的优点也是显而易见的:在海量数据的情况下,如果合理的建立了索引,则会大大加强SQLS执行查询、对结果进行排序、分组的操作效率。 实践表明,不恰当的索引不但于事无补,反而会降低系统性能。因为大量的索引在进行插入、修改和删除操作时比没有索引花费更多的系统时间。比如在如下字段建立索引应该是不恰当的:1、很少或从不引用的字段;2、逻辑型的字段,如男或女(是或否)等。 综上所述,提高查询效率是以消耗一定的系统资源为代价的,索引不能盲目的建立,必须要有统筹的规划,一定要在“加快查询速度”与“降低修改速度”之间做好平衡,有得必有失,此消则彼长。这是考验一个DBA是否优秀的很重要的指标。 至此,我们一直在说SQLS在维护索引时要消耗系统资源,那么SQLS维护索引时究竟消耗了什么资源?会产生哪些问题?究竟应该才能优化字段的索引? 在上篇中,我们就索引的基本概念和数据查询原理作了详细阐述,知道了建立索引时一定要在“加快查询速度”与“降低修改速度”之间做好平衡,有得必有失,此消则彼长。那么,SQLS维护索引时究竟怎样消耗资源?应该从哪些方面对索引进行管理与优化?以下就从七个方面来回答这些问题。 一、页分裂 微软MOC教导我们:当一个数据页达到了8K容量,如果此时发生插入或更新数据的操作,将导致页的分裂(又名页拆分): 1、有聚集索引的情况下:聚集索引将被插入和更新的行指向特定的页,该页由聚集索引关键字决定; 2、只有堆的情况下:只要有空间就可以插入新的行,但是如果我们对行数据的更新需要更多的空间,以致大于了当前页的可用空间,行就被移到新的页中,并且在原位置留下一个转发指针,指向被移动的新行,如果具有转发指针的行又被移动了,那么原来的指针将重新指向新的位置; 3、如果堆中有非聚集索引,那么尽管插入和更新操作在堆中不会发生页分裂,但是在非聚集索引上仍然产生页分裂。 无论有无索引,大约一半的数据将保留在老页面,而另一半将放入新页面,并且新页面可能被分配到任何可用的页。所以,频繁页分裂,后果很严重,将使物理表产生大量数据碎片,导致直接造成I/O效率的急剧下降,最后,停止SQLS的运行并重建索引将是我们的唯一选择! 二、填充因子 然而在“混沌之初”,就可以在一定程度上避免不愉快出现:在创建索引时,可以为这个索引指定一个填充因子,以便在索引的每个叶级页面上保留一定百分比的空间,将来数据可以进行扩充和减少页分裂。填充因子是从0到100的百分比数值,设为100时表示将数据页填满。只有当不会对数据进行更改时(例如只读表中)才用此设置。值越小则数据页上的空闲空间越大,这样可以减少在索引增长过程中进行页分裂的需要,但这一操作需要占用更多的硬盘空间。 填充因子只在创建索引时执行,索引创建以后,当表中进行数据的添加、删除或更新时,是不会保持填充因子的,如果想在数据页上保持额外的空间,则有悖于使用填充因子的本意,因为随着数据的输入,SQLS必须在每个页上进行页拆分,以保持填充因子指定的空闲空间。因此,只有在表中的数据进行了较大的变动,才可以填充数据页的空闲空间。这时,可以从容的重建索引,重新指定填充因子,重新分布数据。 反之,填充因子指定不当,就会降低数据库的读取性能,其降低量与填充因子设置值成反比。例如,当填充因子的值为50时,数据库的读取性能会降低两倍!所以,只有在表中根据现有数据创建新索引,并且可以预见将来会对这些数据进行哪些更改时,设置填充因子才有意义。 三、两道数学题 假定数据库设计没有问题,那么是否象上篇中分析的那样,当你建立了众多的索引,在查询工作中SQLS就只能按照“最高指示”用索引处理每一个提交的查询呢?答案是否定的! 上篇“数据是怎样被访问的”章节中提到的四种索引方案只是一种静态的、标准的和理论上的分析比较,实际上,将在外,军令有所不从,SQLS几乎完全是“自主”的决定是否使用索引或使用哪一个索引! 这是怎么回事呢? 让我们先来算一道题:如果某表的一条记录在磁盘上占用1000字节(1K)的话,我们对其中10字节的一个字段建立索引,那么该记录对应的索引大小只有10字节(0.01K)。上篇说过,SQLS的最小空间分配单元是“页(Page)”,一个页面在磁盘上占用8K空间,所以一页只能存储8条“记录”,但可以存储800条“索引”。现在我们要从一个有8000条记录的表中检索符合某个条件的记录(有Where子句),如果没有索引的话,我们需要遍历8000条×1000字节/8K字节=1000个页面才能够找到结果。如果在检索字段上有上述索引的话,那么我们可以在8000条×10字节/8K字节=10个页面中就检索到满足条件的索引块,然后根据索引块上的指针逐一找到结果数据块,这样I/O访问量肯定要少得多。 然而有时用索引还不如不用索引快! 同上,如果要无条件检索全部记录(不用Where子句),不用索引的话,需要访问8000条×1000字节/8K字节=1000个页面;而使用索引的话,首先检索索引,访问8000条×10字节/8K字节=10个页面得到索引检索结果,再根据索引检索结果去对应数据页面,由于是检索全部数据,所以需要再访问8000条×1000字节/8K字节=1000个页面将全部数据读取出来,一共访问了1010个页面,这显然不如不用索引快。 SQLS内部有一套完整的数据索引优化技术,在上述情况下,SQLS会自动使用表扫描的方式检索数据而不会使用任何索引。那么SQLS是怎么知道什么时候用索引,什么时候不用索引的呢?因为SQLS除了维护数据信息外,还维护着数据统计信息! 四、统计信息 打开企业管理器,单击“Database”节点,右击Northwind数据库→单击“属性”→选择“Options”选项卡,观察“Settings”下的各项复选项,你发现了什么? 从Settings中我们可以看到,在数据库中,SQLS将默认的自动创建和更新统计信息,这些统计信息包括数据密度和分布信息,正是它们帮助SQLS确定最佳的查询策略:建立查询计划和是否使用索引以及使用什么样的索引。 在创建索引时,SQLS会创建分布数据页来存放有关索引的两种统计信息:分布表和密度表。查询优化器使用这些统计信息估算使用该索引进行查询的成本(Cost),并在此基础上判断该索引对某个特定查询是否有用。 随着表中的数据发生变化,SQLS自动定期更新这些统计信息。采样是在各个数据页上随机进行。从磁盘读取一个数据页后,该数据页上的所有行都被用来更新统计信息。统计信息更新的频率取决于字段或索引中的数据量以及数据更改量。比如,对于有一万条记录的表,当1000个索引键值发生改变时,该表的统计信息便可能需要更新,因为1000 个值在该表中占了10%,这是一个很大的比例。而对于有1千万条记录的表来说,1000个索引值发生更改的意义则可以忽略不计,因此统计信息就不会自动更新。 至于它们帮助SQLS建立查询计划的具体过程,限于篇幅,这里就省略了,请有兴趣的朋友们自己研究。 顺便多说一句,SQLS除了能自动记录统计信息之外,还可以记录服务器中所发生的其它活动的详细信息,包括I/O 统计信息、CPU 统计信息、锁定请求、T-SQL 和 RPC 统计信息、索引和表扫描、警告和引发的错误、数据库对象的创建/除去、连接/断开、存储过程操作、游标操作等等。这些信息的读取、设置请朋友们在SQLS联机帮助文档(SQL Server Books Online)中搜索字符串“Profiler”查找。 五、索引的人工维护 上面讲到,某些不合适的索引将影响到SQLS的性能,随着应用系统的运行,数据不断地发生变化,当数据变化达到某一个程度时将会影响到索引的使用。这时需要用户自己来维护索引。 随着数据行的插入、删除和数据页的分裂,有些索引页可能只包含几页数据,另外应用在执行大量I/O的时候,重建非聚聚集索引可以维护I/O的效率。重建索引实质上是重新组织B树。需要重建索引的情况有: 1) 数据和使用模式大幅度变化; 2)排序的顺序发生改变; 3)要进行大量插入操作或已经完成; 4)使用I/O查询的磁盘读次数比预料的要多; 5)由于大量数据修改,使得数据页和索引页没有充分使用而导致空间的使用超出估算; 6)dbcc检查出索引有问题。 六、索引的使用原则 接近尾声的时候,让我们再从另一个角度认识索引的两个重要属性----唯一性索引和复合性索引。 在设计表的时候,可以对字段值进行某些限制,比如可以对字段进行主键约束或唯一性约束。 主键约束是指定某个或多个字段不允许重复,用于防止表中出现两条完全相同的记录,这样的字段称为主键,每张表都可以建立并且只能建立一个主键,构成主键的字段不允许空值。例如职员表中“身份证号”字段或成绩表中“学号、课程编号”字段组合。 而唯一性约束与主键约束类似,区别只在于构成唯一性约束的字段允许出现空值。 建立在主键约束和唯一性约束上的索引,由于其字段值具有唯一性,于是我们将这种索引叫做“唯一性索引”,如果这个唯一性索引是由两个以上字段的组合建立的,那么它又叫“复合性索引”。 注意,唯一索引不是聚集索引,如果对一个字段建立了唯一索引,你仅仅不能向这个字段输入重复的值。并不妨碍你可以对其它类型的字段也建立一个唯一性索引,它们可以是聚集的,也可以是非聚集的。 唯一性索引保证在索引列中的全部数据是唯一的,不会包含冗余数据。如果表中已经有一个主键约束或者唯一性约束,那么当创建表或者修改表时,SQLS自动创建一个唯一性索引。但出于必须保证唯一性,那么应该创建主键约束或者唯一性键约束,而不是创建一个唯一性索引。当创建唯一性索引时,应该认真考虑这些规则:当在表中创建主键约束或者唯一性键约束时, SQLS钭自动创建一个唯一性索引;如果表中已经包含有数据,那么当创建索引时,SQLS检查表中已有数据的冗余性,如果发现冗余值,那么SQLS就取消该语句的执行,并且返回一个错误消息,确保表中的每一行数据都有一个唯一值。 复合索引就是一个索引创建在两个列或者多个列上。在搜索时,当两个或者多个列作为一个关键值时,最好在这些列上创建复合索引。当创建复合索引时,应该考虑这些规则:最多可以把16个列合并成一个单独的复合索引,构成复合索引的列的总长度不能超过900字节,也就是说复合列的长度不能太长;在复合索引中,所有的列必须来自同一个表中,不能跨表建立复合列;在复合索引中,列的排列顺序是非常重要的,原则上,应该首先定义最唯一的列,例如在(COL1,COL2)上的索引与在(COL2,COL1)上的索引是不相同的,因为两个索引的列的顺序不同;为了使查询优化器使用复合索引,查询语句中的WHERE子句必须参考复合索引中第一个列;当表中有多个关键列时,复合索引是非常有用的;使用复合索引可以提高查询性能,减少在一个表中所创建的索引数量。 综上所述,我们总结了如下索引使用原则: 1)逻辑主键使用唯一的成组索引,对系统键(作为存储过程)采用唯一的非成组索引,对任何外键列采用非成组索引。考虑数据库的空间有多大,表如何进行访问,还有这些访问是否主要用作读写。 2)不要索引memo/note 字段,不要索引大型字段(有很多字符),这样作会让索引占用太多的存储空间。 3)不要索引常用的小型表 4)一般不要为小型数据表设置过多的索引,假如它们经常有插入和删除操作就更别这样作了,SQLS对这些插入和删除操作提供的索引维护可能比扫描表空间消耗更多的时间。 七、大结局 查询是一个物理过程,表面上是SQLS在东跑西跑,其实真正大部分压马路的工作是由磁盘输入输出系统(I/O)完成,全表扫描需要从磁盘上读表的每一个数据页,如果有索引指向数据值,则I/O读几次磁盘就可以了。但是,在随时发生的增、删、改操作中,索引的存在会大大增加工作量,因此,合理的索引设计是建立在对各种查询的分析和预测上的,只有正确地使索引与程序结合起来,才能产生最佳的优化方案。 一般来说建立索引的思路是: (1)主键时常作为where子句的条件,应在表的主键列上建立聚聚集索引,尤其当经常用它作为连接的时候。 (2)有大量重复值且经常有范围查询和排序、分组发生的列,或者非常频繁地被访问的列,可考虑建立聚聚集索引。 (3)经常同时存取多列,且每列都含有重复值可考虑建立复合索引来覆盖一个或一组查询,并把查询引用最频繁的列作为前导列,如果可能尽量使关键查询形成覆盖查询。 (4)如果知道索引键的所有值都是唯一的,那么确保把索引定义成唯一索引。 (5)在一个经常做插入操作的表上建索引时,使用fillfactor(填充因子)来减少页分裂,同时提高并发度降低死锁的发生。如果在只读表上建索引,则可以把fillfactor置为100。 (6)在选择索引字段时,尽量选择那些小数据类型的字段作为索引键,以使每个索引页能够容纳尽可能多的索引键和指针,通过这种方式,可使一个查询必须遍历的索引页面降到最小。此外,尽可能地使用整数为键值,因为它能够提供比任何数据类型都快的访问速度。 SQLS是一个很复杂的系统,让索引以及查询背后的东西真相大白,可以帮助我们更为深刻的了解我们的系统。一句话,索引就象盐,少则无味多则咸。 本篇文章为转载内容。原文链接:https://blog.csdn.net/qq_28052907/article/details/75194926。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-04-30 23:10:07
97
转载
建站模板下载
...绍 这款“宽屏APP开发公司网站模板”专为APP开发企业设计,风格大气且极具现代感,采用单页布局,高效展示和介绍各类APP产品。页面简洁明了,突出APP功能特点与下载引导,方便用户快速了解并获取应用,同时也为企业打造专业、高端的互联网形象,实现更多曝光与业务拓展。 点我下载 文件大小:1.98 MB 您将下载一个资源包,该资源包内部文件的目录结构如下: 本网站提供模板下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-09-30 17:33:15
58
本站
建站模板下载
...这款手机apps应用开发制作网页模板专为移动app开发者打造,采用Bootstrap框架构建,具备绿色、响应式设计。该模板适用于展示iOS与Android平台上的软件应用,强调环保主题,能完美呈现app特点与功能,助力开发者快速构建专业且吸引人的应用程序展示网站。 点我下载 文件大小:2.83 MB 您将下载一个资源包,该资源包内部文件的目录结构如下: 本网站提供模板下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-04-20 12:45:46
77
本站
建站模板下载
...便捷下载并应用于前端开发中,快速构建展现环保理念与科技成果的专业化网站平台。 点我下载 文件大小:15.19 MB 您将下载一个资源包,该资源包内部文件的目录结构如下: 本网站提供模板下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-04-23 16:29:43
338
本站
建站模板下载
...核心元素,适用于智能开发企业网站构建,内置丰富的产品展示模块和下载选项,方便用户下载并自定义更多技术公司网站模板内容,全面展现企业的高科技形象与实力。 点我下载 文件大小:7.79 MB 您将下载一个资源包,该资源包内部文件的目录结构如下: 本网站提供模板下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-04-19 17:15:15
118
本站
建站模板下载
...。基于HTML5技术开发,网站结构清晰,功能齐全,便于展示各类设计工程项目与服务内容。模板设计兼具美观与实用,充分满足装饰装修行业在互联网展示需求,助力企业吸引更多潜在客户,提升品牌影响力。 点我下载 文件大小:4.33 MB 您将下载一个资源包,该资源包内部文件的目录结构如下: 本网站提供模板下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-05-26 22:44:48
118
本站
建站模板下载
...该“背景滑动外贸软件开发响应式网站模板”是一款专为外贸软件企业设计的静态HTML模板,具有创新的滑动背景效果。它兼顾美观与实用,充分展现企业形象与产品特色,适用于各类屏幕尺寸,实现响应式布局。此模板以“更多”为核心理念,旨在全面展示外贸企业的软件开发实力与服务内容,是打造专业、高端外贸企业网站的理想之选。 点我下载 文件大小:1.73 MB 您将下载一个资源包,该资源包内部文件的目录结构如下: 本网站提供模板下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2023-05-05 22:11:02
599
本站
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
sudo apt update && sudo apt upgrade (适用于基于Debian/Ubuntu)
- 更新软件包列表并升级所有已安装软件包。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"